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ABSTRACT. We study the hyperbolicity properties of the action of a non-elementary
automorphism group on a compact complex surface, with an emphasis on K3 and En-
riques surfaces. A first result is that when such a group contains parabolic elements,
Zariski diffuse invariant measures automatically have non-zero Lyapunov exponents.
In combination with our previous work, this leads to simple criteria for a uniform ex-
pansion property on the whole surface, for groups with and without parabolic elements.
This, in turn, has consequences on the dynamics: description of orbit closures, equidis-
tribution, ergodicity properties, etc. Along the way, we provide a reference discussion
on uniform expansion of non-linear discrete group actions on compact (real) manifolds
and the construction of Margulis functions under optimal moment conditions.
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1. INTRODUCTION

Let X be a compact complex surface and denote by AutpXq its group of automor-
phisms, i.e. of holomorphic diffeomorphisms. Let Γ be a subgroup of AutpXq. We say
that Γ is non-elementary if the subgroup Γ› ď GLpH›pX,Cqq induced by the action of
Γ on the De Rham cohomology of X contains a non-abelian free group; the existence
of a non-elementary subgroup of AutpXq implies that X is projective (see [18]). In a
series of articles [21, 22, 20] we have explored the dynamics of such a non-elementary
group Γ on X , notably by means of random walk techniques. In this paper, we study
the hyperbolicity properties of such random actions and their consequences.

1.1. Wehler examples. To understand the motivation behind our general results, it is
interesting to start with the Wehler family W of surfaces of degree p2, 2, 2q in P1 ˆP1 ˆ

P1, which has been a recurring example in our work (see e.g. [21, §3]). This family W
depends on 26 parameters and is naturally parameterized by P26pCq; we shall denote by
W0 Ă W the Zariski open subset of smooth Wehler surfaces which do not contain any
fiber of the three coordinate projections P1 ˆ P1 ˆ P1 Ñ P1. Note that AutpP1q3 acts
on P1 ˆ P1 ˆ P1 as well as on W and W0. For X P W0, the three natural projections
X Ñ P1 ˆ P1 are ramified covers of degree 2; their deck transformations yield three
holomorphic involutions σ1, σ2, and σ3; the group Γ generated by these involutions is
non-elementary and isomorphic to Z{2Z ˚ Z{2Z ˚ Z{2Z.

Since every X P W0 is a K3 surface, there is a canonical AutpXq-invariant volume
form volX on XpCq; furthermore, when X is defined over R there is a canonical area
form volXpRq onXpRq which is invariant under the action of AutpXRq (see Example 1.5
below). Slightly abusing notation, we respectively denote by volX and volXpRq the asso-
ciated measures on X and XpRq, normalized to have mass 1.

Our first main result is a complete description of orbit closures for most parameters
X P W0. Recall that a 2-dimensional real submanifold Y Ă X is totally real if for
every x P Y , TxY spans TxX as a complex vector space.

Theorem 1.1. There exists a dense and Zariski open subset Wexp Ă W0pCq such that
for every X P Wexp, the action of Γ “ xσ1, σ2, σ3y on X satisfies the following proper-
ties. There exists a Γ-invariant finite set F Ă X and a Γ-invariant totally real analytic
surface Y Ă X (with possibly finitely many singular points) such that for every x P X ,

(a) either x P F (and its orbit is finite);
(b) or Γpxq is a union of connected components of Y ;
(c) or Γpxq “ X .

As a general convention in the paper, by “dense” we mean dense for the Euclidean
topology; when working with the Zariski topology, we specify “Zariski dense”. Note
also that a Zariski open subset of a variety W is dense if and only if it intersects every
component of W . In this statement both F and Y may be empty, depending on X .
For instance, [22, Thm A] says that F is empty for a very general Wehler surface X P
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W0pCq, i.e. for X in the complement of countably many proper Zariski closed subsets.
A typical situation for case (b) is that X is defined over R and Y “ XpRq.

Remark 1.2. To check that an orbit Γpxq is dense, it suffices to find a point x1 “

px1
1, x

1
2, x

1
3q in Γpxq such that (1) the fiber Xx1

3
of the third projection containing x1 is a

smooth curve and (2) σ1 ˝ σ2 acts on this genus 1 curve Xx1
3

as a translation with dense
orbits. Then, the closure of Γpxq is infinite and is not contained in a totally real surface,
so case (c) occurs. Now, for x3 outside a countable union of real analytic curves, σ1 ˝σ2
has dense orbits along Xx3 . Thus, it is easy to produce examples of dense orbits. On the
other hand, given a specific Wehler surface X , it is a priori hard to decide whether there
is a Γ invariant real anaytic surface Y Ă X .

If we restrict to real parameters in W , we also have a fairly complete understanding
of the asymptotic distribution of random orbits. By this we mean the following. Let
ν be the probability measure on Γ defined by ν “ 1

3
pδσ1 ` δσ2 ` δσ3q. For any x

in XpRq, and for any sequence pgiq of automorphisms gi P Γ chosen independently
with distribution ν, consider the trajectory pgn ¨ ¨ ¨ g0pxqqně0. Let X 1pRq be a union
of connected components of XpRq. We say that these random trajectories, starting
at x, are equidistributed in X 1pRq if for νN-almost every pgiq, the empirical measures
1
n

řn´1
k“0 δgk¨¨¨g0pxq converge to the normalized volume form induced by volXpRq onX 1pRq

as n Ñ 8. The appearance of X 1pRq is due to the fact that Γ may not act transitively
on the components of XpRq.

Theorem 1.3. There exists a dense and Zariski open subset WexppRq Ă W0pRq such
that for every X P WexppRq, there exists a Γ-invariant finite set F Ă XpRq such that
for every x P XpRq:

(a) either x P F ;
(b) or the random trajectories starting at x are equidistributed in a union of connected

components of XpRq.

An interesting point in Theorems 1.1 and 1.3 is that their conclusions hold for every
x P X . Let us explain how these theorems fall within the progression of [21, 22, 20]
and what the last missing ingredient was until the present paper.

First, the existence of the maximal finite invariant set F follows from [22, Thm C].
One key point here is that Γ contains parabolic elements, that is automorphisms whose
action on H˚pX;Cq is virtually unipotent and of infinite order (see Section 6).

Now, the scheme of proof of Theorem 1.3 is as follows. The random walk on Γ in-
duced by ν gives rise to a random dynamical system on X . We refer to [42, 13] for gen-
eral references on this topic, and to Sections 4 and 7 of [21] for our holomorphic context.
In particular, we shall use the notions of stationary and invariant measures µ, of fibered
entropy hµpX, νq, etc. Fix x P XzF . By Breiman’s ergodic theorem, for almost every
sequence pgnqně0 with respect to the measure νN, every cluster value of the sequence
of empirical measures 1

n

řn´1
k“0 δgk¨¨¨g0pxq is a ν-stationary measure (see [5, §2.2]). We
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proved in [21] that every ν-stationary measure is Γ-invariant(1), and in [20] we showed
that any invariant measure is either supported on F , or of the form volX 1pRq, for some
union of components X 1pRq of XpRq. Therefore, any cluster value of 1

n

řn´1
k“0 δgk¨¨¨g0pxq

is a convex combination of point masses on F and volX 1pRq. Thus the last step is to show
that if Γpxq is infinite, the limiting empirical measures give no mass to F .

For Theorem 1.1 the situation is similar: most of the work was done in [20, §8],
except that there we could not exclude that the accumulation locus of an infinite orbit
could be contained in a finite invariant set. Note that since we are talking about orbit
closures and not asymptotic distribution, the full classification of stationary measures,
which is much harder and not yet complete in the complex surfaceXpCq, is not required
here.

These difficulties were already addressed for homogeneous random dynamical sys-
tems in [4, 31] and in the context of non-linear actions on real surfaces in [45, 24]. The
key is to show that if X belongs to the dense Zariski open set Wexp of Theorem 1.1
(resp. WexppRq of Theorem 1.3), the maximal finite invariant set F is repelling for the
random dynamics. Since we do not know the set F , nor its cardinality (examples of
Wehler surfaces with large finite invariant sets were recently constructed in [35]), we
make a large detour and prove a uniform hyperbolicity property for the dynamics on the
whole of X , which is interesting in its own right: this is the uniform expansion property
that we present in detail in § 1.3. Establishing this property relies on ergodic-theoretic
arguments, the first of which is an automatic hyperbolicity property that we describe in
the next paragraph.

1.2. Hyperbolicity of invariant measures. It is a fundamental (and widely open) prob-
lem in conservative dynamics to show the typicality of non-zero Lyapunov exponents on
a set of positive Lebesgue measure. In deterministic dynamics, a recent breakthrough is
the work of Berger and Turaev [6]. Adding some randomness makes such a hyperbol-
icity result easier to obtain: see [8] for random perturbation of the standard map, and
[2, 47] for random conservative diffeomorphisms on closed real surfaces. The results of
Barrientos and Malicet [2] and of Obata and Poletti [47] are perturbative in nature, so
they do not give explicit examples. In our context, the rigidity properties of holomorphic
diffeomorphisms will enable us to exhibit explicit criteria ensuring such a non-uniform
hyperbolicity.

In [20] we have classified invariant measures for non-elementary groups contain-
ing parabolic elements. We say that a measure µ on X is Zariski diffuse if it gives
zero mass to proper Zariski closed subsets. If µ is Γ-invariant and ergodic for some
Γ Ă AutpXq, this is equivalent to its support Supppµq being Zariski dense. Roughly
speaking, our classification of invariant measures says that every Zariski diffuse, er-
godic, invariant probability measure is given by an analytic 4-form on X or by an an-
alytic 2-form on some invariant, real analytic subset Y Ă X of dimension 2. Here we

1Here, we use the fact that on a typical Wehler surface there is no Γ-invariant curve, see [22, Lem.
2.3].
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proceed to a finer study of the dynamical properties of these invariant measures. For
this, we fix a probability measure ν on AutpXq satisfying the moment condition

ż

´

log }f}C1pXq
` log

›

›f´1
›

›

C1pXq

¯

dνpfq ă `8; (M)

(see Sections 2.1 and 4.2 and Remark 4.2 for discussions of stronger moment condi-
tions), and we view any invariant measure µ as a ν-stationary measure, that is,

ż

f›µ dνpfq “ µ. (1.1)

Then by (M), the Lyapunov exponents of µ are well defined: for νN-almost every se-
quence pgiq, and µ-almost every x P X , 1

n
log }Dxpgn´1 ˝ ¨ ¨ ¨ ˝ g0q} converges towards

the upper Lyapunov exponent λ`pxq P R; by ergodicity of µ, λ`pxq is almost surely
equal to some constant λ`pµq. Similarly, one defines the lower Lyapunov exponent
λ´pµq, and µ is said to be hyperbolic if λ`pµq ą 0 ą λ´pµq.

We denote by Γν Ă AutpXq the closed subgroup generated by Supppνq (2).

Theorem 1.4. Let X be a compact complex surface and Γ be a non-elementary sub-
group of AutpXq containing parabolic elements. Let µ be a Zariski diffuse ergodic
Γ-invariant probability measure on X . Let ν be any probability measure on AutpXq

satisfying Γν “ Γ and the moment condition (M).
Then, viewed as a ν-stationary measure, µ is hyperbolic and its fiber entropy hµpX, νq

is positive.

A variant of this result will also be obtained when Γν contains a Kummer example
instead of a parabolic element (see Theorem 7.4).

Example 1.5. When X is a torus or a K3 surface, the canonical bundle KX is trivial
and, up to multiplication by a complex number of modulus 1, there is a unique section
ΩX of KX that satisfies

ş

X
ΩX ^ ΩX “ 1. The volume form volX :“ ΩX ^ ΩX is

AutpXq-invariant. Likewise, every Enriques surface S inherits such an invariant vol-
ume form volS from its universal cover X (a 2-to-1 cover by a K3 surface). Under the
assumptions of Theorem 1.4, volX is Γ-ergodic, thus we conclude that it is hyperbolic.
Other examples are provided by some rational surfaces (see the discussion on Coble
surfaces in [18]).

In these situations the 2-form ΩX also induces a natural measure volY on any totally
real surface Y Ă X (see [20, Rmk 2.3]). For instance, if X is projective and defined
over R, Γ is contained in AutpXRq, and Y is a Γ-invariant connected component of
XpRq, Theorem 1.4 asserts that volY is hyperbolic.

1.3. Uniform expansion. Fix a Riemannian metric on X . We say that the measure ν
on AutpXq is uniformly expanding if there exists c ą 0 and an integer n0 such that for

2Note that AutpXq is discrete unless X is a torus, see [21, §3] so in most cases Γν “ xSupppνqy.
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every x P X and every v P TxXzt0u,
ż

AutpXq

log
}Dxfpvq}

}v}
dνpn0q

pfq ě c; (1.2)

here νpnq denotes the nth convolution power of ν. This notion is taken from [24, 26,
45, 52] (see also [31, 48] for the linear context) and has a number of strong ergodic and
topological consequences on the action of Γν . So far, uniform expansion has been veri-
fied only in the context of homogeneous dynamics, or for certain perturbative situations,
or with the help of numerical methods. The geometric analysis of stationary measures
developed in [21] together with Theorem 1.4 will be used to obtain the following result.

Theorem 1.6. Let X be a compact complex surface which is not rational. Let ν be a
probability measure on AutpXq. Assume that: (i) ν satisfies the moment condition (M)
and (ii) the group Γ “ Γν is non-elementary and contains parabolic elements.

Then ν is uniformly expanding if and only if the following two conditions hold:
(1) every finite Γ-orbit is uniformly expanding;
(2) there is no Γ-invariant algebraic curve.

Here, by definition, a finite orbit F of Γ is said to be uniformly expanding if condi-
tion (1.1) holds for every x P F . This is the repulsion property alluded to at the end of
§ 1.1.

Checking Condition (2) of Theorem 1.6 is not hard in practice and boils down to
cohomological computations (see § 6.3). Therefore, most of the complexity in applying
this theorem to practical situations comes from the analysis of finite orbits. The simplest
instance is when there are no finite orbits at all:

Corollary 1.7. Under the assumptions of Theorem 1.6, if there is no proper algebraic
Γν-invariant subset, then ν is uniformly expanding.

By [22, Thm A] the automorphism group of a very general Wehler surface has no
proper Zariski closed invariant set. Since uniform expansion is an open property in
the C1 topology, it holds on an open and dense set – in the Euclidean topology – of
Wehler examples. In the next few paragraphs we explain why it actually holds on a
dense Zariski open set, which is the main point in Theorems 1.1 and 1.3.

First, for a given finite Γ-orbit F , if ν is symmetric and satisfies a slightly stronger
moment condition (M`), Theorem 8.14 provides a checkable necessary and sufficient
condition for F to be uniformly expanding: it is equivalent to the tangent action of Γ
being proximal and strongly irreducible. It follows that when ν is symmetric and X is
not rational the uniform expansion property depends only on Γ, and not on ν (Corol-
lary 8.15). Anticipating on these results, for a non-elementary subgroup Γ Ă AutpXq

on a non-rational surface X , we can say that the action is uniformly expanding if this
property holds for some (hence any) symmetric probability measure ν satisfying (M`)
and generating Γ.

In § 9.1 we show that uniform expansion can be checked algorithmically. The starting
point is the fact that if X is not a torus and Condition (2) of Theorem 1.6 holds, then
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by [22, Thm C], there are only finitely many finite orbits. The difficulty is that there is
no a priori bound on their number so far, even in the Wehler family. Fortunately, we
prove that the number of non-expanding finite orbits can be controlled:

Proposition 1.8. Let X be a smooth projective surface and Γ be a non-elementary sub-
group of AutpXq containing parabolic elements and without invariant algebraic curve.
Then there is a computable number NpX,Γq such that any finite orbit of length greater
than NpX,Γq is uniformly expanding. Moreover, in the Wehler family, the number
NpX, xσ1, σ2, σ3yq is uniformly bounded.

See Theorem 9.1 for details on what we mean by computable. To conclude from
Condition (2) that uniform expansion holds on a Zariski open subset of W , we use the
fact from [22] that on a Zariski open subset WN Ă W , all finite orbits have length
greater than N (see Theorem 9.3 below). We do not know the value of N for the Wehler
family but we do not expect it to be large(3). In particular the equations defining Wexp

and WexppRq could in principle be written down explicitly.

1.4. Ergodicity. Given an action of a general non-elementary group Γ on a compact
complex surface X , one may ask the following two basic questions: does there exist
a dense orbit? Is the action ergodic with respect to Lebesgue measure? (The latter
makes sense even when there is no invariant volume form.) If Γ contains a parabolic
element, by [20] the answer to both questions is ‘yes’, but without parabolic elements,
the answer is unknown. A natural obstruction to the existence of a dense orbit could
be the presence of a non-trivial Fatou component for Γ. No example of such a Fatou
component is known so far; note that examples do exist for algebraic actions on affine
surfaces (see [15, §4.1] or [49, Thm E]).

As a matter of fact, the failure of ergodicity is associated to a lack of expansion:
indeed a theorem of Dolgopyat and Krikorian [26, §10] asserts that a conservative uni-
formly expanding action on a (real) surface must be ergodic. It is not difficult to extend
their argument to the complex setting (see Theorem 10.2). In Theorem 8.9 we state a
general criterion (i.e. without parabolic elements) for uniform expansion which shows
that under the conditions (1) and (2) of Theorem 1.6, the failure of uniform expansion
is due to the existence of a Γ-invariant measure with exceptional properties (see Theo-
rems 8.9 and A.1). We expect it to be an extremely rare phenomenon. Incidentally, this
shows that the question of ergodicity for general non-elementary groups (i.e. without
parabolic elements) ultimately boils down to the classification of Γ-invariant measures.

Another consequence of our results, together with [26], is that a generic real Wehler
example is stably ergodic among C2 volume preserving actions, that is, if X belongs to
the open set WexppRq of Theorem 1.3 and σ1

1, σ1
2, σ

1
3 are C2 volume preserving diffeo-

morphisms sufficiently close to of σ1, σ2, σ3 in the C1 topology, then Γ1 :“ xσ1
1, σ

1
2, σ

1
3y

is ergodic for volXpRq.

3We show that N depends on the cardinality of a set of special “non-twisting” fibers of elliptic fibra-
tions with automorphisms, which seems to be quite scarce, see [28, Rmk 7.7.14].
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In an opposite direction, the examples from [20, §9] of AutpXRq-invariant domains
with boundary in XpRq (which admit an invariant curve) provide explicit counterex-
amples to uniform expansion. For another example, start with the round sphere x2 `

y2 ` z2 “ 3 in the affine space, and view it as a singular Wehler surface. The three
involutions act by changing the signs of the coordinates and the points pϵ1, ϵ2, ϵ3q with
ϵi “ ˘1 form an orbit of size 8. Now, choose a smooth Wehler surface X containing
these 8 points and tangent to the sphere at each of them; this imposes 16 linear condi-
tions on the coefficients of the equation defining X , thus such examples exist. For such
a surface, the 8 points form a finite, non-expanding orbit of xσ1, σ2, σ3y (the action of
the stabilizer of p1, 1, 1q on the tangent space is identical to that of the round sphere so
it factorizes through a finite group).

1.5. Organization of the paper. The first part of this paper (Sections 2 to 5) is devoted
to a general study of the notion of uniform expansion on compact (real) manifolds.
Much of this material is inspired from other sources; the novelty here is that we strive
for optimal moment conditions. We see several reasons for this. First, it is an important
trend in random dynamics to look for optimal conditions in the measure rigidity results
(an explicit motivation of [31] is to extend the results of Benoist and Quint to measures
with finite first moment). Next, when a random dynamical system is generated by a
probability measure ν with finite support S “ Supppνq and one considers a finite index
subgroup Γ0 of Γ :“ xSy, then the support of the measure induced by ν on Γ0 is infinite
(albeit with exponential moments). Also, when looking for random dynamical systems
with atypical features, the first examples are usually given by probability measures with
only weak moment conditions. Finally, we expect fine moment estimates to be impor-
tant in the process of trying to improve Theorem 4.5 to include the case of some singular
subvarieties Y Ă X (possibly in the spirit of [3, Thm B’]).

In Section 2 we give several equivalent definitions of uniform expansion: this is in-
spired by Liu [45] and Chung [24]. In Section 3 we show that uniform expansion is
preserved when restricting to a finite index subgroup or taking a finite extension (Propo-
sition 3.3); this is useful when dealing with invariant sets made of finitely many con-
nected components. Section 4 deals with the construction of Margulis functions. In a
nutshell, a Margulis function near a finite uniformly expanding invariant set F is a func-
tion u : MzF Ñ R` that tends to infinity at F and decreases on average along orbits.
The existence of such a function guarantees that empirical measures of random orbits do
not accumulate at F . These functions have played an important role in random dynam-
ics since the work of Eskin and Margulis [32]. Here, thanks to the work by Bénard and
De Saxcé [3], we construct such Margulis functions under optimal moment conditions
(Theorem 4.1); note that the usual average decay property

ş

upfpxqqdνpfq ď aupxq ` b,
a ă 1, is then replaced by

ş

upfpxqqdνpfq ď upxq ´ γ, γ ą 0. This repulsion property
does not hold if F is an invariant submanifold (see Example 4.6). However in the holo-
morphic context, Margulis functions can be constructed for invariant totally real mani-
folds of maximal dimension (Theorem 4.5): a typical situation is that of XpRq Ă X for
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real projective manifolds. In Section 5, we elaborate on an ergodic-theoretic criterion
for uniform expansion borrowed from [24].

In the second part of the paper (Sections 6 to 10), we consider groups of automor-
phisms of projective surfaces. Theorem 1.4 is established in Section 7. In Section 8
we prove a general version of Theorem 1.6 and study uniform expansion along periodic
orbits; this makes essential use of the results of the first part. The focus in § 9.1 is on
finding algorithmically checkable conditions for uniform expansion along finite orbits
(Theorem 9.1); this leads to a precise description of the locus of uniform expansion in
the Wehler family (Theorem 9.3). In § 9.2, we construct uniformly expanding actions
by perturbing Kummer examples in the Wehler family; in particular this work for “thin”
subgroups of AutpXq containing no parabolic element. In Section 10 we study orbit
closures and equidistribution by proving general versions of Theorems 1.1 and 1.3; we
also explain the adaptation to the complex setting of the ergodicity theorem of Dolgo-
pyat and Krikorian [26].

The paper ends with an appendix on the rigidity of zero entropy measures.

1.6. Notes and comments. Theorem 1.4 was included in the first preprint version
of [21]. We were informed of ongoing projects by Aaron Brown, Alex Eskin, Simion
Filip and Federico Rodriguez Hertz, as well as Megan Roda, on the classification of
stationary measures for uniformly expanding actions. This should fit nicely with our
work; indeed, parts of this article are written so as to to be easily combined with such a
classification (see e.g. Theorem 10.5),

We are grateful to Jean-François Quint for useful comments on Margulis functions
and to the anonymous referees for their detailed reports and constructive suggestions.

Part 1. Uniform expansion for discrete group actions on manifolds

2. GENERALITIES

In this section, M denotes a compact manifold. The group Diff1
pMq of C1 diffeo-

morphisms of M endowed with the C1 topology is a polish space (see [50]) and we
consider a Borel probability measure ν on it. We fix a Riemannian metric on M . We
denote by }¨} the norm induced by the metric on the tangent bundle TM , and by T 1M
the unit tangent bundle.

2.1. Moment conditions. If f is aC1-diffeomorphism ofM , we denote by f› its action
on TM . Note that if v P TM is a tangent vector based at x (that is, v P TxM ), then
f›v “ Dxfpvq is based at fpxq. By definition, }f}C1pXq

is the supremum of v ÞÑ }f›v}

on T 1M . For f P Diff1
pMq we put

Lpfq “ log }f}C1pXq
` log

›

›f´1
›

›

C1pXq
; (2.1)
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this quantity is subadditive: Lpf ˝gq ď Lpfq`Lpgq. For p ě 1 we consider the moment
conditions

ż

Lpfq
p dνpfq ă `8, (Mp)

Dp ą 1, pMpq holds, (M`)

Dt ą 0,

ż

}f}
t
C1pXq

`
›

›f´1
›

›

t

C1pXq
dνpfq ă `8. (Mexp)

When p “ 1, (Mp) coı̈ncides with the moment condition (M) from the introduction. For
p ą 1, (Mp) implies (M`) which implies (M). The subadditivity of L and the convexity
inequality pr´1

řr
i“1 Liq

p ď r´1
řr

i“1 L
p
i imply

ż

Lpfq
p dνprq

pfq ď rp
ż

Lpfq
p dνpfq (2.2)

for p P r1,`8r and r P N˚, where νprq denotes the rth convolution power of ν.

2.2. Notation for random compositions. Set Ω “ Diff1
pMqN; its elements are se-

quences ω “ pfnqně0 of diffeomorphisms. We use the probabilistic notation Ep¨q and
Pp¨q for the expectation and probability with respect to νN on the probability space Ω.
We let pFnqně1 be the increasing sequence of σ-algebras in Ω generated by cylinders
of length n, so that an event is Fn-measurable if it depends only on the first n terms
f0, . . . , fn´1 of ω “ pfnqně0. For ω “ pfnqně0 P Ω we put f 0

ω “ id and

fn
ω “ fn´1 ˝ ¨ ¨ ¨ ˝ f0 (2.3)

for n ě 1; in particular f 1
ω “ f0. For x in M and v P TxMzt0u we set

xω,n “ fn
ω pxq and vω,n “

pfn
ω q›pvq

}pfn
ω q›pvq}

P T 1
xω,n

M. (2.4)

For any sequence of integers 0 “ k0 ă k1 ă ¨ ¨ ¨ ă kp “ n the chain rule gives

log }pfn
ω q›v} “

p´1
ÿ

j“0

log
›

›

›

´

f
kj`1´kj

σkjω

¯

›
vω,kj

›

›

›
. (2.5)

If x is a point of M , we denote by δx the Dirac mass at x. If µ is a probability measure
on M , ν ‹ µ is the measure defined by pν ‹ µqpBq “

ş

pf˚µqpBq dνpfq for every Borel
subset B of M .

2.3. Equivalent conditions for uniform expansion. Recall that the probability mea-
sure ν on Diff1

pMq is uniformly expanding if there exists a real number c ą 0 and an
integer n0 ě 1 such that

for every v P T 1X,

ż

log }f›pvq} dνpn0q
pfq ě c. (2.6)
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Then, the cocycle relation for log }f›pvq}

}v}
implies that

ż

log }f›pvq} dνpkn0q
pfq ě kc (2.7)

for every k ě 1. Thus, ν is uniformly expanding if and only if νpnq is uniformly expand-
ing for some (and hence for all) n. It follows that the uniform expansion property does
not depend on our choice of a Riemannian metric on M .

Remark 2.1. If ν is uniformly expanding and the submanifold N Ă M is invariant
under every diffeomorphism in the support of ν, then ν induces a uniformly expanding
measure on Diff1

pNq.

Lemma 2.2. Let ν be a probability measure on Γ satisfying (M). It is uniformly ex-
panding if and only if

@v P T 1M, Dn “ npvq such that
ż

log }f›v} dνpnq
pfq ą 0. (2.8)

This is Lemma 4.3.1 of [45], but Liu assumes that the support of ν is compact; thus
we briefly reproduce his proof, assuming only (M).

Proof. We have to show that (2.8) implies (2.6). Since |log }f›v}| ď Lpfq for every
v P T 1X , the dominated convergence theorem implies that, for every n,

v ÞÑ

ż

log }f›pvq} dνpnq
pfq (2.9)

is continuous. Thus by compactness, there exists a finite open cover V1, . . . , Vp of T 1M ,
positive real numbers ci, and integers ni such that

ż

log }f›pvq} dνpniqpfq ě ci (2.10)

for every v P Vi. Set c0 “ minpciq and n0 “ maxpniq. For v P T 1X and ω P Ω, define
the stopping time τ1pv, ωq to be the first integer n ě 1 such that

ş

log }f›v} dνpnqpfq ě

c0, and then define inductively

τk`1pv, ωq “ τkpv, ωq ` τ1pvω,k, σ
k
pωqq. (2.11)

By construction, τ1 depends on v (hence on x) but not on ω, while τk depends on both
v and ω when k ě 2; in addition τkpv, ωq ď kn0 for all k ě 1. For n ě 1, define
Knpv, ωq, or Kpnq for short, by Knpv, ωq “ max tk; τk ď nu. Then Kpnq ě n{n0 and
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n ´ Kpnq ď n0 ´ 1. With the convention τ0 “ 0, the chain rule (2.5) gives

E plog }pfn
ω q›v}q “ E

˜

Kpnq´1
ÿ

j“0

log
›

›

›

´

f
τj`1´τj
στjω

¯

›
vω,τj

›

›

›

¸

` E
´´

f
n´τKpnq

σ
τKpnqω

¯

›
vω,τKpnq

¯

ě
n

n0

c0 ´ max
1ďqďn0

E pLpf q
ωqq (2.12)

ě
n

n0

c0 ´ n0

ż

Lpfqdνpfq. (2.13)

Thus, for n ě n0

2
`

n2
0

c0

ş

Lpfqdνpfq, we have E plog }pfn
ω q›v}q ě c0

2
ą 0 independently

of v, as was to be shown. □

Lemma 2.3. Under the moment condition (M`), ν is uniformly expanding if and only if

@v P T 1X, Dc ą 0 such that P
ˆ

1

n
log }pfn

ω q›v} ě c

˙

ÝÑ
nÑ8

1. (2.14)

Under the moment condition (M), Property (2.14) implies uniform expansion.

Proof. Let us first show that (2.14) implies (2.8) under the assumption (M). Fix v P

T 1X , set Ωn “
␣

ω P Ω ; 1
n
log }pfn

ω q›v} ě c
(

, and split E
`

1
n
log }pfn

ω q›v}
˘

into the
sum of an integral over Ωn and an integral over ΩA

n. The first one is larger than cPpΩnq,
and PpΩnq tends to 1 as n goes to `8. The second one satisfies

ˇ

ˇ

ˇ

ˇ

E
ˆ

1

n
log }pfn

ω q›v}1ΩA
n

˙
ˇ

ˇ

ˇ

ˇ

ď E
ˆ

1

n
Lpfn

ω q1ΩA
n

˙

. (2.15)

The moment condition and Kingman’s subadditive ergodic theorem show that 1
n
Lpfn

ω q

is uniformly integrable and converges almost surely to some finite constant; since PpΩA
nq

converges to 0, we conclude that E
`

1
n
log }pfn

ω q›v}
˘

ě c{2 for large n.
For the converse implication we use a martingale convergence argument, as in [45,

Lem. 4.3.5] and [24, Prop. 2.2](4). Choose p ą 1 such that (Mp) holds. For conve-
nience, let us first replace ν by νpn0q, where n0 is given by the expansion property (2.6).
Define (for some fixed unit vector v)

Xk “ log
›

›pf 1
σkωq›vω,k

›

› ´

ż

log }f›pvω,kq}dνpfq. (2.16)

These increments Xk are uniformly bounded in Lp because

E
`
ˇ

ˇlog
›

›pf 1
σkωq›vω,k

›

›

ˇ

ˇ

p˘1{p
ď E

`

Lpf 1
σkωq

p
˘1{p

“

ˆ
ż

Lpfq
pdνpfq

˙1{p

(2.17)

4Chung only assumes the moment condition (M) however it seems to us that a stronger assumption is
needed for the control of the martingale differences.
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and the second term in (2.16) is pointwise bounded by
ˇ

ˇ

ˇ

ˇ

ż

log }f›vω,k}dνpfq

ˇ

ˇ

ˇ

ˇ

ď

ż

Lpfqdνpfq ď

ˆ
ż

Lpfq
pdνpfq

˙1{p

. (2.18)

Thus, the sums Sn “
řn´1

k“0 Xk are all in Lp. Since EpXn | Fnq “ 0 and Sn is Fn´1-
measurable, pSnq is a martingale relative to the filtration pFn´1q. It follows from Theo-
rem 2.22 in [38, §2.7] that 1

n
Sn converges to 0 in probability and in Lp. Now, the chain

rule gives
1

n
Snpωq “

1

n
log }pfn

ω q›v} ´
1

n

ż

log }f›v}dνpnq
pfq, (2.19)

and (2.7) asserts that
ş

log }f›v}dνpnqpfq ě cn, so we conclude that for any c1 ă c

P
ˆ

1

n
log }pfn

ω q›v} ě c1

˙

ÝÑ
nÑ8

1, (2.20)

as desired. Recall however that we are working with νpn0q: coming back to ν this means
that (2.20) holds along the subsequence pnn0q. We then write n “ kn0 ` r, with
0 ď r ď n0 ´ 1, so that

pfn
ω q›v “ pf r

σkn0ωq›pfkn0
ω q›v (2.21)

and what we have to show is that applying f r
σkn0ω

does not affect the linear growth of
log

›

›pfkn0
ω q›v

›

›. But the inequality (2.2), applied with p “ 1, gives

P
`

D0 ď r ď n0 ´ 1,
ˇ

ˇlog
›

›pf r
σkn0 q›

›

›

ˇ

ˇ ě εk
˘

ď

n0´1
ÿ

r“0

νprq
pLpfq ě εkq ď

Cn2
0

εk
, (2.22)

and we are done. □

Remark 2.4. In the first part of the proof, the implication (2.14)ñ(2.8) is true for a
given v, while the converse implication requires uniform expansion on the whole of X .

Remark 2.5. This proof shows that if ν satisfies (M2), then the convergence in proba-
bility in (2.14) can be replaced by an almost sure convergence. (Indeed by Theorem 3
of [34, p. 243], 1

n
Sn converges almost surely to 0 when the Xk are uniformly L2.)

Remark 2.6. So far, we have not really used that we are dealing with diffeomorphisms:
the results from this section hold for a semigroup action, by replacing Lpfq by }f}C1pXq

.

3. INDUCING ON A FINITE INDEX SUBGROUP

3.1. Hitting times and hitting measures (see [5, Chap. 5]). Let ν be a Borel probabil-
ity measure on Diff1

pMq and let G be the closed subsemigroup of Diff1
pMq generated

by ν. Let H Ă G be a closed finite index subsemigroup; this means that there is a
continuous and transitive action G ˆ F Ñ F on some finite set F such that H is the
stabilizer of some element x0 P F ; the index of H is rG : Hs “ |F | and F is the
quotient space. For instance, H can be the stabilizer of a point x in a finite G-orbit.
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The hitting time TH of H for the random walk induced by ν (starting from the neutral
element) is

THpωq “ min tn ě 1, fn
ω P Hu . (3.1)

Lemmas 5.4 and 5.5 in [5] show that TH is almost surely finite, admits an exponential
moment, and satisfies EpTHq “ rG : Hs. By definition the hitting measure (or induced
measure) νH is the probability measure on H describing the distribution of fTHpωq

ω .
Define the k-th hitting time TH,k of H by TH,1 “ TH and the induction

TH,k`1pωq “ min tn ě TH,k ` 1 ; fn
ω P Hu . (3.2)

The convolution νpkq

H describes the distribution of fTH,kpωq
ω . If H is a finite index semi-

group and g P H , hg belongs to H if and only if h belongs to H . Thus, TH,k`1pωq ´

TH,kpωq “ TH,1pσ
TH,kpωqpωqq and the Markov property implies that the random variables

pTH,k`1 ´ TH,kq are independent and identically distributed: each of them is distributed
as TH . Since their expectation equals rG : Hs, the law of large numbers gives

lim
kÑ`8

1

k
TH,kpωq “ rG : Hs (3.3)

νN-almost surely.

Theorem 3.1. The hitting measure on a finite index subgroup satisfies the following
properties

(1) if νH satisfies (Mp) for some p ě 1, then so does ν;
(2) if ν satisfies (Mp), then νH satisfies (Mp1) for any 1 ă p1 ă p;
(3) ν satisfies (M), or (M`), or (Mexp) if and only if νH does.

Moreover, νH generates H as a semigroup, which means that H is the smallest closed
subsemigroup of G containing the support of νH .

This result still holds if we substitute any subbaditive function to log }f}C1pXq
in the

definition of L (see Equation 2.1), with exactly the same proof.

Proof. Consider the finite quotient F of G by H and denote the action of G on F by left
translations by (u ÞÑ au, a P G); by definition H is the stabilizer of some x0 P F . Set
K “ |F | “ rG : Hs.

For each u P F , choose a sequence of measurable subsets A1puq, A2puq, . . ., Akpuq

in G, with k “ kpuq ď K such that νpAipuqq ą 0 for each i and, for all sequences
ai P Aipuq, pak ¨ ¨ ¨ a1qu “ x0 while paj ¨ ¨ ¨ a1qu ‰ x0 if j ă k. Since F is finite, there
is a real number ε ą 0 such that νpA1puqq ¨ ¨ ¨ νpAkpuqpuqq ě ε for all u. Shrinking
the Aipuq if necessary, we may assume that Lpgq ď C for some C ą 0 and all g in
Ť

u,iAipuq.
We split the integral of Lpfqp as a finite sum

ş

Lpfqpdνpfq “
ř

uPF

ş

tfx0“uu
Lpfqpdνpfq.

If
pakpuq, . . . , a1q P Akpuqpuq ˆ ¨ ¨ ¨ ˆ A1puq, (3.4)
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then Lpfq ď Lpakpuq ¨ ¨ ¨ a1fq ` KC because L is subadditive; thus,
ż

tfx0“uu

Lpfq
pdνpfq ď

ż

tfx0“uu

pLpakpuq ¨ ¨ ¨ a1fq ` KCq
pdνpfq. (3.5)

By construction, the product akpuq ¨ ¨ ¨ a1f is a first return in H . Thus, integrating over
the Aipuq, the distribution of akpuq ¨ ¨ ¨ a1f contributes positively to νH , and we get

ε

ż

tfx0“uu

Lpfq
pdνpfq ď

ż

H

pLpgq ` KCq
pdνHpgq. (3.6)

Assertion (1) follows from this estimate.
For assertion (2), we must bound

ş

Lpfqp
1

dνHpfq “ EpLpf
THpωq
ω qp

1

q. By subadditivity
of L and convexity of s ÞÑ sp, we have

L
`

fTHpωq
ω

˘p
ď THpωq

p´1

THpωq´1
ÿ

i“0

Lpfiq
p. (3.7)

Raising this inequality to power p1{p gives

L
`

fTHpωq
ω

˘p1

ď THpωq
p1p1´1{pq

˜

THpωq´1
ÿ

i“0

Lpfiq
p

¸p1{p

. (3.8)

On the other hand, Lemma 5.4 of [5] says that Ep
řTHpωq

i“1 φ ˝ σiq “ EpTHqEpφq for any
integrable function φ. This shows that

řTHpωq´1
i“0 Lpfiq

p is integrable, and in particular
its p1{p power is in Lp{p1

pΩ; νNq. Since the hitting time TH admits moments of all
orders, we can apply the Hölder inequality with parameters r “ p{p1 ą 1 and q such

that 1{q ` 1{r “ 1: it shows that L
´

f
THpωq
ω

¯p1

is integrable, as desired.
Assertion (3) follows from Assertions (1) and (2) and Corollary 5.6 in [5].
For the last assertion, fix an element h of H and an open neighborhood U of h in H .

Since H is of finite index in G, it is open and closed, so U is also a neighborhood of
h in G. By assumption the support of ν generates a dense sub-semigroup of G, so the
random walk induced by ν starting at the neutral element visits U , thus νH generates H
as a semigroup. □

3.2. Uniform expansion of the induced measure.

Proposition 3.2. Let ν be a probability measure on Diff1
pMq satisfying (M). Assume

that ν is uniformly expanding and let n0 be as in (2.6). Then, the measure induced by
νpn0q on H is uniformly expanding.

In fact, Proposition 3.3 below shows that, under condition (M`), ν is uniformly ex-
panding if and only if νH is. The proof of Proposition 3.2 is based on a simple martingale
argument, while Proposition 3.3 relies on the criterion of Lemma 2.3.
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Proof. We use ideas from [45, §4.3] and [24, Prop. 2.2]. To ease notation we rename
νpn0q into ν so that (2.6) holds with n0 “ 1 and some c ą 0; as above, we denote by νH
the measure induced by ν (i.e. by νpn0q) on H . Fix v P T 1X , and define a sequence of
random variables pYkqkě0 by

Ykpωq “ log
›

›pf 1
σkωq›vω,k

›

› ´ c. (3.9)

Then for all k ě 1, EpYk | Fkq ě 0, so that the sequence pSnqně1 defined by Sn “
řn´1

k“0 Yk is a submartingale relative to the filtration pFnq: EpSn`1 | Fnq ě Sn. The
moment condition (M) implies that Ep|Sn`1 ´ Sn| | Fnq “ Ep|Yn| | Fnq is uniformly
bounded. Since the hitting time TH is integrable, we can apply the optional stopping
theorem [30, Thm. 4.7.5], which implies that EpSTH

q ě EpS1q ě 0. Unwinding the
definitions and applying the chain rule, we see that

EpSTH
q “

ż

log }f›v} dνHpfq ´ crG : Hs, (3.10)

where we use EpTHq “ rG : Hs. Therefore
ş

log }f›v} dνHpfq ě crG : Hs ą 0, and
νH is uniformly expanding. □

Proposition 3.3. Let ν be a probability measure on Diff1
pMq satisfying (M`). Let νH

be the measure induced on a closed finite index subsemigroup. Then ν is uniformly
expanding if and only if νH is uniformly expanding.

Proof. Let us show that if νH is uniformly expanding then ν is uniformly expanding.
The converse implication is similar and is left to the reader (in this direction, Propo-
sition 3.2 will actually be sufficient for our purposes). Fix v P T 1M . In view of
Lemma 2.3, we have to show that for some c ą 0,

P
ˆ

1

n
log }pfn

ω q›v} ě c

˙

ÝÑ
nÑ8

1. (3.11)

Consider the sequence of hitting times pTH,kq defined in § 3.1 and denote it by pTkq

for simplicity (hence T1 “ TH). By Theorem 3.1, νH satisfies (M`), so we can apply
Lemma 2.3 to get a real number c ą 0 such that

P
ˆ

1

k
log

›

›

`

fTkpωq
˘

›
v
›

› ě c

˙

ÝÑ
kÑ8

1. (3.12)

Let γ “ rG : Hs and fix a positive real number ε ă c
γ

. Let also ε1 ! ε which will be
specified later. For K ě 1, set

Ω1pKq “

"

ω ; @k ě K,

ˇ

ˇ

ˇ

ˇ

Tkpωq

k
´ γ

ˇ

ˇ

ˇ

ˇ

ă ε1

*

. (3.13)

If K ą γ{p2ε1q and ω P Ω1pKq, then for n ě Kγ ` 1 we get

Ttn{pγ`ε1qupωq ´
4ε1
γ
n ď n ď Ttn{pγ`ε1qupωq `

4ε1
γ
n. (3.14)
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Now, define Ω2pnq to be the set of sequences ω such that the inequality involved in
(3.12) is satisfied at time Ttn{pγ`ε1qupωq; in other words, ω P Ω2pnq if and only if

log
›

›

`

fTtn{pγ`ε1qupωq
˘

›
v
›

› ě ctn{pγ ` ε1qu. (3.15)

Then PpΩ1pt
?
nuqXΩ2pnqq converges to 1 as n goes to `8 and as soon as n ě γ

?
n`1,

any ω P Ω1pt
?
nuq X Ω2pnq satisfies (3.14) and (3.15).

Now consider the set Ω3pnq Ă Ω1pt
?
nuqXΩ2pnq made of those ω such that L

´

fn´Tk

σTkω

¯

ă

εn for k “ tn{pγ ` ε1qu. Then

PpΩ3pnq
A
q ď P

´

L
´

fn´Tk

σTkω

¯

ě εn
¯

ď P

˜

max
0ďqď

4ε1
γ

n

q´1
ÿ

i“0

Li ě εn

¸

(3.16)

where pLiqiě0 is a sequence of independent random variables, each of which being dis-
tributed as Lpgq for dνpgq. Since theLi are non-negative, PpΩ3pnqAq ď P

´

ř4ε1n{γ
i“0 Li ě εn

¯

.

If ε1 is chosen such that 4ε1
γ
EpL1q ă ε, the law of large numbers entails that

P

˜

4ε1n{γ
ÿ

i“0

Li ě εn

¸

ÝÑ
nÑ8

0, (3.17)

thus P pΩ3pnqq tends to 1 as n Ñ 8.
Then, for ω P Ω3pnq, the estimates (3.14), (3.15) and L

´

fn´Tk

σTkω

¯

ă εn imply that
1
n
log }pfn

ω q›v} ě c
γ

´ ε and the conclusion follows. □

4. MARGULIS FUNCTIONS

In this section we develop some tools for the proof of the equidistribution The-
orem 1.3. Under appropriate assumptions, we show that the measures νn ˚ δx and
1
n

řn
k“1 δfk

ωpxq do not cluster at a Γ-periodic orbit, except when Γpxq is itself finite. The
basic tool is the construction of a proper function, defined on the complement of such a
periodic orbit, which “essentially decreases” along random trajectories. After [32] it is
often referred to as a Margulis function, even if this strategy has a long history in the
Markov chain literature (see [46]). Our presentation is greatly influenced by [4] and [3].

4.1. A general recurrence criterion. For concreteness, instead of general Markov
chains, we consider the setting of group actions.

Theorem 4.1 (Bénard-De Saxcé [3]). Let U be a locally compact topological space. Let
Γ be a group of homeomorphisms of U , and ν be a probability measure on Γ. Assume
that there exists a function u : U Ñ R` satisfying the assumptions:

DA ą 0, Dγ ą 0, @x P U, upxq ě A ñ

ż

upfpxqqdνpfq ď upxq ´ γ (4.1)

DB ą 0, Dη ą 0, @x P U,

ż

|upfpxqq ´ upxq|
1`η dνpfq ď B. (4.2)



HYPERBOLICITY FOR AUTOMORPHISM GROUPS OF SURFACES 18

Then for every ε ą 0 there exists R ą 0 such that for all x in U ,
(1) there exists nx ě 0, such that pνn ˚ δxqptu ě Ruq ď ε for all n ě nx;
(2) for νN-almost every ω,

lim sup
nÑ8

1

n
#
␣

k P t1, . . . , nu ; u
`

fk
ωpxq

˘

ě R
(

ď ε.

Furthermore the integer nx in (1) depends only on upxq.

In the most interesting cases, u will be a proper function on U . Then, Equation (4.1)
expresses that, on average, the random dynamics does not send points too far off at
infinity, and Equation (4.2) can be understood as a moment condition in the u-variable;
then, the Conclusions (1) and (2) correspond to “non-escape of mass” and “quantitative
recurrence” properties.

For the proof, see Proposition 1.2 in [3], and the comments following it. More pre-
cisely, we refer to [3, Prop. 2.5] for the conclusion (1), including the uniformity state-
ment on nx, and to [3, Prop. 2.7] for (2).

The original decay property for the Margulis function u in [32, 4] is

D0 ă a ă 1, Db ą 0, @x P U,

ż

upfpxqqdνpfq ď aupxq ` b (4.3)

instead of (4.1). One easily checks that if u satisfies (4.1) and the following strong
integrability property

DB ą 0, @x P U,

ż

exp p|upfpxqq ´ upxq|q dνpfq ď B, (4.4)

then eδu satisfies (4.3) for small δ ą 0. Under this assumption, Theorem 4.1 was estab-
lished in [4].

4.2. Finite orbits of C2 actions. Let ν be a probability measure on the group of C2

diffeomorphisms of a compact Riemannian manifold M of dimension d. As in § 2.1 we
consider the moment conditions

ż

`

log }f}C2 ` log
›

›f´1
›

›

C2

˘p
dνpfq ă `8, (M2,p)

Dp ą 1, pM2,pq holds, (M2,`)

Remark 4.2. For a holomorphic action on a compact complex manifoldX , these condi-
tions are equivalent to their respective C1 analogues (Mp) and (M`), because a uniform
control on the first derivatives provides a uniform control on the higher derivatives as
well. Here is an outline of the argument. Cover X by finitely many charts Ωi. Then
there exists c ą 0 such that for every x P X and every f P AutpXq, the balls Bpx, rq
and fpBpx, rqq are contained in a single chart, as soon as r ď c}f}

´1
C1 . Then the Cauchy

estimates imply that
›

›f |Bpx,r{2q

›

›

C2 ď pC{rq
›

›f |Bpx,rq

›

›

C1 ď C}f}
2
C1 and the result fol-

lows.
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Before stating our next result, recall that the notion of uniform expansion along a
finite orbit was defined in Section 1.3.

Theorem 4.3. Let Γ be a group of C2 diffeomorphisms of a compact Riemannian man-
ifold M , and ν be a measure on Γ satisfying the moment condition (M2,`). Let F be a
finite orbit of Γ such that ν is uniformly expanding on F . Then for every x P MzF , for
every ε ą 0 there exists a compact set K Ť MzF such that:

(1) pνn ˚ δxqpKq ě 1 ´ ε for n ě nx, and
(2) for νN-almost every ω,

lim sup
nÑ8

1

n
#
␣

k P t1, . . . , nu , fk
ωpxq P K

(

ě 1 ´ ε.

Furthermore the integer nx in (1) is locally uniform in MzF .

This result seems to be new: it appears under stronger (exponential) moment as-
sumptions in e.g. [45, 24]. Note that such a result is not expected to hold under the first
moment condition (M2,1), as explained in Examples 1 and 2 of Section 2 in [3].

Proof. First, the proof of Proposition 3.3 in [3] shows that if the conclusions (1) and (2)
hold for νpn0q, then they hold for ν. So we can replace ν by νpn0q and hence assume that
the uniform expansion property (1.1) holds (on F ) for n0 “ 1.

Let dp¨, ¨q be the Riemannian distance on M . According to Theorem 4.1, we only
need to show that u : x ÞÑ ´ log dpx, F q is a proper function MzF Ñ R` satisfying
Properties (4.1) and (4.2).
Preliminaries.– We set Npfq “ }f}C2 ` }f´1}C2 and note that Npfq ě Lippfq `

Lippf´1q for every f P Γ. In particular, for every x P X

1

Npfq
ď
dpfpxq, F q

dpx, F q
ď Npfq. (4.5)

For R ą 0, set ΓpRq “ tf P Γ ; Npfq ď Ru. We choose η ą 0 such that the moment
condition (M2,p) is satisfied with p “ 1 ` η. Then,

Iη :“

ż

Γ

plogpNpfqqq
1`η dνpfq (4.6)

is a finite positive number. In what follows, we choose R ą 1 such that

2Iη
plogpRqqη

ă
c

4
(4.7)

where c is the expansion factor in Equation (1.1) (along the finite orbit F ).
Take s ą 0 such that

– s is smaller than the injectivity radius of M at y, for every y P F ;
– the balls Bpy; sq, for y in F , are pairwise disjoint;
– C0R

2s ă c{4, where c is the expansion factor as above, and C0 is the constant
appearing below in the Taylor expansion (Equation (4.9)).
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Then, define V and V 1 by

V “
ď

yPF

Bpy; sq, V 1
“

ď

yPF

Bpy; s{Rq. (4.8)

By (4.5) we have fpV 1q Ă V for every f P ΓpRq.
If x belongs to V , we denote by πpxq the unique point of F at distance ď s from

x, and we denote by wx the unique vector in TπpxqM such that expπpxqpwxq “ x and
}wx} “ dpx, πpxqq.
First estimate.– For f in ΓpRq and x P V 1, Taylor’s second order formula yields

|dpfpxq, fpπpxqqq ´ }f›pwxq}| ď C0Npfqdpx, πpxqq
2, (4.9)

for some uniform constant C0, that does not depend on f . This gives
ˇ

ˇ

ˇ

ˇ

dpfpxq, F q

dpx, F q
´

}f›pwxq}

}wx}

ˇ

ˇ

ˇ

ˇ

ď C0Npfqdpx, F q. (4.10)

Now, using the Lipschitz estimate (4.5) and the fact that |logpaq ´ logpbq| ď N |a ´ b|
when a, b P rN´1,8r, we obtain

ˇ

ˇ

ˇ

ˇ

log

ˆ

dpfpxq, F q

dpx, F q

˙

´ log

ˆ

}f›pwxq}

}wx}

˙ˇ

ˇ

ˇ

ˇ

ď C0Npfq
2dpx, F q. (4.11)

By the definition of ΓpRq and the requirements on s, we get
ż

fPΓpRq

ˇ

ˇ

ˇ

ˇ

log

ˆ

dpfpxq, F q

dpx, F q

˙

´ log

ˆ

}f›pwxq}

}wx}

˙ˇ

ˇ

ˇ

ˇ

dνpfq ď C0R
2dpx, F q ď

c

4
, (4.12)

because dpx, F q ď s.
Second estimate.– Now, for any f in Γ we also have

ˇ

ˇ

ˇ

ˇ

log

ˆ

dpfpxq, F q

dpx, F q

˙

´ log

ˆ

}f›pwxq}

}wx}

˙ˇ

ˇ

ˇ

ˇ

ď 2 logpNpfqq (4.13)

hence Markov’s inequality and our choice of R give
ż

fPΓpRqA

ˇ

ˇ

ˇ

ˇ

log

ˆ

dpfpxq, F q

dpx, F q

˙

´ log

ˆ

}f›pwxq}

}wx}

˙
ˇ

ˇ

ˇ

ˇ

dνpfq ď
2

logpRqη
Iη ď

c

4
. (4.14)

Conclusion.– Summing the integrals over f in ΓpRq and ΓpRqA, we obtain
ż

fPΓ

ˇ

ˇ

ˇ

ˇ

log

ˆ

dpfpxq, F q

dpx, F q

˙

´ log

ˆ

}f›pwxq}

}wx}

˙
ˇ

ˇ

ˇ

ˇ

dνpfq ď
c

2
. (4.15)

Since wx is a vector tangent to M at πpxq P F , the uniform expansion along F yields
ż

log

ˆ

}f›pwxq}

}wx}

˙

dνpfq ě c (4.16)

and then (4.15) implies that
ż

´ log dpfpxq, F qdνpfq ď ´ logpdpx, F qq ´ c{2. (4.17)
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In other words, u : x ÞÑ ´ logpdpx, F qq satisfies Property (4.1) (with A “ ´ logpsq).
Property (4.2) is obtained from (4.5) and the moment condition. Thus, as announced
above, u satisfies the assumptions of Theorem 4.1, and we are done. □

The local uniformity of nx in Theorem 4.3 has the following interesting consequence.

Proposition 4.4. Under the assumptions of Theorem 4.3, any stationary Radon measure
on MzF has finite mass.

Proof. Let µ be such a stationary measure. Fix ε ą 0, say ε “ 1{2 and let K be as in
Theorem 4.3. The stationarity of µ implies that for every n ě 0,

pνpnq
ˆ µq ptpg, xq, gx P Kuq “ µpKq, (4.18)

hence for every borel set B Ă MzF ,
ż

B

νpnq
ptg, gx P Kuq dµpxq ď

ż

X

νpnq
ptg, gx P Kuq dµpxq “ µpKq. (4.19)

Now if B is an arbitrary compact subset of MzF , the uniformity statement in Theo-
rem 4.3 implies that there exists n “ nB such that for every x P B,

νpnBq
ptg, gx P Kuq ě

1

2
. (4.20)

Plugging this into (4.19), we obtain 1
2
µpBq ď µpKq. Since B is arbitrary, this implies

that µpMzF q ď 2µpKq and we are done. □

4.3. Totally real invariant manifolds. We now consider a situation which is specific
to the complex setting.

Theorem 4.5. Let X be a compact complex manifold of dimension d. Let Γ be a group
of holomorphic diffeomorphisms of X , endowed with a probability measure ν satis-
fying (M`). Let Y Ă X be a Γ-invariant, real analytic, totally real submanifold of
maximal (real) dimension d, such that ν is uniformly expanding on Y . Then for any
x P XzY and any ε ą 0, there exists a compact subset K Ť XzY such that the
conclusions (1) and (2) of Theorem 4.3 hold.

By “uniformly expanding along Y ” we mean that the restriction of Γ to Y is uni-
formly expanding viewed as an action on Y , or equivalently that the uniform expansion
condition (1.1) holds in X for every x P Y ; the equivalence between the two conditions
comes from the fact that for every x P Y , the complex span of TxY is TxX . When Y is
singular, we require that (1.1) holds in X along SingpY q.

Note also that this statement is specific to totally real submanifolds and holomorphic
actions. In other words, there is no analogue of Theorem 4.1 when F is replaced by an
arbitrary submanifold: see Example 4.6 below.

Proof. We suppose Y smooth and show that there exists n ě 1 such that

x ÞÑ ´ log dpx, Y q (4.21)
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defines a Margulis function (i.e. satisfies (4.1) and (4.2)) for νpnq. Then, as explained
before, [3] shows that (4.1) and (4.2) are automatically satisfied with n “ 1. As in The-
orem 4.3, Property (4.2) follows from the invariance of Y and the bilipschitz property;
so we focus on (4.1).

For every x P Y there exists a local chart in which the equation of Y becomes
Impzq “ 0, where Impzq “ Impz1, . . . , zdq “ pImpz1q, . . . , Impzdqq (see [1, Prop. 1.3.8
and 1.3.11]). We fix a finite family ϕi : Ui Ñ Cd of such charts, covering a neighbor-
hood of Y . The charts being bilipschitz, there exists an absolute constant D such that if
x P Ui,

|log dpϕipxq, ϕipY qq ´ log dpx, Y q| ď D.

Then from (2.7), replacing ν by νpnq we may assume that the uniform expansion holds
for n “ 1 and the expansion constant c is bigger than 10D. We will work in local charts
to show that ´ log dp¨, Y q is a Margulis function.

Let dUi
denote the Euclidean distance in the i-th chart (pulled back by ϕi). In Ui, write

ϕipxq “ z “ pz1, . . . , zdq and ϕipY q “ tImpzq “ 0u. Let πpϕipxqq “ pRepz1q, . . . ,Repzdqq

be the projection of ϕipxq on Y , so that

dUi
px, Y q “ }ϕipxq ´ πpϕipxqq} “ }pImpz1q, . . . , Impzdqq} “ }Impϕipxqq}. (4.22)

As before let ΓpRq “ tf P Γ ; Npfq ď Ru, where Npfq “ }f}C2 ` }f´1}C2 , and fix
f P ΓpRq. If x is sufficiently close to Y , then so does fpxq, hence fpxq belongs to some
chart Uj and working in this chart we get dUj

pfpxq, Y q “ }Impϕjpfpxqqq}. Applying
Taylor’s formula to the coordinate expression f̃ of f , we obtain

ϕjpfpxqq “ f̃pϕipxqq

“ f̃pπpϕipxqqq ` df̃πpϕipxqqpϕipxq ´ πpϕipxqqq ` O
`

}ϕipxq ´ πpϕipxqq}
2
˘

.

Now, observe that the vector df̃πpϕipxqqpϕipxq ´ πpϕipxqqq is purely imaginary because
ϕipxq ´ πpϕipxqq is purely imaginary and df̃πpϕipxqq is real, since it preserves Y . Thus,
taking imaginary parts and using (4.22) yields

ˇ

ˇ

ˇ

ˇ

dUj
pfpxq, Y q

dUi
px, Y q

´
›

›dfπpxqpvxq
›

›

ˇ

ˇ

ˇ

ˇ

ď CRdUi
px, Y q, (4.23)

where vx “ ϕ›
i

´

ϕipxq´πpϕipxqq

}ϕipxq´πpϕipxqq}

¯

, πpxq “ ϕ´1
i πpϕipxqq, and the constantC depends only

on the charts. Arguing as in (4.11), plugging in the bilipschitz estimate for the distance
to Y , and increasing C if necessary we get

ˇ

ˇ

ˇ

ˇ

log
dpfpxq, Y q

dpx, Y q
´ log

›

›dfπpxqpvxq
›

›

ˇ

ˇ

ˇ

ˇ

ď CR2dpx, Y q ` 2D. (4.24)

Finally, using the moment condition to deal with the contribution of ΓzΓpRq as in The-
orem 4.1, we obtain
ż

Γ

ˇ

ˇ

ˇ

ˇ

log
dpfpxq, Y q

dpx, Y q
´ log

›

›dfπpxqpvxq
›

›

ˇ

ˇ

ˇ

ˇ

dνpfq ď CR2dpx, Y q ` 2D`
C

plogRqη
, (4.25)
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and we conclude that log dp¨, Y q is a Margulis function by first fixing a large R and then
choosing x sufficiently close to Y , as in Theorem 4.1. □

Example 4.6. There exists a group Γ “ xf, gy of diffeomorphisms of the 3-torus R3{Z3

and a finitely supported measure ν on Γ with xSupppνqy “ Γ such that:
– Γ preserves Y :“ R2{Z2 ˆ t0u;
– there exists a neighborhood U of Y on which the dynamics of pΓ, νq is uniformly

expanding;
– for every x P U and almost every trajectory ω, fn

ω pxq converges to Y .

Proof. Let 0 ă γ ă 1 and ψ be a diffeomorphism of the circle R{Z such that
(i) ψ fixes 0, ψpzq “ γz on r´1{8, 1{8s, and ψpr´1{4, 1{4sq “ r´1{4, 1{4s;

(ii) in the interval r´1{4, 1{4s, the only fixed points of ψ are ´1{4, 0 and 1{4.
Then there is a diffeomorphism φ : s ´ 1{4, 1{4rÑ R that conjugates ψ|s´1{4,1{4r to
t ÞÑ γt.

Pick A and B in SLp2,Zq and pc1, c2q in Z2 such that
(iii) A and B generate a non-elementary subgroup;
(iv) γ is not an eigenvalue of B and pc1, c2q ‰ p0, 0q.

Define two diffeomorphisms g and h of R3{Z3 by

gpx, y, zq “ pApx, yq ` pc1z, c2zq, ψpzqq and hpx, y, zq “ pBpx, yq, ψpzqq. (4.26)

Let ν be a probability measure supported on tg, h, g´1, h´1u such that 0 ă νpg´1q ă

νpgq and 0 ă νph´1q ă νphq.
First, let us prove that there exists Ω0 Ă Ω of full νN-measure such that fn

ω ppq con-
verges towards Y for every p “ px, y, zq P R2{Z2ˆs ´ 1{4, 1{4r, and ω P Ω0. Indeed,
writing fn

ω ppq “ pxn, yn, znq, we have:
(1) zn Ps ´ 1{4, 1{4r because ψ preserves s ´ 1{4, 1{4r;
(2) φpznq “ γ

řn
i“1 εiφpzq, where pεnq is a sequence of independent random variables

with Ppε “ 1q “ νpgq ` νphq and Ppε “ ´1q “ νpg´1q ` νph´1q. Since,
νpg´1q ` νph´1q ă νpgq ` νphq, φpznq converges almost surely to 0.

Now, we show that the dynamics of pΓ, νq is uniformly expanding in R2{Z2ˆs ´

1{4, 1{4r. Indeed, if p P R2{Z2ˆs ´ 1{4, 1{4r and ω P Ω0, there is npωq such that
fn
ω ppq P R2{Z2ˆs´1{8, 1{8r for n ě npωq. Now, in R2{Z2ˆs´1{8, 1{8r the dynamics

is linear, and the tangent action is generated by

g̃ “

¨

˝

A

ˆ

c1
c2

˙

0 γ

˛

‚ and h̃ “

ˆ

B 0
0 γ

˙

. (4.27)

We claim that the linear action of pΓ̃, ν̃q on R3 is uniformly expanding, where Γ̃ “ xg̃, h̃y

and ν̃ is the measure naturally corresponding to ν. Indeed, the action is uniformly
expanding on R2 ˆ t0u and if it were not uniformly expanding on R3, by Furstenberg-
Kifer [36], there would exist a Γ̃-invariant line transverse to R2 ˆ t0u along which the
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Lyapunov exponent would be non-positive. But the hypothesis (iv) guarantees that such
a line does not exist. From this, we deduce that there exists c ą 0 (any constant smaller
than the Lyapunov exponent of the random product generated by A and B will do) such
that for every p P R2{Z2ˆs´1{4, 1{4r, every unit tangent vector v at p and almost every
ω, 1

n
log }pfn

ω q›v} ě c if n is large enough. Applying Lemma 2.3 finishes the proof. □

5. AN ERGODIC-THEORETIC CRITERION FOR EXPANSION

5.1. Construction of stationary measures. Let M be a compact manifold endowed
with a Riemannian metric; let T 1M denote its unit tangent bundle and π : T 1M Ñ M
be the canonical projection. As in Section 2, if f is a diffeomorphism of M , we denote
by f› its action on TM . Let ν be a probability measure on Diff1

pMq satisfying the
moment condition (M). We apply a classical strategy to get the following theorem (see
e.g. [24, Prop. 3.17], and [39, Lem. 3.3]).

Theorem 5.1. Assume that there exists an increasing sequence pnkq P NN and a se-
quence of unit tangent vectors pukq P pT 1MqN such that

lim
kÑ8

1

nk

ż

log }f›uk}dνpnkq
pfq “ χ0. (5.1)

Then, there exists a real number χ ě χ0, an ergodic ν-stationary probability measure
µ̂ on T 1M , and a ν-almost surely invariant sub-bundle V Ă TM such that the top
Lyapunov exponent of the projected measure µ :“ π›µ̂ in restriction to V is equal to χ.

Likewise, there exists a real number χ1 ď χ0 that satisfies the same property for some
pair pµ̂1, V 1q and the projection µ1 :“ π˚µ̂

1.

Note that if µ̂ is a probability measure on T 1M that is ν-stationary for the tangent
action, then its projection µ on M is ν-stationary as well; and if µ̂ is ergodic, so is µ.
When χ ą 0, one typically obtains V “ TM .

Proof (see [24, 39]). Consider the sequence of measures µ̂k on T 1M defined by

µ̂k “
1

nk

nk´1
ÿ

j“0

νpjq
‹ δuk

“
1

nk

nk´1
ÿ

j“0

ż

f›uk
}f›uk}

dνpjq
pfq, (5.2)

where νpjq ‹ δuk
denotes the convolution for the action of DiffpMq on the unit tangent

bundle. Since T 1M is compact and the µ̂k are probability measures, we can extract a
subsequence (still denoted by µ̂k for simplicity) that converges weakly towards a prob-
ability measure µ̂8 on T 1M . By construction, this measure is ν-stationary.

The function Dilpf, uq :“ log }f›u} is continuous on Diff1
pMq ˆ T 1M . And by our

moment assumption, so is the function u P T 1M ÞÑ
ş

Dilpf, uqdνpfq. For u P T 1M the
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chain rule gives

1

n

ż

log }pfn
ω q›u}dνNpωq “

1

n

n´1
ÿ

j“0

ż

Dil

˜

fj,
pf j

ωq›u
›

›pf j
ωq›u

›

›

¸

dνNpωq

“

ż

gPDiffpMq

˜

1

n

n´1
ÿ

j“0

ż

Dil

ˆ

g,
h›u

}h›u}

˙

dνpjq
phq

¸

dνpgq

(5.3)

If we apply this equation to n “ nk and u “ uk the term between parentheses in the last
integral is equal to

ş

Dil pg, uq dµ̂kpuq, so, letting k go to `8, we conclude that

lim
kÑ8

1

nk

ż

log }f›uk}dνpnkq
pfq “ χ0 “

ż

Diff1pMq

ż

T 1M

Dilpg, uqdµ̂8puqdνpgq (5.4)

Thus, there exists χ ě χ0 (resp. χ ď χ0) and an ergodic component µ̂ of µ̂8 such that
ż

Diff1pMq

ż

T 1M

Dilpg, uqdµ̂puqdνpgq “ χ. (5.5)

As observed above, µ “ π›µ̂ is an ergodic ν-stationary probability measure. Denote
by µ̂x the conditional measures obtained by disintegration of µ̂ with respect to the fibers
of π, that is, µ̂ “

ş

µ̂xdµpxq. For µ-almost every x, let V pxq be the linear span of
Supppµ̂pxqq. Since Supppµ̂q is ν-almost invariant and f› acts linearly along the fibers
of TM , we infer that V is a ν-almost invariant measurable sub-bundle. The Furstenberg
formula asserts that the top Lyapunov exponent of µ in restriction to V is equal to χ. For
completeness let us recall the argument: the ergodic theorem shows that for pνN ˆ µq-
almost every pω, xq and µ̂x-almost every u P T 1

xM ,

lim
nÑ`8

1

n

n´1
ÿ

j“0

Dil
`

fj, pf
j
ωq›u

˘

“

ż

Diff1pMqN

ż

T 1M

Dilpf 1
ω, uq dµ̂puqdνNpωq “ χ (5.6)

where as usual ω “ pf0, f1, . . .q, f 1
ω “ f0, and f j

ω “ fj´1˝¨ ¨ ¨˝f0. On the other hand the
Oseledets theorem asserts that for pνN ˆ µq-almost every pω, xq, there exists a proper
subspace W pω, xq Ă V pxq such that for u R W pω, xq, 1

n
log }pfn

ω q›u} converges to the
top Lyapunov exponent χ`pµ, V q of µ in restriction to V . Thus by (5.6), χ`pµ, V q “ χ,
and the proof is complete. □

5.2. Application: Chung’s criterion. The following theorem, taken from [24, Prop
3.17], plays an important role in this paper; a variant of this result appears in [12]. It
is stated in [24] for C2 actions on surfaces but it holds in greater generality. The proof
follows directly from the second assertion of Theorem 5.1.

Theorem 5.2 (Chung). Let M be a compact manifold. Let ν be a probability measure
on Diff1

pMq that satisfies (M). If ν is not uniformly expanding there exists an ergodic
ν-stationary measure µ on M and a µ-measurable subbundle W Ă TM such that
(a) 0 ă dimpW q ď dimpMq;
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(b) W is ν-almost surely invariant;
(c) in restriction to W , the top Lyapunov exponent of µ is non-positive.
Conversely, if such a pair pµ,W q exists, then ν is not uniformly expanding.

When M is a surface and ν is supported by the group of diffeomorphisms preserving
some fixed area form the Lyapunov exponents of any ergodic stationary measure µ
satisfy λ`pµq ` λ´pµq “ 0. Thus, in Chung’s theorem, either λ´pµq “ λ`pµq “ 0 and
we can take W “ TM or λ´pµq ă 0 ă λ`pµq and W coı̈ncides with the stable line
field provided by the Oseledets theorem; thus, µ is not hyperbolic or it is hyperbolic and
its stable line field is non-random.

Part 2. Non-elementary actions on complex surfaces

From now on we denote by X a compact complex surface, endowed with a group Γ
of holomorphic diffeomorphisms. Recall from [21, 18] that if Γ is non-elementary, then
X is necessarily projective and Γ Ă AutpXq.

6. PRELIMINARIES

In this section we briefly recall some results from [20] (see also [14, 17]).

6.1. Parabolic automorphisms and their dynamics (see [20, §3]). Let h be a para-
bolic automorphism of a compact projective surface X (most of this discussion is valid
for a compact Kähler surface). Then, h preserves a genus 1 fibration πh : X Ñ B, and
every h-invariant holomorphic (singular) foliation – in particular any invariant fibration
– coı̈ncides with π. Let hB denote the automorphism of B such that

π ˝ h “ hB ˝ π. (6.1)

If X is not a torus there is a positive integer m such that hm preserves every fiber of π,
i.e. hmB “ idB. When hB “ idB we say that h is a Halphen twist. The set of Halphen
twists in a given subgroup Γ Ă AutpXq is denoted by HalpΓq.

Remark 6.1. If Γ is non-elementary and contains a Halphen twist (resp. a parabolic
automorphism) h, then the conjugacy class of h in Γ contains Halphen twists (resp.
parabolic automorphisms) associated with infinitely many distinct invariant fibrations
(see [22, §3.1]).

Suppose now that h is a Halphen twist. Then, h acts by translation on every smooth
fiber of π (see [20, §3]). To be more precise, denote by Critpπq Ă B the finite set
of critical values of π and set B˝ “ BzCritpπq. Fix some simply connected open
subset U Ă B˝, endowed with a section σ of π and a continuous choice of basis for
H1pXw,Zq. Each fiber Xw :“ π´1pwq, w P U , is an elliptic curve with zero σpwq,
and one can find a holomorphic function τ on U , with values in the upper half plane,
such that Xw is isomorphic to C{Latpwq for Latpwq “ Z ‘ Zτpwq. On Xw, h is
a translation hwpzq “ z ` tpwq, for some holomorphic function w P U ÞÑ tpwq P

C{Latpwq. Moreover, Lemma 6.2(4) says that h behaves like a “complex Dehn twist”,
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with a shearing property in the direction which is transversal to the fibers; thus shearing
(or twisting) occurs along Xw whenever t and τ are “transverse” at w (see § 9.1 for
more details on the non-twisting locus).

The points w for which hw is periodic are characterized by the relation tpwq P Q ‘

Qτpwq. If
tpwq ´ pα ` βτpwqq P R ¨ pp ` qτpwqq (6.2)

for some pα, βq P Q2 and pp, qq P Z2, the closure of Ztpwq in C{Latpwq is an abelian
Lie group of dimension 1, isomorphic to Z{kZˆR{Z for some k ą 0; then, the closure
of each orbit of hw is a union of k circles. This occurs along a countable union of
analytic curves Rα,β

p,q Ă U . Otherwise, the orbits of hw are dense in Xw, and the unique
hw invariant probability measure is the Haar measure on Xw.

The following lemma summarizes this discussion.

Lemma 6.2. Let h be a Halphen twist with invariant fibration π : X Ñ B. Then,
(1) h acts by translation on each fiber Xw “ π´1pwq, w P B˝;
(2) for w in a dense countable subset of B˝, the orbits of hw are finite;
(3) there is a dense, countable union of analytic curves Rj in B˝, such that:

(a) for w R
Ť

j Rj , the action of h in the fiber Xw is a totally irrational translation
(it is uniquely ergodic, and its orbits are dense in Xw);

(b) for w P
Ť

j Rj the orbits of hw are either finite or dense in a finite union of
circles;

(4) there is a finite subset NTh such that for x R π´1 pNThq

lim
nÑ˘8

}Dxh
n
} Ñ `8

locally uniformly in x; more precisely for every v P TxXzTxXπpxq, }Dxh
npvq}

grows linearly while 1
n
π›pDxh

npvqq converges to 0.
If moreover h preserves a totally real 2-dimensional real analytic subset Y Ă X , then:
(5) the generic fibers of π|Y are union of circles, there exists an integer m such that

hm preserves each of these circles, and hm is uniquely ergodic along each of these
circles, except for countably many fibers.

Property (4) is the above mentioned twisting property of h. Property (5) occurs, for
instance, when X and h are defined over R and Y “ XpRq is the real part of X . There
are also examples of subgroups Γ Ă AutpXq preserving a totally real surface Y Ă X
which is not the real part of X for any real structure, see [20, §9].

6.2. Classification of invariant measures. Recall from Example 1.5 that if X is a
torus, a K3 surface, or an Enriques surface it admits a canonical AutpXq-invariant vol-
ume form volX . The associated probability measure will also be denoted by volX . Such
an area form exists also on any totally real surface, by virtue of the following lemma.

Lemma 6.3 (see [20, Remark 2.3]). LetX be an Abelian surface, or a K3 surface, or an
Enriques surface with universal cover X̃ . Let Y Ă X be a totally real surface of class
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C1, and AutpX;Y q be the subgroup of AutpXq preserving Y . If Y is totally real, the
canonical holomorphic 2-form ΩX (resp. ΩX̃) induces a smooth AutpX;Y q-invariant
probability measure volY on Y .

Theorem 6.4 (see [20, Thm A]). Let X be a projective surface. Let Γ be a non-
elementary subgroup of AutpXq containing a parabolic element. Let µ be a Γ-invariant
ergodic probability measure on X . Then, µ satisfies exactly one of the following prop-
erties.
(a) µ is the average on a finite orbit of Γ;
(b) µ is non-atomic and supported on a Γ-invariant algebraic curve D Ă X;
(c) there is a Γ-invariant proper algebraic subset Z of X , and a Γ-invariant, totally

real analytic surface Y of XzZ such that (1) µpY q “ 1 and µpZq “ 0; (2) Y has
finitely many irreducible components; (3) the singular locus of Y is locally finite in
XzZ; (4) µ is absolutely continuous with respect to the Lebesgue measure on Y ;
and (5) its density (with respect to any real analytic area form on the regular part
of Y ) is real analytic;

(d) there is a Γ-invariant proper algebraic subset Z of X such that (1) µpZq “ 0, (2)
the support of µ is equal to X; (3) µ is absolutely continuous with respect to the
Lebesgue measure on X; and (4) the density of µ with respect to any real analytic
volume form on X is real analytic on XzZ.

If X is not a rational surface, then in case (c) (resp. (d)) we can further conclude that
the invariant measure is proportional to volY (resp. volX).

6.3. Invariant curves. By [21, Lem. 2.12], any action of a non-elementary group Γ
on a projective surface X admits a maximal invariant curve DΓ, which can be easily
detected from the action of Γ on H2pX,Zq since it corresponds to an invariant class.
Bounds on the degrees of such invariant curves in terms of the action are given in [22,
§3]. If in addition Γ contains a parabolic element, DΓ is the set of common compo-
nents of the singular fibers of all elliptic fibrations associated to parabolic elements in Γ
(see [20, §4.1]).

7. HYPERBOLICITY OF INVARIANT MEASURES

Here,X is a compact Kähler surface. We fix a Kähler form κ0 onX; norms of tangent
vectors and differentials will be computed with respect to it.

7.1. Ledrappier’s invariance principle and invariant measures on PTX . In this
paragraph we collect some preliminary results for the proof of Theorems 1.4 and 7.4.
The reader should also consult [2] and [47] for comparison; [47] relies on the “pinching
and twisting” formalism of Avila and Viana (see [51] for an introduction5). Most of this
discussion is valid for a random holomorphic dynamical system on an arbitrary complex
surface (not necessarily compact) satisfying (M).

5Beware that the word “twisting” has a different meaning there.
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We denote by PTX the projectivized tangent bundle of X; if f is an automorphism
of X , we denote by PpDfq the induced action on PTX .

Let ν be a probability measure on AutpXq that satisfies the moment condition (M).
We endow Ω :“ AutpXqN (resp. Σ :“ AutpXqZ) with the probability measure νN

(resp. νZ), and set X` “ Ω ˆ X (resp. X “ Ω ˆ X); σ will denote the shift (on Ω
or Σ). For ω “ pfiqiě0 P Ω, we keep the notation fn

ω from § 2.2. Then, we define
F` : X` Ñ X` by F`pω, xq “ pσpωq, f 1

ωpxqq; F : X Ñ X is defined by the same
formula. For further standard notations, we refer to [21, §7].

Let µ be an ergodic ν-stationary measure on X . We introduce the projectivized tan-
gent bundles PTX` “ Ω ˆ PTX and PTX “ Σ ˆ PTX . The bundles TX and
PTX admit measurable trivializations over a set of full measure. Consider any prob-
ability measure µ̂ on PTX that is stationary under the random dynamical system in-
duced by pX, νq on PTX and whose projection on X coincides with µ, i.e. π›µ̂ “ µ
where π : PTX Ñ X is the natural projection. Such measures always exist: indeed,
the set of probability measures on PTX projecting to µ is compact and convex, and it
is non-empty since it contains the measures

ş

δrvpxqsdµpxq for any measurable section
x ÞÑ rvpxqs of PTX . Thus, the operator

ş

PpDfq dνpfq has a fixed point on that set.
The stationarity of µ̂ is equivalent to the invariance of νN ˆ µ̂ under the transformation
pF` : Ω ˆ PTX Ñ Ω ˆ PTX defined by

pF`pω, x, rvsq “ pσpωq, f 1
ωpxq,PpDxf

1
ωqrvsq (7.1)

for any non-zero tangent vector v P TxX . We denote by µ̂x the family of probability
measures on the fibers PTxX of π given by the disintegration of µ̂with respect to π. The
conditional measures of νN ˆ µ̂ with respect to the projection PTX` Ñ X are given by
µ̂ω,x “ νN ˆ µ̂x.

Remark 7.1. Even when µ is Γν-invariant, this construction only provides a stationary
measure on PTX . This is exactly what happens for non-elementary subgroups with a
parabolic automorphism: indeed, we show in § 7.2 that projectively invariant measures
do not exist in this case.

The tangent action of our random dynamical system gives rise to a stationary product
of matrices in GLp2,Cq. To see this, fix a measurable trivialization P : TX Ñ X ˆC2,
given by linear isomorphisms Px : TxX Ñ C2. It conjugates the action of DF` to that
of a linear cocycle A : X` ˆ C2 Ñ X` ˆ C2 over pX`, F`, ν

N ˆ µq. In this context,
Ledrappier establishes in [43] the following “invariance principle”.

Theorem 7.2. If λ´pµq “ λ`pµq, then for any stationary measure µ̂ on PTX projecting
to µ, we have PpDxfq›µ̂x “ µ̂fpxq for µ-almost every x and ν-almost every f .

The second ingredient in the proof of Theorem 1.4 is a description of such projec-
tively invariant measures; this is where we follow [2]. To explain this result a bit of
notation is required. Let V and W be hermitian vector spaces of dimension 2; we fix
two isometric isomorphisms ιV : V Ñ C2 and ιW : W Ñ C2 to the standard hermit-
ian space C2, and we endow the projective lines PpV q and PpW q with their respective
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Fubini-Study metrics. If g : V Ñ W is a linear isomorphism, we set

JgK “ }Ppgq}C1 (7.2)

where Ppgq : PpV q Ñ PpW q is the projective linear map induced by g and }¨}C1 is the
maximum of the norms ofDzPpgq : TzPpV q Ñ TPpgqpzqPpW q with respect to the Fubini-
Study metrics. If ιW ˝ g ˝ ι´1

V “ k1ak2 is the KAK decomposition of ιW ˝ g ˝ ι´1
V in

GLp2,Cq, we get

JgK “
}a}

2

|detpaq|
“

›

›ιW ˝ g ˝ ι´1
V

›

›

2

ˇ

ˇdetpιW ˝ g ˝ ι´1
V q

ˇ

ˇ

(7.3)

where }¨} is the matrix norm in GL2pCq associated to the Hermitian norm of C2. In
particular,

(a) JgK “ 1 if and only if Ppgq is an isometry from PpV q to PpW q;
(b) for a sequence pgnq of linear maps V Ñ W , JgnK tends to `8 with n if and only

if PpιW ˝ g ˝ ι´1
V q diverges to infinity in PGL2pCq.

If f is an automorphism of X and x is a point of X , then κ0 endows TxX and TfpxqX
with hermitian structures, and we can apply this discussion to Dxf : TxX Ñ TfpxqX .
We are now ready to state the classification of projectively invariant measures.

Theorem 7.3. Let pX, νq be a random dynamical system on a complex surface and let
µ be an ergodic stationary measure. Let µ̂ be a stationary measure on PTX such that
π›µ̂ “ µ and PpDxfq›µ̂x “ µ̂fpxq for µ-almost every x and ν-almost every f . Then,
exactly one of the following two properties is satisfied:

(1) For pνN ˆ µq-almost every pω, xq, the sequence JDxf
n
ω K is unbounded and then:

(1.a) either there exists a measurable Γν-invariant family of lines Epxq Ă TxX such
that µ̂x “ δrEpxqs for µ-almost every x;

(1.b) or there exists a measurable Γν-invariant family of pairs of linesE1pxq, E2pxq Ă

TxX and positive numbers λ1, λ2 with λ1 `λ2 “ 1 such that µ̂x “ λ1δrE1pxqs `

λ2δrE2pxqs for µ-almost every x.
(2) The projectivized tangent action of Γν is reducible to a compact group, that is there

exists a measurable trivialization of the tangent bundle pPx : TxX Ñ C2qxPX , such
that for almost every f P Γν and every x, P

`

Pfpxq ˝ Dxf ˝ P´1
x

˘

belongs to the
unitary group PU2pCq.

In assertion (1.b), the pair is not ordered: there is no natural distinction of E1 and
E2, the elements of Γν may a priori permute these lines. The proof can be obtained by
adapting the arguments of [2] to the complex case; full details are given in § 7.4 of [19].
We provide a shorter proof, suggested by one of the referees, that relies on results of
Furstenberg and Zimmer. Yet another approach, suggested by another referee, would be
to view P1pCq as the boundary of H3 and use the notion of the conformal barycenter of
Douady-Earle [27].



HYPERBOLICITY FOR AUTOMORPHISM GROUPS OF SURFACES 31

Proof. Consider a probability space pY,A,mq together with an ergodic measure pre-
serving transformation T : Y Ñ Y and a measurable cocycle

η : pY,Aq Ñ pGL2pCq,BpGL2pCqq. (7.4)

Suppose we are given a measurable map m̂ : Y Ñ ProbpP1pCqq from Y to the space of
probability measures on P1pCq (equipped with its Borel σ-algebra) and that this map is
η-equivariant, i.e.

m̂Ty “ ηpyq˚m̂y (7.5)
for almost every y in Y . The ergodicity of m and Theorem 3.2.6 of [53] imply that, on a
subset of full measure in Y , m̂ takes values in a unique GL2pCq-orbit in ProbpP1pCqq.
Let λ P ProbpP1pCqq be a point in this orbit. The equivariance of m̂ : Y Ñ GL2pCq›λ
means that m̂ is cohomologous to a cocycle taking values in the stabilizer of λ in
GL2pCq, that is, there exists a measurable map Y Q y ÞÑ Ay P GL2pCq such that
A´1

TyηyAy P Stabpλq. Indeed m̂y “ pAyq›λ for someAy. Then, according to Lemma 3.2.1
of [53] and its Corollary 3.2.2, there are only three possibilities. Either λ is a Dirac mass,
or λ is an average of two Dirac masses, or the stabilizer of λ is compact.

In our situation, we take Y to be X` “ Ω ˆ X , T is F`, m is νN b µ, and m̂ is the
family of disintegrations pω, xq ÞÑ µ̂x, which is a Borel map since it is the disintegration
of a Borel measure on X ˆ P1 relative to the projection X ˆ P1 Ñ X . Applying the
above results, we get the desired conclusion, except for one point, which is the fact that
in the conclusion of the theorem, the trivialization P in Assertion (2) (resp. the lines in
Assertion (1)) depends only on x, and not on pω, xq, Theorem 7.3. a fact that will be
used later. Since the lines in Assertion (1) are directly determined by µ̂x it is obvious
that they depend uniquely on x.

Assume that we are in the situation where Stabpλq is a compact subgroup. To show
that P can be chosen to depend only on x we argue as follows. First, observe that
Stabpλq Ă P´1

0 U2pCqP0 for some P0 P GL2pCq, so with notation as above we obtain
that Dxf is of the form AF`pω,xqP0UP

´1
0 A´1

pω,xq
, for some U P U2. We need to show that

Apω,xq can be chosen to depend on x only. LetE “ tpx,Aq P X ˆ GL2pCq ; A›λ “ µ̂xu.
Since x ÞÑ µx is Borel, E is a Borel subset of X ˆ GL2pCq whose fibers in GL2pCq are
empty or compact (6). From the Borel selection theorem (see [9, Thm 6.9.6] or [53,
Appendix A]), there exists a Borel map x ÞÑ A1

x such that for every x P X , px,A1
xq

belongs to E; replacing Apω,xq by A1
x concludes the proof. □

7.2. Proof of Theorem 1.4. By Theorem 6.4, µ is either equivalent to the Lebesgue
measure on X , or to the 2-dimensional Lebesgue measure on some components of an
invariant totally real surface Y Ă X .

7.2.1. Proof of the hyperbolicity of µ. Let us assume, by way of contradiction, that
µ is not hyperbolic. Hence its Lyapunov exponents vanish, and by Theorem 7.2 and
Theorem 7.3, there is a measurable set X 1 Ă X with µpX 1q “ 1 such that one of the
following properties is satisfied along X 1:

6On the null set where the fibers are empty, we may replace the fiber by some fixed matrix, say A “ id.
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(a) there is a measurable Γν-invariant line field Epxq;
(b) there exists a measurable Γν-invariant splitting Epxq ‘ E 1pxq “ TxX of the

tangent bundle; here, the invariance should be taken in the following weak sense:
an element f of Γν maps Epxq to Epfpxqq or E 1pfpxqq;

(c) there exists a measurable trivialization Px : TxX Ñ C2 such that in the corre-
sponding coordinates the projectivized differential PpDfxq takes its values in
PU2pCq for all f P Γν and µ-almost all x P X 1.

Fix a small ε ą 0. By Lusin’s theorem, there is a compact set Kε with µpKεq ą 1´ ε
such that the data x ÞÑ Epxq, or x ÞÑ pEpxq, E 1pxqq or x ÞÑ Px in the respective cases
(a), (b), and (c) are continuous on Kε. In particular, in case (c), the norms of Px and
P´1
x are bounded by some uniform constant Cpεq on Kε; hence, if g P Γν and x and
gpxq belong to Kε, JDgxK is bounded by Cpεq2.

Fix a pair of parabolic elements g and h P Γν with distinct invariant fibrations
πg : X Ñ Bg and πh : X Ñ Bh respectively (see Remark 6.1). These two fibrations
are tangent along some curve Tangpπg, πhq in X .

‚ In a first stage we assume that X is not a torus. According to Section 6.1, there is
an integer N ą 0 such that gN and hN preserve every fiber of their respective invariant
fibrations. From now on, we replace g by gN and h by hN . Also, Γν is discrete, so we
may also assume νpgqνphq ą 0 (see footnote (2) page 5).

First assume that µ is absolutely continuous with respect to the Lebesgue measure on
X , with a positive real analytic density on the complement of some invariant, proper,
Zariski closed subset. We apply Lemma 6.2 to h and remark that pπhq›µ can not charge
the union of the curves Rj . Then, we disintegrate µ with respect to πh to obtain con-
ditional measures µb, for b P Bh; since πh is holomorphic, the measures µb are abso-
lutely continuous with respect to the Haar measure on almost every fiber π´1

h pbq. By
Lemma 6.2, there exists a fiber π´1

h pbq such that (1) the Haar measure of Kε X π´1
h pbq

is positive, (2) b R NTh and (3) the dynamics of h in π´1
h pbq is uniquely ergodic.

These properties hold for b “ πhpzq, for µ-almost all z in Kε. Then we can pick
x P π´1

h pbq such that phkpxqqkě0 visits Kε infinitely many times (7). The fifth assertion
of Lemma 6.2 rules out case (c) because the twisting property implies that the projec-
tivized derivative JDhnxK tends to infinity, while it should be bounded by Cpεq2 when
hnpxq P Kε. Case (b) is also excluded: under the action of hn, tangent vectors projec-
tively converge to the tangent space of the fibers, so the only possible invariant subspace
of dimension 1 is kerpDπhq. Thus we are in case (a) and moreover Epxq “ kerDxπh
for µ-almost every x. But then, using g instead of h and the fact that µ does not charge
the curve Tangpπg, πhq, we get a contradiction. This shows that the last alternative (a)
does not hold either, and this contradiction proves that µ is hyperbolic.

If µ is supported by a 2-dimensional real analytic subset Y Ă X , the same proof
applies, except that we disintegrate µ along the singular foliation of Y by circles induced

7Note that we use the invariance of µ here, not mere ν-stationarity.
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by πh and we use the fact that a generic leaf is a circle along which h is uniquely ergodic
(see Lemma 6.2.(4)).

‚ If X is a torus its tangent bundle is trivial and the differential of an automorphism
is constant. In an appropriate basis, the differential of a Halphen twist h is of the form

ˆ

1 α
0 1

˙

with α ‰ 0. (7.6)

Thus we are in case (a) with Epxq “ kerDxπh for µ-almost every x. Using another
twist g transverse to h we get a contradiction as before.

7.2.2. Proof of the positivity of the fiber entropy. This follows from classical arguments.
Since µ is invariant the measure m :“ νZ ˆ µ on X is F -invariant. In both cases
µ ! volX and µ ! volY , respectively. The absolute continuity of the foliation by local
Pesin unstable manifolds implies that the unstable conditionals of m cannot be atomic,
see e.g. [44, Theorem B, Section 3]. Since the unstable conditionals of a zero entropy
stationary measure are automatically atomic (see [21, Cor. 7.14]), we conclude that µ
has positive fiber entropy.

This concludes the proof of Theorem 1.4 □

7.3. A variant of Theorem 1.4. Let us first recall the definition of classical Kummer
examples (see [22, §4] for a thorough treatment)). Let A “ C2{Λ be a complex torus
and let η be the involution given by ηpz1, z2q “ p´z1,´z2q; it has 16 fixed points. Then
A{xηy is a surface with 16 singular points, and resolving these singularities (each of
them requires a single blow-up) yields a Kummer surface X . Let fA be a loxodromic
automorphism ofAwhich is induced by a linear transformation of C2 preserving Λ; then
fA commutes to η and goes down to an automorphism f ofX; such automorphisms will
be referred to as loxodromic, classical, Kummer examples. They preserve the canonical
volume volX . The Kummer surface X also supports automorphisms which do not come
from automorphisms of A (see [41] and [25] for instance).

In the following statement we do not assume that Γν contains a parabolic element.

Theorem 7.4. Let pX, νq be a non-elementary random dynamical system on a Kummer
K3 surface satisfying (M) and such that Γν contains a loxodromic classical Kummer
example. Then any ergodic Γν-invariant measure giving no mass to proper Zariski
closed subsets of X is hyperbolic.

Proof. The proof is similar to that of Theorem 1.4 so we only sketch it. Assume by
contradiction that µ is not hyperbolic. Since X is a K3 surface, the invariance of the
volume shows that the sum of the Lyapunov exponents of µ vanishes (see [21, §7.3]),
thus both are equal to 0, and one of the alternatives of Theorem 7.3 holds, referred to as
(a), (b), (c) as in Section 7.2, page 31.

By assumption, Γν contains a loxodromic, classical Kummer example f associated to
a linear automorphism fA of a torus A. This automorphism f is uniformly hyperbolic
in some dense Zariski open subset U , which is thus of full µ-measure: its complement
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is given by the sixteen rational curves coming from the resolution of the singularities of
A{η. We denote by x ÞÑ Eu

f pxq‘Es
f pxq the associated splitting of TX|U . The line field

Eu
f (resp. Es

f ) is everywhere tangent to an f -invariant (singular) holomorphic foliation
Fu (resp. F s) coming from the fA invariant linear unstable (resp. stable) foliation onA.
Since f is uniformly expanding/contracting on Eu{s

f , Alternative (c) is not possible.
If Alternative (a) holds, then Epxq being f -invariant on a set of full measure, it must

coincide with Eu
f or Es

f , say with Eu
f . By continuity any g P Γν preserves Eu

f pointwise
on Supppµq. Since in addition µ is Zariski diffuse, g preserves Eu

f everywhere on
X , so it preserves also the unstable holomorphic foliation Fu. From this, we shall
contradict the fact that Γν is non-elementary. We use a dynamical argument, based
on basic constructions which are surveyed in [17]; one can also derive a contradiction
from [23].

Every leaf of Fu, except a finite number of them, is parametrized by an injective
entire holomorphic curve φ : C Ñ X , the image of which is Zariski dense. Fix a Kähler
form κ on X and consider the positive currents defined by

α ÞÑ

ˆ
ż R

0

ż

Dp0;tq

φ˚κ
dt

t

˙´1 ż R

0

ż

Dp0;tq

φ˚α
dt

t
(7.7)

for any smooth p1, 1q-form α. As R goes to `8, it is known that this sequence of cur-
rents converges to a closed positive current T`

f that does not depend on the parametriza-
tion φ of the leaf, nor on the leaf itself (provided it is Zariski dense). This current is
uniquely determined by Fu and the normalization xT`

f |κy “ 1. Dynamically, it is the
unique closed positive current T`

f that satisfies xT`
f |κy “ 1 and f˚T`

f “ λpfqT`
f for

some λpfq ą 1. Its cohomology class rT`
f s is a non-zero element of H1,1pX;Rq of

self-intersection 0.
Now, pick any element g of Γν . Since g preserves Fu, it permutes its leaves and

preserves the ray R`rT`
f s. Thus, Γν preserves an isotropic line for the intersection form

in H1,1pX;Rq, and this contradicts the non-elementarity assumption (see [21, §2.3]).
Finally, if alternative (b) holds, any g P Γν preserves tEu

f pxq, Es
f pxqu on a set of full

measure so, since µ is Zariski diffuse, it must either preserve or swap these directions.
Passing to an index 2 subgroup both directions are preserved, and we again contradict
the non-elementary assumption, as in case (a). □

8. CHARACTERIZATION OF UNIFORM EXPANSION

In this section we build on the previous results, in conjunction with the measure
rigidity results from our previous work [21], to find sufficient conditions for as well as
obstructions to uniform expansion for a non-elementary action on a compact complex
surface.

8.1. Proof of Theorem 1.6 and related results.
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8.1.1. Applying Chung’s criterion.

Definition 8.1. Let ν be a probability measure on AutpXq. A ν-stationary measure µ
on X is said to be non-expanding if every ergodic component µ1 of µ satisfies:

(i) either both Lyapunov exponents of µ1 are non-positive,
(ii) or µ1 is hyperbolic and its field of Oseledets stable directions is non-random.

Recall that for a hyperbolic stationary measure µ, for νN ˆ µ-a.e. pω, xq, the sta-
ble Oseledets subspace Espω, xq Ă TxX is defined by v P Espω, xq if and only if
lim supnÑ8

1
n
log }pfn

ω q›v} ă 0. The field of Oseledets subspaces is said to be non-
random if for µ-a.e. x, ω ÞÑ Espω, xq is constant mod. 0.

Theorem 5.2 asserts that the existence of non-expanding ν-stationary measures is the
obstruction to uniform expansion of ν:

Corollary 8.2 (of Theorem 5.2). Let X be a compact complex surface and ν be a
probability measure on the group AutpXq, satisfying the moment condition (M). Then
ν is uniformly expanding if and only if non-expanding ν-stationary measures do not
exist, hence if and only if every ergodic ν-stationary measure µ on X satisfies one of the
following properties:

– µ has a positive Lyapunov exponent and its stable distribution depends non-
trivially on the itinerary;

– the two Lyapunov exponents of µ are strictly positive.

8.1.2. Groups with invariant curves.

Proposition 8.3. Let X be a compact complex surface. Let Γ be a subgroup of AutpXq

that preserves a complex curve C Ă X . If ν is a probability measure on Γ satisfy-
ing (M), then ν is not uniformly expanding.

Remark 8.4. We leave the reader check that the proof adapts to the real case in the
following sense: if X , Γ and C are defined over R and CpRq is of dimension 1 (that is,
neither empty nor a finite set), then ν is not uniformly expanding in restriction to CpRq.

Lemma 8.5. Let C be a compact Riemann surface. Then, AutpCq does not support any
uniformly expanding probability measure.

Proof. Let κ be a Kähler form on C that satisfies
ş

C
κ “ 1. For every f P AutpCq,

ş

C
f˚κ “ 1 “

ş

C
}Dxf}

2κ “ 1, so by the Jensen inequality
ş

C
log }Dxf}κ ď 0. Now,

if ν is any probability measure on AutpCq, then
ż

C

ż

AutpCq

log }Dxf}dνpfqκ ď 0,

hence Property (2.6) cannot be satisfied by ν (for any n0 ě 1). □

Note that the same argument applies to conformal diffeomorphisms, in particular for
C1 diffeomorphisms of S1. Lemma 8.5 and Remark 2.1 imply Proposition 8.3 when C
is smooth; we now prove Proposition 8.3 in full generality.
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Proof of Proposition 8.3. Arguing by contradiction, we assume that ν is uniformly ex-
panding. Let Γ1 ď Γ be the finite index subgroup fixing each component of C, and
each of its branches at each of its singular points; let ν1 be the hitting measure on Γ1

associated to νpn0q, where n0 is as in Equation (2.6). By Proposition 3.2, ν1 is uniformly
expanding, so by replacing ν by ν1 and C by one of its components we assume now that
C is irreducible and all branches at its singular points are fixed by Γ. To get a contra-
diction we will construct a stationary measure µ supported on C such that the tangential
Lyapunov exponent along TC is non-positive.

By Lemma 8.5 we may assume that the singular set SingpCq is non-empty. If the
genus of C is ě 0, the invariance of SingpCq forces Γ|C to be finite, in contradiction
with the uniform expansion of ν. Thus, C is a rational curve; let π : Ĉ Ñ C be its
normalization and Γ̂ Ă AutpĈq » PGL2pCq be the group induced by Γ; the measure ν
induces a measure ν̂ on Γ̂. Fix p̂ P Ĉ such that p :“ πpp̂q is singular. The germ of curve
given by Ĉ at p̂ determines one of the branches of C at p; our assumptions imply that p̂
is fixed by Γ̂. There are local coordinates t P pC, 0q for pĈ, p̂q and pz, wq P pC2, p0, 0qq

for pX, pq in which π is expressed as a Puiseux expansion

t ÞÑ pπ1ptq, π2ptqq “ pαtq, βtrq modulo higher order terms (8.1)

where 1 ď q ă r; if q “ 1 the branch is smooth at p. In these coordinates, the tangent
direction to C at p corresponding to the branch determined by p̂ is given by p1, 0q P C2.
Let λ

pĈ,p̂q
be the Lyapunov exponent of ν̂ at p̂, and λpC,pq be the Lyapunov exponent of

ν in the tangent direction of this branch.

Lemma 8.6. With notation as above λpC,pq “ qλ
pĈ,p̂q

. In particular λpC,pq and λ
pĈ,p̂q

have the same sign.

Proof. Pick f P Γ, write fpz, wq “ pf1pz, wq, f2pz, wqq in the local coordinates pz, wq,
and expand f1 in power series: f1pz, wq “

ř

i,j ai,jz
iwj . Since the branch determined

by λ
pĈ,p̂q

is f -invariant, we have Dpfp1, 0q “ pa1,0, 0q with a1,0 ‰ 0. Thus,

f1pπptqq “

8
ÿ

i,j“0

ai,jα
iβjtqi`rj

“ a1,0αt
q mod ptq`1

q. (8.2)

Now, f lifts to an automorphism f̂ of Ĉ fixing p̂. Writing f̂ptq “ λt mod pt2q, we get
π1pf̂ptqq “ αλqtq mod ptq`1q. Then, the semiconjugacy f1pπptqq “ π1pf̂ptqq gives
λq “ a1,0, and we are done. □

We resume the proof of Proposition 8.3. We fix an affine coordinate s on Ĉ » P1pCq

such that p̂ “ 8. Then, every lift ĝ P Γ̂ can be written as an affine map ĝpsq “ ags` bg.

Lemma 8.7. The functions log |ag| and log`
|bg| are ν-integrable and Eplog |ag|q ă 0.

Proof. For the spherical metric, the derivative of ĝ at 8 in Ĉ is 1{ag. The computations
of Lemma 8.6 show that the derivative of g acting on X in the direction of the branch
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of C at πp8q is 1{aqg for some q ě 1. So (M) implies that Ep|log |ag||q ă 8. Since ν
is uniformly expanding, this direction is repelling on average: by Lemma 8.6, we get
Eplog

ˇ

ˇa´1
j

ˇ

ˇq ą 0. To estimate |bg|, we note that distXpπpsq, pq — |s|´q when s P C
approaches 8. Changing the affine coordinate s if necessary, we may assume that
πp0q ‰ p. We get

1

|bg|
q — distXpπpĝp0qq, πp8qq “ distXpgpπp0qq, gppqq ď }g}C1 distXpπp0q, pq. (8.3)

From this and (M) it follows that Eplog`
|bg|q ă 8. □

The integrability provided by Lemma 8.7 now allows us to construct a stationary
measure with full mass in the affine chart C Ă C with non-positive Lyapunov expo-
nent (relative to the affine metric). This is classical, we briefly recall the argument for
completeness (see [11]). For ω “ pgnqně0, write gnpsq “ ans ` bn, and consider the
sequence of right products rnpωq “ g0 ¨ ¨ ¨ gn´1. One easily checks that

rnpωqpsq “ a0 ¨ ¨ ¨ an´1s `

n´1
ÿ

j“0

a0 ¨ ¨ ¨ aj´1bj. (8.4)

For νN-almost every ω, 1
n
log |a0 ¨ ¨ ¨ an´1| converges to λ :“ Eplog |ag|q ă 0. Fix

ε ă |λ|. Since Eplog`
|bg|q ă 8,

ř8

j“0 νt|bg| ą eεju ă 8. By the Borel-Cantelli
Lemma, |bj| ď eεj for νN-almost every ω and for large j; hence, the series on the
right hand side of (8.4) converges. It follows that rnpωqpsq converges almost surely to a
limit eω that does not depend on s P C. The distribution of eω is the desired stationary
measure µC. If µ is any stationary measure with µpCq “ 1, then rnpωq›µ converges to
δeω almost surely: this shows that µC is the unique stationary measure with µpCq “ 1; in
particular, µC is ergodic. Since the affine derivative of g is the constant ag, the Lyapunov
exponent of µC, relative to the affine metric, is equal to λ.

To conclude the proof, note that µ :“ π›pµCq is an ergodic ν-stationary measure on
X which has a well-defined Lyapunov exponent, thanks to the moment condition (M).
If µ gives positive mass to the singular set of C, then it must be concentrated on a
single singular point of C (and likewise µC is a single atom in Ĉ). By Lemma 8.6
the corresponding branch is attracting on average, which contradicts uniform expan-
sion. Therefore µ gives no mass to SingpCq, and we claim that its Lyapunov exponent
λpµq|TC in the direction of C equals λ (even if the ratio between the ambient and affine
metrics on C Ă C is unbounded). Indeed, for µˆνN-almost every px, ωq and v P T 1

xC,
we can fix a subsequence nj such that fnj

ω pxq is far from the singularities of C (hence
from p “ πp8q). If j is large, 1

nj
log

›

›Dxf
nj
ω

›

› is both close to λ and to λpπ›µq|TC . We
conclude that λpπ›µq|TC ă 0, which again is contradictory. The proof is complete. □

8.1.3. Zariski diffuse measures. From now on we focus on the case of a minimal Kähler
surface X of Kodaira dimension zero, that is, a torus, a K3 surface, or an Enriques
surface. In this case AutpXq preserves a canonical volume form volX (see Example 1.5).
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From Corollary 8.2, the obstruction to uniform expansion is the existence of a non-
expanding stationary measure µ. Moreover, in the first case of Definition 8.1, both
exponents must vanish because we are in a volume preserving setting. In this situation,
Theorems 7.2 and 7.3 give a precise description of µ.

Theorem 8.8. Let X be a torus, a K3 surface, or an Enriques surface. Let ν be a
probability measure on AutpXq satisfying (M) such that Γν is non-elementary. If µ is a
Zariski diffuse ν-stationary measure, the following properties are equivalent

(a) µ is non-expanding;
(b) the fiber entropy hµpX, νq vanishes.

Moreover under these assumptions, µ is invariant and hµpfq “ 0 for every f P Γν .

Proof. As a preliminary step, observe that almost every ergodic component of µ is
Zariski diffuse: this follows from the fact that there are only finitely many invariant
curves and countably many isolated periodic points. In addition, by convexity of the
entropy (see [40, Prop. 4.3.16]), if hµpX, νq “ 0 then almost every ergodic component
of µ has zero fiber entropy as well. Thus for both implications we may further assume
that µ is ergodic as a stationary measure.

Let us show that Property (a) implies Property (b). Since there is an invariant volume
form, either both Lyapunov exponents of µ vanish or µ is hyperbolic. In the first case,
the invariance principle guarantees that µ is Γν-invariant and the fibered version of the
Ruelle inequality (see e.g. [21, §7]) implies that its fiber entropy vanishes. If µ is hyper-
bolic, the invariance of µ and the vanishing of the entropy follow from [21, Thm. 9.1].
Thus, (a) implies (b) together with the invariance of µ.

Consider the converse implication. Again, if µ has zero Lyapunov exponents then it
is non-expanding and invariant. Otherwise it is hyperbolic and by applying the whole
argument of [13] in the complex case (see Remark 8.10 below for a few comments on
this generalization), we infer that if the stable directions of µ depend on the itinerary, its
conditionals along Pesin unstable manifolds admit a non-trivial translation invariance;
in particular they are non-atomic. It follows that hµpX, νq ą 0 (see also [21, Rmk 9.2]).
So under assumption (b) the stable directions are non-random and, as already explained,
µ is invariant by [21, Thm. 9.1].

The fact that hµpfq “ 0 for all f P Γν will be shown in Theorem A.1. □

8.1.4. Refined criterion. The discussion of the previous paragraphs leads to a version
of Theorem 1.6 that does not require Γν to contain parabolic elements:

Theorem 8.9. Let X be a compact Kähler surface which is not rational. Let ν be a
probability measure on AutpXq satisfying (M) such that Γν is non-elementary. Then ν
is uniformly expanding if and only if the three following conditions hold:
(1) every finite Γν-orbit is uniformly expanding;
(2) there is no Γν-invariant algebraic curve;
(3) there is no Zariski diffuse invariant measure µ with zero fiber entropy.
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Proof. If a compact Kähler surface X is ruled (over a curve of positive genus) or has
a positive Kodaira dimension, then AutpXq is elementary (in the first case, it preserves
the ruling; in the second case, it preserves the Kodaira-Iitaka fibration, acting as a finite
group on the base). Thus, the Kodaira dimension of X vanishes. If X is not minimal,
the uniqueness of the minimal model shows that there is a AutpXq-invariant curve,
and we know this is incompatible with uniform expansion (Proposition 8.3). Now if
kodpXq “ 0, X is minimal, and AutpXq is non-elementary, then X is a torus, a K3
surface, or an Enriques surface; hence, we can assume that X is such a surface.

If ν is uniformly expanding, Property (1) is obvious, Property (2) follows from Propo-
sition 8.3, and Property (3) follows from Corollary 8.2 and Theorem 8.8.

Conversely, if these properties hold, and if µ is an ergodic ν-stationary measure then
by Property (2) µ is either Zariski diffuse or finitely supported. Then, Theorem 8.8 and
Property (1) imply that µ is not non-expanding, and we conclude with Corollary 8.2. □

Proof of Theorem 1.6. This follows directly from Theorem 1.4 and Theorem 8.9. □

Remark 8.10. The proof of (b)ñ(a) in Theorem 8.8 relies on the following fact: for
a hyperbolic stationary measure, if the stable directions of µ depend on the itinerary,
then its unstable conditionals satisfy some non-trivial translation invariance. This is
the “easy part” of the adaptation of [13] to complex surfaces; the “difficult part” would
be to obtain stiffness and some SRB property from this invariance (either on X or on
some totally real surface associated to the stationary measure). We did not provide a
proof for this fact because the arguments of [13] can be applied directly. This program
was recently carried out by Roda and will appear shortly. As a consequence, this fact
is also used in the implication “uniformly expanding implies (3)” in Theorem 8.9. On
the other hand, it is not used in Theorem 1.6 because in this case the condition (3) of
Theorem 8.9 is automatically satisfied, thanks to Theorem 1.4; it is not used either for
the part of Theorem 8.9 asserting that the assumptions (1), (2) and (3) imply uniform
expansion.

Remark 8.11. Using Theorem 7.4 instead of Theorem 1.4 gives a version of Theo-
rem 1.6 where the existence of a parabolic element in Γ is replaced by the existence of
a Kummer element. The details of the adaptation are left to the interested reader.

8.2. Uniform expansion along finite orbits. Using classical results on random prod-
ucts of matrices, it is easy to characterize when a fixed point under Γν is uniformly
expanding. We say that a subgroup of GL2pCq is strictly triangular if it is reducible
with exactly one invariant direction.

Proposition 8.12. Let X be a torus, a K3 surface, or an Enriques surface. Let ν be a
probability measure on AutpXq satisfying (M), and let x0 be a fixed point of Γν . Then ν
is uniformly expanding on Tx0X if and only if one of the following holds
(a) the induced action of Γν on Tx0X is non-elementary;
(b) this action is strictly triangular and its invariant direction is expanding.
If ν is symmetric, it is uniformly expanding on Tx0X if and only if (a) holds.
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In case (b) there exists u P Tx0X such that f›u “ λfu for every f P Γν , and the
expansion means that

ş

log |λf | dνpfq ą 0.

Proof (see also [48]). By Lemma 2.3, to prove uniform expansion it is enough to show
that for every v P Tx0X , lim infnÑ8

1
n
log }pfn

ω q›v} ą 0. The proof is based on the
work of Furstenberg and Kifer [36] (see also [10, §3.7]). These references deal with
general random products of matrices in GLdpRq; in our volume preserving situation the
Lyapunov exponents λ2 ď λ1 of the random product in GL2pCq satisfy λ1 ` λ2 “ 0,
so they can be read off directly from the action on PTx0X . According to Theorems 3.5
and 3.9 of [36], there are two possibilities:

(i) for every v P Tx0X and νN-almost every ω, 1
n
log }pfn

ω q›v} Ñ λ1;
(ii) there exists a non-random, Γν-invariant filtration t0u “ L2 ă L1 ă L0 “ Tx0X

and β1 ă β0 such that for i “ 0, 1 for any v P LizLi`1, for νN-almost every ω,
1
n
log }pfn

ω q›v} Ñ βi. Furthermore β0 “ λ1.
We now compare this dichotomy with the classification of subgroups of PGL2pCq (with
a slight abuse of notation, we also denote by Γν the induced subgroup of PGL2pCq).

´ If Γν is strongly irreducible, we are in case (i) and there are two possibilities. If Γν

is proximal (hence non-elementary) then λ1 ą 0 and ν is uniformly expanding. If Γν is
not proximal, it is contained in a compact subgroup and ν is not uniformly expanding.

´ If Γν is irreducible but not strongly irreducible, we are in case (i) and there are
two lines which are permuted by Γ. In some affine coordinate z on PTx0X , Γν is then
conjugated to a subgroup of

␣

z ÞÑ λzε ; λ P Cˆ, ε “ ˘1
(

(8.5)

where ε “ ´1 with positive probability. In this case λ1 “ 0 (see e.g. [29, Prop. 5.3]),
so ν is not uniformly expanding.

´ If Γν is reducible it preserves one or two directions in Tx0X . If Γ preserves a
direction with exponent ď 0, then ν is not uniformly expanding. So, we can assume that
Γ preserves a unique direction, and that the corresponding exponent β is positive. By
(i) and (ii) we see that limnÑ8

1
n
log }pfn

ω q›v} ě β for any v P Tx0X and almost every
ω; so ν is uniformly expanding.

This covers all possible cases and the proof is complete. □

Let F be a finite set, viewed as a 0-dimensional manifold, and V be a real or complex
vector bundle of dimension d over F ; identify V with F ˆ Kd, for K “ R or C.
Let GLpV q be the group of bijections of V acting linearly on fibers: it is a semidirect
product GLpV q » SpF q ˙ GLdpKqF where SpF q acts on GLdpKqF by permuting the
factors. We say that a subgroup of GLpV q is strongly irreducible if it acts transitively
on F and the stabilizer of any x P F acts strongly irreducibly on the fiber txu ˆ Kd of
V ; equivalently, if there is no invariant and finite collection of subspaces of dimension
‰ 0, d in some fibers of V . Similar notations and notions are defined for PGLpV q.

Assume now that F is a finite Γ-orbit on X , and consider the induced action of Γ
on TX|F :“

Ť

xPF TxX . We say that this action is non-elementary if its image in
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PGL pTX|F q is strongly irreducible and unbounded. When Γ preserves a volume form
onX , its image in GL pTX|F q is unbounded if and only if it is unbounded in PGL pTXq.
We say that it is strictly triangular if the only proper Γ-invariant subbundle in TX|F
is given by a 1-dimensional subbundle L Ă TX|F .

Pick a point x in F and set Γx “ StabΓptxuq. Since F is an orbit, rΓ : Γxs “ |F |

and the image of Γ in PGL pTX|F q is unbounded if and only if the image of Γx in
PGL pTxXq is unbounded. Thus, one easily gets the following lemma.

Lemma 8.13. If F is a finite Γ-orbit, the action of Γ on TX|F is non-elementary (resp.
strictly triangular) if and only if for some, hence any, x P F the action of StabΓptxuq

on TxX is non-elementary (resp. strictly triangular).

Theorem 8.14. Let X be a torus, a K3 surface, or an Enriques surface. Let ν be a
probability measure on AutpXq satisfying (M`), and F be a finite Γν-orbit. Then ν is
uniformly expanding on F if and only if the induced action of Γν on TF is
(a) either non-elementary (in the sense of the above definition);
(b) or strictly triangular and the field of invariant directions L Ă TX|F is uniformly

expanding.
If ν is symmetric, it is uniformly expanding on F if and only if (a) holds.

Proof. Let ΓF be the finite index subgroup fixing every point of F . Assume that ν is uni-
formly expanding. Then by Proposition 3.2, for some n0, the induced measure pνpn0qqΓF

is uniformly expanding. Therefore, by Proposition 8.12, ΓF satisfies Property (a) or (b)
at every point of F , and we conclude by Lemma 8.13. Conversely, assume that (a)
or (b) holds. Note that by Theorem 3.1, νΓF

satisfies (M`). By Lemma 8.13 and Propo-
sition 8.12, νΓF

is uniformly expanding on F , hence by Proposition 3.3, ν is uniformly
expanding on F , as desired. □

This theorem shows that when ν is symmetric all conditions in Theorem 8.9 depend
only on Γν , and not on ν. Thus we obtain:

Corollary 8.15. Let X be a torus, a K3 surface, or an Enriques surface. Let Γ be a
non-elementary subgroup of AutpXq. Let ν and ν 1 be symmetric probability measures
on AutpXq satisfying (M`) such that Γν “ Γν1 “ Γ. Then ν is uniformly expanding if
and only if ν 1 is uniformly expanding.

9. EXAMPLES OF UNIFORMLY EXPANDING ACTIONS

9.1. A finitary version of Theorem 1.6 and application to Wehler surfaces. In [24,
§ §7-8], Chung uses computer assistance to prove the uniform expansion of some con-
crete algebraic actions on real surfaces. In our situation Theorem 1.6 can be used to
check uniform expansion, but this requires a description of all invariant Zariski-closed
subsets. As already explained, invariant curves can be determined by cohomological
computations; for instance, if X is a generic Wehler surface, there is no AutpXq-
invariant curve. Thus the main problem is to study finite orbits.
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If the group Γ is non-elementary, contains parabolic elements, and has no invariant
curve, the main result of [22] says that Γ admits only finitely many finite orbits, except
when pX,Γq is a Kummer example. However, the proof given in [22] does not provide
any bound on the number or the lengths of such orbits; so, there is a priori no hope of
numerically checking uniform expansion along all of them, nor proving that there are
no finite orbits. The next result explains how to overcome this issue. To state it, we
denote by NSpX;Rq the Néron-Severi group of X that is, the subgroup of H1,1pX;Rq

obtained by all Chern classes of holomorphic line bundles on X; it coincides with the
intersection of H1,1pX;Rq with the torsion free part of H2pX;Zq (see [37], p. 163).

Theorem 9.1. Let X be a smooth projective surface and Γ be a non-elementary sub-
group of AutpXq containing parabolic elements, which does not preserve any algebraic
curve. Assume that we are given:

(i) algebraic equations for X , and the formulas defining a generating subset S of
Γ;

(ii) a basis of NSpX;Rq and the matrices of s› : NSpX;Rq Ñ NSpX;Rq, for s in
S;

(iii) a parabolic element g P Γ, given as a word in the generators s P S, and its
invariant fibration π : X Ñ B.

Then, there is an analytically computable integer NpX,Γq such that every finite Γ-orbit
of length greater than NpX,Γq is uniformly expanding (in the sense of Section 1.3).

By analytically computable, we mean computable by a computer able to solve real
analytic equations; by algebraically computable, we mean computable by a computer
able to solve algebraic equations. The proof will provide an analytically computable
subset containing all possible non-expanding finite orbits.

Example 9.2. Let g be a parabolic element of Γ, and let h P Γ be a conjugate of g with
a distinct invariant fibration. Denote by TorNpgq the finite set of fibers of the g-invariant
fibration in which g is a periodic translation of period ď N . Then, the set of finite orbits
of Γ of length ď N is algebraically computable since it is contained in

TorNpgq X TorNphq “ tx P X ; gNpxq “ hNpxq “ xu. (9.1)

A typical application of Theorem 9.1 is to the Wehler family. Recall from § 1.1 that
W0 is the family of Wehler surfaces which are smooth and do not contain any fiber
of the three natural projections pP1q3 Ñ pP1q2. Under these assumptions the group Γ
generated by the three basic involutions σ1, σ2 and σ3 is non-elementary and has no
invariant curve (see [22, Prop. 2.2]). It turns out that in this case NpX,Γq is constant
on a Zariski dense open subset (see Proposition 9.7 below). This leads to the following
theorem, which will be proved in Section 9.1.3:

Theorem 9.3. There is a dense Zariski open subset of W0 (resp. of the family W0pRq

of real Wehler surfaces), in which the action of Γ “ xσ1, σ2, σ3y is uniformly expanding
on X .
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9.1.1. Preliminaries on Halphen twists. Let us resume the discussion from § 6.1 and
add a few preliminaries on Betti foliations and the non-twisting locus. Let h be a
Halphen twist with associated fibration π : X Ñ B. Consider a simply connected open
subset U of B˝ together with a section σ : U Ñ X of π and a continuous frame for the
homology of the fibers above U . For w P U , one can identify the fiber Xw to C{Latpwq

(σpwq corresponding to the zero of C{Latpwq), as in § 6.1. Then, above U , there is a
unique real-analytic diffeomorphism Ψ : π´1pUq Ñ U ˆ R2{Z2 such that

(a) π ˝ Ψ “ Ψ ˝ πU , where πU is the projection onto U ;
(b) Ψ maps σ to the zero section w ÞÑ pw, p0, 0qq of πU , and maps the basis of

H1pXw;Zq to the standard basis of H1pR
2{Z2;Zq “ Z2;

(c) on each fiber, Ψ is a real analytic isomorphism of real Lie group.
Above U , the Betti foliation is the foliation by submanifolds of the form Ψ´1pU ˆ

tpx, yquq; these leaves are local holomorphic sections of π, with σ corresponding to
Ψ´1pU ˆ tp0, 0quq. Conjugating by Ψ, we get

Ψ ˝ h ˝ Ψ´1 : pw, px, yqq ÞÑ pw, px, yq ` T pwqq, (9.2)

where T : U Ñ R2{Z2 is real analytic. By [20, Lem. 3.9], the map T is an (orientation
preserving) branched covering, so it behaves topologically like w ÞÑ wk. In U , the
non-twisting locus NTh is the set tw P U ; DwT “ 0u; equivalently, NTh X U “

πptt1, . . . , tquq, where tt1, . . . , tqu is the set of tangencies between the Betti foliation
and the section h ˝ σ. These definitions do not depend on the above choices and NTh

can indeed be defined globally on B˝. A key fact is that NTh is a finite subset of B˝

(see [20, Prop. 3.14] or [28, Cor. 7.7.10]). We denote by |NTh| its cardinality, and
by multpNThq its cardinality counted with multiplicity, that is, taking into account the
degree of the local branched covering T .

Note that, once h and π are given, the set NTh Ă B˝ is analytically computable: one
has to compute the periods of Xw to get Latpwq, then Ψ is R-linear from C{Latpwq to
R2{Z2, and T is then obtain from h by conjugacy.

9.1.2. Proof of Theorem 9.1. As in [20], for pg, hq P HalpΓq2 we set

STangpπg, πhq “ Singpπgq Y Singpπhq Y Tangttpπg, πhq, (9.3)

where Singpπgq is the union of all singular and multiple fibers, and Tangttpπg, πhq is the
part of the tangency locus of πg and πh which is not contained in Singpπgq Y Singpπhq.
Put NTX

g “ π´1
g pNTgq (so that NTX

g is a curve in X) and likewise NTX
h “ π´1

h pNThq.

Lemma 9.4. Let g, h be a pair of Halphen twists in Γ with distinct invariant fibrations,
and let x P X be a point with a finite Γ-orbit. If this orbit is not uniformly expanding,
then it is contained in STangpπg, πhq Y NTX

g Y NTX
h .

Proof. We argue by contraposition: replacing x by another point in its orbit if necessary,
we assume that x R STangpπg, πhq Y NTX

g Y NTX
h , and we want to show that its orbit

is uniformly expanding. Since Γpxq is finite, there are positive integers k and ℓ such
that gk and hℓ are in StabΓpxq. By definition of the non-twisting locus, gk and hℓ
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induce parabolic homographies on PpTxXq; and since x R Tangttpπg, πhq, the fixed
points of these homographies are distinct; thus, the action of xgk, hℓy on PpTxXq is
non-elementary. By Proposition 8.12 and Lemma 8.13, the orbit of x is uniformly
expanding. □

The intersection number of NTX
g Y STangpπg, πhq (resp. NTX

h Y STangpπg, πhq)
with a smooth fiber Xh

w (resp. Xg
w) does not depend on the fiber. Let n0pg, hq be the

maximum of these intersection numbers:

n0 “ maxt rNTX
g Y STangpπg, πhqs ¨ rXh

ws ; rNTX
h Y STangpπg, πhs ¨ rXg

wsqu. (9.4)

The set STangpπg, πhq can be computed algebraically, thus

n0pg, hq ď Apg, hqmaxp|NTg| ; |NTh|q ` Bpg, hq (9.5)

where Apg, hq and Bpg, hq can be computed algebraically (by computing the tangency
loci and intersection numbers). Then, we set

npg, hq “ n0pg, hq! (9.6)

Lemma 9.5. Let g, h be a pair of Halphen twists in Γ with distinct invariant fibrations.
Let x P X be such that Γpxq is finite and not uniformly expanding. Then Γpxq is
contained in

STangpπg, πhq Y pNTX
g X NTX

h q Y pNTX
g X NTX

hngh´nq Y pNTX
h X NTX

gnhg´nq,

where n “ npg, hq is defined by (9.6).

Proof. The statement of the lemma concerns the orbit Γpxq, but we only have to prove
it for x itself. If x P STangpπg, πhq Y pNTX

g X NTX
h q we are done. Otherwise by

Lemma 9.4, x belongs to NTX
g zNTX

h or NTX
h zNTX

g . Assume that x P NTX
g zNTX

h .
The h-orbit of x is finite and by Lemma 9.4 again, for every q, hqpxq is contained in
Xh

x X pNTX
g YSTangpπg, πhqq (here we abuse notation and write Xh

x for Xh
πhpxq

). Thus,
hnpxq “ x, where n “ npg, hq. Set f “ hngh´n. The fiber Xf

x associated to f
through x is hnpXg

xq, and since x R NTX
h , Xf

x is transverse to Xg
x at x, as well as to

Xh
x . Moreover, x belongs to NTX

f , because x belongs to NTX
g and hnpxq “ x. Hence

x P NTX
g X NTX

hngh´n . Doing the same in the case where x P NTX
h zNTX

g completes
the proof. □

The set NTg is analytically computable (by § 9.1.1), and Critpπgq is algebraically
computable. Similarly, if h is in HalpΓq, Tangttpπg, πhq X NTX

f is analytically com-
putable. The previous lemma shows that all non uniformly expanding finite orbits are
contained in

Badpg, hq :“ STangpπg, πhqYpNTX
g XNTX

h qYpNTX
g XNTX

hngh´nqYpNTX
h XNTX

gnhg´nq

for every pair pg, hq P HalpΓq2 with distinct invariant fibrations, where n “ npg, hq as
in Equation (9.6). Intersecting these sets for various choices of pg, hq, we expect to get a
finite analytically computable set. Observe that Badpg, hq is the union of STangpπg, πhq
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and a finite set, because NTX
g X NTX

h is finite when πg and πh are distinct. So, what
remains to do is to exhibit an explicit finite set of pairs pg, hq such that the intersection of
the STangpπg, πhq is finite. We first treat the case of Wehler surfaces, which is sufficient
to proceed with Theorem 9.3.
Conclusion of the proof of Theorem 9.1 in the Wehler case. Fix a Wehler surfaceX P W0

and consider the three pairs pg1, g2q, pg2, g3q, pg3, g1q, where g1 “ σ2 ˝ σ3, g2 “ σ3 ˝ σ1
and g3 “ σ1 ˝ σ2. Note that the gi-invariant fibration is the i-th projection πi.

Assume that the intersection of the divisors STangpπi, πjq contains an irreducible
curve D Ă X . If D is contained in Singpπiq X Singpπjq with i ‰ j, then pπi, πjq
maps D onto a point and this contradicts the fact that X P W0. If D is contained
in, say, Tangttpπ1, π2q and Tangttpπ2, π3q, the three fibrations are pairwise tangent
along D, and we obtain a contradiction because there is no tangent vector v ‰ 0 to
pP1q3 which is mapped to 0 by each Dπi. The last possibility is that D is contained
in, say, Tangttpπ1, π2q and Singpπ3q. In this case, there is a point p on D at which
Dpπ3 : TpX Ñ Tπ3ppqP1 is equal to 0, and at such a point, the same contradiction ap-
plies. This shows that

F pg1, g2, g3q :“ Badpg1, g2q X Badpg2, g3q X Badpg3, g1q (9.7)

is finite, with an analytically computable cardinality, and the proof is complete. □

Remark 9.6. The above proof provides a computation of the integerNpX,Γq involving:
(1) algebraic quantities that are constant on W0, like STangpπi, πjq ¨STangpπj, πkq,
(2) |NTgi | for i “ 1, 2, 3.

Therefore, if |NTgi | ď B, then NpX,Γq ď NpBq for some NpBq depending only on B.
Indeed, the number n in Lemma 9.5 depends only on n0 (see Equations (9.6)) and

by Equation (9.4)) n0 is bounded by a function of B. Then, because the norm of
pgn0

i q˚ : NSpXq Ñ NSpXq is bounded by Cn2
0 for some uniform constant C, we ob-

tain NTX
gi

X NTX
gnj gig

´n
j

ď C 1n2
0B

2 for some constant C 1 and the result follows. □

Conclusion of the proof of Theorem 9.1 in the general case. By assumption, Γ is non-
elementary and has no invariant curve. Let Γ˚ be its image in GLpNSpX;Zqq.

If g is the parabolic element given in assumption (iii) of the theorem, up to sign,
there is a unique integral primitive class cpgq P NSpXq such that g›cpgq “ cpgq and
cpgq ¨ cpgq “ 0. By the assumptions (ii) and (iii), this class can be computed explicitly.
An element f of AutpXq preserves the g-invariant fibration π (permuting its fibers) if
and only if it fixes cpgq. Since Γ is non-elementary, it is not contained in the stabilizer
of cpgq. Thus, according to Proposition 3.2 of [33], there is a computable integerN , and
a composition f of length N in the generators s P S that does not preserve cpgq. Then,
h :“ f ˝ g ˝ f´1 is a parabolic element of Γ with invariant fibration π ˝ f ‰ π.

Since g and its invariant fibration π, as well as f , are explicit, we can compute the
degree of the subvariety STangpπg, πhq (for the embedding X Ă PmpCq given by as-
sumption (i)). Denote by pCiqiPI the irreducible components of STangpπg, πhq; we have
|I| ď degpSTangpπg, πhqq.
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Suppose that for eachCi, one can exhibit some fi P Γ for which fipCiq Ć STangpπg, πhq.
Then the set of pairs

tpg, hqu Y
␣

pfigf
´1
i , fihf

´1
i q ; i P I

(

(9.8)

satisfies |
Ş

i STangpπgi , πhi
q| ă `8, and we are done because the cardinality of this

finite set is algebraically computable. So, we now fix such an irreducible component Ci,
and we construct such an fi.

First, assume thatCi is an irreducible component of Tangttpπg, πhq. ThenCi is gener-
ically transverse to π, hence degpgnpCiqq tends to infinity. We can thus set fi “ gni for
some large enough ni (explicitely computable from the action on NSpXq).

The second case is when Ci is an irreducible component of Singpπgq Y Singpπhq; in
particular, its self-intersection C2

i is ď 0. By [22, Thm D], there exists a loxodromic
element f0 P Γ without invariant curve; in particular f |I|!

0 pCiq ‰ Ci. Since f0 is loxo-
dromic, this inequation is equivalent to pf

|I|!
0 q›rCis ‰ rCis. Indeed, either C2

i “ 0 and
we readily get a contradiction since a loxodromic element does not fix any non-zero
isotropic class, or C2

i ă 0 and this follows from f
|I|!
0 pCiq ‰ Ci since rCis determines Ci

when the self-intersection is negative. Thus, if we set

Wi :“
␣

f P GLpNSpX,Rqq : f |I|!
› rCis “ rCis

(

, (9.9)

we see that Γ˚ is not contained inWi. Proposition 3.2 of [33] then provides a computable
element f P Γ such that f R Wi. Now, if f qpCiq were contained in STangpπg, πhq for
0 ď q ď |I|, we would find two integers q1 ă q2 ď |I| such that f q2´q1pCiq “ Ci; in
particular, f |I|!pCiq would be equal to Ci, a contradiction. Thus, there is an iterate fi :“
f qi , with qi ď |I|, such that fipCiq Ć STangpπg, πhq, and the proof is complete. □

9.1.3. Proof of Theorem 9.3. Recall that, for Wehler surfaces, Γ “ xσ1, σ2, σ3y.

Proposition 9.7. There exists an analytically computable integer N such that for any
Wehler surface X P W0, any finite Γ-orbit of length ą N is non-elementary (hence
uniformly expanding by Theorem 8.14).

This uniform bound is the main step towards Theorem 9.3. In view of Remark 9.6,
this proposition follows from Theorem 9.1 and the following uniformity result.

Proposition 9.8. For any g P tg1, g2, g3u, the cardinality of NTg is uniformly bounded
in W0.

Let X Ă W0 ˆ pP1 ˆ P1 ˆ P1q be the universal family of Wehler surfaces, as in [22,
§2]. As X varies in W0, the automorphisms gi and their invariant fibrations πi depend
on X , but for notational simplicity we drop the dependence in X .

From now on, we fix g P tg1, g2, g3u; its invariant fibration π : X Ñ P1 is the restric-
tion of one of the projections πi to X; its base does not depend on X .

Lemma 9.9. Let X0 P W0, w0 P NTg, and k be the multiplicity of w0 in NTg. Let
U Ă P1 be a topological disk such that U X NTg “ tw0u and U X Critpπq “ H.



HYPERBOLICITY FOR AUTOMORPHISM GROUPS OF SURFACES 47

Then, there exists a neighborhood V of X0 in W0 such that for any X in V , the total
multiplicity of NTg in U is equal to k.

Proof. Fix an open connected neighborhood V of X0 such that for X in V ,

– U does not intersect any of the sets Critpπq;
– there is a section w ÞÑ ςXpwq of X Ñ W0 ˆ P1 above V ˆ U , together with a

continuous choice of basis for the homology of the fibers of π above U .

Then the sections, the Betti foliations (above U ), and their lifts to U ˆ C all depend
continuously on X in V . In particular, we can find a disk U 1 Ă P1, with w0 P U 1 Ť U ,
whose boundary is a smooth Jordan curve γ, and such that for any X P V , the Betti
foliation is transverse to g ˝ ςX above γ. In particular, NTg is disjoint from γ.

Now, recall that the map T defined in Equation (9.2) behaves topologically like
w ÞÑ wk`1; in such a local coordinate, k ` 1 is the winding number of the curve T ˝ γ
around T p0q. Since NTg stays disjoint from γ for X in V , this winding number is con-
stant in V ; thus, the number of points of NTg enclosed by γ (counted with multiplicity)
stays constant on V . The lemma follows. □

Lemma 9.10. There exists a proper semi-algebraic subvariety Zg Ă W0 of positive
codimension such that multpNTgq is locally constant in W0zZg.

Proof.
Step 1: Keeping away from the singular fibers. Fix X0 P W0 and w0 P P1 a critical
value of π. It is shown in [20, Lem. 3.11] that NTg does not accumulate w0. Here, we
show that outside a semi-algebraic subvariety Zg Ă W0 this non-accumulation holds
uniformly with respect to X: we shall construct a neighborhood V ˆ U of pX0, w0q

such that U is disjoint from NTg for every X in V . For this, we review the proof of [20,
Lem. 3.11] and make it locally uniform in X under appropriate hypotheses on X0.

Define W1 to be the dense, Zariski open subset (8) of W1 such that for any X P W1

and any i P t1, 2, 3u, all singular fibers of πi are of type I1. In this case there are 24
such fibers (the Euler characteristic of a K3 surface is 24, the contribution to the Euler
characteristic of a smooth fiber is 0, and the contribution of an I1 fiber is 1). Suppose
that X0 P W1.

Fix a small disk U Ă P1 centered at w0 and containing no other singular value of
π : X0 Ñ P1. Fix a neighborhood V of X0 in W1, and local coordinates on U (depend-
ing on X), so that (i) this property persists for X P V and (ii) the unique singular value

8To show that W1 is dense, we only have to show that it is non-empty. This is a consequence of the
following fact. Let X be in W0, let π1 : X Ñ P1 be the first projection, and let m be a critical point of
π1. Let F be the fiber of π1 containing m. Then, each of the conditions

(1) the singularity of F at m is degenerate (in the sense of Morse, i.e. it is not a A1-singularity);
(2) F contains a second singular point m1

defines a proper subset of W0. In other words, these properties (1) and (2) disappear after a generic small
perturbation of X in W0, which can be checked directly.
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of π in U is w0 “ 0. Let X#
U be the complement in Xg

U :“ π´1pUq of the unique singu-
lar point of Xg

w0
. We fix a reference section ςX : U Ñ X#

U depending holomorphically
on X P V and w P U .

For X P V and w P Uztw0u we can write Xg
w » C{Z ‘ ZτXpwq, as in § 6.1.

Since the singular fiber Xg
w0

is of type I1 and w0 “ 0, the monodromy along a sim-
ple loop around 0 maps the basis p1, τXpwqq to p1, τXpwq ` 1q. Moreover, X#

U is bi-
holomorphic to the quotient of U ˆ C by the family of lattices Z ‘ ZτXpwq, where
τXpwq “ 1

2iπ
logpkXpwqq for a function kX : U Ñ C which has a single zero at the ori-

gin and depends holomorphically on X P V and w P U . Since g ˝ ςX is another section
of π above U , there is a holomorphic function tXpwq of X and w such that the lift of g
to U ˆC is given by pw, zq ÞÑ pw, z` tXpwqq. The calculations of [20] (see §3.3.2 and
Lemma 3.11 there) show that the equation for NTg in U is

´i logp|kXpwq|qkXpwq t1Xpwq “ k1
XpwqImptXpwqq. (9.10)

We claim that if ImptXp0qq ‰ 0, then by reducing V andU if necessary, NTgXXg
U “ H.

Indeed if U is small enough, there exist positive constants ε, c such that for any X P V ,

|kXpwq| ď ε, |k1
Xpwq| ě c, |ImptXpwqq| ě c, and |t1Xpwq| ď c´1. (9.11)

Reducing U further, ε can be chosen arbitrary small while c remains bounded away
from 0. If ε log ε ă c3, this is not compatible with the equality (9.10), so NTg XU “ H.

Lemma 9.11. The locus
tX P V : ImptXpw0qq “ 0u (9.12)

is a semi-algebraic subset of positive codimension.

Proof of Lemma 9.11. Consider the Wehler surfaces X Ă V Ă W1, and their equations

A222x
2y2z2 ` A221x

2y2z ` ¨ ¨ ¨ ` A100x ` A010y ` A001z ` A000 “ 0. (9.13)

Permuting coordinates if necessary, we suppose that π : X Ñ P1 is the projection onto
the first coordinate. As X varies near X0, the critical value of π near w0 and the corre-
sponding critical point in X can be computed algebraically in terms of the Aijk. Using
the action of PGLp2,Cq3 on P1 ˆ P1 ˆ P1, we may assume that w0 “ 0 (as above) and
the unique singular point of the fiber Xg

w0
:“ X X tx “ 0u is p0, 0q. So, the equation of

Xg
w0

in P1 ˆ P1 is

ay2z2 ` by2z ` cyz2 ` dyz ` ey2 ` fz2 “ 0, (9.14)

for some coefficients a, . . . , f given by algebraic expressions in theAijk. SinceX P W1,
Xg

w0
has two transverse branches at p0, 0q: their tangent directions are given by the

solutions of dyz ` ey2 ` fz2 “ 0 in P1.
One can also write Xg

0zt0, 0u as the quotient of t0u ˆC by the lattice Latp0q “ Z; in
this coordinate, g acts as multiplication by expp2iπtXp0qq. Thus, ImptXp0qq “ 0 means
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that g induces a rotation, instead of a loxodromic homography, on the rational curveXg
0 .

Writing down g “ σy ˝ σz in coordinates, we obtain

gpy, zq “

˜

´1 ´ d2

ef
d
e

´ d
f

´1

¸

ˆ

y
z

˙

` O
`

}py, zq}
2
˘

(9.15)

for py, zq P Xg
0 . Thus, Dp0,0qg P GLpT0,0Xq has determinant 1 and trace ´2 ´ d2

ef
. As

a consequence, g acts as a rotation on Xg
0 if and only if 2 ` d2

ef
P r´2, 2s: this is a

semi-algebraic condition. □

To conclude, we let Wg Ă W0 be the intersection of W1 with the complement of the
subsets defined by

tX P W1; ImptXpwiq “ 0u (9.16)
for each of the 24 singular values wi of π. We finally define Zg to be the complement
of Wg; by Lemma 9.11, it is a proper semi-algebraic set of positive codimension.
Step 2: Conclusion. PickX0 P W0zZg and cover P1 by a finite family F of topological
disks, such that for every U P F , U contains at most one point of Critpπq Y NTg. If
U P F contains a critical value of π (and no point of NTg), then, as already explained,
this property persists in a neighborhood of X0. By Step 1, for X sufficiently close to
X0, U is disjoint from NTg as well. For the remaining disks, the local constancy of
multpNTgq follows from Lemma 9.9. The proof is complete. □

Proof of Proposition 9.8. We use a semi-continuity argument. Since the exceptional set
Zg defined in Lemma 9.10 is semi-algebraic, the open set W0zZg is also semi-algebraic,
so it admits finitely many connected components (see [7, Cor. 2.7] for instance). Thus,
by Lemma 9.10, multpNTgq and therefore |NTg| are uniformly bounded on W0zZg,
say |NTg| ď B. Now, pick X0 P Zg (thus X0 P W0) and assume that for X0 one has
|NTg| ą B. We can then consider a finite number of small topological disks Ui with
disjoint closures in P1, such that |NTg| X

Ť

Ui ą B. By Lemma 9.9, these non-twisting
points persist for X close enough to X0. Since W0zZg is dense in W0, this contradicts
the definition of B and the proof is complete. □

Proof of Theorem 9.3. The main point of [22, Thm A] is that the set of X P W0 pos-
sessing a finite orbit of length ď B is a proper Zariski closed subset ZB of W0. ForN as
in Proposition 9.7, for any X P W0zZN , all finite orbits of Γ are uniformly expanding.
We conclude by applying Theorem 1.6 (with ν “ 1

3
pδσ1 ` δσ2 ` δσ3q). The proof of the

corresponding statement in W0pRq is identical. □

Remark 9.12. We expect that an analogue of Theorem 9.3 holds for other families with
large automorphism groups containing parabolic elements, like Enriques surfaces, or
the family associated to pentagon folding (see [18]).

Remark 9.13. The proof of Proposition 9.8 suggests that there should exist a notion of
multiplicity, including singular fibers, for which multpNTgq would be constant on W0
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and would be an algebraically computable invariant of the parabolic automorphism g.
A variant of this question is mentioned in [28, Rmk 7.7.4].

9.2. Thin subgroups. In this section we consider the total space W of all Wehler sur-
faces and the universal family X Ă W ˆ pP1 ˆ P1 ˆ P1q. We change a little bit the
notation: Γ will be a subgroup of Z{2Z˚Z{2Z˚Z{2Z, and ΓX will be the corresponding
subgroup of AutpXq.

Let E be an elliptic curve. Consider the following classical Kummer construction
(see [22, §4]): let η be the involution ηpx, yq ÞÑ p´x,´yq onA :“ EˆE; the associated
Kummer surface is the desingularization {E ˆ E{η; the natural GLp2,Zq action onEˆE

descends to E ˆ E{η and induces a non-elementary automorphism group of {E ˆ E{η.
The surface E ˆ E{η can be realized as a singular Wehler example (see [16, §8.2]);
in addition the action of Z{2Z ˚ Z{2Z ˚ Z{2Z is induced by a finite index subgroup
of GLp2,Zq. Let us briefly recall the construction: write E in Weierstrass form y2 “

4x3 ´ g2x ´ g3, with the neutral element of the group law on E located at infinity. To
pm1,m2q P E ˆ E, mi “ pxi, yiq, we associate m3 “ ´pm1 ` m2q and ϕpm1,m2q “

px1, x2, x3q, where m3 “ px3, y3q. Then, ϕ is η-invariant and determines a biregular
map ϕ : EˆE{η Ñ XE onto a singular Wehler surface XE with 16 nodal singularities.

Assume that Γ Ă Z{2Z ˚ Z{2Z ˚ Z{2Z is not virtually cyclic. Then for X P W0, ΓX

is non-elementary (see [21, §3]).

Theorem 9.14. Let Γ be a subgroup of Z{2Z˚Z{2Z˚Z{2Z which is not virtually cyclic.
For X P W0 sufficiently close to XE , the subgroup ΓX is uniformly expanding on X .

Thus for every “abstract” non-elementary subgroup Γ of Z{2Z˚Z{2Z˚Z{2Z, the open
subset WexppΓq of those X P W0 for which the action of ΓX is uniformly expanding
is non-empty. The group Γ can be arbitrarily thin, in particular it is not assumed to
contain parabolic elements. In view of Theorem 8.9, it is natural to expect that WexppΓq

is actually dense in the Euclidean topology.

Proof. The difficulty is that we cannot directly argue that uniform expansion is an open
property, because XE is singular.

Lemma 9.15. Fix f P Z{2Z ˚ Z{2Z ˚ Z{2Z, and denote also by f the induced fibered
map on the universal family of p2, 2, 2q-surfaces in pP1q3. Then f is regular on a neigh-
borhood of XE .

Proof of Lemma 9.15. Pick a p2, 2, 2q surface X . If X does not contain any fiber of the
projection π12 “ pπ1, π2q : pP1q3 Ñ pP1q2, then the same property holds in a neigh-
borhood V of X in the universal family of p2, 2, 2q-surfaces; furthermore, σ3 deter-
mines an automorphism(9) of V . Thus, we only have to prove that XE does not contain

9Indeed, denote by V0 the projection of V in the space of Wehler surfaces W0 (see § 1.1), and let
o P W0 be the image of X . For v P V0, let Xv Ă V be the corresponding Wehler surface. Pick a
point px, y, zq P X , say in an affine chart of pP1q3 where none of the coordinates is 8. In other words,
z “ rz0 : z1s P P1 with z1 ‰ 0 and z “ z0{z1, and similarly for x and y. For simplicity, we use
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any fiber of the projections πij . Let us show that XE does not contain any vertical
line tx “ x0, y “ y0u. Such a line would provide a family of points pm1,m2q on
E ˆ E with fixed first coordinates x1 “ x0, x2 “ y0, for which the first coordinate
of m3 :“ ´pm1 ` m2q takes arbitrary values. This is impossible. The same argu-
ment applies to the lines ty “ y0, z “ z0u and tz “ z0, x “ x0u because the relation
m1 ` m2 ` m3 “ 0 is symmetric (equivalently, the equation of XE given in [16, §8.2]
is symmetric in px, y, zq). □

There is a finite index subgroup of Γ that fixes each singularity of XE . By Proposi-
tion 3.3 and the fact that uniform expansion does not depend on the measure, we can
replace Γ with this finite index subgroup, endow Γ with a finitely supported, symmetric
measure ν with Γ “ Γν , and then we have to prove that pΓX , νXq is uniformly expanding
for X P W0 near XE; here, νX is the measure induced by ν on ΓX .

Endow P1 ˆ P1 ˆ P1 with the Fubini study metric, and the Wehler surfaces X with
the induced metric. Recall that T 1X denotes the unit tangent bundle.

Assume, by way of contradiction, that there is a sequenceXn Ñ XE along which νXn

is not uniformly expanding. For each n, letϖ denote the natural projection T 1Xn Ñ Xn

(resp. T 1XE Ñ XE). Denote by T 1XE the subset of T 1pP1 ˆP1 ˆP1q which coincides
with T 1RegpXEq above the regular part of XE and coincides with T 1

x pP1 ˆ P1 ˆ P1q

above each singularity x P SingpXEq. With this definition it is obvious that if xk is any
sequence such that xk P

Ť

XnYXE and xn Ñ x P XE then we have the semicontinuity
lim supT 1

xn
Xn Ă T 1XE . Theorem 5.1 provides a sequence of stationary measures µ̂Xn

on T 1Xn (with projections µXn :“ ϖ˚µ̂Xn) such that
ż

log }f›u}dνXnpfq dµ̂Xnpuq ď 0. (9.17)

From Lemma 9.15, we can extract a subsequence, still denoted by pXnq, such that
pµ̂tnq converges to a stationary measure µ̂XE

on T 1XE satisfying
ż

log }f›u}dνXE
pfq dµ̂XE

puq ď 0. (9.18)

By iterating and using the stationarity of µ̂XE
, the same inequality holds with ν

pmq

XE

instead of νXE
for every m ą 0. To get the desired contradiction, we shall show that no

such measure exists.

affine coordinates x, y for the first two coordinates and homogeneous coordinates rz0 : z1s for the third
one. The equation for Xv Ă V can be written Avpx,yqz20 ` Bvpx,yqz0z1 ` Cvpx,yqz21 “ 0 and then
σ3px,y, rz0 : z1sq “ px,y, r´Bvpx,yqz1 ´ Avpx,yqz0 : Avpx,yqz1sq. We have to show that this map
is regular near px, y, zq. Since we work near a point at which z1 ‰ 0, the only problem could be that,
at some point px1, y1, rz1

0 : z1
1sq of some Xv , we have both Avpx1, y1q “ 0 and Bvpx1, y1q “ 0, but then

Cpx1, y1q should be 0 too, and Xv should contain a vertical line.
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Step 1: near the singularities.– Here we show that there exists n0 P N, c0 ą 0, and an
open neighborhood U of SingpXEq such that if u P T 1XE and ϖpuq P U , then

ż

log }f›u} dν
pn0q

XE
pfq ě c0. (9.19)

By Lemma 9.15 and the above mentioned semicontinuity of unit tangent bundles it is
enough to prove this when x “ ϖpuq P SingpXEq. Recall that ΓXE

fixes SingpXEq

pointwise. Around each of its singularities, XE is locally isomorphic to the quotient
C2{η, ηpu, vq “ p´u,´vq, standardly embedded in C3 by

ϕ : pu, vq ÞÑ pu2, uv, v2q “ pξ, η, ζq, (9.20)

whose image is the quadratic cone tξζ ´ η2 “ 0u Ă C3. The level-2 congruence
subgroup G of GL2pZq fixes each torsion point of A :“ E ˆE of order ď 2, and ΓXE

is
induced by a non-elementary subgroup G0 of G. The standard linear action of G on C2

(or more precisely on a neighborhood of any 2-torsion point of A) commutes to η and
induces a linear action on C3 via the homomorphism

ϕ› :

ˆ

a b
c d

˙

ÞÝÑ

¨

˝

a2 2ab b2

ac ad ` bc bc
c2 2cd d2

˛

‚. (9.21)

Thus, the action of ΓXE
on the tangent cone of XE at the origin (which is naturally

identified with tξζ ´ η2 “ 0u) is, up to a linear conjugacy, given by ϕ›pG0q. Since this
cone is Zariski-dense in TxXE “ TxppP1q3q and the action of Γ on the universal family
of p2, 2, 2q surfaces is smooth at pXE, xq, we deduce that the action of Γ on T 1

xXE is
also induced by ϕ›pG0q.

This is a subgroup of Opq;Rq » O2,1pRq, where q is the quadratic form qpx, y, zq “

xz ´ y2. By assumption, it is a non-elementary group of isometries of q, hence it
acts strongly irreducibly and proximally on R3 Ă C3 (loxodromic elements of GL2pZq

are mapped to loxodromic elements in Opq;Rq). It preserves the real decomposition
C3 “ R3 ‘R iR3 and the action on R3 and iR3 are linearly conjugate (by multiplication
by i). Therefore, as in § 8.2, the Inequality (9.19) follows from [36] (see also [10], Chap.
III, Cor. 3.4(iii)).
Step 2: away from the singularities.– We shall show that there exists a neighborhood
U 1 Ă U of SingpXEq and c ą 0 such that for any fixed u P T 1XE such that ϖpuq R U 1,

P
ˆ

1

m
log }pfm

ω q›u} ě c

˙

ÝÑ
mÑ8

1. (9.22)

By Lemma 2.3 (see also Remark 2.4), this implies that E plog }pfm
ω q›u}q ě mc{2 for

large m. Then, the first step and a compactness argument identical to that of Lemma 2.2
show that uniform expansion holds on T 1XE , which is the desired contradiction.

Let U 1 be an open neighborhood of SingpXEq which will be specified later. There is
a constant δ “ δpU 1q such that

if ϖpuq R U 1 and ϖpf›uq R U 1, then log }f›u} ě log }f›u}flat ´ δ, (9.23)
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where }¨}flat is the Riemannian metric on RegpXEq induced by the flat metric of EˆE.
The pull-back of ν to GLp2,Zq generates G0 and its support is finite. Since G0 Ă

GLp2,Zq is non-elementary, we have uniform expansion with respect to the flat metric.
By Lemma 2.3, there exists a constant c1 ą 0 and sets of trajectories Ω1

m Ă Ω such that
PpΩ1

mq Ñ 1 as m Ñ 8 and

if ω P Ω1
m,

1

m
log }pfm

ω q›u}flat ě c1. (9.24)

Fix ε ą 0 and 0 ă c ă c1. We claim that there is a Margulis function on XE with poles
at SingpXEq. Indeed, to construct it we view XE as E ˆ E{η. Let π : E ˆ E Ñ E ˆ

E{η » XE be the natural map. On E ˆE, π´1pSingpXEqq “ Fixpηq is invariant under
the GL2pZq-action, which is uniformly expanding, so u : x ÞÑ ´ log dflatpx,Fixpηqq

defines a Margulis function. Since η is an isometry for the flat metric, u is η-invariant so
it descends to a Margulis function on XE , as asserted. We deduce that there is an open
set U 1 “ U 1pεq Ă U with the following property: for large enough m, the set Ω2

m of
trajectories ω P Ω such that pfm

ω qpϖpuqq R U 1 satisfies PpΩ2
mq ě 1´ε{2. Now, U 1 being

fixed, for m large enough we have that PpΩ1
m X Ω2

mq ě 1 ´ ε and by (9.23) and (9.24),
if ω P Ω1

m X Ω2
m,

1

m
log }pfm

ω q›u} ě c1 ´
δpU 1q

m
ě c. (9.25)

Thus, the convergence (9.22) holds and the proof is complete. □

10. APPLICATIONS

10.1. Orbit closures. The following is a version of the orbit closure Theorem E of [20]
in which periodic orbits are allowed. Combined with Theorem 9.3, it gives Theorem 1.1.

Theorem 10.1. LetX be a torus, a K3 surface, or an Enriques surface. Let Γ Ă AutpXq

be a non-elementary subgroup which contains parabolic elements and does not preserve
any algebraic curve. Assume that for any finite orbitO, the induced action of Γ on TX|O
is non-elementary. Then there exists a finite set F and a real analytic, totally real, and
Γ-invariant surface Y Ă X with SingpY q Ă F such that for every x P X:
(a) either x belongs to F (and its orbit is finite);
(b) or x belongs to Y zF and Γpxq is a union of components of Y ;
(c) or Γpxq “ X .

Proof. First observe that under these assumptions, [22, Thm C] implies that there exists
a maximal finite invariant subset F . Fix a symmetric measure ν such that Γν “ Γ
and satisfying the moment condition (M`). By Theorems 1.6 and 8.14, ν is uniformly
expanding. We now resume the discussion from [20, §8], in particular Remark 8.6
there: STangΓ is a finite invariant set and if x P X is such that Γpxq is infinite but not
dense, then there are two possible situations:

(1) either ΓpxqzSTangΓ is discrete outside STangΓ;
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(2) or ΓpxqzSTangΓ “: Y pxq is a totally real analytic surface, whose singular locus
SingpY q is discrete outside STangΓ.

In Case (1), Γpxq is finite. Indeed Γpxq is at most countable, so if µ is any cluster
value of 1

n

řn´1
k“0 ν

k ‹ δx, then µ is a purely atomic stationary measure. In this case it
follows from Theorem 4.3 that the orbit of x must be finite, hence contained in F .

If Case (2) holds, we first claim that SingpY pxqq is finite. Indeed, SingpY pxqq is a Γ-
invariant countable set, which clusters only at STangΓ. By the previous argument, every
orbit Γpyq in SingpY pxqq is finite, so by the finiteness of the set of finite orbits [22, Thm
C] we conclude that SingpY pxqq itself is finite.

Now, let µ1 be a cluster value of 1
n

řn´1
k“0 ν

k ‹ δx. By Theorem 4.3, µ1 is an atomless
stationary measure supported on Y pxq such that µ1pRegpY pxqqq “ 1. Since Γ has no
invariant curve, µ1 is Zariski diffuse. Let µ be any ergodic component of µ1. Theo-
rems 8.8 and 1.4 imply that µ is hyperbolic and its stable directions depend genuinely
on the itinerary. Then the argument of [13, Thm 3.1] adapts immediately to show that µ
is SRB(10). The canonical invariant 2-form of X induces a Γ-invariant measure volY pxq

on Y pxq (see Lemma 6.3). Since RegpY pxqq admits a Margulis function, we conclude
from Proposition 4.4 that the volume volY pxq is finite. Therefore we can copy verbatim
the argument of [13, Thm 3.4] to conclude that µ is Γ-invariant. Since [20, Thm C]
says that there are only finitely many Γ-invariant measures, there are only finitely many
possible surfaces Y pxq. Taking Y to be their union, the proof is complete. □

10.2. Ergodicity. In [26], the original motivation to introduce uniform expansion was
a criterion for ergodicity. The same holds in our setting, with a few caveats which will
be explained below.

Theorem 10.2 (Dolgopyat-Krikorian [26, Cor. 2], see also [45, 24]). Let X be a torus,
a K3 surface, or an Enriques surface. Let Γ Ă AutpXq be a non-elementary subgroup
with a uniformly expanding action on X . Then volX is Γ-ergodic.

Likewise, if Y Ă X is a Γ-invariant totally real analytic subset such that Γ acts
transitively on the set of irreducible components of Y , then volY is Γ-ergodic.

Note that the notion of irreducible component in real analytic geometry is not well-
behaved in general (see [20, §5.1] for a short discussion). Here we content ourselves
with saying that Y is irreducible when RegpY q is connected. Observe also that the
ergodicity of volX follows directly from Theorem 6.4 when Γ contains a parabolic ele-
ment.

10We are not claiming that we can extend [13] to non-compact surfaces here. All the necessary es-
timates on the Lyapunov norms and Pesin charts hold by viewing µ as a hyperbolic stationary measure
on the compact complex manifold X . The only issue appears when considering the size and intersection
properties of real stable and unstable manifolds in Y pxq, starting from §9.7 of [13]. At this stage Brown
and Rodriguez-Hertz already discard a set of small measure of points with bad properties (see the defini-
tion of Λpγ1q on p. 1087); so it is enough to remove from this Λpγ1q the set of small measure of points
too close to SingpY pxqq, and proceed with their argument.
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Proof (sketch). The proof in [26] is a bit sketchy, but it was already expanded in [45,
24] (see also [52]). Here we just make a few comments on (1) the extension to the
holomorphic case for the action onX , and (2) how to deal with the possible singularities
for the action on totally real surfaces Y .

Regarding the action on X , let us recall that the proof of [26] is a variation on the
Hopf argument in which the asymptotic behavior of the Birkhoff sums 1

n

řn´1
k“0 δfn

ω pxq

is propagated along chains of local stable manifolds (associated to different ω’s), to
ultimately conclude that there is a uniform r so that almost every point x is located
at distance at least r from the boundary of its ergodic component. The key technical
ingredients are the facts that under the uniform expansion assumption:

– stable directions at a given point do not concentrate, more precisely there exists
α ą 0 such that for any x P X and any rvs P PpTxXq, the probability that
dP1 prvs, rEspx, ωqsq ă α is smaller than 1/100: this follows from a compactness
argument (see [45, Prop. 4.4.4]);

– the Pesin local stable manifolds have uniformly bounded geometry (e.g. uni-
formly bounded size in the sense of [21, §7.4]): this follows from the usual
proof of the local stable manifold theorem;

– the absolute continuity of the local stable foliation in Pesin charts: we can copy
the usual proof or notice that in the holomorphic case this follows from the fact
that the holonomy of a holomorphic motion is quasiconformal.

Given these facts, we can copy the proof of [26] by plugging in §10.4 the following
elementary geometric property, whose proof is left to the reader: let w “ pw1, w2q P C2

with }w} ă 1 (possibly close to 1) and Ew be the direction perpendicular to the line
p0wq; then if L is a complex line containing w, such that the angle in P1 between the
direction of L and Ew is greater than α, then L X Bp0, 1q contains a disk of radius
r ě rpαq.

For the second statement of the theorem we can directly resort to [45, 24], except
that we have to take into account the possibility of singular points on Y , which affect
the size and geometry of local stable manifolds on Y . For this, we may argue exactly
as in Theorem 10.1: first, the existence of a Margulis function guarantees that volY is
finite. Next, since uniform expansion holds on X , the size and angle change of local
complex stable manifolds is uniformly controlled. Thus, when restricting to Y , we also
have a uniform control of this geometry outside any δ-neighborhood of SingpY q. Since
the Hopf argument is local, we get that there is a single ergodic component outside a
δ-neighborhood of SingpY q, for every δ ą 0, and we conclude by letting δ tend to
zero. □

Remark 10.3. The argument of [26] works for a random dynamical system on a (real)
compact 2d-dimensional manifold enjoying a uniform expansion property along d di-
mensional tangent subspaces. This assumption does not hold in our setting since along a
totally real subspace one may witness both expansion and contraction. In particular the
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complex uniform expansion condition is not stable under C1 perturbations by (real) vol-
ume preserving diffeomorphisms of X . Still, the philosophy of the above proof is that
the argument is robust enough so that uniform expansion along complex 1-dimensional
tangent subspaces in a 2-dimensional complex surface guarantees ergodicity.

10.3. Equidistribution. In the following results, given an action of pΓ, νq on M we
say that random trajectories from x equidistributes towards µ if 1

n

řn
k“1 δfk

ω
Ñ µ for

νN-almost every ω, where the convergence is in the weak› topology. By averaging
with respect to νN and applying the Dominated Convergence Theorem, this implies that
1
n

řn
k“1 ν

k ˚ δx Ñ µ as well.
The following theorem already appears under stronger moment assumptions in [24,

Thm D].

Theorem 10.4. LetXR be a smooth real projective surface and ν a probability measure
on AutpXRq satisfying (M`). Assume that Γν preserves a smooth volume form vol on
XpRq and that ν is uniformly expanding on XpRq. Then for any x P X one of the
following alternatives holds:
(a) either Γν ¨ x is finite;
(b) or the random trajectories from x equidistribute towards volX 1pRq, the normalized

induced volume on a union of components of XpRq.

Recall from Theorem 1.6 that the uniform expansion assumption holds when Γν con-
tains parabolic elements, has no invariant curve, and that the induced action of Γν on
finite orbits is uniformly expanding. In this case by [22, Thm C], the number of finite
orbits is finite. By Theorem 9.3 this applies to generic real Wehler surfaces and yields
Theorem 1.3.

Proof. Breiman’s ergodic theorem says that that for νN-almost every ω, any cluster
limit µ of the sequence of empirical averages 1

n

řn
k“1 δfk

ωpxq is stationary. Since ν is
uniformly expanding, the existence of a Margulis function (Theorem 4.3) shows that if
Γν ¨ x is infinite, µ gives no mass to finite orbits. Since ν is uniformly expanding, any
ergodic stationary measure µ1 is hyperbolic and its stable directions are non-random, so
by [13, Thm 3.4], µ1 is absolutely continuous with respect to volXpRq. The ergodicity
Theorem 10.2 shows that for any component X0pRq of XpRq, volX0pRq is ergodic, so
we conclude that, up to scaling, µ is a finite combination of measures of this type. □

The next result is conditional to the ν-stiffness property of complex non-elementary
uniformly expanding actions. We expect that it will be established in the near future.

Theorem 10.5. Let X be a K3 or Enriques surface and ν be a probability measure on
AutpXq satisfying (M`). Assume that
(1) Γν is non-elementary, contains parabolic elements, has no invariant curve, and

every finite Γ-orbit is uniformly expanding;
(2) ν-stiffness holds, that is, every ν-stationary measure is invariant;
(3) every compact, real analytic, totally invariant surface Y Ă X is smooth.
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Then there exists a finite set F and a (possibly singular) totally real analytic surface Y
such that for every x P X:
(a) either x belongs to F ;
(b) or x belongs to Y zF and its orbit equidistributes towards volY 1 , where Y 1 is a union

of components of Y ;
(c) or x R F Y Y and its orbit equidistributes towards volX .

The third hypothesis is a weakness of this statement, since we do not know how to
study the singularities of invariant real analytic surfaces (except, of course, when we
know how to exclude the existence of finite orbits).

Proof. The sets F and Y were already constructed in Theorem 10.1, whose proof also
implies property (b). The classification of invariant measures (Theorem 6.4) and the
stiffness property show that the only ν-stationary measure giving no mass to Y Y F
is volX . Therefore the equidistribution property (c) follows from Breiman’s ergodic
theorem and the existence of a Margulis function associated to finite orbits and totally
real surfaces (Theorems 4.1 and 4.5). □

APPENDIX A. RIGIDITY OF ZERO ENTROPY MEASURES

We complete the proof of Theorem 8.8 with the following result of independent in-
terest.

Theorem A.1. Let X be a torus or a K3 or Enriques surface, and ν be a probability
measure on AutpXq such that Γν is non-elementary. Assume that µ is a Zariski diffuse
ν-stationary measure such that hµpX, νq “ 0. Then µ is Γν-invariant and for every
f P Γν , hµpfq “ 0.

Proof. As in Theorem 8.8, we may assume that µ is ergodic as a stationary measure,
and its Γν-invariance was already established there. Pick f P Γν . Assume by way
of contradiction that hµpfq ą 0, in particular f must be loxodromic. If µ is ergodic
for f , then the result follows rather immediately from the measure rigidity theorem
11.1 in [21]. Indeed in that theorem we consider an ergodic measure µ of positive
entropy for f and study the group of automorphisms of X preserving µ, under the
additional assumption that µ is supported on a real surface. We reduce the argument to
the case of Γ “ xf, gy for some g, and divide the proof into 3 cases: (1) either there is
a Γ-invariant measurable line field, or (2) there is a Γ-invariant pair of measurable line
fields, or (3) none of the above. In cases (1) and (2) we conclude that Γ is elementary
by adapting the argument of [21, Thm. 9.1]: this does not rely on the additional real
structure. In case (3), since µ is hyperbolic for f , Theorems 7.2 and 7.3 imply that µ is
hyperbolic as a stationary measure and as in the proof of Theorem 8.8 we deduce that
hµpX, νq ą 0, which is contradictory. Thus, case (3) does not happen, and we deduce
that Γ is elementary for every g P Γν , which is a contradiction. Therefore hµpfq “ 0.

What remains to do is to adapt this argument to the case where µ is not ergodic under
f . So consider f P Γν and assume that hµpfq ą 0 so that f is loxodromic. As before
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there are 3 cases: either (1) there is a Γν-invariant measurable line field, or (2) there is
a Γν-invariant pair of measurable line fields, or (3) none of (1) and (2). We first observe
that as before Case 3 does not happen: indeed if there is no invariant line field or pair
of invariant line fields, by Theorems 7.2 and 7.3, either µ is hyperbolic as a ν-stationary
measure, or the projectivized tangent action of Γν reduces to a compact subgroup. But
since hµpfq ą 0, f admits non-zero Lyapunov exponents on a set of positive measure
so the latter is impossible. Hence µ is hyperbolic as a ν-stationary measure, and since
there is no invariant line field, stable directions depend on the itinerary and as before we
conclude that hµpX, νq ą 0, a contradiction. So one of Cases (1) or (2) holds.

So assume there exists a measurable Γν-invariant line field x ÞÑ rEpxqs P PpTxXq

and pick g P Γν . Assume further that g is loxodromic. We will derive a contradic-
tion by showing that xf, gy must be elementary: this is a contradiction because any
non-elementary subgroup of AutpXq contains a purely loxodromic non-elementary sub-
group. Let P be the measurable partition into ergodic components (under f ) and denote
by µP the conditional measure on P P P , so that that µ “

ş

µPpxqdµpxq is the ergodic
decomposition of µ. Since the entropy function is affine, there exists a f -invariant set
B of positive measure such that for any x P B, hµPpxq

pfq ą 0. In particular f is
non-uniformly hyperbolic along B, so along B, E must coincide almost everywhere
with one of Es

f or Eu
f . Reducing B to a smaller invariant subset we may assume that

E “ Es
f almost everywhere along B. For every n P Z, the automorphism g´nfgn is

loxodromic, preserves µ, is non-uniformly hyperbolic along g´npBq, and E coincides
with Es

g´nfgn almost everywhere. By measure preservation there exists m ‰ n such
that µpg´npBq X g´mpBqq ą 0, so µpB X gm´npBqq ą 0. Letting h “ gm´nfg´pm´nq

and A “ B X gm´npBq we are exactly in the situation of Lemma 11.2 of [21], and we
conclude that W spf, xq “ W sph, xq for µ-almost every x P A, from which it follows
that T`

f “ T`
h and finally pgm´nq˚T`

f “ cT`
f . Since g is loxodromic, this implies that

T`
f “ T`

g or T`
f “ T´

g , and finally that xf, gy is elementary, which is the sought-after
contradiction.

Finally, if there is a measurable pair tE1, E2u of line fields which is ν-a.s. invari-
ant, we get a f -invariant set B of positive measure along which tE1pxq, E2pxqu “
␣

Es
f pxq “ Eu

f pxq
(

, and a set A “ B X gm´npBq of positive measure along which
␣

Es
f pxq “ Eu

f pxq
(

“ Es
hpxq “ Eu

hpxq, where h “ gm´nfg´pm´nq, and we conclude
as before. □
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rigidité. In Quelques aspects des systèmes dynamiques polynomiaux, vol. 30 of Panor. Synthèses.
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