
GENERATORS FOR THE CREMONA GROUP
(AFTER HUDSON, PAN, DERKSEN, ...)

SERGE CANTAT

ABSTRACT. We discuss a result due to Hudson and Pan concerning gen-
erators of the Cremona group in n variables. We add a few remarks based
on the works of Frumkin and of Derksen, and on discussion with Blanc,
Dubouloz, Lamy and Urech; these remarks concern (bi)rational transfor-
mations of projective varieties and groups of automorphisms of the affine
space.
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1. INTRODUCTION

1.1. Cremona groups. Let n be a positive integer. The Cremona group
in n variables over a field k is the group of birational transformations of
the n-dimensional projective space Pn

k ; this group, denoted Crn(k) in what
follows, coincides with the group of k-automorphisms of the field of rational
functions k(X1, ...,Xn). It contains the group of automorphisms of Pn

k, i.e. the
group of projective linear transformations PGLn+1(k).

1.2. Degrees. Let [x0 : x1 : . . . : xn] be a system of homogeneous coordinates
on Pn

k. If f is an element of Crn(k), there are homogeneous polynomial
functions P0, P1, ... and Pn in k[x0, . . . ,xn], of the same degree d and with no
common factor of positive degree, such that

f [x0 : . . . : xn] = [P0 : . . . : Pn].
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By definition, the common degree d of the Pi is the degree of f . Automor-
phisms of Pn

k correspond to birational transformations of degree 1.

1.3. Increasing the dimension. The Cremona group Crn(k) coincides with
the group of birational transformations of the n-dimensional affine space An

k.
Let f be a birational transformation of An

k. The transformation f̂ of An
k×A1

k
which is defined by

f̂ (x,y) = ( f (x),y)

for (x,y) in An
k×A1

k is a birational transformation of An+1
k = An

k×A1
k. This

defines an injective morphism of groups

Crn(k) → Crn+1(k)

f 7→ f̂

and therefore an embedding of Crn(k) into Crn+1(k), so that Cremona groups
are larger and larger groups when the dimension n increases.

1.4. Infinite dimension. In dimension n = 1, Cr1(k) coincides with PGL2(k),
but Cr2(k), and therefore all Crn(k) with n ≥ 2, is a very large group : For
every k ≥ 0, it contains all transformations f of the form

f [x0 : x1 : x2] = [x0xk
2 +P(x1,x2) : x1xk

2 : xk+1
2 ]

where P is a homogeneous polynomial of degree k + 1 (the inverse of f is
obtained by replacing P by −P). Thus, Crn(k) is "infinite dimensional" for
n≥ 2.

1.5. Generators. On the other hand, Noether-Castelnuovo theorem implies
that, in terms of generators, Cr2(k) is rather small. To state it, we need to
introduce the standard quadratic involution σ : P2

k 99K P2
k: In homogeneous

coordinates,
σ[x0 : x1 : x2] = [x1x2 : x2x0 : x0x1]

(i.e. σ(X1,X2) = (1/X1,1/X2) in affine coordinates).

Theorem 1.1 (M. Noether, G. Castelnuovo, see [5]). If the field k is alge-
braically closed, the Cremona group Cr2(k) is generated by the group of
automorphisms PGL3(k) and the standard quadratic involution σ.

One can also describe a complete set of relations between these genera-
tors; this result is due to M. H. Gizatullin [4] (see also [2]). Our goal is to
justify that the picture is much less simple if n≥ 3.
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Theorem 1.2 (H. P. Hudson, I. Pan, [7]). Let n be a natural integer with
n≥ 3. To generate the Cremona group Crn(k), one needs as many algebraic
families of generators, as families of smooth hypersurfaces of Pn−1

k of degree
≥ n+2. One cannot generate the Cremona group by generators of bounded
degree.

Obviously, this statement is loosely stated; I hope that the proof, which is
quite short, will make it clearer. 1

2. PROOF

2.1. Exceptional hypersurfaces. Let f be a birational transformation of
Pn

k, and let X be an irreducible hypersurface of Pn
k. We say that X is f -

exceptional if there is an open subset of X which is mapped into a subset
of codimension ≥ 2 by f (equivalently, if k is algebraically closed, f is not
injective on any open subset of X).

Let g1, ..., gm be birational transformations of the projective space Pn
k, and

let g be the composition g = gm ◦ gm−1 ◦ . . . ◦ g1. Let X be an irreducible
hypersurface of Pn

k. If X is g-exceptional, then there is an index i, with
1 ≤ i ≤ m, and a gi-exceptional hypersurface Xi such that X is birationnaly
equivalent to X . More precisely, for some index i, gi−1 ◦ . . . ◦ g1 realizes a
birational isomorphism from X to Xi, and then gi contracts Xi.

2.2. De Jonquières transformations with prescribed exceptional hyper-
surfaces. Let [x0 : . . . : xn−1] be homogeneous coordinates for Pn−1

k and
[y0 : y1] be homogeneous coordinates for P1

k.
Let Y be an irreducible hypersurface of degree d in Pn−1

k , which is not the
plane x0 = 0, and let h be a reduced homogeneous equation for Y . Define a
birational transformation fY of Pn−1

k ×P1
k by

fY (x, [y0 : y1]) = (x, [y0xd
0 : h(x0, . . . ,xn−1)y1]).

The transformation fY preserves the natural projection of Pn−1
k ×P1

k onto the
first factor Pn−1

k . It acts by linear projective transformations on the generic
fibers P1

k; more precisely, fY is the projective linear transformation which is

1This text is not intended for publication. I thank Jean-Louis Collitot-Thélène who
pointed out a mistake in the first version of these notes. Section 3.3 is the result of a
discussion with Jérémy Blanc and Stéphane Lamy. Section 3.4 comes from a discussion
with J. Blanc and Christian Urech. I also thank Adrien Dubouloz for nice discussions on
polynomial automorphisms.
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determined by the 2 by 2 matrix(
xd

0 0
0 h(x0, . . . ,xn−1)

)
over the point [x0 : . . . : xn−1]. This matrix is invertible if and only if x0 6= 0
and h(x) 6= 0.

The birational transformation f contracts the generic points of the hyper-
surface Y ×P1

k to the codimension 2 subset Y ×{[1 : 0]}.

Lemma 2.1. For every irreducible hypersurface Y of Pn−1
k (of degree d),

there exists a birational transformation gY of Pn
k (of degree d + 1) and a

hypersurface X ⊂ Pn
k such that

• X is birationally equivalent to Y ×P1
k;

• X is gY exceptional.

Proof. The projective variety Pn−1
k ×P1

k is birationally equivalent to Pn
k. An

explicit birational map η : Pn−1
k ×P1

k→ Pn
k is given by

η([x0 : . . . : xn−1], [y0 : y1]) = [y0x0 : y1x0 : y1x1 : . . . : y1xn−1].

In the complement of x0 = 0, η maps verticals {∗}×P1
k to lines through the

point [1 : 0 : . . . : 0] ∈ Pn
k, and contracts the hypersurface y1 = 0 to that point.

Conjugate fY by the birational map η : Pn−1
k ×P1

k 99K Pn
k and denote by X

the image of Y ×P1
k by η. The result follows, because η maps the subset

(Y ×{[1 : 0]})\{x0 = 0} ⊂ Pn−1
k ×P1

k

to the point [1 : 0 : . . . : 0] of Pn
k. �

2.3. Stable equivalence. Say that Y is (m-)stably-equivalent to Y ′ if there
is a birational map from Y ×Pm

k to Y ′×Pm
k . There are examples of complex

projective varieties Y of dimension l ≥ 3 such that Y is not rational but Y is
stably-equivalent to the projective space Pl

C (see [1], [8]).
Suppose that Y and Y ′ are smooth hypersurfaces of Pn−1

k of degree≥ n+1;
denote by d the degree of Y and by d′ the degree of Y ′. Assume that Y is
m-stably-equivalent to Y ′. Let V = Y ×Pm

k and V ′ = Y ×Pm
k ; let π and π′

denote the natural projections onto Y and Y ′ respectively. Let φ : V 99K V ′

be a birational map.
The variety Y is a smooth variety of general type: the canonical bundle

KY =
Vn−2 T ∗Y is very ample (by adjunction, KY = OY (d− (n+1))); more-

over, the dimension of H0(Y,KY ) determines the degree d. Since all regular



GENERATORS FOR THE CREMONA GROUP 5

global sections of
Vl T ∗Pm

k vanish identically, for all 1 ≤ l ≤ m, the projec-
tion π determines an isomorphism

π
∗ : H0(Y,KY )→ H0(V,

n−2̂

T ∗V ).

Similar results hold for Y ′.
Now, by pull-back, φ provides a linear isomorphism

φ
∗ : H0(V ′,

n−2̂

T ∗V ′)→ H0(V,
n−2̂

T ∗V ).

This implies that d = d′. Moreover, if

θ : Y → P(H0(Y,KY )∨), θ(y) = evaly,

denotes the Kodaira-Iitaka embedding of Y , and θ′ denotes the Kodaira-
Iitaka embedding of Y ′, then φ∗ induces an isomorphism from θ(Y ) to θ′(Y ′);
hence Y is isomorphic to Y ′.

In other words, for hypersurfaces of Pn−1
k of degree ≥ n + 1, the stable

equivalence of Y and Y ′ implies that Y is isomorphic to Y ′.

2.4. Conclusion. Put Sections 2.1, 2.2, and 2.3 together. We get the fol-
lowing statement: To generate the Cremona group in n variables Crn(k), one
needs as many generators as classes of hypersurfaces Y ⊂ Pn−1

k of degree
≥ n + 1 modulo isomorphism. This result, of course, is not properly stated,
because the cardinality of those classes of hypersurfaces is the same as the
cardinality of k (resp. of PGLn+1(k)).

Let Crn(k;d) be the set of birational transformations of Pn
k of degree ex-

actly d. The set of rational maps from Pn
k to itself of degree d is a quasi-

projective variety; Crn(k;d) is an algebraic subset in this variety (more pre-
cisely, it is a Zariski open subset in some algebraic subvariety). By defini-
tion, G ⊂ Crn(k) is an algebraic family of birational transformations of Pn

k
of degree d if G is contained in Crn(k;d) and G is an algebraic subset of
Crn(k;d).

What can be proved from the previous sections is

Theorem 2.2. Let n be a positive integer with n ≥ 3. Let Gi, i ∈ N, be a
countable collection of algebraic families of birational transformations of
Pn

k such that ∪iGi generates Crn(k) as a group. Let Hd(Pn−1
k ) be the moduli

space of smooth hypersurfaces of degree d in Pn−1
k , d ≥ n+2. Then,

• for every d ≥ n + 2, there is a Zariski open subset Zd of Hd(Pn−1
k )

and an integer i ∈ N such that Zd embeds into Gi;
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• there are two strictly increasing sequences of integers d j and m j such
that ∪iGi intersects Crn(k;d j) on a subset of dimension ≥ m j.

In particular, one cannot generate the Cremona group in n≥ 3 variables by
generators of bounded degree.

Sketch of the proof. If d ≥ n + 2, general hypersurfaces of degree d in Pn−1
k

are smooth varieties with very ample canonical bundle. Let Y1 and Y2 be two
smooth hypersurfaces of degree d. If F : Y1 99K Y2 is birational, there exists
an automorphism A of Pn−1

k which maps Y1 onto Y2 and coincides with F on
Y1. Moreover, the group Aut(Y ) is trivial for general hypersurfaces of degree
d. In particular, the dimension of Hd(Pn−1

k ) goes to +∞ with d.
The image Wd of the map Y 7→ gY described in Section 2.2, is generated

by the family Gi, i ∈N, and Wd is an algebraic subset of Crn(k;d +1). Thus,
there is an integer m such that the image of G1× . . .×Gm by

(g1, . . . ,gm) 7→ g1 ◦ . . .◦gm

contains Wd . From section 2.1, one deduces that there is an open subset Z of
Hd(Pn−1

k ) and an integer i between 1 and m, such that Z embeds into Gi. �

3. REMARKS

3.1. The previous proof may apply to other types of projective varieties,
beside Pn

k. Unfortunately, I am not aware of any non-trivial example. For
instance, I don’t know whether the group of birational transformations of a
smooth cubic hypersurface of P4

C (C the field of complex numbers) is gen-
erated by transformations of bounded degree.

3.2. For simplicity, consider the case n = 3. Given f in the Cremona group
Cr3(k), consider the set of irreducible components {Xi}1≤i≤m of the union of
the exceptional loci of f and of its inverse f−1. Each Xi is birationally equiv-
alent to a product P1

k×Ci, where Ci is a smooth irreducible curve. Define
g(Xi) as the genus of Ci, and the genus of f as the maximum of the g(Xi),
1 ≤ i ≤ m. Then, the subset of Cr3(k) of all birational transformations f of
genus at most g0 is a subgroup of Cr3(k): In this way, one obtains a filtration
of the Cremona group by an increasing sequence of strict subgroups. (see
[3] for related ideas and complements2)

2See also [6], which simplifies [3] and contains nice complements concerning the genus
of a birational transformation.
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3.3. Now, consider the case n = 2, but with a field which is not algebraically
closed; for simplicity, take k = Q, the field of rational numbers. Given f
in Cr2(Q), the indeterminacy locus Ind( f ) of f is a finite subset of P2(Q),
where Q is a fixed algebraic closure of Q. Fix a number field k, and consider
the subset of all f in Cr2(Q) such that each indeterminacy point of f or f−1

(I include infinitesimally closed points) is defined over k; for instance, if
p ∈ P2(C) is an indeterminacy point of f−1, then p = [a0 : a1 : a2] with ai
in k. This subset is a subgroup of Cr2(Q); one thus gets an inductive net of
subgroups of Cr2(Q).

More generally, let us fix a field k together with an algebraic closure k of
k. To an element f of Cr2(k), one can introduce the field k f : the smallest
field k f ⊂ k on which (i) f and f−1 are defined and (ii) all base points of f
and f−1 are defined. Note that, with this definition, k f may be smaller that
k. Then, the field k f◦g is contained in the extension generated by k f and
kg. Thus, k f provides a measure for the arithmetic complexity of f , and this
measure behaves sub-multiplicatively (as the degree deg( f ) does).

3.4. As J. Blanc noticed, the previous remark implies the following3.

Proposition 3.1. Let k be a field. The Cremona group Cr2(k) is not finitely
generated.

Proof. Let p be the characteristic of k, let k0 be the prime subfield of k (so
that k0 ' Fp if p > 0 and k0 = Q if p = 0). Fix an algebraic closure k of k.
-a- Let F be a finite subset of Cr2(k). Let kF ⊂ k be the finite extension of k
which is generated by the fields k f , f ∈ F . Let G be the subgroup of Cr2(k)
generated by the F . Then kg ⊂ kF for all elements g of G. Assume now that
G coincides with Cr2(k). Then k = kF is finitely generated; indeed, for each
a in k, the transformation [x : y : z] 7→ [x+ay : y : z] is defined over k0(a) but
not on a smaller subfield of k.
-b- Let R be an element of k[x], and consider the Jonquières transformation
gR which is defined in affine coordinates by

gR(X ,Y ) = (X ,R(X)Y ).

Then each roots αi of R gives rise to an indeterminacy point (0,αi) of g−1
R .

Thus, if gR belongs to the group G then all roots of R are contained in K and
if G coincides with Cr2(k) then K coincides with the algebraically closure k
of k.

3I added this sub-section and the previous 7 lines in 2013 after a discussion with Jérémy
Blanc and Christian Urech.
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-c- Thus, if Cr2(k) is finitely generated then k is finitely generated and a
finite extension of k is algebraically closed. There is no such field. �

3.5. Consider the semi-group Rat(P2
C) of all rational transformations of the

projective plane P2
C. Since the topological degree is multiplicative, one needs

rational transformations of degree p for all prime numbers p to generate
Rat(P2

C). This remark can be strengthen with the strategy of the previous
paragraphs: to generate Rat(P2

C), one needs as many parameters as parame-
ters for curves (of arbitrary genus).

3.6. Let X be a smooth projective threefold. Consider, as in paragraph 3.2,
the genus g( f ) of each element f in Bir(X): this provides a subset g−bir(X)=
{g( f ) | f ∈ Bir(X)} of the set of integers which is canonically associated to
X . This set is invariant under birational conjugacy, and the question arises to
compute g−bir(X) for, say, the generic smooth cubic volume in P4

C.
Similarly, one can define the genus g− rat(X) with respect to Rat(X) for

X a smooth projective surface, and one of the first question is to compute
this set for X a K3 surface (for instance, for X a generic (2,2,2) surface in
P1×P1×P1).

4. POLYNOMIAL AUTOMORPHISMS

The proof of Hudson-Pan Theorem seems to say more than what the state-
ment provides, but one needs to be careful when using this circle of ideas.
Here is a sample example, which concerns the group Aut[kn] of polynomial
automorphisms of the affine space kn.

Let p be a polynomial function in the variables x2, . . . ,xn. Let f be the
automorphism of kn defined by

f (x1, . . . ,xn) = (x1 + p(x2, . . . ,xn),x2, . . . ,xn).

Such a transformation, and all similar transformations obtained by permut-
ing the coordinates, are called elementary automorphisms. The subgroup
generated by the group of affine transformations and the set of elementary
automorphisms is the group of tame automorphisms of kn (for n = 2, Jung
theorem asserts that all automorphisms are tame; for n = 3, this is not true
anymore since the Nagata automorphism is not tame [9]).

Assume, for the sake of simplicity, that p is homogeneous of degree d +
1 ≥ 2, and consider the birational extension F of f to Pn

k. In homogeneous
coordinates [x0 : x1 : . . . : xn] (with the plane at infinity defined by x0 = 0),
one gets

F [x0 : x1 : . . . : xn] = [xd+1
0 : x1xd

0 + p(x1, . . . ,xn) : x1xd
0 : . . . : xnxd

0 ].
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Its indeterminacy locus Ind(F) is the set of points such that

x0 = 0 and p(x2, . . . ,xn) = 0.

Thus, the indeterminacy locus of F is the subset Σp of codimension 2 of Pn
k

that is contained in the hyperplane at infinity and has equation p = 0 in this
hyperplane. In the plane of codimension 2 given by x0 = x1 = 0, p defines a
hypersurface, and Σp is the cone over this set, with vertex [0 : 1 : 0 : . . . : 0].
Since p is any homogeneous polynomial in n− 1 variables, all cones over
all hypersurfaces of Pn−2

k appear as indeterminacy set of some elementary
automorphism of kn.

Does this imply that the group of tame automorphisms cannot be gener-
ated by automorphisms of bounded degrees ? No, as the following result
shows.

Theorem 4.1 (Derksen). Let n ≥ 3 be a natural integer. The group of tame
automorphisms of kn is generated by the group of affine transformations of
kn and the elementary automorphism

(x1, . . . ,xn) 7→ (x1 + x2
2,x2, . . . ,xn).

This result is proved in [10], chapter 5.2; the proof is not difficult (much
less than Castelnuovo-Noether Theorem).

Example 4.2. Consider the elementary map f (w,x,y,z) = (w + x3 + y3 +
z3,x,y,z). Note that f is the composition of

g(x,y,z) = (w+ x3 + y3,y,z) and h(x,y,z) = (x+ z3,y,z).

The indeterminacy set of g is given by the equation x3 +y3 = 0 in the hyper-
plane at infinity; it is a union of three planes P2

k. The indeterminacy set of
h is also rational. On the other hand, the indeterminacy locus of f is a cone
over the planar cubic curve x3 + y3 + z3 = 0; as such, it is not rational.

This does not contradict Section 2: The three maps f , g, and h contract
the same hypersurface, namely, the hyperplane at infinity.
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