FINITE ORBITS FOR LARGE GROUPS OF AUTOMORPHISMS OF
PROJECTIVE SURFACES

SERGE CANTAT AND ROMAIN DUJARDIN

ABSTRACT. We study finite orbits for non-elementary groups of automorphisms of
compact projective surfaces. In particular we prove that if the surface and the group
are defined over a number field k and the group contains parabolic elements, then the
set of finite orbits is not Zariski dense, except in certain very rigid situations, known as
Kummer examples. Related results are also established when k = C. An application is
given to the description of “canonical vector heights” associated to such automorphism

groups.
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1. INTRODUCTION

1.1. Setting. Let X be a complex projective surface, and denote by Aut(X) its group
of automorphisms. The group Aut(.X) acts on the Néron-Severi group NS(X; Z) (resp.
on the cohomology group H?(X; Z)); this gives a linear representation
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from Aut(X) to GL(NS(X;Z)) (resp. GL(H?*(X;Z))). By definition, a subgroup I of
Aut(X) is non-elementary if its image I'* < GL(NS(X;Z)) (resp. © GL(H?*(X;Z)))
contains a free group of rank > 2; equivalently, I'* does not contain any abelian sub-
group of finite index (see [18] for details and examples).

Our purpose is to study the existence and abundance of finite (or “periodic”) orbits
under such non-elementary group actions. Several possible scenarios can be imagined:

(a) alarge —that is Zariski dense or dense- set of finite orbits;
(b) finitely many finite orbits;
(c) no finite orbit at all.

For a cyclic group generated by a single automorphism, the situation is well under-
stood: in many cases the set of periodic points is large (see [[15] for an introduction to
this topic, and [35] for the case of birational transformations). On the other hand, for
non-elementary groups, we expect the existence of a dense set of periodic points to be a
rare phenomenon; this expectation will be confirmed by our results.

In fact, the only examples we know for situation (a) are given by abelian surfaces
and their siblings, Kummer surfaces. Here, by Kummer surface we mean a smooth
surface X which is a (non necessarily minimal) desingularization of the quotient A/G
of an abelian surface A = C?/A by a finite group G < Aut(A). For instance, if G
is generated by the involution (x,y) — (—xz, —y) on A, we find the so-called classical
Kummer surfaces and their blow-ups (see [5]]). Given a subgroup I' = Aut(X), we say
that the pair (X, I') is a Kummer group if X is a Kummer surface and I" comes from a
subgroup of Aut(A) which normalizes G; precise definitions are given in Ifisa
group of automorphisms of an abelian surface A fixing the origin 0 € A, then all torsion
points are ['-periodic. This implies that most Kummer groups have a dense set of finite
orbits (see Proposition 4.5]).

1.2. Main results. We first illustrate property (c) in the family of Wehler surfaces that
is, smooth surfaces X — P! x P! x P! defined by a polynomial equation of degree
(2,2,2). Such an X is a K3 surface and generically its automorphism group is generated
by three involutions, each of them swapping one coordinate on X. We focus on these
examples because they occupy a central position in the dynamical study of surface auto-
morphisms, both from the ergodic and arithmetic points of view (see e.g. [S1, 40, 47]).

Theorem A. For a very general Wehler surface X, every orbit under Aut(X) is Zariski
dense. In particular there is no finite orbit under the action of Aut(X).

Unfortunately, from the nature of its proof, this theorem has an obvious limitation: it
does not allow to single out any explicit example satisfying Property (c).

Our main result concerns Property (b). To state it, recall that there are three types of
automorphisms, characterized by the behavior of the linear endomorphism f* (see [[15]]).
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If f* has finite order, then f is elliptic. Otherwise, f is either parabolic or loxodromic:
it is parabolic if f* has infinite order, but none of its eigenvalues has modulus > 1; it
is loxodromic if some eigenvalue A(f) of f* has modulus |[A(f)| > 1 (in that case A(f)
is unique and A\(f) € (1, +00)). A non-elementary group of automorphisms contains a
non-abelian free group all of whose non-trivial elements are loxodromic, and a group
containing both loxodromic and parabolic elements is automatically non-elementary.

Theorem B. Let X be a smooth projective surface, defined over some number field k.
Let T be a subgroup of Aut(X), also defined over Kk, containing both parabolic and
loxodromic automorphisms. If the set of finite orbits of I' is Zariski dense in X, then
(X,T) is a Kummer group.

When I is non-elementary there is a maximal ['-invariant curve Dr; more precisely,
either I' does not preserve any curve, or there exists a unique, maximal, ['-invariant
Zariski closed subset of pure dimension 1. This curve Dy can be contracted to yield a
(singular) complex analytic surface X, and a I'-equivariant birational morphism

7o - X - Xo. (12)

Thus if (X, I") is not a Kummer group, property (b) holds on Xj. It turns out that when
I" contains a parabolic automorphism, X is projective (see Proposition [3.9). Another
result, which plays an important role in the proof of Theorem [B|is the following The-
orem @ any non-elementary subgroup I' < Aut(X) contains a loxodromic element
whose maximal periodic curve is equal to Dr (see Section |3|for the precise statement).

Let us stress that even if X and I' are defined over k, Theorem [B| concerns orbits of
['in X(C). In this respect it is very different in spirit from the results of [51] or [41],
in which finiteness results are obtained for the number of periodic orbits of elementary
groups acting on X (k’), where k' is a fixed finite extension of k, which ultimately rely
on Northcott’s theorem.

Under the assumptions of Theorem B] we obtain the following corollaries (see Corol-
laries 6.1} and [6.2] and Proposition 4.5]for details):

— If T does not preserve any algebraic curve and X is not an abelian surface, then I'
admits at most finitely many finite orbits.

— If C is an irreducible curve containing infinitely many I'-periodic points, then either
C'is I-periodic or (X,1") is a Kummer group and C comes from a translate of an
abelian subvariety. In particular if C has genus > 2, it contains at most finitely many
['-periodic points.

— If T has a Zariski dense set of finite orbits, then its finite orbits are dense in X (C) for
the Euclidean topology, furthermore if fi and fy are two loxodromic automorphisms
in I, their periodic points coincide, except for at most finitely many of them which are
located on I'-invariant curves.
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As we shall see in Remark [6.6] the last statement provides a partial answer to a
question of Kawaguchi.

1.3. Proof strategy and extension to complex coefficients. Let us say a few words
about the proof of Theorem [B] (a more detailed outline is given in §5.1). Given two
“typical” loxodromic elements f, g in T, intuition suggests that Per(f) n Per(g) can-
not be Zariski dense unless some “special” phenomenon happens. This situation has
been referred to as an unlikely intersection problem in the algebraic dynamics literature.
Previous work on this topic suggests to handle this problem using methods from arith-
metic geometry (see e.g. [1,32]]). In this respect a key idea would be to use arithmetic
equidistribution (see [56, 16]) to derive an equality py = 4, between the measures of
maximal entropy of f and g. Unfortunately we do not know how to infer rigidity re-
sults directly from this equality, so the proof of Theorem [B|is not based on this sole
argument. To reach a concluson, we make use of the dynamics of the whole group T',
in particular of the classification of I'-invariant measures (see [13} [17]]), together with
the classification of loxodromic automorphisms f whose measure of maximal entropy
ftr 1s absolutely continuous with respect to the Lebesgue measure (see [[19, 33]]). The
existence of parabolic elements in I' is required at three important stages, including the
arithmetic step; in particular we are not able to prove Theorem [B| without assuming that
I" contains parabolic elements (see for a more precise discussion).

Even if arithmetic methods lie at the core of the proof of Theorem [B] it is natural to
expect that the assumption that X and I' be defined over a number field is superfluous.
We are indeed able to get rid of it when I" has no invariant curve.

Theorem C. Let X be a compact Kdhler surface which is not a torus. Let I be a
subgroup of Aut(X) which contains a parabolic element and does not preserve any
algebraic curve. Then 1" admits only finitely many periodic points.

The proof of Theorem|[Clis based on specialization arguments, inspired notably by the
approach of [32] (see Section . It applies, for instance, to the action of I' = Aut(X)
on any unnodal Enriques surface X, and to the foldings of euclidean pentagons with
generic side lengths (see [[18 §3] for details on these examples).

We conclude this introduction by explaining two further applications of Theorem [B]

1.4. Canonical vector heights. Theorem [B| will be applied to answer a question of
Baragar on the existence of certain canonical heights (see [3} 4, 42]]).

Let X be a projective surface, defined over a number field k. Denote by Pic(X)
the Picard group of Xg. The Weil height machine provides, for every line bundle L
on X, a height function hy: X(Q) — R, defined up to a bounded error O(1). This
construction is additive, b,z 1, = ahg, + bhy, + O(1) for all pairs (L, L) € Pic(X)?
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and all coefficients (a,b) € Z?. When L = Ox(1) for some embedding X < Py, then
hy, coincides with the usual logarithmic Weil height.

If f is a regular endomorphism of X defined over k and L is an ample line bundle
such that f*L = L®? for some integer d > 1, then hy o f = dh; + O(1). Tate’s
renormalization trick

hi(z) := lim —hL(f"( ) (1.3)

n+OO

provides a canonical height for f and L that is, a function hr: X (Q) — R, such that
h L =hy 4+ O(1) and h rof= dh 1, exactly, with no error term. This construction was
extended to loxodromic automorphisms of projective surfaces by Silverman, Call, and
Kawaguchi (see [S1, 11, 141]): in this case one obtains a pair of canonical heights iL}—“
satisfying ﬁ;{ o fE = \(f )ifzf. (Note that here fL;{ and fLJ? are Weil heights associated
to R-divisors.)

If T is an infinite subgroup of Aut(X), also defined over k, it is natural to ask whether
a ['-equivariant famlly of heights can be constructed. Spe<:1ﬁcally, one looks for a family
of representatives ;, of the Weil height functions, i.e. hy = hy, + O(1) for every L in
Pic(X;R) := Pic(X) ®z R, depending linearly on L, and satisfying the exact relation

hi(f(2)) = hpsr(e) (Vo e X(Q)) (1.4)

for every pair (f, L) € I' x Pic(X;R) (see §8| for details). A prototypical example is
given by the Néron-Tate height, when I' is the group of automorphisms of an abelian
surface preserving the origin. Such objects were named canonical vector heights @ by
Baragar in [2]. He proved their existence when X is a K3 surface with Picard number 2,
in which case Aut(X) is virtually cyclic. He also gave evidence for their non-existence
on certain Wehler surfaces (see [4]). In [42] Kawaguchi obtained a complete proof of
this non-existence for an explicit family of Wehler surfaces; his argument relies on the
study of I'-periodic orbits.

Extending Kawaguchi’s methods and using Theorem B] we completely solve the ex-
istence problem of canonical vector heights for non-elementary groups with parabolic
elements: let X be a smooth projective surface and I' be a non-elementary subgroup
of Aut(X) containing parabolic elements, both defined over a number field k; if (X,T")
possess a canonical vector height, then X is an abelian surface and 1" has a finite orbit
(see Theorem [E]in Section [§). The second assertion implies that, after conjugation by
a translation, a finite index subgroup of I' preserves the neutral element of the abelian
surface X, in particular the Néron-Tate height provides a canonical vector height, and

IThe name “vector height” comes from the following viewpoint. Assume Pic(X;R) = NS(X;R),
and fix a basis L; of Pic(X;R). For a point z in X(Q), consider the vector (hz,(z)) € R”, where
p = dimg Pic(X;R). Then, the equivariance property (I.4) can be phrased in terms of this vector,
hence the terminology.
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we explain how all possible canonical vector heights are derived from the Néron-Tate
height (see Theorems [Ef] and [E]] below for precise statements).

1.5. Stationary measures. Another application, which was our primary source of mo-
tivation for this work, concerns the classification of invariant and stationary measures.

Assume that X and I are defined over R;; in particular, I" acts on the real part X (R)
of X, which we assume here to be non-empty. The group I' permutes the connected
components of X (R) and, choosing one component X (R); in each I'-orbit, the surface
X (R) splits into a finite, disjoint union of real analytic and I'-invariant surfaces

XR) = | [T(X(R))). (1.5)
1€l

For simplicity, as in Theorem |[C, suppose that X is not abelian, I' contains both loxo-
dromic and parabolic elements, and I" does not preserve any algebraic curve D < X.
Let v be a probability measure on Aut(X), whose support is a finite set generating I".
Using the results of [[13} 117, 18] we infer that: the set of v-stationary probability mea-
sures on X (R) coincides with that of T'-invariant probability measures and is a finite
dimensional simplex, whose extremal points are given by:

— finitely many real analytic area forms w;, one for each orbit I'( X (R);), with
support equal to T'(X (R););
— the uniform counting measures on the (finitely many) finite orbits of T'.

Example. Suppose X is a real K3 surface, with X (R) # ¢J. Then, X (R) is orientable,
and there is a non-vanishing section €2 of the canonical bundle K'x which induces a
positive area form Qg on X (R) (see [17] for instance). The area forms mentioned in the
first item are the restrictions of (g to the surfaces I'(X (R));), up to some normalization
factors. So, if X is a very general real Wehler surface with X(R) # ¢, and if v
generates Aut(X), Theorem |A|limplies that the only v-stationary measures are convex
combinations of restrictions of the natural area form {)g to the components of X (R)
(this result was announced in [[18]]).

1.6. Organization of the paper. We start by proving Theorem [A]in Section [2] which
is independent of the rest of the paper. In Section [3| we study invariant curves for loxo-
dromic automorphisms and non-elementary groups. In particular we obtain an effective
bound for the degree of a curve invariant under a loxodromic automorphism (see Propo-
sition [3.7) and prove Theorem [D] In Section 4] we briefly discuss the case of tori and
review the Kummer construction. The core of the paper is Section [5] in which we
develop the arithmetic method outlined above and establish Theorem [B] Section [f] is
devoted to consequences of Theorem [B] and related comments. We prove Theorem [C|
in Section [/} Finally, canonical vector heights are discussed in Section [§] where we
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solve Baragar’s problem. Some open problems and possible extensions of our results

are discussed in §§6.3]and

Acknowledgement. We warmly thank Pascal Autissier, Antoine Chambert-Loir, Marc
Hindry and Junyi Xie for useful discussions.

2. VERY GENERAL WEHLER SURFACES

Consider the family of Wehler surfaces described in Section 3.1 of [18]] (or in [3, 12,
42,/47]). In this section we prove Theorem[A] Recall the statement:

Theorem 2.1. If X < P! x P! x P! is a very general Wehler surface, then Aut(X) does
not preserve any non-empty, proper, and Zariski closed subset of X.

Here, by very general, we mean that this property holds in the complement of a set of
countably many hypersurfaces in the space of surfaces of degree (2,2,2) in P! x P! x PL.
The proof follows from an elementary but rather tedious parameter counting argument.
As we shall see in such a statement does not hold if we replace Aut(X') by a thin
non-elementary subgroup.

2.1. Notation and preliminaries. We use the notation of [[18], §3.1]: M = P! xP! xP!,
with affine coordinates (x,y, z) (denoted (z1,x9,x3) in [18]), 7, 7o, and 73 are the
projections on the first, second, and third factors, and 7;; is the projection (7;, 7;) onto
P! xP!. Then L; = 7¥(O(1)), L = L3®L3®L3, and X < M is a member of the linear
system | L|. In the affine coordinates (z,y, z), X is defined by a polynomial equation of
degree (2,2, 2), which we write

P(x,y,z) = A222x2y222 + A221~’1723/22 + -+ Aroor + Aoroy + Aoorz + Aggo. (2.1)

We thus see that H°(M, L) is of dimension 27 and since the equation {P = 0} is de-
fined up to multiplication by a complex scalar, the family of Wehler surfaces X is 26-
dimensional. Modulo the action of G = PGL(2, C)? they form an irreducible family of
dimension 17.

It was shown in [18, Prop. 3.1] that there exists a Zariski open set Wy < |L| of
surfaces X € |L| such that

(1) X is a smooth K3 surface;
(ii) each of the three projections (7;;)x: X — P! x P! is a finite map, that is, X
does not contain any fiber of m;;: M — P! x PL.

From now on, we suppose that X belongs tolW,. Let 7, j, k be three indices with
{i,j,k} = {1,2,3}. Denote by 0;: X — X the involutive automorphism of X that
permutes the points in the fibers of the 2-to-1 branched covering (7;x)x : X — P! x PL.
By [18, Lem. 3.2], the three involutions o; generate a non-elementary subgroup of
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Aut(X). This subgroup is isomorphic to Z/2Z x Z/27Z « Z,/2Z, it preserves the subspace
of NS(X; Z) generated by the Chern classes of the L;, and its action on this subspace
is given by the matrices in Equation (3.4) of [18]. Then f;; = o; o 0 is a parabolic
automorphism of X, preserving the genus 1 fibration 7, : X — P'. Moreover, if X is
very general the L; generate NS(X; Z) (see [18| Prop. 3.3]).

2.2. Invariant curves.

Proposition 2.2. If X € W, Aut(X) does not preserve any algebraic curve.

This is a direct consequence of the considerations of the previous paragraph, together
with the following more precise result.

Lemma 2.3. Let X be a smooth Wehler surface. Assume that the three involutions o;
induce a faithful action of the group Z/2Z x 7.)2Z » Z/2’Z. Then the group generated
by the o; does not preserve any curve.

Proof. Assume that C' is an invariant curve. Since no curve can be contained simul-
taneously in fibers of 71, m and 73, without loss of generality, we may suppose that
m1: C' — PY(C) is dominant. Then the automorphism fo3 = 09 o 03 has finite order:
indeed, on a general fiber F' of 7y, it acts as a translation that preserves the non-empty
finite set /'~ C'. This contradicts the fact that fo3 is parabolic and finishes the proof. [

Thus, to prove Theorem 2.1 we are left to prove the non-existence of periodic orbits,
which is the purpose of the following paragraphs.

2.3. Elliptic curves. Here we study (2,2) curves in dimension 2. We keep notation as
in §2.1| Let us consider the line bundles L; = 7¥(O(1)) on P! x P' and set L = L2®L3.
Fix (affine) coordinates (, y) on P! x P!, with x and y in Cu{o0}. A curve C' < P! x P!
in the linear system |L| is given by an equation of degree (2,2) in (z, y). Assume that C'
contains the points (0,0), (o0,0), and (0, o0) and that it is smooth at the origin, with a
tangent line given by x + y = 0. Then its equation reduces to the form

az?y® + Bty + yay? + Sxy +e(z +y) =0 (2.2)

for some complex numbers «, 3, 7, 0, and €, with € # 0. Denote this curve by C4,3.4,6.)-
For a general choice of these parameters, C' is a smooth curve of genus 1. We will need
the following more precise result.

Lemma 2.4. Fix (§,7,0,¢) with e # 0. Then for general o, Cq .4, is smooth.

Proof. An easy explicit calculation shows that the points of C' on {00} x P! and P! x {o0}
are smooth unless « = 3 = v = 0. So for a # 0, C has no singular point at infinity.
Now, viewing the equation (2.2)) as a quadratic equation in = depending on the variable
y, we can consider its discriminant A, = A, (y), which is a polynomial of degree 4 in y
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that detects fibers C x {y} intersecting C' at a single point (for those values y for which
C n C x {y} is contained in C?, that is the polynomial in x is of degree 2). It is easy to
check that if (x, y) is a singular point of C, then y must be a multiple root of A,. Hence
if y — A,(y) only has simple roots, C' is smooth in C2. Thus it is enough to check
that if (53,7, 0, ¢) is an arbitrary 4-tuple such that € # 0, A, has only simple roots for
general «.

A simple calculation shows that A,(y) = ay* + by® + cy? + dy + e, where only
b depends on «, with b(a) = 276 — 4ae, and e = €2 # 0. Now the discriminant of
A,, as a degree 4 polynomial in y, is a polynomial expression in (a,b,c,d, e), and as
a polynomial in b it has a unique leading term 27b%e?%. So, (3,7, 6, €) being fixed, with
€ # 0, this discriminant depends non-trivially on «; for a general «, this discriminant is
not zero thus A, has four distinct roots, so that C' is smooth, as was to be proved. ]

As for Wehler surfaces, there are two involutions o; and o5 on C, respectively per-
muting the points in the fibers of the projections (m)|c: C' — P! and (m)c: C — P,
that is, o; changes the ¢-th coordinate, while keeping the other ones unchanged. The
composition f = o 0 0y is a translation on C' mapping (0, o) to (0, 0); in particular, f
is not the identity.

Lemma 2.5. Fix (3,7,0,¢) with € # 0 and assume that the curve Cg g 5 is smooth.
Then the dynamics of the translation f on C(, g .s.¢) varies non-trivially with «: it is
periodic for a countable dense set of a’s, and non-periodic for the other parameters.

Proof. For o in the complement of a finite set, C,, := C(s,3,,5,) 1S @ smooth curve of
genus 1, and f acts as a translation on C,,. Let us analyze the orbit of (0, 0). Denote
by u,v € C u {0} the complex numbers such that 05(20,0) = (0,v) and (u,v) =
o1(o0,v) = f?(0,0). The translation f is periodic of period 2 if and only if (u,v) =
(0, o0), if and only if (00, c0) is a point of C,, if and only if &« = 0. Hence, f is periodic
of period 2 on Cj, but after perturbation it is not of period 2 anymore. For small o we can
write C' = C/A,, for some lattice A, = Z + Z7(C,) and f(z) = z + t(C,), with t(C,,)
and 7(C,) depending holomorphically on the parameters «. If we further decompose
t(Cy) = a(Cy) +b(Cy)T(C,), where a and b are two real analytic functions with values
in R, then both @ and b must be non constant. Indeed if one of them were constant, then
the other one would be a non-constant real holomorphic function, which is impossible
(see [13, Prop. 2.2] for a similar argument). The result follows. 0

2.4. Proof of Theorem 2.1l

2.4.1. From finite orbits to fixed points. Let us form the universal family X < Wy x M,
where W, < |L| is the open set defined in Section the fiber of the projection
X — Wy above X € W) is precisely the surface X < M.
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The group Z/27Z x Z./27Z * Z,/27Z acts by automorphisms on X, preserving each fiber
of X — Wjy: the generators of the first, second and third Z/2Z factors give rise to
involutions 7y, 05 and &3 which, when restricted to a fiber X, correspond to the auto-
morphisms o; € Aut(X). These involutions ; extend to birational involutions of the
Zariski closure X < |L| x M.

Remark 2.6. If X € |L| is smooth and contains a fiber V' = {(zg,50)} x P! < X of
12, the curve V' is contained in the indeterminacy locus of o3 (one may consult [23] for
further results: see Theorem 3.3 and the proof of its third and fourth assertions).

Consider the group Z/2Z » Z/27Z  Z/2Z acting on X. Its restriction to the fiber X
gives a subgroup I' of Aut(X). Let d be a positive integer. There are only finitely many
homomorphisms from Z/2Z xZ /27 » Z,/27Z to groups of order < d!, and the intersection
of the kernels of these homomorphisms is a normal subgroup of finite index. Denote by
'y the corresponding subgroup of Aut(.X). If I' has an orbit of cardinality < d on some
surface X, then this orbit is fixed pointwise by I';. Let us introduce the subvariety

Zy={(X,z); ze X andVfely, f(z)=a}c X. (2.3)
Since X — W} is proper, from this discussion we get:

Lemma 2.7. The following properties are equivalent:

(1) for a very general surface X € |L|, every orbit of " in X is infinite.
(2) for every d = 1, the projection Z5 — W, is not surjective;

2.4.2. Preparation. According to Lemma|[2.7] to prove Theorem [2.1]it suffices to show
that the projection of Z; < A onto W, is a proper subset for every d > 1. So, let us
assume that there is an integer d for which Z; surjects onto W and seek for a contra-
diction. Pick a small open subset U < IV for the Euclidean topology, over which one
can choose a holomorphic section s: X — sy of X — W) such that sx is fixed by I'y;
equivalently, the image of s is contained in Z;.

The group G = PGL,(C) x PGLy(C) x PGLy(C) acts on M and on |L|, preserv-
ing W,. Recall that modulo the action of this group, the space of Wehler surfaces is
irreducible and of dimension 17.

2.4.3. Case 1. Let us first assume that we can find U such that sx is fixed neither by
01, 09, NOT 3. Asin Lemmathis implies that for each pair of indices ¢ # j, the fiber
C of (m;)x: X — P! through sy is smooth near sy and sy € C'is not a ramification
point of the projection (7;)|c: C' — P'.

As in Section[2.1] fix coordinates (z,y, z) on M = (P')3 with 2, y, and z in C U {o0}.
Modulo the action of (G, we may assume that for every X in U,

(a) the point sy is the point (0,0,0) in (P')3;
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(b) X contains (o0, 0,0), (0,0, 0), and (0,0, 0);

(c) the tangent plane to X at the origin is given by the equation x + y + z = 0;

(d) the coefficients of 22y?2% and x, y and z in the equation of X are all equal to the
same complex number.

Note that (a) can be achieved by a single translation, (b) can be obtained by transforma-
tions of the form (z,y, z) — (=%, ﬁ, va), (c) is achieved by the action of diagonal
maps (note that by our assumption, the tangent plane to X at the origin sx = (0,0,0)
cannot be one of the coordinate planes), and then we obtain (d) by the action of homo-

theties. After such a conjugation, the equation of X is of the form

Ax?y?2* + Ba*y*z + B'a*y2? + B"xy*2? + Cayz + C'aoyz + CMaxyz® (2.4)
+ Da*y? + D'a?2* + D"y*2* + Exyz
+ Fay + F'o?z + F'aoy? + F"y%2 + F22° + FUy2?
+Gry+G'rz2+G'yz+ Alx +y +2) = 0.

Since this equation is defined up to multiplication by an element of C*, we are left with
19 parameters.

The automorphism fi5 = 01 o o, preserves the genus 1 fibration (73)x: X — P!.
The fiber of (m3)x through (0,0, 0) is a curve C' < P! x P! given by the equation

Dz*y® + Fay + F'zy® + Gy + A(z +y) = 0. (2.5)
Two cases need to be considered, depending on the smoothness of this curve.

— if this curve is singular, by Lemma [2.4] the coefficients in Equation (2.5)) satisfy
a non-trivial relation of the form P3(D, F, F" G, A) = 0;

— if it is smooth, consider an iterate f{3 of f1o in I'y, with 1 < m < d!; then f{}
is a translation of the genus 1 curve C' that fixes sx, so that it fixes C' pointwise.
From Lemma[2.5] the coefficients in Equation satisfy a relation of the form
Qs(D,F,F" ,G,A) = 0.

In both cases we get a relation of the form R3(D, F, F" G, A) = 0 (with R3 = P;
or (3) that depends non-trivially on the first factor. Similarly, looking at the dynam-
ics of fo3 = 09 003 and f3; = 03 o 01, we obtain two further relations of the form
Ri(D",F", F*,G",A) = 0and Ry(D', F', F*,G', A) = 0.

We claim that the subset defined by these 3 constraints is of codimension 3: indeed
if we look at the subvariety cut out by the equations R; = 0, ¢ = 1,2, 3 and slice it by
a 3-plane corresponding to the coordinates D, D’ and D”, then by Lemmas and 2.5
and the independence of variables, this slice is reduced to a point. This shows that the
image of the section X — sx is at most 16-dimensional, which contradicts the fact that
Wy/G is of pure dimension 17. Thus our hypothesis on Z; cannot be true and Case 1
does not hold.



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 12

2.4.4. Case 2. If Case 1 does not hold, every point (X, (x,y, z)) of Z, has the property:
(x,y,2) € X is a ramification point for at least one of the three projections (m;)x.
Equivalently, every point of the finite orbit /' = I'y(sx) < X is fixed by at least one
of the three involutions ;. This case is simpler, since a direct count of parameters will
lead to a contradiction.

e If a point of F' were a ramification point of each (7;) x, this point would be a
singularity of X, and X would not be in W,. So, each point of F'is a ramification point
for at least one and at most 2 of the projections.

e Now, assume that every point of F' is a ramification point for exactly 2 of the pro-
Jjections. Choose a local section sy of Z; above a small open set U < W), (for the
Euclidean topology), as in §2.4.3] Permuting the coordinates and using a translation in
G, we assume that sy = (0,0,0) and sx is fixed by o, and o3. After this normalization,
with notation as in Equation (2.1)), we have Ag1g = Agor = Aogo = 0. Let s’y = o1(sx);
this point is not equal to sx because otherwise X would be singular at sy. So, we may
use a transformation of the form 2 — —£— in G to assume that s’y = (0,0,0) (i.e.
Aggo = 0). Now by our assumption, this second point must be fixed by o9 and o3,
which imposes two more constraints (Asy; = As;9 = 0). Now, consider the curve
(7 < X defined by the equation x = 0. Using elements of GG acting on y and z by
Yy — ﬁ and z — wa, we may assume that (0,00, 00) is on (' and is a ramification
point for (m3)|c,. With such a choice, the coefficients of y*2* and y*z vanish. At this
stage we did not use the diagonal action of (C*)3, which stabilizes (0, 0,0), (<0, 0,0),
and (0,00, c0). With this we can impose for instance the same non-zero coefficients
for the terms xy, yz, and zx, so we end up with 17 coefficients, hence at most 16 free
parameters. Again this contradicts the fact that dim(WW) = 17.

e Now, assume that one of the points of the finite orbit F' is fixed by o3 but not by
01 and o9. The analysis is similar to that of the previous case. We may choose this
point to be sy, and using the group GG, we can arrange that sx = (0,0,0), o1(sx) =
(00,0,0), and oa(sx) = (0,0, 0); with the notation from Equation (2.1)), this means
Agoo = Aago = Agao = 0. In addition Agg; = 0 because (0,0, 0) is fixed by o3. By our
hypothesis, (o0, 0, 0) is fixed by o3 or o3 (or both). This implies that at least one of As;q
or Asp; vanishes. Likewise Ajo0Ag21 = 0. Now consider the curve C, < X given by
y = 0. Given the constraints already listed, the equation of C'; can be written as

ar?2? + frlz + yx2® + dxz 4+ e2° + 1z = 0. (2.6)

There are 4 ramification points for (7 )|c,, counting with multiplicities, and none of
them satisifies z = 0. So using z — —=- and * — Ax we may put one of them at

z—y

(1,0, 0). This imposes & +y + & =0and 5 + 6 = 0.
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Finally, we may still use the subgroup {Id} x C*x C* < G, which fixes the four points
(0,0,0), (0,0,0), (0,00,0) and (1,0, 0), to assume that the non-zero coefficients in
front of yz, xz, and 22 are equal. In conclusion, under our assumption we have found at
least 10 independent linear constraints on the coefficients of the Wehler surface so again
at most 16 free parameters remain.

So, in all cases we get a contradiction, and the proof of Theorem 2.1]is complete.

2.5. An example. Consider the subgroup H of Z/2Z » Z/27Z * Z./27Z generated by f1?
and fi7, for some large positive integer m (as above, fa3 = 09 0 03, f31 = 03 0 09).
The automorphism f3 preserves the fibers of the projection (7))x and its periodic
points form a dense set of fibers (see [[13}[17] or §3.1.1|below). The intersection number
between a fiber of (7);x and a fiber of () x is equal to 2. So, if m is big enough,
fm and fi share a common fixed point (in fact ~ ¢m?* common fixed points, for some
¢ > 0as m goes to +o0). If X € Wy, (f% fiI) is non-elementary because the class
¢1 € NS(X;Z) of the invariant fibration of fy3 is not fixed by f3;, and vice-versa (see
also Lemma [3.13| below). Taking a surface X e W} that is defined over Q, we get in
particular:

Proposition 2.8. For every integer N = 0, there is a smooth Wehler surface X defined
over Q and a non-elementary subgroup I" of Aut(Xq) with at least N fixed points.

Remark 2.9. If X € W, and m > 1, the group {f33, fi> has infinite index in Aut(X).
Indeed, the index of (09 0 03)™, (03 0 01)™) in Z/27Z » Z./27 * Z,/27Z is infinite.

3. NON-ELEMENTARY GROUPS AND INVARIANT CURVES
The main purpose of this section is to establish the following:

Theorem D. Let X be a compact Kiihler surface and let " be a subgroup of Aut(X)
containing a loxodromic element. Then there exists a loxodromic element f in I such
that every f-periodic curve is I'-periodic.

Along the way, some results of independent interest will be obtained: Proposition
which will be used in §7, gives an effective bound for the degree of a periodic curve
under a loxodromic automorphism; Proposition provides a singular model of (X, T")
without ['-periodic curves, and discusses ampleness properties of some line bundles:
this will be crucial for the study the dynamical heights in §5]

3.1. Preliminaries. Let X be a compact Kéhler surface. By the Hodge index theo-
rem, the intersection form ¢:|-) is non-degenerate and of signature (1, h%(X) — 1) on
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H"“'(X;R). Fix a Kihler form x on X, with {, xo A kg = 1, denote its class by [ro],
and define the positive cone in H''(X; R) to be the set

Pos(X) = {ue H"'(X;R) ; {(uu) > 0 and {[xo]|u) > 0}. (3.1

Equivalently, Pos(X) is the connected component of {u € H"'(X;R) ; {(u|u) > 0}
containing K#hler forms; in particular, its definition does not depend on (. This cone
Pos(X) contains one of the two connected components, denoted H x, of the hyperboloid
{u e H"'(X;R) ; (uluy = 1}; we can identify Hx with its projection P(Hy) in the
projective space P(H'!(X;R)), and in doing so we get Hyx ~ P(Hy) = P(Pos(X)).
Via this identification, the Hilbert metric on Hx coincides with the hyperbolic metric
induced by the intersection form (see [18} §2]), and the boundary JdHy is identified to
the projection of the isotropic cone in P(H''(X; R)).

An automorphism of X has a type (elliptic, parabolic or loxodromic) according to
the type of its induced action on Hy. Given a subgroup I' < Aut(X'), we denote by I,
(resp. I'iox) the set of parabolic (resp. loxodromic) automorphisms in I'.

3.1.1. Parabolic automorphisms (see [13, [15, [17]). If g is parabolic, it permutes the
fibers of a genus 1 fibration 7,: X — B, and induces an automorphism g of the curve
By. The induced automorphism g has finite order, except maybe when X is a torus
C?/A (see [20, Prop. 3.6]).

If g is the identity, then g preserves each fiber of 7,4, acting as a translation on each
smooth fiber. If U is a disk in B, that does not contain any critical value of 74, the uni-
versal cover of 7rg_1 (Up) is holomorphically equivalent to Uy x C, with its fundamental
group Z? acting by (x,y) € Uy x C — (x,y + a + br(z)) for every (a,b) € Z?, where
7: Uy — C is a holomorphic function taking its values in the upper half plane. In these
coordinates g lifts to a diffeomorphism §(x,y) = (x,y + t(z)) for some holomorphic
function t: Uy — C. The m-th iterate g™ fixes pointwise a fiber {z} x C/(Z® Z7(x))
if and only if mt(z) € Z@ Z7(x). The union of such fibers, for all m > 1, form a dense
subset of X. This comes from the fact that “t varies independently from 77, a property
which implies also that the differential of g™ at a fixed point is, except for finitely many
fibers, a 2 x 2 upper triangular matrix with 1’s on the diagonal and a non-trivial lower
left coefficient. We refer to [13][15][17], and to the proof of Theorem [5.12] for a slightly
different viewpoint on this property, using real-analytic coordinates.

The induced action g* on H'!(X'; R) admits a simple description: if F' is any fiber of
Ty, its class [F] € HM(X; R) is fixed by g*, the ray R, [ F'] is contained in the isotropic
cone, and =5 (¢g")*w converges towards a positive multiple of [ F'] for every w € Pos(X).
In particular the class [F] is nef. Regarding the induced action on Hy, P([F]) is the
unique fixed point of the parabolic map g* on Hy u 0Hy (see [13} 15, [17]).
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Recall that a linear endomorphism of a vector space is unipotent if all its eigenvalues
a € C are equal to 1; it is virtually unipotent if some of is positive iterates is unipotent.
Since the topological entropy of g vanishes, Lemma 2.6 of [24] gives the following.

Lemma 3.1. Let X be a complex projective surface. If g € Aut(X) is parabolic, then
g* is virtually unipotent, both on NS(X; R) and on H*(X; R).

3.1.2. Loxodromic automorphisms (see [13]]). The dynamics of a loxodromic automor-
phism f is much richer. The isolated periodic points of f of period m equidistribute
towards a probability measure i as m goes to +0o0, the topological entropy of f is pos-
itive, and /i is the unique ergodic, f-invariant probability measure of maximal entropy.

We denote by A\(f) the spectral radius of the induced automorphism f* on H!(X),
which is larger than 1. Then A(f) and 1/A(f) are eigenvalues of f* with multiplicity 1,
with respective nef eigenvectors 0? and ¢ which are isotropic and generate an f*-
invariant plane IT; < H''(X;R). Their projectivizations are the two fixed points
on JHx of the induced loxodromic isometry of Hy. The remaining eigenvalues have
modulus 1. We normalize the eigenvectors «9;% by imposing

Of[[K0]) = <Of [[Ro]) = 1 3.2)

where £ is the Kdhler form introduced at the beginning of (recall that {[ro]|[ko]) =
1). We set my = 5(6F + 07 ). With such a choice, (mg|my) = 507165 ) > 0.

Remark 3.2. Denote by Ang, (9}“, 0;) the visual angle between the boundary points
P(0;) and P(6; ), as seen from [rq] (or P([#o])). Then

1 1
{myslmg) = (sin (éAngHO(H;{, 9;))) =35 (1- cos(Ang, (07, 9]7))) ,  (3.3)

so in particular, 0 < {mys|ms) < 1, and the right hand inequality is an equality if and
only if my = [ko] (EI) In Hy, the geodesic joining P(0,) and (6} ) is the curve Ax(f)
parametrized by sf; +t0; with s € R and st = (#7|0; )~". The projection of [#,] on

Ax(f) is Wmf and

V2

cosh(dwu([ko], Ax(f))) = W (3.4)

(see [9, Lem. 6.3]).

2This can also be proved directly. For instance, on NS(X;R) this follows from the fact that the
intersection form is negative definite on [F]*/R[F] and the lattice NS(; Z) is g*-invariant.

3This can be obtained from elementary Euclidean geometry in the hyperplane (-|[xo]) = 1 by fixing
coordinates in which the quadratic form associated to the intersection product expresses as x3 — z7 —
...— a2 and [ko] = (1,0,...0).
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FIGURE 1. On the left is a picture of the Néron-Severi group of X in case
p(X) = 3. The green plane is Iy, it intersects the isotropic cone along the
two lines RH;{ and RG;; the brown line is its orthogonal complement IT}, the

magenta point is [ko]. If f preserves a curve E, its class is on HJ%. On the right
is a projective view of the same picture, but now the two brown lines are the
projectivization of the planes (GJT)l and (Of)l.

3.1.3. Non-elementary subgroups of Aut(X). In this paragraph we collect a few facts
on non-elementary groups of automorphisms, and refer the reader to [18, §2.3] for de-
tails. By definition a subgroup I' = Aut(X) is non-elementary if it acts on Hy as a
non-elementary group of isometries or, equivalently, if it contains a non-abelian free
group, all of whose elements f # id are loxodromic. Such a group I' = Aut(X) pre-
serves a unique subspace I = H'!(X;R) on which: (i) I" acts strongly irreducibly
and (i) the intersection form induces a Minkowski form. Moreover, 11 = Il for any
finite index subgroup of I'.

Various sufficient conditions on a subgroup I imply that it is non-elementary:

— T contains a pair of loxodromic elements (f, g) with {67,060, } n{0},0, } = &,
— I' contains two parabolic elements associated to different fibrations;
— I' contains a parabolic and a loxodromic element.

If Aut(X) contains a non-elementary group I, then X is automatically projective and
I is contained in the Néron-Severi group NS(X; R) (see [18, §3.6]). If in addition
I" contains a parabolic element, then Il is defined over QQ with respect to the lattice
NS(X;Z) (see [18, Lem. 2.9]).
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The limit set Lim(I") < 0Hy is the closure of the set of fixed points of loxodromic
elements in P(Ilr), or equivalently the smallest closed invariant subset in 0Hx. The
following lemma is well-known (see [39, Lem. 3.24]):

Lemma 3.3. If T is non-elementary, {(P(6F),P(07)) ; f € Tiox} is dense in Lim(T)>.

3.2. Periodic curves of loxodromic automorphisms. Our purpose in this paragraph
is to bound the degrees of the periodic curves of a loxodromic automorphism.

Lemma 3.4. Let e be an element of H*(X; R) such that e is orthogonal to m; and
{[ko]le) = 1. Then {ele) < 0 and

leley > % _ <tan (%Angm (e;,e;)))Q.

Note that under the assumption of the lemma m cannot be equal to [rg], s0 0 <
{mg|mysy < 1 by Remark[3.2]

Proof. Write my = [ko| + v and e = [ko] + w where v and w are in the orthogonal
complement [ro]*. Then, (e|m;) = 0, so (v|w) = —1, and the Cauchy-Schwarz in-
equality gives 1 < (—(v|v))(—(w|w)) because the intersection form is negative definite
on [ko]*. This inequality is equivalent to 1 < (1 — {my|m))(1 — {ele)) and the result
follows. U

If C' © X is a curve, define its degree (with respect to %) to be:

deg(C) = L ko = ([C[[ko])- (3.5)

and similarly define the degree of an automorphism g € Aut(X) by:

deg(g) = f ko A g" ko = {[Ko]|g*[Ko])- (3.6)
X
In the following lemma, Ky denotes the canonical bundle of X:

Lemma 3.5. Let cx > 0 be a constant such that {K x|-) < cx{[ko]|-) on the effective
cone. If f € Aut(X) is loxodromic and E is a reduced, connected, and f-periodic
curve, then

07107 ) deg(E) < 2(1 + cx).
If E is not connected, then E has at most p(X) — 2 connected components, thus
07107 ) deg(E) < 2(p(X) = 2)(1 + cx) < 2(b2(X) — 2)(1 + cx)

where p(X) is the Picard number of X and by(X) is its second Betti number.
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If F is f-invariant, then [E] is orthogonal to II ¢ for the intersection form, so the
Hodge index theorem implies that [E]2 < 0. Thus, if F is irreducible, it is determined
by its class [ E'], and Lemma shows that f has only finitely many irreducible periodic
curves; this finiteness result strengthens [41, Prop. B] (see also [12] and[15} Prop. 4.1]).
We shall denote by D/ the union of these irreducible f-periodic curves.

Example 3.6. We can take cy = 0 when X is a K3, Enriques, or abelian surface.

Proof of Lemma Assume first that ' is connected. Sete = %(]E) so that {e|[ko]) =

1. Since E is reduced and connected, its arithmetic genus (Kx + E|E) + 2 is non-
negative (see [, §II.11]), so

—(B|E) <2+ (Kx|E) < 2 + cx deg(E). (3.7)
On the other hand Lemma [3.4]implies

(mglmyg) 2
—(E|E) = —deg(E)*e|e) = ——"—LL— deg(E)>. (3.8)
L= {mglmyg)
Putting these two inequalities together we get
1 —{my|my)
deg(E)? < ———L—2 (2 + cx deg(E)). (3.9)
(mglmyg)

Solving for the corresponding quadratic equation in deg(£'), and applying the inequality
t(1 —t) < 1/4 witht = {mys|my) finally gives

(myslmy)ydeg(E) < (1 — (mglmp))ex + 1/vV/2 < ex + 1. (3.10)

For the second assertion, write £ as a union of disjoint connected components F;.
The classes [ E;] are pairwise orthogonal, and are contained in (67 )" (65 )", a subspace
of codimension 2 in the Néron-Severi group of X. This implies that there are at most

p(X) — 2 connected components. O

Proposition 3.7. Let X be a compact Kdhler surface endowed with a reference Kdihler
form kg such that § k3 = 1. If f € Aut(X) is loxodromic and E is an f-invariant curve,
then

deg(E) < 27 (p(X) = 2)(1 + cx) deg(f)™,
where the degrees are relative to ko and cx is as in Lemma[3.5]

Proof. Asin Remark denote by dy the hyperbolic distance on H y and let Ax(f) be
the axis of the loxodromic isometry f*. Lemma 4.8 in [9] implies that(ﬂ)

das([ro], Ax(f)) < 28 dus([ko], f*[ro]) = 28 cosh™ (deg(f)).

“It was stated for birational transformations of P2 in [9] but the estimate holds in our setting with the
same proof (actually an easier one since here we work in a finite dimensional hyperbolic space).
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Then, using the formula ((3.4) for the distance dg([ko], Ax(f)) together with the elemen-
tary inequality cosh(kz) < 25! cosh(x)¥, we obtain
2

o = COSh(dH([I{O],AX(f)))Q < 254(deg(f))56. (3.11)
(Y
The result now follows from Lemma 3.3 O

3.3. I'-periodic curves, singular models and ampleness. Denote by II{: the orthogo-
nal complement of Iy with respect to the intersection form.

Lemma 3.8. Let I' © Aut(X) be a non-elementary subgroup.

() A curve C < X is I'-periodic if and only if [C] € TI{.
(ii) If T contains a parabolic element, and C'is irreducible, then C' is I'-periodic if and
only if C'is contained in a fiber of m, for every g € I'p,,.

Proof. For (1), we note that since the intersection form is negative definite on ITE, T acts
on this space as a group of Euclidean isometries. Thus, if ¢ € II{ is an integral class,
then T'*(c) is a finite set. Since Il is generated by nef classes, [C] belongs to ITi: if
and only if each of its irreducible components does, so it is enough to prove the result
for an irreducible curve. Now an irreducible curve C' with negative self-intersection
is uniquely determined by its class [C]; so if [C] is contained in II3:, we conclude
that C' is I'-periodic. Conversely, if C' is I'-periodic, a finite index subgroup IV < T’
preserves C. If f € I']__, then <0;{ | [C]) = 0 because f preserves the intersection form.
But Vect(&}r, f € I'.,) is a I"-invariant subspace of IIr, hence by strong irreducibility
it coincides with ITr (see §3.1.3). So, [C] € II{, and in particular [C]? < 0.

Let us prove the second assertion. If [C] € IIf and g € Ty, [C] intersects trivially
the class [F'] of the general fiber of 7 ; this implies that C' is contained in a fiber of 7,
and is a component of a singular fiber since [C]?> < 0. Now, denote by S the set of
irreducible curves which are a component of 7, for all g € I',,,; it remains to prove that
each C' € S'is I'-periodic. Since I' is non-elementary, I';,,, contains two elements g; and
go with distinct fixed points on the boundary of Hy; these fixed points are respectively
given by the classes [F]] and [ F3] of any smooth fiber of 7, and 7,,; hence, 7, and 7,
can not share any smooth fiber. This shows that elements of S are contained in singular
fibers of 7,,, and in particular S is finite. Moreover, S is ['-invariant, because 1", is
invariant under conjugacy, thus every C' € .S is a ['-periodic curve. U

The following proposition shows that examples as in [19, §11] do not appear for
non-elementary groups containing parabolic automorphisms.

Proposition 3.9. Let I' ¢ Aut(X) be a non-elementary subgroup containing parabolic
automorphisms. There is a birational morphism my: X — X, onto a normal projective
surface Xo and a homomorphism 7: T' — Aut(Xy) such that
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(1) mg contracts all I'-periodic curves and only them;

(2) mg is equivariant: wgo f = 7(f) o my for every f € I';

(3) there is an ample line bundle A on X such that ;A is a big and nef line bundle,
whose class belongs to I1r.

Before starting the proof, recall that a line bundle M on X is semi-ample if and only
if M®™ is globally generated (or equivalently base-point free) for some m > 0 (see [43),
§2.1.B]). Set

Free(X; M) = {m € N | mM is base point free}.

(here we use the additive notation mM for the line bundle M®™.) This defines a semi-
group in IN, and we denote by fr( ) the largest natural number such that every element
of Free(X; M) is a multiple of fr(M). Given k in Free(X; M), the line bundle kM
determines a morphism

(I)kMS X — XkM c P(H[)(X, k‘M)v>,

onto a projective (possibly singular) normal variety Xj,;. According to Theorem 2.1.27
in [45], there is an algebraic fibre space ®: X — Y such that

(1) Y is a normal projective variety (see Example 2.1.15 in [43]);
(2) Xiar =Y and @y = P for sufficiently large elements & of Free(X; M);
(3) there is an ample line bundle A on Y such that ®*A = fr(M)M.

Note that conversely the pull-back of a base point free line bundle by a morphism is
base point free.

Example 3.10. To each g € Aut(X ), corresponds a semi-ample line bundle L, such
that (i) the members of |L,| are given by the fibers of 7, and (ii) 7,: X — B, coincides
with the fibration ®: X — Y determined by L,. The ray R,[L,] < H"'(X;R)
determines the unique fixed point of g* in 0Hx, and L, is nef (see Section 3.1).

Proof of Proposition[3.9) By Lemma [3.§] we can fix a finite number of parabolic ele-
ments g; € [', 1 < ¢ < k, such that the set of irreducible and ['-periodic curves C' = X is
exactly the set of irreducible curves which are contained in fibers of 7, fori = 1,... k.
The line bundle M = ). L, is semi-ample, it is nef because the L, are and it is big
because M? > 0, finally its class belongs to Il because the classes [L,,] belong to
the limit set of I' (see [18, §2.3.6]). Since M is big, the fibration ® = ®yy: X — YV
defined, as above, by the sufficiently large multiples of M is a birational morphism (a
generically finite fibration is a birational morphism since its fibers are, by definition,
connected). By construction ® contracts exactly the periodic curves of I'. So, set-
ting 7o = ® and Xy = Y, we obtain a birational morphism that contracts all periodic
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curves, and only them. Since I permutes these curves, it induces a group of automor-
phisms on X,. Moreover, we know that there is an ample line bundle A on X, such that
my A = fr(M)M; this proves the third assertion. O

Remark 3.11. In the proof of Proposition one may add extra parabolic automor-
phisms g; € I'par, say with & + 1 < j < ¢, and replace M by Zle m; L; for any choice
of integers m; > 0, while getting the same conclusion. After multiplication by Q7 , the

classes constructed in this way form a dense subset of the convex cone

V4
{Zaicl(LQi) 0>1, g; €y, and o; € R forall z} (3.12)
=1

This cone is ['-invariant, its closure is the smallest convex cone whose projectivization
contains the limit set Lim(I"), and it spans II; because Il is the smallest vector space
containing Lim(I"). Thus, the classes of the form ac; (7§ A), where A runs over the set
of ample line bundles on X and « runs over Q% , is a dense subset of this cone.

3.4. Proof of TheoremD| Let us first deal with the case where I' is elementary. By [15]
Theorem 3.2] there is a loxodromic element f € T such that (f*)?% has finite index in T'*.
If Aut(X)" is non-trivial, then X is a torus and then f has no invariant curve (see [13}
Remark 3.3] and [20]). Otherwise, the kernel of the homomorphism I' — I['* is finite,
f% has finite index in I, and therefore a curve is I'-periodic if and only if it is f-periodic,
so we are done when I is elementary.

When I' is non-elementary, Theorem [D] is covered by the following more precise
statement (recall that X is automatically projective in this case [18, Thm. 3.17]).

Proposition 3.12. Let X be a complex projective surface and I be a non-elementary
subgroup of Aut(X). Then there exists a loxodromic element f in 1" such that every
f-periodic curve is I'-periodic. If in addition T" contains a parabolic element, f can be
chosen of the form h o g, where g and h are parabolic and unipotent.

Proof. Consider a subset S < TI'j,, such that {(IP(Q;{),IP(Q;)) ; f €S} is dense in
Lim(T")?, as in Lemma Let us exhibit an f € S such that every I'-periodic curve is
f-periodic. By contradiction, we assume that every f € S admits at least one irreducible
periodic curve C(f) which is not I'-periodic, and we set ¢(f) = [C(f)]. By Lemma
c(f) does not belong to I, thus u +— {c(f)|u) is a non-trivial linear form on IIr.
Since the class of any periodic curve is orthogonal to ITy, {c(f)|07) = {c(f)|0}) = 0.

Let U and U’ be open subsets of 0H x intersecting Lim(I") non trivially, and such that
U U = ¢ let 2 be an element of U A Lim(T). Define

AU U") = {f € Aut(X) ; [ is loxodromic, P(#;) € U and P(0;) € U'}.
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and

DU, U") ={c(f); fe AUU") N S}. (3.13)
By Lemma D(U,U’) is a finite set. From our assumption on S, there is a sequence
(fn) of elements in A(U,U’) n S such that # = lim,,(P(¢ )). Extracting a subsequence
if necessary we may assume that ¢( f,,) is constant, equal to some ¢, € D(U,U’), and
we infer that z is contained in cZ. As a consequence, the limit set Lim(I") < P(Ily) is
locally contained in the finite union of hyperplanes P(ct N Ily), for ¢ € D(U,U’). By
compactness, Lim(I") is contained in a finite union of hyperplanes, which contradicts
the strong irreducibility of the action of I' on IIy.

Now, to prove the first assertion of the proposition, we simply put S = I'j,x, which
satisfies the desired density property by Lemma For the second assertion, we let
S be the set of loxodromic elements of the form h o g, where g and h are parabolic
and unipotent. To check the density property, we first observe that the set of fixed
points of parabolic elements is dense in Lim(T"): indeed it is enough to consider the
conjugates of a single parabolic transformation. Then, applying the next lemma together
with Lemma 3.T] finishes the proof. 0

Lemma 3.13. Let h and I’ be two parabolic elements of Aut(X) with distinct fixed
points u and v’ in 0Hy. Let U and U’ be small, disjoint neighborhoods of v and u/,
respectively, in P(Ilp). Thenif N € Z is large enough, fn := h™ o (W)Y is a loxodromic
automorphism such that P(0; ) € U and P(0; ) € U'.

Proof. Let us denote by P(h*) the linear projective transformation induced by h* on
P(NS(X;R)). Since U does not contain «/, P(h"*)N(U) < U’ if | N| is large enough;
similarly P(h*)N(U") = U. So for fx = h¥ o (W)Y, P(f%) maps U’ stricly inside itself
and likewise P((f5")*) maps U strictly inside itself. This implies that fy is loxodromic,
with its a-limit and w-limit points in U’ and U respectively. U

4. COMPLEX TORI AND KUMMER EXAMPLES

This section gathers some facts on automorphism groups of complex tori. We also
introduce and study the notion of Kummer group. Part of this material is well-known,
we provide the details for completeness.

4.1. Finite orbits on tori. Consider a compact complex torus A = C*/A. Each auto-
morphism f of A is an affine transformation f(z) = Ly(z) + t, where z — z + t; is
the translation part and L is a linear automorphism, induced by a linear transformation
of CF that preserves A. Let I be a subgroup of Aut(A).

Warning. By definition, compact tori and abelian varieties come equipped with their
group structure, in particular with their neutral element, or “origin”. On the other hand,
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an automorphism f with a non-trivial translation part ¢; does not preserve this group
structure. If v € A is fixed by I', conjugating I" by the translation z — 2z + = we
may assume that [' fixes the neutral element of A and acts by linear isomorphisms.
Alternatively, we can transport the group structure by using this translation and put the
neutral element at z: this changes the group structure without changing the underlying
complex manifold. We will frequently do this operation in the following, without always
specifying the change in the group structure of A.

Suppose that the orbit I'(z) < A is finite, of cardinality m, and consider the stabilizer
[y < T of x; its index divides m!. Conjugating I" by z — z + x, as explained above,
all elements f € I'y are linear. In that case, every torsion point has a finite I'y-orbit,
hence also a finite ['-orbit; in particular, finite orbits of I' form a dense subset of A for
the Euclidean topology. The next proposition summarizes this discussion.

Proposition 4.1. Let A be a compact complex torus, and let I" be a subgroup of Aut(A).
If T has a finite orbit, then its finite orbits form a dense subset of A. More precisely if a
periodic point of I is chosen as the origin of A for its group law, then all torsion points
of A are periodic points of T.

Remark 4.2. If in Propositiond.1|we moreover assume that dimc A = 2 and I contains
a loxodromic element, then conversely all periodic points of I" are torsion points. This
follows from Lemma 4.3 below.

4.2. Dimension 2 (see [15,47]). Let A = C?/A be a compact complex torus of dimen-
sion 2, and let f(z) = Ls(z) + t; be a loxodromic element of Aut(A). The loxodromy
means exactly that the eigenvalues « and 5 of Ly satisfy |a| < 1 < |3|. Pick a basis
of A, and use it to identify A with Z* and C? with R*, as real vector spaces. Then, L
corresponds to an element M € GL4(Z).

Lemma 4.3. Let f be a loxodromic automorphism of a compact complex torus A of
dimension 2. Then:

(1) f has a fixed point, and after translation z — z+x by such a fixed point, its periodic
points are exactly the torsion points of A;
(2) there is no f-invariant curve: the orbit f%(C) of any curve is dense in A.

Proof. For (1), using the above notation, fixed points of f are determined by the equa-
tion (L; —id)(z) € A — t;, or equivalently (M; —id)(z) € Z* — t;. Since the complex
eigenvalues of L are distinct from 1, there is at least one fixed point. So, after conjuga-
tion by a translation, we may assume that ¢t; = 0. Then, periodic points of f correspond
to points € R* such that M}?(m) — x € Z*: any solution to such an equation is rational,
which means that it corresponds to a torsion point in A.
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To prove (2) without loss of generality we may assume that ¢ty = 0. There are two
linear forms &7, {;: C* — Csuch that ; o Ly = a&j and {; o Ly = 3¢, . They
determine two holomorphic 1-forms on A, the kernels of which define two linear foli-
ations: the stable and unstable foliations of f. Both have dense leaves. The class 6} is

represented by S;[ A g, up to some positive multiplicative factor. If C' = A is a com-
plex analytic curve, there is an open subset U/ of A in which C' intersects both foliations
transversely. If y is a torsion point, y is f-periodic, and its stable manifold being dense,
it intersects C'. Thus, f"(C') accumulates every torsion point, and is dense in A. In
particular, C'is not invariant, as claimed. O

4.3. Kummer structures.

4.3.1. Kummer pairs. Let X be a compact complex surface, and let I' be a subgroup of
Aut(X). By definition (X, I") is a Kummer group if there is an abelian surface A, a
finite subgroup G of Aut(A), a subgroup I"4 of Aut(A) containing GG, and a birational
morphism ¢x : X — A/G such that:

(a) I'4 normalizes GG. Thus, if g4: A — A/G is the quotient map, there is a homomor-
phism h € T'y — h € Aut(A/G) such that g4 o h = h o g4 for every h € I'4; we
shall denote by I'4 the image of this homomorphism.

(b) the birational map ¢x is '-equivariant: there is a homomorphism I' 5 f — f €
Aut(A/G), whose image is denoted by T, such that gx o f = foqx forevery f e T.

(c) the subgroups I' and T4 of Aut(A/G) coincide.

To each f € I' corresponds an element f4 of I' 4, unique up to composition with elements
of G; the type of f as an automorphism of Aut(X) coincides with the type of f4 as an
automorphism of A, and A\(f) = A(fa).

Remark 4.4. Consider a section €2 4 of the canonical bundle K 4 such that S 4824 AQL =
1; it is unique up to multiplication by a complex number of modulus one. In particular,
the volume form vol 4 = Q4 A Q4 is invariant under Aut(A). The quotient of vol 4 by the
action of G determines a probability measure on A/G, and then on X . This probability
measure coincides with the measure of maximal entropy /s for every f € I'o.

From the definition of a Kummer group, Proposition [4.1]and Remark 4.2] we get:

Proposition 4.5. If (X, T") is a Kummer group with at least one finite orbit, then its finite
orbits are dense in X for the euclidean topology. Furthermore there exists a dense, I'-
invariant, Zariski open subset in which all periodic points of loxodromic elements of '
coincide.
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4.3.2. Classification of Kummer examples. Let us consider, firstly, the case of an infi-
nite cyclic group generated by a loxodromic Kummer example f. From the classifica-
tion given in [20, 21], we may assume that the finite group G is a cyclic group fixing the
origin of A; in other words, G is induced by a cyclic subgroup of GL,(C) preserving
the lattice A such that A = C?/A. And there are only seven possibilities:

(1) G = {id} and X is a blow-up of an abelian surface.

(2) G = {id, —id} and A/G is a Kummer surface, in the classical sense; in particular
X is a blow-up of a K3 surface.

(3) Ais the torus (C/Z[i])? and G is the group of order 4 generated by iid ; in this
case X is a rational surface.

(4) A is the torus (C/Z[exp(2im/3)])* and G is the group of order 3 generated by
exp(2im/3)id; in this case X is a rational surface.

(5) A s the torus (C/Z[exp(2i7/3)])? and G is the group of order 6 generated by
exp(im/3)id; in this case X is a rational surface.

(6) Let (5 be a primitive fifth root of unity. The cyclotomic field Q[(5] has two
distinct non-conjugate embeddings in C, o7 and o5 determined by o1((5) = (5
and 05((5) = (2. The ring of integers coincides with Z[(;] and its image by
o = (01,09) is a lattice A5 ¢ C @ C. The abelian surface A is the quotient
C?/A5. The group G is generated by the diagonal linear map

(z,y) — (G, Gy) 4.1

and has order 5. Here, X is rational too.
(7) As in the previous example, A = C?/A5, but now G has order 10 and is gener-
ated by (z,y) — (—(s, (5y), and again X is rational.

These constraints on (A, G) apply to non-elementary Kummer groups; in particular
we shall always assume that G is cyclic and fixes the neutral element of A.

In Cases (1) to (5) of the above list, the abelian surface is C?/(Ag x Ag) for some
lattice Ag in C. The natural action of GL(2,Z) on C? preserves Ay x Ay, and induces
a non-elementary subgroup of Aut(A), which commutes to G; as a consequence, it
determines also a non-elementary subgroup of Aut(A/G). On the other hand, cases (6)
and (7) do not appear:

Lemma 4.6. If (X,I") is a non-elementary Kummer group, then G is generated by a
homothety and the quotient A/G is not of type (6) or (7) in the classification above.

Proof. The group I" 4 permutes the fixed points of G. So, the stabilizer I', = Stabr, (0)
of the neutral element is a finite index, non-elementary subgroup of I'4. Pick any loxo-
dromic element f in ['; it acts by conjugacy on (G, which is finite, so there is a positive
iterate such that f* o g = g o f" for all ¢ € (G. Near the orgin, f" and g are two
commuting linear transformations, f™ has two eigenvalues, of modulus < 1 and > 1
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respectively, and g must preserve the corresponding stable and unstable directions of f.
Since I'Y is non-elementary, these tangent directions form an infinite set as f varies in
the set of loxodromic elements of ', so ¢ is a homothety, and we are done. O

4.3.3. Invariant curves. We keep the notation from the previous paragraphs and con-
sider a non-elementary Kummer group (X, I"). The singularities of A/G are cyclic
quotient singularities, and X dominates a minimal resolution of A/G.

Let us examine Case (2), when G = {id, —id}. Then G has 16 fixed points, and to
resolve the 16 singularities of A/G one can proceed as follows. First, one blows up the
fixed points, creating 16 rational curves. Then one lifts the action of G to the blow-up A.
If E is one of the exceptional divisors, then G fixes F pointwise and acts as w — —w
transversally, so locally the quotient map can be written (w, z) — (w?, z), with £ =
{w = 0} giving rise to a smooth rational curve of self-intersection —2 on A/G. This
construction provides the minimal resolution X, = A/G of A/G, the singularities
being replaced by disjoint (—2)-curves. Cases (3), (4), (5) can be handled with a similar
process because if = € A is stabilized by a subgroup H of G, then H is locally given
around x as a cyclic group of homotheties; so, in the minimal resolution of A/G the
singularities are replaced by disjoint rational curves E; of negative self-intersection E? €
{—2,...,—6}. Cases (6) and (7) are more delicate however, by Lemma we don’t
need to deal with them (see Appendix [A]for Case (6)).

Lemma 4.7. Let (X,I") be a non-elementary Kummer group on a smooth projective
surface. Then:

(1) X is abelian if and only if I' admits no invariant curve;
(2) any connected 1'-periodic curve D is a smooth rational curve, and the induced
dynamics of Stabp(I") on D has no periodic orbit.

Moreover, Dy = Dr for every f € D'

Proof. The minimal resolution X,,;, of A/G is unique, up to isomorphism (see [5,
§II1.6], Theorems (6.1) and (6.2), and their proofs). Thus, X dominates X,,;, and every
f € T preserves the exceptional divisor of the morphism X — X;, and induces an
automorphism fy;, of X i,. In particular I' admits an invariant curve, unless G = {id}
and X = X,,;, = A. Conversely in that case I has no invariant curve, by Lemma4.3]
This proves the first assertion.

Let us prove the second assertion for the induced group I'y;, © Aut(Xyin). Let £
be a connected periodic curve for [' ;. If fiin € i 18 loxodromic, it comes from an
Anosov map fa: A — A, asin Lemma@4.3| and f4 does not have any periodic curve.
Since E is fun-periodic, it is contained in the exceptional divisor of the resolution
Xmin — A/G; as explained before the lemma, this divisor is a disjoint union of rational
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curves, so F is one of these rational curves F, = q;(rlﬂin(qA(x)), where x € A has a
nontrivial stabilizer G, < G. In particular x is fixed by a finite index subgroup I'4 ,
of I'y. Now since I' is non-elementary, I'4 and I'4 , are non-elementary as well, and
since the action of I'4 , on A is by affine transformations, its action on the exceptional
divisor £, is that of a non-elementary subgroup of PGL,(C) = Aut(E,). In particular,
I' 4 does not admit any finite orbit in F,.

The birational morphism 7 : X — X;;, is equivariant with respect to I" and its image
i in Aut(Xpim)- So, 7! blows up periodic orbits of I'y,;,. The last few lines show
that, when such a periodic point y € X, is blown up, firstly y does not lie on the
exceptional locus of X,,;, — A/G, and secondly the exceptional divisor E, does not
contain any finite orbit. So, X is obtained by simple blowups centered on a finite set of
distinct periodic points of I';;,,, every connected component of the exceptional locus of
¢x 1s a smooth rational curve, and there is no I'-periodic point in these curves. U

5. UNLIKELY INTERSECTIONS FOR NON-ELEMENTARY GROUPS

This section is devoted to the proof of Theorem (Bl Since the proof comprises many
steps, let us start with a rough outline of the argument.

5.1. Strategy of the proof. If [' has a Zariski dense set F' of finite orbits, a standard
argument shows that there exists a sequence (z,,) € FN which is generic in the sense
that it escapes any fixed proper subvariety Y < X. Let m,, be the probability measure
equidistributed over the Galois orbit of x,,. We want to use arithmetic equidistribution
to show that the sequence of measures (m,, ) converges when n — co. For this, we
need a height function A, associated to some line bundle L on X satisfying appropriate
positivity properties, and such that &, vanishes on F'. In §§5.2H5.4) we construct such
height functions: they are associated to the choice of certain finitely supported probabil-
ity measures v on I'. Indeed to such a measure, we associate the linear endomorphism
P* = > v(f)f* on the Néron-Severi group of X, and we construct a big and nef line
bundle L such that P*[L] = a(v)[L] for some a(r) > 1; then, h, will be a Weil height
that satisfies the invariance ) v (f)hr o f = a(v)hr. The arithmetic equidistribution
theorem of Yuan shows that the measures m,, converge to a measure p, = S, A S,
where S, is a dynamically defined closed positive current with cohomology class equal
to [L]. On the other hand, the measures m,, , hence their limit x, do not depend on v.
As we vary the choice of v, there is enough freedom in the construction to show that for
every f € I'ix, 11, can be made arbitrary close to the maximal entropy measure jir. It
follows that y1; = pu is independent of f and is I'-invariant. In using the dynamics
of parabolic elements of I we deduce that Supp(x) = X. Then the classification of
['-invariant measures from [13} [17] implies that © has a smooth density, and the main
result of [19] shows that every f € I'i is a Kummer example (Theorem [5.14]in §5.6).
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At this point the Kummer structure may a priori depend on f, as in Example [5.1| below.
This issue is solved in by adding an argument based on Theorem [D| which finally
shows that (X, T") is a Kummer group.

Example 5.1. Let X be a Kummer surface possessing both a Kummer automorphism
f and a non-Kummer one h, as in [43]. Then, f and h o f o h™! are two Kummer
automorphisms which are not associated with the same Kummer structure; the pair
(X,{f,ho foh™'))is not a Kummer group.

5.2. Kawaguchi’s currents.

5.2.1. Action on H"'. Let X be a Kihler surface and let v be a probability measure on
Aut(X) satisfying the (exponential) moment assumption

f (Ifller + 1) dv(f) < +oo. (5.1)

By [18, Lem. 5.1] this implies the following moment condition on the cohomological
action of I':

JWﬁwa><+w, (5.2)

where f* is the endomorphism of H?(X;R) determined by f and ||| is any opera-
tor norm. (For the proof of Theorem [5.14] we will only consider finitely supported
measures so the moment conditions will be trivially satisfied.) Let I',, be the subgroup
of Aut(X) generated by the support of v. We define a linear endomorphism P, of
H?(X;C) by

Puw) = | () du(), 53)
The following lemma is a strong version of the Perron-Frobenius theorem (see [8]]).

Lemma 5.2. Assume that T, does not fix any isotropic line in H"'(X;R). Then, P,
has a unique eigenvector w, € HY'(X;R) such that w? = 1 and {w,|[ko]) > 0. This
eigenvector is big and nef. The eigenvalue o(v) such that

P,(w,) = a(v)w,

is larger than 1 and coincides with the spectral radius of P,; the multiplicity of a(v) is
equal to 1, and all other eigenvalues 3 € C of P, satisfy || < a(v).

Proof. Let u be an isotropic vector, contained in the closure of the positive cone Pos(.X).
Then, P,(u) has positive self-intersection, except if f*(u) € Ru for v-almost every f,
and then for all f in the support of v by continuity. Hence, the hypothesis implies that
P, maps the positive cone strictly inside itself. From the Perron-Frobenius theorem
([8]), P, has an eigenvector w, in the interior of this cone such that
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(1) w, is a dominant eigenvector: the eigenvalue «(v) such that P, (w,) = aw, is
the spectral radius of P,.

Since w, is in the interior of Pos(X ), we may assume that w, is in Hy. Projectively,
IP(P,) contracts strictly the Hilbert metric of the convex set P(Pos(X)) = P(Hx);
so, P, does not have any eigenvector in Hy besides w, itself, and the P(P,)-orbit
of any point of P(Hy) converges towards P(w,). The Kéhler cone is also invariant:
P,(Kah(X)) < Kah(X). Hence, w, is nef (it is in the closure of Kah(X)). It is big
because it is nef and has positive self-intersection (see e.g. [45, Thm 2.2.16]). Thus,

(2) this vector w,, is the unique eigenvector of P, in Pos(.XX) up to a positive scalar
multiple; it is nef and big.

If w’ is another eigenvector with eigenvalue () and w’ ¢ Ruw,, the plane Vect(w’, w,,)
intersects Hy along a geodesic, all of whose elements satisfy P,(v) = a(v)v. From
assertion (2), we get a contradiction. Now, if the multiplicity of «() in the characteristic
polynomial of P, is larger than 1, there exists a vector v ¢ Ruw, such that P,(u) =
a(v)u + a(v)w,. In the plane Vect(w,, u) the cone Pos(X) is bounded by two rays;
changing u into u + cw, if necessary (for some ¢ € R), these two rays are R, (w, + au)
and R, (w, — bu) for some positive real numbers a and b. But then, the image of
R, (w, — bu) by P, is not contained in Pos(X), a contradiction. It follows that

(3) «a(v) is a simple root of the characteristic polynomial of P,.
Finally,
4) if P,(v) = pv is any complex eigenvector with v ¢ Cw,, then || < a(v).

Indeed, if 3 is another eigenvalue with |3| = a(v), then 8 = a(v)e*™ for some 0 € R,
and there is a plane V < H"!(X;R) on which P, acts as a similitude of strength a(v)
and angle 270; pick v in this plane, then if ¢ € R is small, the vector w, + €v is in
Pos(X) and the P(P,)-orbit of P(w, + ev) in P(Hx) stays at constant distance from
P(w, ), contradicting the contraction property of P,. This concludes the proof. U

Example 5.3 (See [15], §2, and [19]], §2.2). Let f be a loxodromic automorphism, and
take v to be the probability measure pds + gd;—1 with p, ¢ > 0 and p + ¢ = 1. Note that
I', = fZ does not satisfy the assumption of Lemma

Then P, = pf* + q(f~')* preserves the f*-invariant plane II; ¢ H“'(X;R). If
p > ¢, the spectral radius of P, is equal to pA(f) + ¢/\(f), and the corresponding
eigenspace is the isotropic line of II; corresponding to the eigenvalue A(f) of f; if
p < g, the spectral radius is equal to p/A(f) + gA(f) and the eigenspace is the other
isotropic line in Ily. If p = ¢ = 1/2, then (P, )1, is the scalar multiplication by

1

al(f) = 5 (A(f) + 1/A(f)) (5.4)
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and all vectors u € Il satisfy P,(u) = «(f)u. This example shows that the previous
lemma fails for v, whatever the values of p and ¢ are: the dominant eigenvector is at the
boundary of the hyperbolic space, or is not unique.

5.2.2. Stationary currents. Let us borrow some notation from [18, §6.1]: we fix Kéhler
forms r;, the cohomology classes of which provide a basis ([x;]) of H!(X;R). Then,
if a is any element of H"!(X;R), there is a unique (1,1)-form ©(a) = Y, a;x; in
Vect(k;, 1 < i < kM (X)) whose class [©(a)] is equal to a. If S is any closed positive
current of bidegree (1, 1), then S = O([S]) + dd“ug for some upper semi-continuous
function ug: X — R: this function is locally the difference of a plurisubharmonic
function and a smooth function, and it is unique up to an additive constant.

The following proposition is essentially due to Kawaguchi, who proved it in [40]
under slightly more restrictive assumptions.

Proposition 5.4. Let X be a compact Kdihler surface, and let vol be a smooth volume
form on X. Let v be a probability measure on Aut(X) satisfying the moment condi-
tion (5.1). Assume that there exists w € H"'(X;R) and o > 1 satisfying

(1) P,(w) = aw;
(i) w is big and nef and w? = 1.

Then, there is a unique closed positive current S, such that
ff*(SV) dv(f) =aS, and [S,]=w. (5.5)

This current has continuous potentials: S, = ©(w) + dd°(u) for a unique continuous
function u such that SX wvol = 0. In particular, the product S,, A S, is a well-defined
probability measure on X.

Note that here I',, is not assumed to be non-elementary. Actually this proposition will
be applied in two situations:

— when I, does not fix any boundary point of Hx, w = w,, and & = «(v), as in
Lemmal[5.2}
— when v = (6 + &;-1) for some loxodromic automorphism and w is a fixed
1

point of mPy in Hy, as in Example 5.3

Proof of Proposition Fix a Kidhler form k¢ on X, as in Let 5 be a smooth form
with [3] = w. For simplicity, we denote by the same letter P, the operator § f*(-)dv(f)
acting on the cohomology, on differential forms, or on currents. Write (o 'P,)3 =
f + dd°(h) for some smooth function k. Then,

(in) s=s+ar (2 éuw'(h)) , (5.6)

7=0
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where (P,)7 (h = { hof(z)dv*(f) is the average of h with respect to the probability
measure {8 x)du I(f) and V*J denotes the j-th convolution of . The supremum of
|(P,)?(h)| on X satisfies ||(P,)?(h)|,, < |k, forall j > 1. From this we deduce that
the series on the right hand side of Equation (5.6) converges geometrically:

_a-ahl, __a |,

~ .
a—1 ok a—1 ok

(5.7)

0

Thus, if we set h, = Z]>O —=(Pr)(h) and S, =  + dd°(h,) we see that S, is a
closed current which satisfies P,(S,) = «S,. Furthermore, since [ can be written as
a difference of positive closed currents (e.g. by writing 5 = (5 + Ckg) — Cky for a
suitably large positive C), we infer that S, = lim,,_,.,(a~'B,)"3 is also a difference of
positive closed currents. Let us prove that S, is positive and unique.

By (ii), w is nef, which implies that the set Cur(w, ) of closed positive currents with
class w,, is not empty. The linear operator ! P, preserves this compact convex set; as
a consequence, Cur(w, ) contains a fixed point 7" of a~'P,. So we can fix a non-zero
closed positive current 7" satisfying P,(T)) = oT and [T] = [S,]. Since T'— S, is
cohomologous to zero and expresses as a difference 77 — 75 of positive closed currents,
according to [18, Lemma 6.1], we can write 7' — S, = dd°(h) where h = u; — us, and
u; is an (Akg)-psh function (A depends only of the mass of the 7;). Changing u; into
U; — SX u;vol we may assume that S X u;vol = 0 for ¢« = 1,2. From the invariance of
T — S, under o' P, we obtain that

Yo —hte (5.8)
(0%

for some constant ¢ € R; thus, o " P]'(h) = h + ¢, where ¢, converges geometrically

towards some real number ¢,,. From [[18, Lemma 6.6], there is a constant C' > 1 such
that

J in|PZL(h)\vo| < % f log(C|Jac(f~1)| ) dv*(f (5.9

x @ a” Jx

for all n > 1. Thanks to the moment condition and the subadditivity property
log(|[Jac((f © 9)™")[,,) < log([|Jac(f )] ) + log(|Jac(g™)] )

we see that

JX log(HJaC H ) dv(f f log(HJac(fn_1 o---of! H Ydv(fi)---dv(f,)

ZJ log( ‘Jac H Ydv(fy)---dv(f,)

= O(n),
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so the right-hand side of the inequality (5.9) tends to 0 as n goes to +oo. Hence
a~"P"(h) converges towards 0 in L' (X; vol). Since ™" P"(h) = h+c, also converges
towards h + co,, we deduce that h is a constant, namely h = —c.,, and that 7" = S,,. In
particular S, is positive, and is the unique positive closed current satisfying (5.5)).
Finally, since .S, has continuous potentials, S, A S, is a well-defined positive measure;

its total mass is 1 because 1 = w* = [S,]* = §, S, A S,. O

Remark 5.5. Here is another setting, closer to [40], in which the same result holds.
Let X be a (singular) complex projective surface and L be an ample line bundle on
X. Pick any integer m > 1 such that mL is very ample, and consider the Kodaira-
litaka embedding ®,,;,: X — PV, with PV := P(H°(X,mL)v). Then, L coin-
cides with ®* ; (O(1)|x) and any Fubini-Study form w determines a smooth (1, 1)-form
KEmp = ®F (w) on X (see [28] §1] for forms, currents, and potentials on singular
complex spaces). The form kj := %/{m 1 is locally equal to dd°(v) for some smooth
function, namely v = %u o ®,,;, where u is a local potential of w in PY. Now consider
a probability measure v on Aut(X) such that P*L = «L, with « > 1. Then, the proof
of Proposition applies, and provides a closed positive current S, on X with contin-
uous potentials such that P}S, = a.S,; this is proven in [40, Thm. 3.2.1] (Kawaguchi
assumes X to be smooth, but this is only used in the first line of the proof to introduce
the smooth form 7).

Example 5.6. As in Example consider the case v = %(5 7 +0s-1), where f is alox-
odromic automorphism. There are two closed positive currents TJ? and 7', with contin-
uous potentials, such that f *(Tfi) = A(f )ilT;—r; they are unique up to a positive scalar
factor and their classes generate the isotropic lines RQ}—“ (see [15, §5]). By convention,
we choose them so that ([T ]|[T;]) = 1, or equivalently, T* A T~ is a probability
measure; to determine them uniquely we further require {[7]|[xo]) = {[T} ]I[Ko])-
Beware that this normalization is different from that of 67 so a priori [T7] # 6F. Pick
aclass w = a[T} ] + b[T} ] with a, b > 0 such that w* = 1 (equivalently 2ab = 1).
By uniqueness, the current .S,, provided by Proposition is equal to aTJ?r + b1 ; in
particular, the measure S, A S, is equal to T’ Jﬁr AT ; which, in turn, is the measure of
maximal entropy 1 (see §@and [15, §85.2, 8.2]). O

5.2.3. Continuity properties of stationary currents. Now, consider a sequence of prob-
ability measures (v,,) such that the support of each v, is contained in a fixed finite set
{flu S >fm}:

Vo = > va(f:)dp,, (5.10)

with coefficients in the simplex of dimension m — 1 determined by the constraints
vp(fi) = 0and ), v,(f;) = 1. Assume that (1,) converges towards vy, = Y. Voo (fi)d 7,
and that none of the groups I',,, fixes a pointin H . For n € N, we denote by w,, € Hx
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the eigenvector of the operator P, given by Lemma|[5.2] and by S,,, the current given
by Proposition [5.4] for the class w,; we shall write S, = O(w,,) + dd‘u,,, as in
Proposition For the measure v,,, we make one of the following two assumptions:

(a) T, does not fix any point of 0Hx < P(H"(X;R)); or
(b) vy = %(5 7+ 04-1) for some loxodromic automorphism f, and w,, converges to
Wy, = \%([Tf | +[T]), with notation as in Example|S.6

In both cases, Proposition provides a unique closed positive current .S, with class
L . . . 1 + — .
[S,.,] = w,, suchthat P, = a(vy)S,,; it coincides with 7§(Tf + T ) in case (b).
In case (a), by the uniqueness in Lemma 5.2} the classes w,, converge towards w,,,;
in case (b) this convergence holds by assumption. Note that the corresponding constants

a(v,) converge as well.

Lemma 5.7. Under the above assumptions,

(1) the sequence of closed positive currents (S,, ) converges towards S, ;
(2) the canonical (continuous) potentials v, converge uniformly to that of S, ;
(3) the sequence of measures ji, := S,, NS, convergestowards S, N S,,.

In case (b), S,, N S, is the unique measure of maximal entropy (s of f.

Proof. The first assertion follows from the uniqueness of the current .S, obtained in
Proposition [5.4] and the compactness of the space of currents of mass 1. The geometric
convergence obtained from Equation (3.7 shows that the sequence of potentials u,, is
equicontinuous, and by the uniqueness of the normalized potentials, it follows that (u,,, )
converges uniformly to w,, . Then the convergence of the sequence of measures ()
follows from the continuity properties of wedge products of currents (see [27, 111.3.6]).
Finally, the characterization of S, A S, in case (b) was explained in Example[5.6] [

5.3. Rational invariant classes. We now construct sequences of probability measures
for which the fixed classes w,,, have good positivity and integrality properties; the last
assertion makes use of the contraction my: X — X constructed in Proposition 3.9

Proposition 5.8. Let " be a non-elementary subgroup of Aut(X ) such that 11y is defined
over Q. Let f be a loxodromic element of T'. There is a sequence (v,) of probability
measures on Aut(X) such that

(1) The support Supp(v,,) is a finite subset F' of I that does not depend on n and
generates a non-elementary subgroup of I' containing f;

(2) vn(9) is a positive rational number for all g € F';

(3) the unique eigenvector w,, of P, in Hx is an element of R NS(X;Z);

(4) the corresponding eigenvalue o(v,,) belongs to Q. n]1, +ool;

(5) vy, converges to the measure (67 + 6;-1) and w,,, converges to \%([T;’ |+ [T ).



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 34

If T contains a parabolic element g, one can furthermore assume that g belongs to F
and that w,, € R 7i[Ay] for some ample line bundle A,, on X,.

Proof. For the proof we use the conventions of §3.1.2] in particular the classes 67, which
can be defined by 67 = (T7 [[ro]) [T} ].

Step 1.— Since the representation of I' on Il is irreducible, it is also irreducible
over C. Indeed, if W is a proper, ['-invariant, complex subspace of IIr ®gr C, then
W does not contain any non-zero real vector u € H'!(X; R); in particular, it does not
contain any isotropic eigenvector of any loxodromic element of I'. This implies that
W is contained in the orthogonal complement (0;{)l for all h € I',. Butin Il the
intersection [ hel'yo. (6;7)* is defined over R and is I'-invariant, so it is trivial.

Thus, according to Burnside’s theorem (see [36]), I' contains a basis of the real
vector space End(IIr). More precisely, one can find a basis (ff, f5,..., fx) with
N = (dimIIp)? such that f; € T forall 4, f; = f and f, = f~! (indeed, f and f~*
are linearly independent endomorphisms). In particular, the set of linear combinations
> i fF with oy > 0 contains a non-empty, open, and convex cone of End(Ilr).

If I' contains a parabolic element g we can further require that g belongs to the basis,
because f*, g*, and (f~!)* are linearly independent, as can be seen by diagonalizing f*.

Step 2.— Set F' = {fi, fo, -+, fn}and Ay = {(r;) € RY ; Y, v = 1}. Let Ay
be the interior of this simplex. Points in A%, correspond to probability measures v =
> Vidy, whose support is equal to F. When v € AY, the group I, is non-elementary
by Step 1, so by Lemma [5.2] P, has a unique fixed point w, in Hy. As a consequence,
the map v € A° — w, is continuous.

Now, consider a sequence (1,,) of elements of A% converging to ad; + (1 — a)ds-1,
with 0 < a < 1. Normalize the fixed point w,, by setting w,, := {(w,, |[xo]) " 'w,,, s0
that (0, |[ko]) = 1 and W, stays in a compact subset of H!(X;R). If w,, converges
to W along a subsequence (n;) the limit is a nef eigenvector of the operator af* + (1 —
a)(f~1)* associated to an eigenvalue > 1. Thus, if a is small the limit must be equal
to ¢ and the sequence (w,) converges towards this eigenvector (see Example |5.3).
Conversely, if 1 — a is small, then the limit is 9;[.

The subset
A (e) = {(n) e AY ; v < &,Vi = 3} (5.11)

is connected. So, the closure of its image by the continuous map v — {w,|[ro]) 1w,
is a compact and connected subset of I, and the intersection of these compact sets is
also connected. This set is contained in the segment [0, 9;{] because it is contained in

Pos(X) and in the union of eigenvectors of af* + (1 — a)(f~1)*, for a € [0,1]. Since
it contains the endpoints of this segment, it actually coincides with it.
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From this we deduce that there exists a sequence of probability measures v,, € A},
such that (w,, |[ko]) " w,, converges to the class %(0;[ + 6} ), hence

— w,, converges to the class I ([T] + [T} ]).
Then the arguments given in Example[5.3] Example[5.6] and Lemma [5.7] show that:

— P, converges towards 1 (f* + (f7)*);
— a(v,) converges towards a(f) = 2(A(f) + 1/A(f)).

Step 3.— At this stage the coefficients v, (f;) and the eigenvalues a(v,,) are positive
real numbers. Let U,, be a small open neighborhood of v, = (v,(f;)) in A%. As a
consequence of the first step, the map v/ € U,, — w, contains a small neighborhood
of w,, in IIr € NS(X;R). Thus, after a small perturbation of v,, we may assume that
w,, is an element of R, NS(X;Z). According to Proposition [3.9] and Remark
when I' contains parabolic elements, we may further choose w,, to be proportional to
the pullback |75 A, ] of an ample class.

The equation satisfied by w,,, i8 a(v,)w,, = >, va(fi) fi(w,, ). Write w,, = n,y,
for some w,, in NS(X; Q) and 7,, in R ; the equation becomes

N
()i = Y vn(f3) £ (1Bn). (5.12)
=1

This is a linear relation of the form Syw, = Y, 5;f; (), where w,, and the f; ()
belong to NS(X; Q) and the §; are positive real numbers (with 5, > 1). Thus, given
any ¢ > 0, there is a relation of the form By, = D B; fi(w,,) where the coefficients
$3; are rational numbers which are e-close to the original /3;. This proves that we can
perturb v, one more time to add the assumption that the v, (f;) and «(v,,) are positive
rational numbers. 0

5.4. Arithmetic equidistribution. Assume that the normal projective surface X and
the subgroup I' of Aut(X) are defined over some number field k < Q. (X is not

assumed to be smooth here.) For y in X (Q), let m, denote the uniform probability
measure supported on the Galois orbit of ,

1
my = D oy (5.13)
W) ec@ion

here, deg(y) is the degree of the closed point defined by y, or equivalently the cardinality
of the orbit of i under the action of the Galois group Gal(Q : k), and the sum ranges
over all points 3’ in this orbit. A sequence (z;) of points of X (Q) is generic if the only
Zariski closed subset of X containing infinitely many of the x;’s is X. Equivalently,

(x;) converges to the generic point of X for the Zariski topology.
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In the following theorem, I, is the group generated by the support of v, and S, is
the current given by Proposition[5.4]and Remark [5.5] (associated to the normalized class

(wlw) ™ 2w).

Theorem 5.9. Let X be a normal projective surface defined over a number field k.
Let v be a probability measure on Aut(Xy) with finite support F' and rational weights
v(f) e Qy, for fin F. Assume that

(i) P¥w = aw for some ample class w in NS(X; Q) and some eigenvalue o > 1;
(i) (z;) € X(Q)N is a generic sequence such that each x; is a periodic point of T,

Then, the sequence of probability measures (m.,) converges towards the measure S, A
S, and this measure is I -invariant.

It is important here that w is a rational class, that is w € NS(X; Q) instead of just
NS(X;R), since we rely on results of Kawaguchi, Yuan and Zhang that require this
assumption. It is also crucial that X is not supposed to be smooth because this result
will be applied to the model X, constructed in §3.3] When I', is non-elementary, the
eigenvector w must be proportional to w, and o = a(v) (as in Lemma .

As explained in Section [5.1] a consequence of the theorem is that the limit S, A S,
of the sequence (m,,), depends only on I', (but not on the weights v(f)); this will
ultimately imply that Assumption (ii) happens only in very rare situations.

Example 5.10. Under the assumption of Theorem assume furthermore that X is an
abelian surface. Since I', has a periodic point x1, the stabilizer I',, = Stabr, (1) has
finite index in I',; conjugating by a translation we can take x; as the neutral element for
the group law on X ~ C?/A. Then, the periodic points of I';, (and of T',) are exactly
the torsion points of X (see §4.1). By the equidistribution theorem of Szpiro, Ullmo,
and Zhang, the measures m, converge towards the Haar measure of X (see [53]). Also,
I';, is induced by a subgroup fxl of GL,(C) preserving the lattice A, and '), is a group
of affine automorphisms with linear part given by fxl and translation part given by the
finite subset I',(0) = X. Every cohomology class v in H"'(X; R) has a distinguished
representative, given by the unique translation invariant (1, 1)-form w, on X such that
[w,] = u. Since T, acts by affine automorphisms, the operator o' P, preserves w,,,
and the current S, is given by (w, |w, >"/?w,, . Thus, for abelian surfaces, Theorern
corresponds to the theorem of Szpiro, Ullmo, and Zhang together with the fact that
Wy, A Wy, 18 proportional to the volume form inducing the Haar measure on X.

Preliminary remarks for the proof of Theorem[5.9 SetI" = I',. Letm: Y — X be a
minimal resolution of X; it is unique, up to isomorphism (see [5, §111.6], Theorems (6.1)
and (6.2)), and I' lifts to a group of automorphisms I'y of Y'; we shall also consider v
as a measure on ['y. The pull-back 7*: Pic(X) — Pic(Y) is an embedding, and an
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isometry for the intersection form. Since 7*NS(X;R) is I'y-invariant and contains
classes with positive self-intersection, we deduce that I' is elementary if and only if
I'y is, and [y, = 7*IIr < 7*NS(X;R) if I is non-elementary. Also, 7*w satisfies
P,(m*w) = ar*w in NS(Y;R).

If T" is elementary, we apply [15, Theorem 3.2] on Y. Two cases may occur. In the
first case, 'y fixes a class u # 0 in the closure of the positive cone P_os(Y); but then
{r*w|uy > 0 because (r*w|m*w) > 0, and (P, (m*w)|u) = {(m*w|u) because u is
invariant: this contradicts @ > 1. So, we are in fact in the second case: 'y (resp. I')
contains a loxodromic element f and preserves the pair of lines R[7"] U R[T]. So,
even when I' is elementary, we know that it contains a loxodromic element.

Now, assume that Pic’(X) is non-trivial; equivalently, Pic’(Y") is non-trivial. Since
I'y contains a loxodromic element, we deduce from [15, Theorem 10.1] that Y is a
blow-up of an abelian surface (for Pic’(Y) is trivial when Y is birationally equivalent
to a rational, K3, or Enriques surfaces). But then, X is smooth and is also a blow-up of
an abelian surface. If X itself is not an abelian surface, the exceptional divisor £ of the
blow up is ['-invariant; as above since w is ample and o > 1 we obtain a contradiction.
So X is abelian, and Theorem [5.9] follows from the discussion in Example Thus
in what follows, we may assume Pic’(X) = 0 to simplify the exposition. O

Proof of Theorem[5.9, We now assume that Pic’(X) = 0 and that T, contains a loxo-
dromic element.

The proof is based on standard ideas from arithmetic equidistribution theory. For the
reader’s convenience we provide background and details (see also [46] for the appli-
cability of arithmetic equidistribution in this context). Changing w into a multiple, we
may assume w € NS(X; Z). Multiplying the equation >}, v(f) f*(w) = aw by the least
common multiple b of the denominators, we obtain the linear relation

D n(f)fF(w) = dw; (5.14)

fer
in which d = ba and the coefficients n(f) = bu(f) are positive integers such that
din(f)=b<d=ba (5.15)
feF
because o > 1. Denote by D a divisor with class w, and by L the line bundle Ox (D).
Since Pic’(X) is trivial, the Equality (5.14)) implies
()= = 1% (5.16)
feF

up to an isomorphism of line bundles that we do not specify. From this identity, Kawa-
guchi constructs in [40, §1] a function hy: X (Q) — R, which satisfies the relation
2 n(f)hr o f = dhy, and differs from the naive Weil height function associated to L
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only by a bounded error. It will be referred to as as the canonical stationary height
(associated to v and L). This height function may be decomposed as a sum of continuous
local height functions, see [40, §4]. Arakelov theory also provides a canonical adelic
metric on (X, L); in particular, for each place v of k, there is a metric | - |, on the line
bundle (X, , Ly, ), where k, is an algebraic closure of the v-adic completion of k, such
that

[T1sG@)EY = Is@)l; (5.17)

feF
for every local section s of L defined over k. In our setting, an embedding k < C is
fixed; it corresponds to one of the places of k. The adelic metric corresponding to that
place gives a continuous metric on L, and from the relation and the uniqueness
of the current S, we see that the curvature current of the metric is precisely the current
S, from Proposition [5.4] (see also Remark [5.5).

Lemma 5.11. A point x € X (Q) satisfies hy(z) = 0 if and only if its T,-orbit is finite.

Proof (see [40]], Prop. 1.3.1). Let k' be any number field containing k. The set {z €
X(X') ; hy(z) = 0} is T',-invariant and by Northcott’s theorem it is finite, so every
element of that set has a finite orbit. Let us prove the other implication. Iterating the
relation ; ; n( f )iy o f = dhy, and evaluating it on a periodic point z yields o™y (z) =
Dger v*™(g)hy(g(x)) where 1*" is the n-th convolution of v. The right hand side is

bounded because /1, (g(x)) takes only finitely many values, and on the left hand side the
term o™ goes to +0o0; thus Ay (z) = 0, as asserted. O

Let Ay denote the ring of adeles of the number field k. The sections of L defined
over k determine a lattice H°(X, L) in H°(X, L) ® Ay, and the quotient (H°(X, L) ®
Ay)/H°(X, L) is therefore compact. Denote by L the line bundle L endowed with its
canonical adelic metric. For each place v, denote by B, = H(X, L) ® k, the unit ball
with respect to the v-adic component | - |, of the adelic metric of L. Let \j, be a Haar
measure on H°(X, L) ® Ay. The quantity

)\L(HUEMk BU)
M(HO(X, L) ® A/ HO(X, L))
does not depend on the choice of Haar measure. Taking tensor products, we get a

sequence of adelic metrized line bundles (f®n)n>1, and by definition the arithmetic
volume of L is

x(X,L) = log (5.18)

—®n
—~ — ‘ X(X, L)
vol, (X, L) = hnn—{iip 6

This is to be compared with the usual volume vol(X, L) of L, which by definition is the
limsup of %hO(X , L®"), as n tends to +o0. A fundamental inequality of Zhang asserts

(5.19)



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 39

that if () is a generic sequence in X (Q),
o vol, (X, T)
liminf hp(z;) > 21—
minf he(2;) > 300X L)
This follows from an adelic version of the Minkowski theorem on the existence of inte-
ger points in lattices (see e.g. [S7] or Lemma 5.1 in [25]).

(5.20)

As for the usual volume, the arithmetic volume can be interpreted in terms of arith-
metic intersection. Indeed, to L is associated an arithmetic degree cTe\g(cl (L)3), and it is
shown in [57] that \7(;IX(X, L) = d/e\g(cl (L)) = 0 (see also [40, Thm 2.3.1]). Thus, the
existence of a generic sequence of periodic points (z;) shows that \75|X(X ,L) = 0and
hi(x;) = @X(X,f) for all j.

We are now in position to apply Yuan’s equidistribution theorem (see [36, 16]]): the
sequence of measures (m,;) converges towards the probability measure S, A S, as j
goes to o0. If f is any element of I',, the points f(z;) also form a generic sequence
of I'-periodic points. Since the actions of I and Gal(Q : k) commute, we infer that
fe(my;) = my(,), so taking the limit as j — oo yields f.(S, A S,) = S, A S, and
finally S, A S, is I',-invariant. ]

5.5. Density of active saddle periodic points. Let f be a loxodromic automorphism
of X. We say that a periodic point of f is active if it is contained in the support of the
measure of maximal entropy 1. From [31, [15] we know that a saddle periodic point
that is not contained in any f-periodic curve is active (see [[15], Theorem 8.2).

Theorem 5.12. Let X be a compact Kdhler surface, and I" be a non-elementary sub-
group of Aut(X) that contains a parabolic automorphism. Then, given any non-empty
open subset V < X (for the Euclidean topology), there exists a point x € V and a loxo-
dromic element f € I such that x is an active saddle periodic point of f. In particular,
the union of the supports of the measures [y, for f € I, is dense in X.

Before proceeding to the proof, let us point out the following fact, which readily
follows from Lemma together with the fact that an irreducible curve with negative
self-intersection is determined by its class in NS(X;Z) < NS(X; R).

Lemma 5.13. Let U and U’ be two disjoint open subsets of P(NS(X;R)) containing
nef classes and introduce the set

AU U") = {f € Aut(X) ; [ is loxodromic, P([T}"]) € U and P([T} ]) € U'}.

Then, the union of all periodic curves of all elements of A(U,U’) is a finite set of curves.

Proof of Theorem[5.12] Pick g in I',,,. Since I' is non-elementary we can conjugate g
by an element of I'},, to produce a pair g, h € I',,, with distinct fixed points 0H .
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Step 1.— Assume that X is a blow-up of an abelian surface A, and pick f in I',. By
Lemma 4.3} its periodic points are dense, and all of them are active because iy is the
pull back to X of the Haar measure on A. Thus any open subset of X contains active
saddle periodic points.

From now on, assume that X is not a blow-up of an abelian surface.

Step 2.— From Section g preserves a unique fibration 7,: X — B, and the auto-
morphism induced by g on B, is periodic. Replacing g by some iterate, we assume that
mg0g = m,. LetU < B, be a small disk containing no critical value of m ;. There
is a real analytic diffeomorphism ®: 7= (/) — U x R?/Z? and a real analytic map
¢: U — R*such that my o @ = 7y and g := P 0 g o P! satisfies

ga(b,2) = (b, 2 + (b)) (5.21)
for all points (b, z) € U x R?/Z?. According to [13,[17]], o is generically of maximal
rank: there is a finite set Z < U such that (Dy),: T, — R? has rank 2 for every
b e U\Z; hence, {b e U ; p(b) € Q*/Z?} is dense in U. If o(b) = (ag/N,by/N) for
some integers ag, by and N, then every point ¢ = (b, z) in the fiber is fixed by g& and

ids 0

Thus, in any holomorphic coordinate system (x,y) in which 7, expresses as 7 (z,y) =
, the differential of ¢"¥ at the fixed point ®~1(q) is of the form (! 9) with a # 0.

Step 3.— The invariant fibrations 7, and 7, are transversal in the complement of a proper
Zariski closed set Tang(7,, 7). According to Lemma and Lemma we can
find an integer N > 0, and a divisor ' < X such that all elements géN o h™N with ¢ > 1
are loxodromic and do not have any periodic curve outside F'.

Step 4.— Let D be the union of the singular and multiple fibers of 7, and of m, of
Tang(m,, 74), and of the divisor F'; D is a divisor of X. Let }V be an open subset of X.
Then V contains a small ball V' such that

— V" does not intersect D;
— my(V') and 7, (V') are topological disks U, and U}, in B, and B}, respectively;
— there are local coordinates (z,y) in V' (resp. z in U, and y in U},) such that
(mg)p (2, y) = x and (m4) (2, y) = y.
Step 2 provides a point (¢, ) € V' and an integer N > 0 such that ¢ fixes the fiber of
7, through (z9, yo) pointwise, h” fixes the fiber of 7, through (z¢, yo) pointwise, and

10 10
(DQN)(xo,yo) = ( a 1 ) > and (DhN)(ﬁo,yo) = ( 0 1 ) (523)

for some non-zero complex numbers a and b. If ¢ € Z is sufficiently large, f;ny =
(Dg™) 2.y © (DY) ) is a loxodromic automorphism, (o, o) is a fixed point of foy
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which is not contained in a periodic curve of f,y (because (g, yo) is not in F’), which
is shown to be a saddle by an explicit computation. Thus, as explained before the proof,
(20, yo) is active, and we are done. O

5.6. Measure rigidity and Kummer examples.

Theorem 5.14. Let X be a complex projective surface and let I be a subgroup of Aut(X).
Assume that

(1) X and T are defined over a number field k < Q;

(1) I' is non-elementary and contains a parabolic automorphism.

If I has a Zariski dense set of finite orbits, then every loxodromic automorphism in I is
a Kummer example.

Proof. Step 1.— From the Zariski dense set of finite orbits we can extract a generic
sequence of T-periodic points (z;) € X (Q)N.

Since I is non-elementary, it contains a loxodromic element f. The isolated periodic
points of f are defined over Q, because X and f are defined over Q, and the non-isolated
periodic points of f form a finite number of f-periodic curves (see §3.2)). Thus, we can
find a Zariski dense set of I'-periodic points z} in X(Q). If Z < X is an irreducible
curve that contains infinitely many of the z, then Z is defined over Q too. There are
only countably many curves defined over Q. Thus, by a diagonal argument, we find an

infinite sequence of periodic points z; € X (Q) such that (z;) is generic.

In what follows, (z;) denotes such a generic sequence of periodic points. Consider the
contraction 7y: X — X, of the union Dr of all I'-periodic curves (see Proposition[3.9);
the group I' also acts on the normal projective surface X,. Note that the projection
(mo(z)) € Xo(Q)N is also generic.

Step 2.— There exists a I'-invariant measure m such that py = m for all loxodromic f.

Fix an arbitrary element f in I',,. By [18, Lemma 2.9], Il is defined over Q so
applying Proposition we obtain a sequence of probability measures (1,). Denote
by S,, and S,, o the currents, on X and X respectively, given by Proposition [5.4] and
Remark 5.5} by construction 7S, o = S,,,, where the pull-back is obtained by locally
pulling back the continuous potentials.

For the moment we fix the integer n. Theorem[5.9]shows that the sequence of proba-
bility measures 1, (,,) converges towards S, o A Sy, 0 as J goes to +oo. In particular,
S0 A Sy,0 18 a fixed I-invariant probability measure jio := lim; My, that does
not depend on n. Since S,, o has continuous potentials, this measure gives no mass to
proper analytic subsets of Xj. Let u be the probability measure which is equal to 7] (110)
on X\ Dr and gives no mass to Dr. Since S,, has continuous potentials, i = S, A S, .
In X, the sequence (mx].) converges to p. Indeed, if a subsequence of (mm]) converges



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 42

towards some probability measure A, then (7). A = 1o, and since zo does not charge
any point of X, we infer that \ is equal to 7 (o) on X\ Dr and does not charge Dr,
which means that A = u. Thus, by compactness of the set of probability measures, m,;
converges towards .

Now, we let n — 0. By Proposition (5), Proposition [5.4] and Lemma
Sy, A Sy, = jconverges towards i as n goes to 4+-00. Thus o = 15 for all loxodromic
elements f in . In particular, p is f-ergodic hence I'-ergodic.

Step 3.— Conclusion.

As already explained, p gives no mass to proper algebraic subsets of X. Furthermore,
Theorem [5.12]implies that the support of y is equal to X. Thus, Theorem 0.2 of [13]]
(see also [17]) shows that u is absolutely continuous with a smooth density. Since
i = fis, the Main Theorem of [19] implies that (X, f) is a Kummer example, as was to
be shown. U

5.7. From Kummer examples to Kummer groups. In this paragraph we prove the
following theorem, which together with Theorem [5.14] implies Theorem [B] Its formu-
lation, involving subgroups generated by unipotent parabolic elements, is intended for
further use in

Theorem 5.15. Let X be a compact Kdhler surface, and I' be a non-elementary sub-
group of Aut(X) containing parabolic elements. Assume that, given any pair of unipo-
tent parabolic elements (g, h) € Fgar, every loxodromic element f € (g, h) is a Kummer

example. Then (X, T') is a Kummer group.

Proof. Consider the birational morphism 7p: X — X, given in Proposition By
Proposition there exists a loxodromic transformation f, of the form h o g for some
unipotent elements ¢, i in I',,;, such that its maximal invariant curve Dy coincides
with Dr. By assumption, f is a Kummer example, which entails that X, is a quotient
A/G, with A = C2%/A an abelian surface and G a finite subgroup of Aut(A) generated
by a diagonal map gy € GL,(C) of order 2, 3, 4, 5, 6 or 10 (see §4.3.2).

The group I' induces a group of automorphisms of X,. View X as an orbifold: its
fundamental group is A x G and its universal cover )?B is C2. Concretely, this means
that X is the quotient of C? by the group of affine transformations with linear part in
G and translation part in A. The canonical hermitian metric on C? is invariant under the
affine action of A x G. If h: C2 — C2is a lift of some h € I to )?6 , the norm of
Dﬁ(x,y) with respect to this hermitian metric is constant along the orbits of A x GG, hence

>To prove the existence of such a lift, note that i maps the regular part of X to itself, so first lift
h|Reg(x0) to C*\7 ! (Sing(X)), which is simply connected, and then use Hartogs extension to extend

h accross the discrete set 771 (Sing(Xy)).
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it is bounded since the action is co-compact. This implies that the holomorphic map
(z,y) € C? = Dhy,, (5.24)

is constant. So, if we denote by I the group of all possible lifts of all elements of I' to
C? = )?0, thenI'is a group of affine transformations that contains A x GG as a normal
subgroup and satisfies I'/(A x G) = T. The action by conjugation of I on A x G
preserves the subgroup A of translations. Therefore, A is also normal in I': this shows
that I" induces a group of automorphisms 'y = F/A of the abelian surface A = C?/A
that covers Xy. The proof is complete. U

6. AROUND THEOREM : CONSEQUENCES AND COMMENTS

6.1. Corollaries. The following corollary of Theorem [B|applies for instance to general
Wehler examples defined over Q.

Corollary 6.1. Let X be a smooth projective surface and let I" be a subgroup of Aut(X).
Assume that:

(1) X and T are defined over a number field;
(i1) X is not an abelian surface;
(ii1) I' contains a parabolic automorphism, and has no invariant curve.

Then " admits only finitely many finite orbits.

Proof. Suppose I has infinitely many finite orbits; since I' does not preserve any curve,
these orbits form a Zariski dense subset. Let g be a parabolic automorphism of I'. If
the fibration 7, were I'-invariant, then I' would preserve the curve (J,cr(,) 7, ' (74(y))
for every I'-periodic point x. Thus, there is an element A in I' that does not preserve
7y, and h™' o g o h € T is a parabolic map associated to a different fibration. Hence T
is non-elementary (see and Theorem [B| shows that I' is a Kummer group. But,
since X is not abelian, a Kummer subgroup of Aut(X) admits an invariant curve (see
Lemma[4.7): this contradiction concludes the proof. U

The next result is in the spirit of the “dynamical Manin-Mumford problem”.

Corollary 6.2. Let X be a smooth projective surface and I be a subgroup of Aut(X),
both defined over a number field. Suppose that I is non-elementary and contains para-
bolic elements. Let C — X be an irreducible curve containing infinitely many periodic
points of I'. Then,

(1) either C'is I'-periodic and is fixed pointwise by a finite index subgroup of I';
(2) or (X, 1) is a Kummer group and C comes from a translate of an abelian subvariety
(of dimension 1).
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In both cases the genus of C'is 0 or 1. Thus, a curve of genus > 2 contains at most
finitely many periodic points of T'.

To be specific, with the notation of §4.3] the second assertion means the following:
there is a translate ' + ¢ of an elliptic curve E < A such that ¢x(C) = qa(E + ).
Moreover, if we choose the origin of A at a periodic point of I" 4, we can choose ¢ to be
a torsion point of A. We keep these notations in the following proof.

Proof. Let Per(C) be the set of periodic points of I' in C; it is Zariski dense in C', for C'
is irreducible. The Zariski closure of I'(Per(C')) is either a ['-invariant curve or X.

In the first case C' is contained in Dr, a finite index subgroup I'' < I' preserves C,
and the restriction F"C has infinitely many periodic points in C. In this case C' has
(arithmetic) genus O or 1 by [30, Theorem 1.1]. A group of automorphisms of a curve
with at least three periodic orbits is finite, because it admits a finite index subgroup
fixing 3 points; thus, a finite index subgroup of I' fixes C' pointwise.

In the second case, Theorem[B|shows that (X, I') is a Kummer group. Since C' cannot
be periodic, its image ¢x(C) < A/G is a non-trivial curve whose lift to A contains a
Zariski dense subset of I' 4-periodic points. Choose one of these periodic points as the
origin of A. By Proposition 4.1] and Remark [4.2] the I 4-periodic points are exactly
the torsion points of A, and conclusion (2) follows from Raynaud’s theorem (formerly
known as the Manin-Mumford conjecture) [49]. O

6.2. Finitely generated groups. It turns out that I is often defined over a number field
when X is.

Proposition 6.3. Let X be a projective surface defined over a number field k. Assume
that Aut(X) contains a loxodromic element, and that X is not an abelian surface. Then
any finitely generated subgroup of Aut(X) is defined over a finite extension of k.

Corollary 6.4. If X is a K3 or Enriques surface defined over a number field k, Aut(X)
is defined over a finite extension of k.

Indeed, Aut(X) is finitely generated in this case (see [52]).

Proof of the proposition. It is enough to show that any automorphism f € Aut(X) is de-
fined over a finite extension of k. Under our assumption, Aut(X)* < GL(H*(X,Z)) is
infinite, Aut(X)? is trivial, and the homomorphism f € Aut(X) — f* € GL(H*(X,Z))
has finite kernel (see [15, Theorem 10.1]); more precisely, if H is any ample divisor, the
stabilizer of [ H] is a finite subgroup Aut(X; [H]) of Aut(X).

Fix a finite extension k' of k and a basis of NS(X; Z) given by classes of divisors D;
which are defined over k’. Fix an ample divisor H defined over k’. By assumption X
and the D; are defined by polynomial equations over k’, in some PV. Now, consider
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an automorphism f of X, defined by polynomial formulas with coefficients in some
extension K of k/. Any field automorphism ¢ € Gal(K : k') conjugates f to an
automorphism [ of X: this defines a map ¢ € Gal(K : k') — f¥ € Aut(X). On the
other hand {(f¥)*[D;]|[D;]) = {f*|D:]|[D;]) for any pair (¢, j) because the divisors
D; are defined over K'; thus, (f¢)* = f* on NS(X;Z), and f¥o f~! belongs to the finite
group Aut(X;[H]), so the set { f¥ ; ¢ € Gal(K : k)} is finite, and we are done. O

6.3. Open problems. In the case of the affine plane A?, it follows from [32] that any
non-elementary subgroup of Aut(AZ), for any number field k, has at most finitely many
finite orbits (see [32] for the definition of “non-elementary” in this case). This motivates
the following question:

Question 6.5. Is Theorem B|true without assuming the existence of a parabolic element
in I'?

To understand the difficulties behind Question[6.5] let us comment on three arguments
that required the hypothesis I',,, # . First, it was used to show that ITr = NS(X;R)
is defined over QQ and to construct the projective surface X, (which is then used in
the construction of the canonical stationary height). The point is that in general the
contraction of the divisor Dr is a well-defined complex analytic surface, but it is not
projective (see [18, Example 2.10] and [19, §11]). We expect that this issue could be
circumvented by applying more advanced techniques from Arakelov geometry. Second,
Theorem also relies on the existence of parabolic elements; the point was to show
that all active periodic points of all loxodromic elements of [' cannot be simultaneously
contained in some real surface. For instance, it is unclear to us whether there can exist
a real projective surface Xgr, with a non-elementary subgroup I' = Aut(Xg), such that
all periodic points of all elements f € I'\{id} are contained in the real part X (R) of X.
Third, parabolic automorphisms are crucially used in the classification of I'-invariant
probability measures given in [13, [17]. We expect that the techniques from [10, [18]
will soon lead to a complete classification of I'-invariant probability measures, for any
non-elementary group I' = Aut(X). Such a classification would then open the way to
an extension of Theorem [B|to all non-elementary groups (defined over a number field).

Remark 6.6. In [42, Question 3.3], Kawaguchi formulates two interesting questions
which are closely related to our main results as well as to Question [6.5]

(1) First, he asks whether two loxodromic automorphisms f and g of a complex pro-
jective surface X with a Zariski dense set of common periodic points automatically
have the same periodic orbits. As it is formulated, the answer is no, because of
Kummer examples: if we start with two loxodromic automorphisms of an abelian
surface A fixing the origin and generating a non-elementary subgroup, then one can
blow-up the origin, and the automorphisms lift to automorphisms with the same
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periodic orbits (coming from torsion points of A), except for their fixed points on
the exceptional divisors, which do differ (see Lemma Assertion (2)). So, his
question needs to be modified by asking whether f and g have the same periodic
points, except for finitely many of them.

(2) The second part of [42, Question 3.3] asks whether two loxodromic automorphisms
of a Wehler surface having a Zariski dense set of common periodic points automat-
ically generate an elementary group. There are (singular) Kummer examples in the
Wehler family (see [14, §8.2]), and they provide counter-examples to this question.
Taking these comments into consideration, Kawaguchi’s second question can now
be reformulated as: if two loxodromic automorphisms f and g of a complex projec-
tive surface X have a Zariski dense set of common periodic points, then is it true
that either f™ = g" for some m,n > 1, or f and g generate a Kummer group? This
seems harder than Question [6.5] because common periodic points do not directly
provide common periodic orbits. A natural companion to the last question is: when
do two loxodromic automorphisms have the same measure of maximal entropy?

One may also ask for effective bounds on the cardinality of a maximal finite I'-
invariant subset of X (C) in terms of the data (compare [29]). Proposition says
that such a bound should at least depend on the degrees of the generators of I'.

Lastly, a natural question is whether the number field assumption in Theorem [B]is
necessary at all: this is what the next section is about.

7. FROM NUMBER FIELDS TO C

In this section we show how a specialization argument allows to extend Corollary [6.]
beyond the number field case. A full generalization of Theorem [B|to complex coeffi-
cients would require further ideas (see for a short discussion). For concreteness we
first treat the case of Wehler surfaces and then explain the extra ingredients required to
address the general case.

7.1. Wehler surfaces. We resume the notation from The complete linear sys-
tem |L| parameterizing Wehler surfaces is a projective space of dimension 26, which
yields a moduli space of dimension 17 modulo the action of Aut(P')3. There is a dense,
Zariski open subset W, < |L| such that if X € W, then X is a smooth Wehler surface
and forevery 1 < j # k < 3, m; : X — P! x P! is a finite morphism. Let I'y be the
group generated by the three involutions o;.

Theorem 7.1. If X is a smooth Wehler surface for which the projections 7j;: X —
P! x P! are finite maps, then I'x admits only finitely many finite orbits.

For the proof we follow the approach of [32, §5 and Thm D] closely.
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Proof. Let G = (Z/2Z) » (Z/2Z) « (Z/2Z) with generators ay, as, a3 and let x : G —
Aut(X) be the unique homomorphism such that x(a;) = o;. By definition, I'y = x(G).
Let ¢; denote the class of the curve X n {z; = C*'}. The subspace Zc; @ Zcy ® Zcs
of NS(X,Z) is invariant by x(G)* < GL(NS(X,Z)) and this representation does not
depend on X € W: the matrices of the involutions o} = x(a;)* in the basis (¢, ¢2, ¢3)
have constant integer coefficients (see e.g. [18, Lem. 3.2]). Thus we can define G}y
(resp. Gpar) to be the set of elements h € G such that for any X € W, x(h) acts as
a loxodromic (resp. parabolic) map on NS(X, Z). Here, we implicitly use the fact that
the type of h € Aut(X) is the same as the type of h* in restriction to any h*-invariant
subspace of H"!'(X;R) on which the intersection form is not negative definite. In
particular, the type of h coincides with the type of A* as an isometry of Vect(c;, co, 3).

Fix a system of affine coordinates (x, y, z) and write the equations of Wehler surfaces
as in Equation (2.1)); this gives a system of homogeneous coordinates on ||, and | L| can
be considered as a projective space defined over Q. Then, endow |L| ~ P?%(C) with the
Q-Zariski topology. Fix X € Wy, let b € P? (for “base point”) denote the parameter
corresponding to X, and S be the closure of {b} for this topology: this is a subvariety of
P26 defined over Q in which b is, by construction, a generic point. We put Sy = S N W,
and we restrict the universal family X — P2¢ of Wehler surfaces to a family X, — S,
with a fiber preserving action of the group G. The fiber over s is denoted by X; and the
natural homomorphism G — Aut(X;) by xs; thus, X coincides with Aj,.

Lemma 7.2. For every s € Sy(C),

(1) X, is a smooth K3 surface which does not contain any fiber of m; j, i # j € {1,2,3};

(2) h € G belongs to G (resp. Gpa) if and only if xs(h) is a loxodromic (resp.
parabolic) element of Aut(X),

(3) xs(G) is a non-elementary subgroup of Aut(X;) without invariant curve.

Proof of Lemma[7.2] The first assertion follows from the results of and the inclu-
sion Sy < W,. Likewise xs(G) has no invariant curve by The second assertion
follows from our preliminary remarks on the definition of G and Gp,,, and it also
implies that x(G) is non-elementary. O

Assume now by contradiction that I'x admits infinitely many finite orbits. Then:

Lemma 7.3. For every s € Sy(C), xs(G) has infinitely many finite orbits.

This lemma concludes the proof of the theorem. Indeed pick s € Sy(Q). By Lemma
Xs(G) is non-elementary, contains parabolic elements; and the Zariski closure of
the set of finite orbits of x(G) coincides with X, for otherwise it would be an invariant
curve. Then, by Theorem B} (X, xs(G)) must be a Kummer group. But X is a K3
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surface and a Kummer group on a non-abelian surface admits an invariant curve, so that
we get a contradiction with Lemma [7.2](3). O

Proof of Lemma[7.3] We first describe the set of finite I"x-orbits as a countable union
of subvarieties by arguing as in Let G4 be the intersection of the kernels of all
homomorphisms from G to groups of order < d!; it is a finite index subgroup of G.
For any action of G, if the orbit of a point = has cardinality < d, then z is fixed by G.
Conversely if x is fixed by G4, then its G-orbit is finite. Define a subvariety Z, of X by

Zy={xe X ; Vge Gy, x(9)(z)=1z}. (7.1)

Finally put Z = ( J,-, Z4. Then the I'x-orbit of 2 € X is finite if and only if z € Z. We
can now define a subvariety Z; of X, which is the fibered analogue of Z;, namely

Zd = {(S,JZ’) ; TE Xsa vy € Gd7 Xs(f])(x) = x}, (72)

and put Z = J Z,. We let Z; (resp. Z, ) be the intersection of Z (resp. Z;) with A’.

Set f = agasa; € G. An explicit computation shows that f € GG, and the eigenval-
ues of x,(f)* on Vect(cy, ¢z, c3) are —1, A(f) = 9 + 4+/5, and 1/A(f). The eigenline
corresponding to —1 is R - (¢; — 3¢a + ¢3), its orthogonal complement in Vect(cy, ¢a, ¢3)
is the plane II, (), and this plane contains the class ¢; + 2¢; + c3. This class is ample,
because it is a convex combination, with positive coefficients, of the Chern classes ¢; of
the line bundles 7} (Op1 (1)), ¢ = 1,2, 3. Since any invariant curve must be orthogonal
to I, (), we deduce that Xs(f) has no invariant curve (for all s € Sp).

Now assume by contradiction that there is a parameter ¢ € Sy(C) such that Z; is
finite. Let P, be the set of fixed points of x(f"), so that P = | J, P, is the set of all
periodic points of x( f); likewise let 7P,, and P be their respective fibered versions. Note
that Z < P. For fixed n, let ), be the (reduced) subvariety of Xs, whose underlying
set is Z n P,. More precisely the sequence of subvarieties V" := | Ji' | Z4 N P, is
non-decreasing with m, so it stabilizes, and we define ),, = Y, for m sufficiently
large; its fibers will be denoted by ), ; (Vy s 1s the intersection of ), with X, it may be
non-reduced). For the generic point b the cardinality of ), ; tends to infinity with n.

Now, the argument is identical to that of Lemma 5.3 and Theorem D in [32] dﬂ) For
T € Yy, its multiplicity mult(z, ), s) as a point in ), ; is equal to its multiplicity as a
fixed point of x,(f)". Nakayama’s lemma implies that the function

s — Z mult(z, YV, s)

xeyn,s

%Our setting is actually simpler since we are dealing with automorphisms on a projective surface rather
than birational mappings, so the properness issue analyzed in [32] is not relevant here.
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is upper semicontinuous for the Zariski topology, hence

Z mult(z, Yy ¢) = Z mult(z, Y p) — o (7.3)

TE€EYVn,t meynyb
On the other hand, Z; is a finite set, so there exists ng such that foralln > 1, V,, <
P> and the theorem of Shub and Sullivan [50] asserts that for every z € P, ;, the
multiplicity of x as a fixed point of x,(f)" is bounded as n — co. This contradicts
and concludes the proof. U

7.2. Groups without invariant curve. Let us recall Theorem

Theorem 7.4. Let X be a compact Kdihler surface and let T be a subgroup of Aut(X).
Assume that (i) X is not an abelian surface, and (ii) I contains a parabolic element and
has no invariant curve. Then I" admits only finitely many finite orbits.

Proof. The idea is of the proof is the same as that of Theorem [7.1] however new techni-
calities arise. As in Corollary I" is automatically non-elementary, so X is projective.
Arguing by contradiction, we suppose that I' admits infinitely many finite orbits. Ap-
plying Theorem [D} we fix f € I'i,x without invariant curve. We also fix a parabolic
element g € I'.

Step 1.— Geometry of X .— Since [ is non-elementary, X is a blow-up of an abelian
surface, of a K3 surface, of an Enriques surface, or of the projective plane (see [15,
Thm. 10.1]). In the first three cases, there is a unique minimal model ¢: X — X, and
the exceptional divisor of ¢ is Aut(X)-invariant. Since I" has no invariant curve, X is
already equal to its minimal model X, and since by assumption X is not abelian, in this
case X is a K3 or an Enriques surface.

Step 2.— Reduction to a finitely generated subgroup.— The group generated by f and
g satisfies assumption (ii) and since it is contained in I' it also admits infinitely many
finite orbits. From now on, we replace I" by {f, g) and assume T" to be finitely generated.

Step 3.— Specialization formalism.— Embed X into a projective space PY. Fix a finite
set of divisors £; in X whose classes form a basis of NS(X;Z), let H < X be a
hyperplane section, and let €2 be a non-trivial rational section of K$?, where Ky is the
canonical bundle. If X is a K3 or an Enriques surface, we assume that 2 is regular,
hence does not vanish. Let R — C be the Q-subalgebra generated by the coefficients
of a system of homogeneous equations for X, the £;, H, and (2, and by the coefficients
of the formulas defining a finite symmetric set of generators of I'. (We shall actually

further enlarge R in §7.3.2)

Let K = Frac(R). It is the field of rational functions of some algebraic variety V,
defined over Q. There is a dense, Zariski open subset S of V, which may be assumed
to be an affine subset, such that all elements of R correspond to regular functions on S.
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Note that in what follows, by Zariski topology we mean the Q-Zariski topology. Nev-
ertheless, since we will use transcendental arguments, S(C) will also be considered as
a complex analytic space endowed with its Euclidean topology.

By specialization, i.e. evaluation of the elements of R at s € S, we can view X < PV,
I', the E;, H, and () as families over S; that is, there is a proper morphism 7 : X — §
endowed with a group of fiber preserving automorphisms T, together with a (complex)
base point b € S so that the fiber A, may be identified with X, and furthermore fb =T,
Eip = E;, Hy = H, Q, = O, etc. The point b € S may be thought of as the generic
point of S (i.e. its closure for the Zariski topology is S) so in particular b is a regular
point of .S and S is smooth in a complex neighborhood of b. If X is a K3 or an Enriques
surface, changing .S into some Zariski dense affine open subset, we may assume that fNZS
does not vanish on any X.

Step 4.— Types of automorphisms and invariant curves.—

Lemma 7.5. There is a Zariski open subset S; < S such that:

(1) above S1(C), the projection X — S is a submersion; for s € S1(C), Xy is smooth
and it is not an abelian surface;

(2) for s € S1(C), fs is loxodromic and there exists a Euclidean neighborhood B of b
such that for s € B, fs admits no invariant curve;

(3) for s € S1(C), gs is parabolic.

Proof of (1). The surface X}, is smooth, and by construction there is a Zariski dense
open subset S; of S above which X — S is a submersion, so the set of parameters s for
which X is singular is a proper Zariski closed set .S; (we will further reduce .S; finitely
many times in the proof, keeping the same notation). For the second conclusion, we
observe that there is a Zariski open subset on which 7 : X — S is a submersion, hence
by Ehresmann’s lemma the fibers in this open subset are diffeomorphic to X. On the
other hand a surface which is diffeomorphic to a complex torus and possesses a non-
elementary group of automorphisms is automatically an abelian surface. Since X is not
abelian, we conclude that the same is true for any fiber X, s € 5. U

Proof of (2). The loxodromic nature of f, follows from the lower semi-continuity of the
dynamical degree for birational mappings on surfaces (see [S5, Thm. 4.3]), which we
apply here for the C-Zariski topology.

Let us show that f; has no invariant curve for s € S; close to b. Indeed, recall
from Proposition that there is a uniform bound on the degree of an invariant curve.
Here we compute the degree of a curve on X (resp. of f) with respect to the normal-
ized ample class (H,|H.>~'/?[H,] induced by the hyperplane section H,. If cx is as
in Proposition the inequality [Div(Q,)] < ex(H,|Hs) 2[H,] is satisfied on a
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Zariski open set. Then by Bishop’s theorem, if (s;) is a sequence of points converging
to b such that f;, preserves a curve C;, we can extract a subsequence along which (C;)
converges towards a curve C' in X}, (see [26) §16] for the relevant notions). This curve
is fy-invariant, which contradicts our assumption on f. O

The proof of the the third assertion of Lemma//.5|is a little tedious and will be post-
poned to Section [7.3|below.

Step 5.— Conclusion.— We pick a point ¢ in S;(Q) n B, and argue exactly as in the
case of Wehler surfaces. Indeed observe first that the assumptions of Corollary are
satisfied at the parameter ¢. Next, since all periodic points of f; of a given period are iso-
lated, we can apply to f; the strategy of the proof of Theorem|[7.1] based on Nakayama’s
lemma and the theorem of Shub and Sullivan; it implies that I'; has infinitely many
periodic orbits on A}, thereby reaching the desired contradiction. U

7.3. Proof of Lemma [7.5(3). By Step 1, X is a K3 surface, an Enriques surface, or a
blow-up of the projective plane. By the lower semi-continuity of the dynamical degree,
for every s € S, g is parabolic or elliptic, so we need to show that the set of parameters
for which g; is elliptic is Zariski closed.

7.3.1. K3 and Enriques surfaces. Assume that X is a K3 (resp. an Enriques) surface.
Above 51(C), every fiber X, has the diffeomorphism type of A}, in particular it is
simply connected and Ky, is trivial (resp. its fundamental group is Z/2Z and KE?SQ
is trivial), so it is also a K3 (resp. an Enriques) surface, for K3 (resp. Enriques) are
characterized by these properties (see [S, Chap. VI]). For such a surface, the group
{h € Aut(X,) ; h* = id on H*(X,;Z)} has at most 4 elements (see [48]]). The second
Betti number is fixed, equal to 22 (resp. 10), and if h* € GL(H?(X,; Z)) has finite order,
then its order divides some fixed integer k, because GLys(Z) (resp. GLio(Z)) contains
a finite index, torsion free subgroup. Thus, g, is elliptic if and only if g** = id. This
implies that the set of parameters s for which g; is elliptic is Zariski closed and does not
contain b, and we are done in this case.

7.3.2. Rational surfaces. Now, we assume that X is rational. This case is slightly more
delicate because there exists automorphisms of P? of arbitrary large finite order.

Let m,: X — B be the invariant fibration of g, with B = P! since X is rational.
Changing g by some positive iterate, we may assume that the action of ¢ in the base B
is the identity. As explained in [16, 22], m, comes from a Halphen pencil; in particular,
there is a pencil of curves in P2, defined by some rational function ¢: P2 --» P!, and
a birational morphism 7: X — P? that blows up the base points of this pencil (and
possibly other points too), such that 7, coincides with ¢ o n. The last blow-up which
is necessary to resolve the indeterminacies of ¢ provides a curve which is transverse to
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the fibration and has negative self-intersection. So, there is an irreducible multi-section
E of 7, such that E? < 0.

Let us add to our Q-algebra R the coefficients of the formulas defining 7,, ¢, 7,
E, etc. Reducing S; if necessary, we get a family of automorphisms g preserving
each fiber of a genus 1 fibration 7, ,: X, — P!, with an irreducible multisection F,
of negative self-intersection. As for K3 and Enriques surfaces, the following lemma
finishes the proof.

Lemma 7.6. There is an integer { > 0 such that if s € S; and g, is elliptic, then g° = id.

Proof. Set m = ([E]|[F]) where F' is any fiber of 7,. Above S; the surfaces X are
pairwise diffeomorphic, so they have the same second Betti number and there is an
integer & > 0 such that (h*)* = id for every elliptic automorphism of Xj, for every
s € Si. Now, if g, is elliptic, then (¢¥)*[E,] = [E,] and this implies ¢*(F,) = FE,.
Since g4 preserves every fiber, and F; intersects every fiber in at most m points, we
deduce that g*™ fixes a point in each fiber. But an automorphism of a curve of genus 1

which fixes a point has order at most 12, so g!2*™ = id ., and we are done. U

7.4. Discussion. It would be interesting to extend Theorem [B|in its general form be-
yond number fields, that is, without assuming that Dr = . Fix (f, g) € Diox X I'par, as
above. The main difficulty appears in the following situation: I' fixes Dr pointwise, and
for every parameter s € S(Q), the alleged Zariski dense set of finite orbits of I" special-
izes as a finite subset of X; which intersects (Dr)s. In that case, the theorem of Shub
and Sullivan does not apply directly because it only deals with isolated fixed points; so,
a finer understanding of the Lefschetz fixed point formula is required. We believe that
the tools introduced in [38] and in an unpublished chapter of Xie’s thesis [54] may lead

to a solution of this problem.

8. CANONICAL VECTOR HEIGHTS

Let k be a number field and k ~ Q be an algebraic closure of k. Let X be a projective
surface defined over k and I" be a subgroup of Aut(Xy). We consider the vector space

Pic(X;R) = Pic(Xgp) ®z R (8.1)

of R-divisors of Xj modulo linear equivalence; doing so, we annihilate the torsion
part of Pic’(X). Keep in mind that when X is birational to an abelian variety, the
vector space Pic’(X;R) := Pic’(X) ®z R is infinite-dimensional. The Weil height
machine extends to Pic(X; R) by R-linearity (see [37, §B.3.2]). Recall from that

a canonical vector height on X (k) for the group I is, by definition, a function A :

Pic(X;R) x X (k) — R, such that
(a) his linear with respect to the first factor L € Pic(X; R);
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(b) for every L € Pic(X;R), h(L,-) is a Weil height associated to L;
(c) his I'-equivariant: forevery f € I', h(L, f(x)) = h(f*L, x).

Note that if Pic(Xy) is tensorized by Q instead of R and Property (a) is stated over Q
we get an equivalent notion. Given any I'-invariant subspace V' < Pic(X; R), one may
also study the notion of restricted canonical vector height h: V' x X (k) — R. This
is most significant when V' contains classes with positive self-intersection, in which
case it surjects onto Il under the natural map D € Pic(X;R) — [D] € NS(X;R).
(In the following we use brackets to distinguish a class in NS(X; R) from a class in
Pic(X;R).)

If Ay is an abelian variety and I is a subgroup of Aut(Ay) fixing its neutral element,
the Néron-Tate height on A is a canonical vector height for I (see [37, Theorem B.5.6]).
The same holds more generally if the neutral element is I'-periodic, because in this case
I'(0) is made of torsion points (see Remark [4.2).

In this section, we describe automorphism groups of surfaces which are non-elementary,
contain parabolic elements, and possess a (restricted) canonical vector height A,,: The-
orems [E| [E]] and [E]]show that (X, T') is a Kummer group and A, is derived from the
Néron-Tate height.

8.1. Invariant classes and canonical vector heights. In the following lemmas, Ay,
is a restricted canonical vector height for (X, I'), defined in some I'-invariant subspace
Vean © Pic(X;R). We shall say that a class [F] in NS(X; R) is almost I'-invariant if
f*[E] = £[E] forall finT.

Lemma 8.1. Let [E] € NS(X; R) be almost I'-invariant. The function

h[E],ga(Da 1’) = hcan(Da 1’) + <[E]’D>(p($)

is a restricted canonical vector height on V.., x X (k) if and only if either |E] is or-

thogonal to Veuy, or p: X (k) — R is bounded and satisfies p(z)[E] = p(f(z)) f*[F]
forall f €.

In this situation, we shall say that i), is derived from the height Ay

Proof. If [ E'] is orthogonal to V .y, then Ag] , = Rcan 0N Veayn x X (k) and there is noth-
ing to prove. Otherwise, we can fix a class D € V., such that ((E]|D) # 0. If Az,
is a canonical vector height, then ¢ = ([E]|D) (kg1 — hean)(D, -) is bounded, be-
cause hyg),(D,-) and h(D,-) are Weil heights associated to the same divisor. Further-
more ¢ satisfies p(x)[E] = ¢(f(x))f*[£] because hig), and he,, are I'-equivariant
and {[E]|f*(D)) = {(f*[E]|D) for all f € T. The reverse implication is straightfor-
ward. O
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Lemma 8.2. Assume that I" contains a loxodromic element. Let C — X be an ir-
reducible T'-periodic curve. If the class of C belongs to V.., or if V.., contains a
[-periodic class D such that O(D)|c is ample, then the restriction homomorphism
f € Stabp(C) — fic has finite image.

Proof. If C'is I'-periodic then its self-intersection is negative, the restriction of Ox (—C)
to C has positive degree, and (Ox(—C))c is therefore ample. So, it is enough to
consider the case where V,,, contains a periodic class D such that (’)(D)|C is ample.

By changing I in a finite index subgroup, we may assume ['(C') = C. If o is an
automorphism of C over k, it maps C to a I'-invariant curve C°. There are only finitely
many ['-invariant irreducible curves (the components of Dr), because I' contains a lox-
odromic element (see §3.2). Thus, the orbit of C' under the group of automorphisms of
C over k is finite and C is defined over a number field. In particular, C'(k) is dense
in C'(C).

Set I = Stabp (D), and Pick 2y € C(k). Then hean(D,y) = hean(D, o) for every
y in I"(x0); since hean (D, -) is a Weil height for D, and O(D),¢ is ample, Northcott’s
theorem implies that {x € C(K’) ; hean(D, ) = hean(D, z0)} is finite for every number
field k'; thus, T (z) is a finite set. Since C(k) is infinite, we can argue as in the proof
of Corollary [6.2|to deduce that F‘/ o 1s finite, as asserted. U

Lemma 8.3. Assume Pic’(X) = 0 and identify Pic(X; R) with NS(X; R).

(1) If Vean contains a class with positive self-intersection, then it contains Ilr.

(2) If Viean contains 1y, and if C' is an irreducible rational T'-periodic curve, then,
hean(D, x) = 0 for every D € Ilr and x € C'(k).

Proof. If V., contains a class in the positive cone it contains the limit set Lim(T"),
hence also Il (see [18, §2.3]); this proves the first assertion. For the second one, pick
a probability measure v on I" with finite support, and assume that P*(D) = «(v)D for
some D in Il and some a(v) € R. Then, 3., v(f)hean(D; f(x)) = a(v)hean (D, z) by
equivariance and linearity. On the other hand, O(D),c has degree 0, because (D|C") =
0, and is therefore trivial because C is rational. So, hcan(D, ) is bounded on C(k).
Since a(v) > 1, this implies that he,, (D, ) = 0 for every z € C'(k). To conclude, note

that such eigenvectors D generate I when we vary v (see §5.3). O

8.2. From canonical vector heights to Kummer groups.

Theorem E. Let X be a smooth projective surface and I" be a subgroup of Aut(X),
both defined over a number field k. Suppose that

(1) ' is non-elementary and contains parabolic elements;
(ii) there exists a canonical vector height hea, for (X (k), I') on a I'-invariant subspace
of Pic(X; R) which contains a divisor with positive self-intersection.
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Then (X,T') is a Kummer group. If in addition hc,, is defined on Pic(X;R) x X (k),
then X is an abelian surface.

The smoothness of X is essential for the last conclusion to hold; for instance, if
(Xo,I") is a singular Kummer example with no I'-invariant curve, we shall see that the

Néron-Tate height induces a canonical vector height on Pic(Xj; R) x Xg(k).

The remainder of this subsection is devoted to the proof of Theorem[E] Let us already
observe that once (X, I") is known to be a Kummer group, the last conclusion readily
follows from Lemmas [4.7] and So all we have to show is that (X, T") is a Kummer

group.

8.2.1. Reduction to Pic’(X) = 0. Suppose Pic’(X) # {0}. Then, I' being non-
elementary, [[15, Theorem 10.1] shows that X is either an abelian surface or a blowup
of such a surface along a finite orbit of I, and by definition (X, I") is a Kummer group.

So, from now on, we assume Pic’(X) = {0} and identify Pic(X; R) with NS(X; R)).

8.2.2. A key lemma. Assumption (ii) provides a canonical vector height A, for (X, T")
in restriction to Il (see Lemma . Recall from [51), 41] that for every f € '«
there exist canonical heights h}i, respectively associated to the classes 7, such that
Wi (f(x)) = M f)h (x) and by (f ' () = A(f)h (x). They satisfy:
— h7 = 0on X(k);
— if D; denotes the maximal invariant curve of f then, for z € X (k), h () +
hy (z) = 0if and only if z is a periodic point or z € Dy (see [41}, §5]).

Furthermore any Weil height / associated to 6 such that h(f(z)) = A(f)h(x) coin-
cides with h;: indeed k := h — h} is bounded because  and i} are Weil heights
associated to the same class, so the relation k(f(x)) = \(f)k(z) forces it to be identi-
cally zero. Thus, the next lemma follows immediately from the defining Properties (a),
(b), and (c) (see [42, Prop. 3.4] or [3} §1]).

Lemma 8.4. If Pic’(X) = {0} and if hean is a canonical vector height for (X,T) in
restriction to I, then hcan(e}i, ) = h}i() for every f € T,

Remark 8.5. If x belongs to the maximal invariant curve Dr and ¢ belongs to I then
hean(c, ) = 0. Indeed for every f € Iy, Dr = Dy so hcan(ef,a:) = hj(z) =0, and
since the classes (0;%) el Span Ilp, the result follows by linearity. This extends the
second assertion of Lemma[8.3]to invariant curves which are not rational.

Now, recall that the classes 9? are normalized by <9J? |[k0]) = 1. Let us view Hx and
P(Hy) as subsets of {u € H"(X;R) ; (ulu) > 0,u|[ko]) = 1}. Setting

Iy = I~ {¢ ko) = 1}, (8.2)
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Lim(T") can now be viewed as a subset of II; which generates I as a vector space. The
starting point of the proof of Theorem [E]is the following key lemma, inspired from the
approach of Kawaguchi in [42].

Lemma 8.6. In addition to the assumptions of Theorem[E] suppose that
(iii) there exists f € Diox such that [0}, 0 ] nInt(Conv(Lim(I"))) # &, where Conv(-)

is the convex hull and Int(-) stands for the interior relative to TIp.

Then (X,T) is a Kummer group.

Proof. Set d = dim Iy Replacing k by a finite extension, we may assume that the
birational morphism my: X — X, constructed in Proposition [3.9]is defined over k; this
morphism contracts the maximal I'-invariant curve Dr.

Let v be a probability measure on ', whose support is finite and contains f as well
as elements of I',,.. Let w, be the eigenvector of the operator P, for the eigenvalue
a(v) given by Lemma As in Proposition we may assume that w, is a rational
class and is the pull-back of an ample class [Ay] on X,; by muliplying w, by a positive
integer, we also assume that w,, is an integral class.

Let L be the line bundle given by the class w,, and h;, be the associated canonical
stationary height, as in the proof of Theorem This is the unique Weil height such
that 3, v(h)h Loh=a(v ). By the linearity of the canonical vector height and the
uniqueness of hy, we get hL( ) = hean(wy, ).

Pick w = afl} + b} in the interior of Conv(Lim(T')), with @, bin Ry and a +b = 1.
Then by linearity and Lemma hean(w, ) = ahy + bh;. Caratheodory’s theorem
provides a subset A of Lim(I") such that |A| = d + 1 and w belongs to the interior of the
simplex Conv(A). By the density of fixed points of loxodromic elements in Lim(I"), we
may assume that A is made of classes 6’; for g in a finite subset Ar of I'ix. If € > O is
small enough, w — cw, stays in Int(Conv(A)); so, there are positive coefficients (3, for
g € Ar, such that w — ew, = )| ger B,07 . By the linearity of A,y, we infer that

ahf(-) +bhy () = > Beha () +ehy (). (8.3)
geAr
Now, if z € X (k) is f-periodic, then hi(x) = hy(xr) = 0, and since hy, and the

hg () are non-negative, we deduce that hy(z) = 0. The line bundle L is the pull-back
of an ample line bundle A, on X; thus, by Lemma the T',-orbit of 7o (z) in X is
a finite set. Since f has a Zariski dense set of periodic points, Theorem |B|implies that
(X,T,) is a Kummer group.

Since we can further choose I',, to contain any a priori given finite subset of I', we
conclude from Theorem [5.15]that (X, I") is a Kummer group. U
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From this point, the proof of Theorem [E]is completed in two steps. We first deal with
the case dim [Ir < 4 by directly checking the Assumption (iii) of Lemma This
covers general Wehler surfaces (which is the setting of [42]) since dim Il = 3 in this
case. The general case is treated in a second stage by a dimension reduction argument.

8.2.3. Conclusion when dim Il < 4. Since I is non-elementary, dim Il > 3, so we
need to consider the cases dim Il = 3 and dim Il =4 .

For dimIly = 3,ie. d = dim(ﬁp) = 2, the intersection of ﬁp with the positive cone
is the Klein model of the hyperbolic disk H?2. If Assumption (iii) is not satisfied, then
for every f € I'oy, Lim(I") is entirely contained on one side of the geodesic [9;{, 07 1.
Fix 4 points in Lim(T') < 0H? ~ S!, labelled in circular order (py,ps2, p3,ps). By
Lemma provides elements f and g in ', such that (9;[, 9;, 0%, Qg_) is arbitrary
close to (p1,p2,p3, p4). Then [0;{, 07 ] intersects [0, 0] transversally in the disk H?,
so Lim(T") intersects both sides of [}, 6], a contradiction.

Now assume dimIIr = 4, i.e. d = 3. Then Conv(Lim(I')) is a convex body in
dimension 3. The conclusion relies on the following lemma (see below for a proof).

Lemma 8.7. Let p1, .. ., ps be five points in general position in R3. Then there is a pair
of indices i # j such that any plane containing p; and p; separates the remaining points
into two non-trivial sets.

Now fix such a 5-tuple of points in Lim(I") and approximate the given pair (p;, p;)

by (07,05 ), for some f € Ty Then, [0, 6] intersects the interior of Conv(Lim(T")),
and Lemma8.6|finishes the proof of Theorem [E] (when dim(ITr) < 4).

Proof of Lemma(8.7} Express ps as a barycenter of the remaining points:

ps = Bar((p1; 1), ..., (pa; Qa)). (8.4)
The general position assumption means that the «; are non-zero. If all the coefficients
oy are positive, ps lies in the interior of the tetrahedron Conv{py, ..., p4}, so any plane

containing p, and ps separates the vertices of the triangle Conv{p, p2, p3} into two non-
trivial parts. Therefore, the pair of indices (i, 7) = (4,5) works in this case. If exactly
one of the coefficients is negative, say ay, then consider the pair (¢, 5), and denote by 7,
J» k the remaining indices (i.e. {i, 7, k} = {1,2,3,4}\{¢}). The segment [py, p5] cuts the
triangle Conv{p;, p;, px} in a point h of its relative interior. Thus, any plane containing
pe and ps also contains h, and separates {p;, p;, p;} non-trivially. The only remaining
case is when there are three positive and two negative coefficients, say a3 and ay; then,
p1 1s a barycenter of the remaining points with 3 positive and 1 negative coefficients, so
we are done in this case too. U
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Remark 8.8. The theorem of Steinitz (see [35, §13.1]) is a far-reaching generalization
of Lemma(8.7] There is no analogue of this lemma in higher dimension (see [35} §4.7]),
hence the need for a different argument when dim IIj > 5.

8.2.4. Conclusion of the proof of Theorem|E] Recall from Lemma [3.1] that ¢* is virtu-
ally unipotent for every g € I',,,.

Lemma 8.9. Let g, and go be unipotent parabolic elements in Aut(X) with distinct
invariant fibrations. Then, Ty := {g1, g2 is non-elementary and dim(Il,) < 4.

Proof. Since my, # 74, I'g is non-elementary (see §3.1.3). The subspace W :=
Fix(gf) n Fix(g3) of NS(X;R) is fixed pointwise by I'g. Thus W+ is ['p-invariant,
it contains IIr, (see [18} Prop. 2.8]), and all we need to show is that dim(WW+1) < 4. To
see this, note that a unipotent Euclidean isometry is the identity, thus if g € O (1,d)
is parabolic and unipotent, the structure of parabolic isometries of H, (see [34, §1.5])
implies that Fix(g*) < R%*! is a subspace of codimension 2, and we are done. U

From Lemma|8.9)and Section[8.2.3] we deduce that (X, (g1, g»)) is a Kummer group
for every pair of unipotent elements g, g» € ', generating a non-elementary subgroup.
Thus by Theorem|[5.15] (X, I') itself is a Kummer group, and Theorem [H is established.

8.3. Canonical vector heights on abelian surfaces. In this section, A is an abelian
surface, defined over some number field k and I' = Aut(Ay) is non-elementary. Denote

by hxr: Pic(A) x A(k) — R the Néron-Tate height on A; it vanishes identically on the

torsion part of Pic(A), so we may also consider it as a function on Pic(A4; R) x A(k).
When 0 € A has a finite "-orbit, hxt is a canonical vector height (see [37, Thm. B.5.6]).

Let hc., be a restricted canonical vector height for (Ay,T"), defined on some T'-
invariant subspace V., of Pic(A; R). Our goal is to compare it to Axr.

By definition, a divisor D on A is symmetric if [—1]*D is linearly equivalent to D,
where [m] denotes multiplication by m; likewise it is antisymmetric if [-1]*D ~ —D
or equivalently if D e Pic(A) (see [37, Prop. A.7.3.2]). If f € Aut(A) fixes the origin,
it commutes to [—1], so that f* preserves symmetry and antisymmetry.

Remark 8.10. Any class [D] € NS(A) can be lifted to a symmetric divisor class D e
Pic(A), which is unique up to a 2-torsion element in Pic’(A). Thus, D admits a unique
symmetric lift in Pic(A4; R). By using such a lift it makes sense to consider also hnt(+, -)

(resp. hean(,-)) as a function on NS(A; R) x A(k) (resp. on the projection of V,, in
NS(A;R)). This observation will be used repeatedly in the following.

Remark 8.11. The Picard number of any complex abelian surface satisfies p(A) €
{1,2,3,4}. When Aut(A) contains a non-elementary group I', we obtain 3 < dim I <
p(A) < 4. Moreover, p(A) = 4 if and only if A is isogenous to B x B, for some elliptic
curve B with complex multiplication (see [7, ex.10 p.142]).
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Proposition 8.12. If V.., contains Pic’(A) ®z R, then T has a finite orbit in A(k).

Proof. In this proof it is enough to consider h,, as a function on Pic’(A4) x X (k), by
composing with the natural homomorphism Pic’(A4) — Pic’(4; R).

Step 1.— If D is an element of Pic’(A), then for every f € T\, every periodic point
x of f satisfies hean (D, x) = 0.

Assume f7(x) = x for some ¢ > 1. The endomorphism f9 — id is an isogeny of A
because f is loxodromic (see Section [4.2)). Thus, its dual (f9)* — id is an isogeny of
Pic’(A) and we can find E € Pic’(A) such that (f?)*E — E = D. By equivariance
hean((f9)*E, x) = hean(E, ), and then by linearity hea, (D, z) = 0.

Step 2.— Let k' be a finite extension of k, and let P be a subset of A(K'). If, for every
D e Pic?(A), the set {hxt(D,x) ; x € P} < R is bounded, then P is finite.

To see this, consider the abelian group A(k’); by the Mordell-Weil theorem, its rank is
finite, so modulo torsion it is isomorphic to Z" for some r = 0. Set Wy = A(k') ®z R,
a real vector space of dimension r. Let // be an ample symmetric divisor on Ay, then
hxt(H,-) determines a positive definite quadratic form on V; let (|- be the bilinear
pairing associated to hxr(H, ). If s is an element of A(k), and t, € Aut(Ay) is the
translation by s, then D, := H — t* H is an element of Pic’(A4) and hxr(Ds, -) induces
an affine linear form A(k’) — R; namely, hxr(Ds, ) = —2(s|-)g. Since {:|-)y is
positive definite on Wy (see [37, Prop. B.5.3]), one can find r elements s; € A(k’) such
that the linear forms ¢; := {s;|-)y constitute a basis of the dual of W),. Our assumption
says that each ¢;(P) is a relatively compact subset of R; this implies that P is contained
in a compact, hence finite, subset of the lattice A(k’) < V.

Step 3.— I" has a finite orbit.

Let f be a loxodromic element of I', and x be a fixed point of f. Its I"-orbit is made
of fixed points of conjugates of f. Note that I'(x) is contained in A(k’) for some finite
extension of k. By the first step, hc., vanishes on Pic’(A4) x I'(z). Since Aan and hyr
are Weil heights, |hean (D, -) — hxr(D, -)| < B(D) for each divisor class D € Pic’(A),
where B(D) > 0depends on D. Thus, |hxt(D,I'(x))| < B(D) forevery D € Pic’(A),
and the second step implies that ['(z) is finite. O

Proposition 8.13. Assume that the neutral element has a finite I'-orbit. Then h,, coin-
cides with the Néron-Tate height on

— the set of symmetric divisors whose numerical class belongs to 11,
— the set of antisymmetric divisors,

whenever one of these sets is contained in V..

In the following proofs, we denote by II}. the subspace Pic(A; R) made of symmetric
elements E € Pic(A; R) such that [E] € Ilr.
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Proof. LetT'y < I' be the finite index subgroup fixing the origin. Let us show that .., =
hxt on 115 x A(k). For this, we use Remark(8.10} identify IT}. with ITr, and consider A,y
and hyr as functions on ITr x A(k). Now, if f € g0y, We get hNT(Q;[, ) = hcan(ej, )
because the difference is bounded on A(k), and is multiplied by A(f) > 1 under the
action of f (as in Lemma . Since the classes (9;[, for f € ', generate I, our

claim is established.

Let us now deal with antisymmetric divisors. Identifying Pic’(Ay) with the dual
abelian variety Aﬁ of A, we have to show that h,, coincides with Ayt on A (k')
for every finite extension k’ of k. By the Mordell-Weil theorem A" (k') is a finitely
generated abelian group so

Wy =AY K)®zR (8.5)
is a real vector space of dimension r, for some r < +oc0. Consider the function @ :
(D, x) = hean(D, z) — hyr(D, x). When D is fixed, ®(D, -) is bounded: |®(D, x)| <
B(D) for all x € A(k). On the other hand when z is fixed, ®,(D) := ®(D, x) defines a
linear form @, : Wy — R. Applying the previous boundedness property to f(z), for f
ranging in Iy, and using the equivariance ®(D, f(z)) = ®(f*D,x) we obtain that for
every z € A(k), ®, is bounded on every I'-orbit T (D) < W,

We claim that this forces @, to vanish, which is the desired result. For this we analyze
the dual action of I'y. Let f be a loxodromic element of 'y, and f, be the induced linear

map on Wy, = AY (k') @z R. Let L be the linear lift of f to C?, as in §4.1]and [4.2]

Lemma 8.14. The endomorphism [} is semi-simple and its complex eigenvalues are
complex conjugate to those of Ly, none of them has modulus 1.

Let us take this for granted and conclude the proof. Since f, is semi-simple, W7
is a direct sum of f-invariant irreducible factors ® W,”, each of dimension 1 or 2.
For each W, denote by ); the corresponding eigenvalue of f,%, and pick some D, €
W\{0}. If W, is a line, then \; € R* and |\;| # 1. Since @, is bounded on
{(fo)™(D;) ; neZ}, the line W,¥ is contained in ker ®,. If W,” is a plane, then
fwlwy is a similitude with |A;| # 1 and Arg(\;) # 0 mod (27Z). If @,y # 0,
{|®.| < B(D;)}nW," is a strip, which furthermore contains the orbit {( f/)"(D;), n € Z}.
This is not compatible with the properties of \;, and this contradiction shows that

WY < ker ®,, so finally &, = 0, as claimed. ]

(2

Proof of Lemma(8.14) The complex torus underlying A is isomorphic to a quotient
of the space of C-antilinear forms on C?. So, if f € Aut(A) is induced by a lin-
ear map L; € GLy(C), the automorphism of AY determined by f* is induced by the
conjugate transpose f} (see [7, §2.4]). When f is loxodromic, the eigenvalues of
L satisfy |a] < 1 < |B]; we deduce that the automorphism of Aut(A¢) determined
by f* is also loxodromic, with eigenvalues @ and (3, and the minimal polynomial of
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f} is (X — @)(X — B). Let P be the minimal, real, unitary polynomial such that
(X —@)(X — B) divides P (by construction deg(P) € {2,3,4} and P has no repeated
factors). Since P (ZI}) = 0, we infer that P(f,)) = 0 and the result follows. O

Proposition 8.15. Let Ay be an abelian surface defined over a number field k. Let T’
be a non-elementary subgroup of Aut(Ay), for which the neutral element 0 € A(k) is
periodic. Then one of the following situation occurs:

(1) NS(A,R) = Il and the Néron-Tate height is the unique canonical vector height
on Pic(A; R).

(2) NS(A,R) = IIp é R[E] for some [E] € NS(A; R)\{0}, and the canonical vector
heights on Pic(A; R) are exactly the functions of the form he., (D, x) = hxr(D, x)+
([E]|D)¢(x), where p: A(k) — R is any bounded function such that o(f(z)) f*[E]
o(x)|[E] forall finT.

Proof. When NS(A,R) = IIr, Proposition and the decomposition of any divisor

class as a sum D = D° + D®* with D® symmetric and D?* antisymmetric imply that

hean = hnr. So by Remark [8.11] we may assume that p(A) = 4 and dim(Ip) = 3.

Pick [E] € TI3\{0}. The line R[E] is [-invariant, and the intersection form is negative

on R[FE]; as a consequence, there is a homomorphism oz : I' — {41, —1} such that
f*[E] = a(f)|[E] for all f € T'. Then for fixed x,

Ay(D) = hean(D, z) — hnt(D, ), (8.6)

defines a linear form on Pic(A; R), which by Proposition vanishes identically on
IT5. So, A(D,x) = {[E]|D)¢(x) for some real valued function ¢, and the conclusion
follows from Lemma [8.1] O

8.4. Synthesis.

8.4.1. Canonical vector heights. Putting together Theorem[E]and Proposition[8.15|gives:

Theorem [E. Let X be a smooth projective surface, defined over a number field k.
Let T be a non-elementary subgroup of Aut(Xy) that contains parabolic elements. Let
Rean be a canonical vector height on Pic(X;R) x X (k) for the group T'. Then, X is
an abelian surface and h.,, is derived from a translate of the Néron-Tate height by a
periodic point y of I':

hean(D, x) = hnt(D, x + y) + {{E]|D) ¢(x)

for some almost-invariant class [E] € NS(X; R) and some bounded function p: X (k) —

R such that o(f(2)) f*[E] = ¢(x)[E] for f € T.

Note that h.,, is just a translate of hxt when E is numerically trivial.
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8.4.2. Restricted canonical vector heights. Let us add the assumption
Pic’(X) = 0, (8.7)
to the hypotheses of Theorem@ Our goal is to describe all possibilities for (Vean, fcan)-
Since Pic’(X) = 0, X is not a blow-up of an abelian surface and Theorem implies
that (X, I") is a Kummer group of type (2), (3), (4), or (5) in the nomenclature of
We make use of the notation of §4.3.Tand [4.3.2] The origin 0 € A is a fixed point of
the cyclic group G, and the orbit I' 4(0) is finite. Since G is generated by a finite order
homothety (z,y) — (ax,ay) on A, G acts trivially on NS(A;R) and on symmetric
divisors. Thus, NS(A/G;R) can be identified to NS(A;R) and to the subspace of
Pic(A; R) generated by symmetric divisors; let

t: NS(A;R) — NS(X; R) (8.8)
denote the corresponding embedding, given by ¢ = ¢% (¢a)«. On the space of symmetric

divisors, the Néron-Tate height is G-invariant and ['-equivariant, so it induces a canoni-
cal vector height hf/TG(-, -)on A/G for T 4. Then, it induces a restricted canonical vector

height on ¢«(NS(A4; R)) x X (k), namely
hl)\I(T 1(D,x) — hff/TG((CIX)*D,QX(SC))- (8.9)

In what follows, we denote by F; the disjoint irreducible rational curves contracted
by gx (see Lemmald.7); their classes generate (NS(A; R))* = NS(X;R). The height
hy vanishes on | J; E;(k), because the E; are mapped to torsion points of A.

Lemma 8.16. We have IIr = ((Ilr, ) < Vean < ¢(NS(4; R)).

Proof. The first equality comes from the equivariance of gx and g4. The first inclusion
follows from Lemma [8.3]and the assumption (ii) of Theorem [E] It remains to prove the
last inclusion. If V.., is not contained in ¢% (NS(A/G;R)), there is an index ¢, and a
class D in Il N Ve, such that (D|E;) > 0, i.e. O(D)|g, is ample. The action of T
on H% factorizes through a finite group (see [18, Lem. 2.9]), so D is I'-periodic and
by Lemma the group I'|g, is finite; this contradicts Lemma and the conclusion
follows. U

Let D be an element of TTr. By Lemma (8.3} hcan(D,z) = 0 for all x € | J, Ei(k).
Thus, (D, ) = hean(t(D), ¢x" (ga())) is a well defined restricted canonical vector
height on Iy, x A(k) (see Remark , which gives height 0 to the fixed points of
elements of G'\{id}. By Proposition this height coincides with the Néron-Tate
height on I, x A(k).

This yields a complete description of h.,, when V,,, = Ilr.

By Lemma and Remark [8.11] the remaining possibility is that dim(Vi.,) =
4 and dim(IIr) = 3. Choose an almost I'4-invariant class [E] in NS(A;R), as in
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Proposition [8.15] and a divisor F"in X such that [F| = «([E]). Each element D € V_,,
decomposes as a sum
FlID)
p—p -l [F] (8.10)
— (FIED
with D’ in ITp. Then, for z in | J, £;(k), we get

AFD)
hean (D, ) <[F]‘[F]>h’can([F]7x) (8.11)
Define a function by setting 1/(x) = ([F]|[F]) " hean([F], ) on | J, Ei(k) and ¥(z) =
0 otherwise. It satisfies the equivariance ¢(f(z))f*[F] = ¢ (x)[F] because hcay is
equivariant and [F'] is almost invariant, and it is bounded because O(F),g, is trivial for
each F;. Now, if we set

hean(D, %) = hean(D, x) = {[F]|D) ¥ (x) (8.12)

can

we get a new restricted canonical vector height on V.., x X (k) that vanishes on | J, E; (k).
This height comes from a canonical vector height on A/G, and since as seen before
NS(A/G;R) can be identified to NS(A;R), it yields a canonical vector height for
(A,T4) restricted to the space of symmetric divisors. The second assertion of Propo-
sition [8.15] entails that this last height is derived from the Néron-Tate height for some
function ¢; since I" 4 contains GG, and G fixes [E], ¢ is G-invariant. Coming back to X,
we get that A, is derived from the Néron-Tate height too. In formulas,

hean(D, ) = hyp(D, x) + ([F]| D) ®(x) (8.13)

where ®: X (k) — R is a bounded function which satisfies ®(f(x)) f*[F] = ®(z)[F]
for f e I'. This function is equal to ¢ on | J, E; (k) and to ¢ o gx on its complement.

To conclude, using the above notation, let us summarize these results in a (somewhat
imprecise) statement.

Theorem[E]’. Let X be a smooth projective surface, defined over a number field k, and
such that PicO(XE) = 0. Let T be a non-elementary subgroup of Aut(Xy) containing
parabolic elements. Let h.,, be a restricted canonical vector height on V., x X (E) for
the group T, where V., < Pic(X;R) is ['-invariant and contains classes with positive
self-intersection. Then (X,T) is a Kummer group associated to an abelian surface A,

Vean is contained in 1(NS(A; R)) and
— either Vo, = Il and hean coincides with the Néron-Tate height hf\T(T;
— or Il is a codimension 1 subspace of V., and he., is derived from hﬁT.
APPENDIX A. KUMMER SURFACES OF TYPE (6)

In case (6), we get a cyclic quotient singularity of type %(1, 2), resolved by a string of two
rational curves of respective self-intersections —3 and —2 (see [5) §1I1.6] and [44} §2]). The ring
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of invariant functions for the group G is generated by the four monomials ug = x°, u; = 3y,

us = xy?, uz = y°, and the quotient surface is locally isomorphic to the surface W in C*
determined by the equations ugug = uf, ujug = u3. Now, take three copies Vp, V1, Va2 of C2,
with coordinates (vg, wp), (v1,w1), and (va, wy) respectively, and glue together the open sets
Vo\{wo = 0} and V4\{v1 = 0} by v; = 1/wp, wy = vowy, and the open sets V;\{w; = 0} by
vy = 1/wy, wy = vlw%. The result is a smooth surface Y, which is a neighborhood of a string of
two smooth rational curves: the curve E; corresponding to the axis {(0,wp) ; wp € C} (glued
to {(v1,0) ; v; € C}) and the curve Es corresponding to the axis {(0,w;) ; wy € C} (glued to
{(v2,0) ; vo € C}); the self-intersections of these curves are respectively equal to —3 and —2.
There is a G-invariant rational map from C? to Y, given in coordinates (v;, w;) by

vo = 2°, wo = y/a*; vr = 2y, w1 =y x; vy = x/y wa = y°. (A.1)

The surface Y is a desingularization of W = C?/G, with projection Y — W given by

Uy = vy = vfwl = vgwg’, (A.2)
Uy = vowg = v%wl = vg’wg, (A.3)
Uy = vowg = ViW] = VaWa, (A4)
ug = vgwg = vlw% = ws. (A.5)

If F is a linear automorphism of C? that normalizes G and F induces a loxodromic automor-
phism of the torus C2/As, then F(x,y) = (ax,By) for some eigenvalues o, 3 with |a| >

1 > |B|. On the quotient space W it acts by (ug, u, uz,us3) — (a’ug, aBuy, af?uz, Bous),
and on Y it acts locally by (vg,wp) — (a®vg,a 2Bwyg) (resp. (B~ 1v,a 1p3w;) and
(aB~3vy, B5ws)). In particular, the linear projective map induced by Fon E; (resp. E») is
given by wg +— a~2Bwy (resp. wy — a~!B3w;). Since |@28| < 1 and |~ 133| < 1, F has

exactly two periodic points on each F;, namely two saddle fixed points. ([
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