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ABSTRACT. We study finite orbits for non-elementary groups of automorphisms of
compact projective surfaces. In particular we prove that if the surface and the group
are defined over a number field k and the group contains parabolic elements, then the
set of finite orbits is not Zariski dense, except in certain very rigid situations, known as
Kummer examples. Related results are also established when k “ C. An application is
given to the description of “canonical vector heights” associated to such automorphism
groups.
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1. INTRODUCTION

1.1. Setting. Let X be a complex projective surface, and denote by AutpXq its group
of automorphisms. The group AutpXq acts on the Néron-Severi group NSpX;Zq (resp.
on the cohomology group H2pX;Zq); this gives a linear representation

f ÞÑ f˚ (1.1)
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from AutpXq to GLpNSpX;Zqq (resp. GLpH2pX;Zqq). By definition, a subgroup Γ of
AutpXq is non-elementary if its image Γ˚ Ă GLpNSpX;Zqq (resp. Ă GLpH2pX;Zqq)
contains a free group of rank ě 2; equivalently, Γ˚ does not contain any abelian sub-
group of finite index (see [18] for details and examples).

Our purpose is to study the existence and abundance of finite (or “periodic”) orbits
under such non-elementary group actions. Several possible scenarios can be imagined:

(a) a large –that is Zariski dense or dense– set of finite orbits;
(b) finitely many finite orbits;
(c) no finite orbit at all.

For a cyclic group generated by a single automorphism, the situation is well under-
stood: in many cases the set of periodic points is large (see [15] for an introduction to
this topic, and [55] for the case of birational transformations). On the other hand, for
non-elementary groups, we expect the existence of a dense set of periodic points to be a
rare phenomenon; this expectation will be confirmed by our results.

In fact, the only examples we know for situation (a) are given by abelian surfaces
and their siblings, Kummer surfaces. Here, by Kummer surface we mean a smooth
surface X which is a (non necessarily minimal) desingularization of the quotient A{G
of an abelian surface A “ C2{Λ by a finite group G Ă AutpAq. For instance, if G
is generated by the involution px, yq ÞÑ p´x,´yq on A, we find the so-called classical
Kummer surfaces and their blow-ups (see [5]). Given a subgroup Γ Ă AutpXq, we say
that the pair pX,Γq is a Kummer group if X is a Kummer surface and Γ comes from a
subgroup of AutpAq which normalizes G; precise definitions are given in §5.7. If Γ is a
group of automorphisms of an abelian surface A fixing the origin 0 P A, then all torsion
points are Γ-periodic. This implies that most Kummer groups have a dense set of finite
orbits (see Proposition 4.5).

1.2. Main results. We first illustrate property (c) in the family of Wehler surfaces that
is, smooth surfaces X Ă P1 ˆ P1 ˆ P1 defined by a polynomial equation of degree
p2, 2, 2q. Such anX is a K3 surface and generically its automorphism group is generated
by three involutions, each of them swapping one coordinate on X . We focus on these
examples because they occupy a central position in the dynamical study of surface auto-
morphisms, both from the ergodic and arithmetic points of view (see e.g. [51, 40, 47]).

Theorem A. For a very general Wehler surface X , every orbit under AutpXq is Zariski
dense. In particular there is no finite orbit under the action of AutpXq.

Unfortunately, from the nature of its proof, this theorem has an obvious limitation: it
does not allow to single out any explicit example satisfying Property (c).

Our main result concerns Property (b). To state it, recall that there are three types of
automorphisms, characterized by the behavior of the linear endomorphism f˚ (see [15]).
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If f˚ has finite order, then f is elliptic. Otherwise, f is either parabolic or loxodromic:
it is parabolic if f˚ has infinite order, but none of its eigenvalues has modulus ą 1; it
is loxodromic if some eigenvalue λpfq of f˚ has modulus |λpfq| ą 1 (in that case λpfq
is unique and λpfq P p1,`8q). A non-elementary group of automorphisms contains a
non-abelian free group all of whose non-trivial elements are loxodromic, and a group
containing both loxodromic and parabolic elements is automatically non-elementary.

Theorem B. Let X be a smooth projective surface, defined over some number field k.
Let Γ be a subgroup of AutpXq, also defined over k, containing both parabolic and
loxodromic automorphisms. If the set of finite orbits of Γ is Zariski dense in X , then
pX,Γq is a Kummer group.

When Γ is non-elementary there is a maximal Γ-invariant curve DΓ; more precisely,
either Γ does not preserve any curve, or there exists a unique, maximal, Γ-invariant
Zariski closed subset of pure dimension 1. This curve DΓ can be contracted to yield a
(singular) complex analytic surface X0 and a Γ-equivariant birational morphism

π0 : X Ñ X0. (1.2)

Thus if pX,Γq is not a Kummer group, property (b) holds on X0. It turns out that when
Γ contains a parabolic automorphism, X0 is projective (see Proposition 3.9). Another
result, which plays an important role in the proof of Theorem B is the following The-
orem D: any non-elementary subgroup Γ Ă AutpXq contains a loxodromic element
whose maximal periodic curve is equal to DΓ (see Section 3 for the precise statement).

Let us stress that even if X and Γ are defined over k, Theorem B concerns orbits of
Γ in XpCq. In this respect it is very different in spirit from the results of [51] or [41],
in which finiteness results are obtained for the number of periodic orbits of elementary
groups acting on Xpk1q, where k1 is a fixed finite extension of k, which ultimately rely
on Northcott’s theorem.

Under the assumptions of Theorem B, we obtain the following corollaries (see Corol-
laries 6.1, and 6.2 and Proposition 4.5 for details):

– If Γ does not preserve any algebraic curve and X is not an abelian surface, then Γ

admits at most finitely many finite orbits.
– If C is an irreducible curve containing infinitely many Γ-periodic points, then either
C is Γ-periodic or pX,Γq is a Kummer group and C comes from a translate of an
abelian subvariety. In particular if C has genus ě 2, it contains at most finitely many
Γ-periodic points.

– If Γ has a Zariski dense set of finite orbits, then its finite orbits are dense in XpCq for
the Euclidean topology; furthermore if f1 and f2 are two loxodromic automorphisms
in Γ, their periodic points coincide, except for at most finitely many of them which are
located on Γ-invariant curves.
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As we shall see in Remark 6.6, the last statement provides a partial answer to a
question of Kawaguchi.

1.3. Proof strategy and extension to complex coefficients. Let us say a few words
about the proof of Theorem B (a more detailed outline is given in §5.1). Given two
“typical” loxodromic elements f, g in Γ, intuition suggests that Perpfq X Perpgq can-
not be Zariski dense unless some “special” phenomenon happens. This situation has
been referred to as an unlikely intersection problem in the algebraic dynamics literature.
Previous work on this topic suggests to handle this problem using methods from arith-
metic geometry (see e.g. [1, 32]). In this respect a key idea would be to use arithmetic
equidistribution (see [56, 6]) to derive an equality µf “ µg between the measures of
maximal entropy of f and g. Unfortunately we do not know how to infer rigidity re-
sults directly from this equality, so the proof of Theorem B is not based on this sole
argument. To reach a concluson, we make use of the dynamics of the whole group Γ,
in particular of the classification of Γ-invariant measures (see [13, 17]), together with
the classification of loxodromic automorphisms f whose measure of maximal entropy
µf is absolutely continuous with respect to the Lebesgue measure (see [19, 33]). The
existence of parabolic elements in Γ is required at three important stages, including the
arithmetic step; in particular we are not able to prove Theorem B without assuming that
Γ contains parabolic elements (see §6.3 for a more precise discussion).

Even if arithmetic methods lie at the core of the proof of Theorem B, it is natural to
expect that the assumption that X and Γ be defined over a number field is superfluous.
We are indeed able to get rid of it when Γ has no invariant curve.

Theorem C. Let X be a compact Kähler surface which is not a torus. Let Γ be a
subgroup of AutpXq which contains a parabolic element and does not preserve any
algebraic curve. Then Γ admits only finitely many periodic points.

The proof of Theorem C is based on specialization arguments, inspired notably by the
approach of [32] (see Section 7). It applies, for instance, to the action of Γ “ AutpXq
on any unnodal Enriques surface X , and to the foldings of euclidean pentagons with
generic side lengths (see [18, §3] for details on these examples).

We conclude this introduction by explaining two further applications of Theorem B.

1.4. Canonical vector heights. Theorem B will be applied to answer a question of
Baragar on the existence of certain canonical heights (see [3, 4, 42]).

Let X be a projective surface, defined over a number field k. Denote by PicpXq

the Picard group of XQ. The Weil height machine provides, for every line bundle L
on X , a height function hL : XpQq Ñ R, defined up to a bounded error Op1q. This
construction is additive, haL`bL1 “ ahL ` bhL1 ` Op1q for all pairs pL,L1q P PicpXq2
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and all coefficients pa, bq P Z2. When L “ OXp1q for some embedding X Ă PNk , then
hL coincides with the usual logarithmic Weil height.

If f is a regular endomorphism of X defined over k and L is an ample line bundle
such that f˚L “ Lbd for some integer d ą 1, then hL ˝ f “ dhL ` Op1q. Tate’s
renormalization trick

ĥLpxq :“ lim
nÑ`8

1

dn
hLpf

n
pxqq (1.3)

provides a canonical height for f and L that is, a function ĥL : XpQq Ñ R` such that
ĥL “ hL ` Op1q and ĥL ˝ f “ dĥL exactly, with no error term. This construction was
extended to loxodromic automorphisms of projective surfaces by Silverman, Call, and
Kawaguchi (see [51, 11, 41]): in this case one obtains a pair of canonical heights ĥ˘f
satisfying ĥ˘f ˝ f

˘1 “ λpfq˘ĥ˘f . (Note that here ĥ`f and ĥ´f are Weil heights associated
to R-divisors.)

If Γ is an infinite subgroup of AutpXq, also defined over k, it is natural to ask whether
a Γ-equivariant family of heights can be constructed. Specifically, one looks for a family
of representatives ĥL of the Weil height functions, i.e. ĥL “ hL ` Op1q for every L in
PicpX;Rq :“ PicpXq bZ R, depending linearly on L, and satisfying the exact relation

ĥLpfpxqq “ ĥf˚Lpxq p@x P XpQqq (1.4)

for every pair pf, Lq P Γ ˆ PicpX;Rq (see §8 for details). A prototypical example is
given by the Néron-Tate height, when Γ is the group of automorphisms of an abelian
surface preserving the origin. Such objects were named canonical vector heights (1) by
Baragar in [2]. He proved their existence when X is a K3 surface with Picard number 2,
in which case AutpXq is virtually cyclic. He also gave evidence for their non-existence
on certain Wehler surfaces (see [4]). In [42] Kawaguchi obtained a complete proof of
this non-existence for an explicit family of Wehler surfaces; his argument relies on the
study of Γ-periodic orbits.

Extending Kawaguchi’s methods and using Theorem B, we completely solve the ex-
istence problem of canonical vector heights for non-elementary groups with parabolic
elements: let X be a smooth projective surface and Γ be a non-elementary subgroup
of AutpXq containing parabolic elements, both defined over a number field k; if pX,Γq
possess a canonical vector height, then X is an abelian surface and Γ has a finite orbit
(see Theorem E in Section 8). The second assertion implies that, after conjugation by
a translation, a finite index subgroup of Γ preserves the neutral element of the abelian
surface X , in particular the Néron-Tate height provides a canonical vector height, and

1The name “vector height” comes from the following viewpoint. Assume PicpX;Rq “ NSpX;Rq,
and fix a basis Li of PicpX;Rq. For a point x in XpQq, consider the vector phLi

pxqq P Rρ, where
ρ “ dimR PicpX;Rq. Then, the equivariance property (1.4) can be phrased in terms of this vector,
hence the terminology.
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we explain how all possible canonical vector heights are derived from the Néron-Tate
height (see Theorems E’ and E” below for precise statements).

1.5. Stationary measures. Another application, which was our primary source of mo-
tivation for this work, concerns the classification of invariant and stationary measures.

Assume that X and Γ are defined over R; in particular, Γ acts on the real part XpRq
of X , which we assume here to be non-empty. The group Γ permutes the connected
components of XpRq and, choosing one component XpRqi in each Γ-orbit, the surface
XpRq splits into a finite, disjoint union of real analytic and Γ-invariant surfaces

XpRq “
ğ

iPI

ΓpXpRqiq. (1.5)

For simplicity, as in Theorem C, suppose that X is not abelian, Γ contains both loxo-
dromic and parabolic elements, and Γ does not preserve any algebraic curve D Ă X .
Let ν be a probability measure on AutpXq, whose support is a finite set generating Γ.
Using the results of [13, 17, 18] we infer that: the set of ν-stationary probability mea-
sures on XpRq coincides with that of Γ-invariant probability measures and is a finite
dimensional simplex, whose extremal points are given by:

– finitely many real analytic area forms ωi, one for each orbit ΓpXpRqiq, with
support equal to ΓpXpRqiq;

– the uniform counting measures on the (finitely many) finite orbits of Γ.

Example. SupposeX is a real K3 surface, withXpRq ‰ H. Then, XpRq is orientable,
and there is a non-vanishing section Ω of the canonical bundle KX which induces a
positive area form ΩR onXpRq (see [17] for instance). The area forms mentioned in the
first item are the restrictions of ΩR to the surfaces ΓpXpRqiq, up to some normalization
factors. So, if X is a very general real Wehler surface with XpRq ‰ H, and if ν
generates AutpXq, Theorem A implies that the only ν-stationary measures are convex
combinations of restrictions of the natural area form ΩR to the components of XpRq
(this result was announced in [18]).

1.6. Organization of the paper. We start by proving Theorem A in Section 2, which
is independent of the rest of the paper. In Section 3 we study invariant curves for loxo-
dromic automorphisms and non-elementary groups. In particular we obtain an effective
bound for the degree of a curve invariant under a loxodromic automorphism (see Propo-
sition 3.7) and prove Theorem D. In Section 4 we briefly discuss the case of tori and
review the Kummer construction. The core of the paper is Section 5, in which we
develop the arithmetic method outlined above and establish Theorem B. Section 6 is
devoted to consequences of Theorem B, and related comments. We prove Theorem C
in Section 7. Finally, canonical vector heights are discussed in Section 8, where we
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solve Baragar’s problem. Some open problems and possible extensions of our results
are discussed in §§6.3 and 7.4.

Acknowledgement. We warmly thank Pascal Autissier, Antoine Chambert-Loir, Marc
Hindry and Junyi Xie for useful discussions.

2. VERY GENERAL WEHLER SURFACES

Consider the family of Wehler surfaces described in Section 3.1 of [18] (or in [3, 12,
42, 47]). In this section we prove Theorem A. Recall the statement:

Theorem 2.1. If X Ă P1ˆP1ˆP1 is a very general Wehler surface, then AutpXq does
not preserve any non-empty, proper, and Zariski closed subset of X .

Here, by very general, we mean that this property holds in the complement of a set of
countably many hypersurfaces in the space of surfaces of degree p2, 2, 2q in P1ˆP1ˆP1.
The proof follows from an elementary but rather tedious parameter counting argument.
As we shall see in §2.5, such a statement does not hold if we replace AutpXq by a thin
non-elementary subgroup.

2.1. Notation and preliminaries. We use the notation of [18, §3.1]: M “ P1ˆP1ˆP1,
with affine coordinates px, y, zq (denoted px1, x2, x3q in [18]), π1, π2, and π3 are the
projections on the first, second, and third factors, and πij is the projection pπi, πjq onto
P1ˆP1. Then Li “ π˚i pOp1qq, L “ L2

1bL
2
2bL

2
3, andX ĂM is a member of the linear

system |L|. In the affine coordinates px, y, zq, X is defined by a polynomial equation of
degree p2, 2, 2q, which we write

P px, y, zq “ A222x
2y2z2

` A221x
2y2z ` ¨ ¨ ¨ ` A100x` A010y ` A001z ` A000. (2.1)

We thus see that H0pM,Lq is of dimension 27 and since the equation tP “ 0u is de-
fined up to multiplication by a complex scalar, the family of Wehler surfaces X is 26-
dimensional. Modulo the action of G “ PGLp2,Cq3 they form an irreducible family of
dimension 17.

It was shown in [18, Prop. 3.1] that there exists a Zariski open set W0 Ă |L| of
surfaces X P |L| such that

(i) X is a smooth K3 surface;
(ii) each of the three projections pπijqX : X Ñ P1 ˆ P1 is a finite map, that is, X

does not contain any fiber of πij : M Ñ P1 ˆ P1.

From now on, we suppose that X belongs toW0. Let i, j, k be three indices with
ti, j, ku “ t1, 2, 3u. Denote by σi : X Ñ X the involutive automorphism of X that
permutes the points in the fibers of the 2-to-1 branched covering pπjkqX : X Ñ P1ˆP1.
By [18, Lem. 3.2], the three involutions σi generate a non-elementary subgroup of
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AutpXq. This subgroup is isomorphic to Z{2Z‹Z{2Z‹Z{2Z, it preserves the subspace
of NSpX;Zq generated by the Chern classes of the Li, and its action on this subspace
is given by the matrices in Equation (3.4) of [18]. Then fij “ σi ˝ σj is a parabolic
automorphism of X , preserving the genus 1 fibration πk : X Ñ P1. Moreover, if X is
very general the Li generate NSpX;Zq (see [18, Prop. 3.3]).

2.2. Invariant curves.

Proposition 2.2. If X P W0, AutpXq does not preserve any algebraic curve.

This is a direct consequence of the considerations of the previous paragraph, together
with the following more precise result.

Lemma 2.3. Let X be a smooth Wehler surface. Assume that the three involutions σi
induce a faithful action of the group Z{2Z ‹ Z{2Z ‹ Z{2Z. Then the group generated
by the σi does not preserve any curve.

Proof. Assume that C is an invariant curve. Since no curve can be contained simul-
taneously in fibers of π1, π2 and π3, without loss of generality, we may suppose that
π1 : C Ñ P1pCq is dominant. Then the automorphism f23 “ σ2 ˝ σ3 has finite order:
indeed, on a general fiber F of π1, it acts as a translation that preserves the non-empty
finite set FXC. This contradicts the fact that f23 is parabolic and finishes the proof. �

Thus, to prove Theorem 2.1, we are left to prove the non-existence of periodic orbits,
which is the purpose of the following paragraphs.

2.3. Elliptic curves. Here we study (2,2) curves in dimension 2. We keep notation as
in §2.1. Let us consider the line bundles Li “ π˚i pOp1qq on P1ˆP1 and set L “ L2

1bL
2
2.

Fix (affine) coordinates px, yq on P1ˆP1, with x and y in CYt8u. A curveC Ă P1ˆP1

in the linear system |L| is given by an equation of degree (2,2) in px, yq. Assume that C
contains the points p0, 0q, p8, 0q, and p0,8q and that it is smooth at the origin, with a
tangent line given by x` y “ 0. Then its equation reduces to the form

αx2y2
` βx2y ` γxy2

` δxy ` εpx` yq “ 0 (2.2)

for some complex numbers α, β, γ, δ, and ε, with ε ‰ 0. Denote this curve byCpα,β,γ,δ,εq.
For a general choice of these parameters, C is a smooth curve of genus 1. We will need
the following more precise result.

Lemma 2.4. Fix pβ, γ, δ, εq with ε ‰ 0. Then for general α, Cpα,β,γ,δ,εq is smooth.

Proof. An easy explicit calculation shows that the points ofC on t8uˆP1 and P1ˆt8u

are smooth unless α “ β “ γ “ 0. So for α ‰ 0, C has no singular point at infinity.
Now, viewing the equation (2.2) as a quadratic equation in x depending on the variable
y, we can consider its discriminant ∆x “ ∆xpyq, which is a polynomial of degree 4 in y
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that detects fibers Cˆ tyu intersecting C at a single point (for those values y for which
C XCˆ tyu is contained in C2, that is the polynomial in x is of degree 2). It is easy to
check that if px, yq is a singular point of C, then y must be a multiple root of ∆x. Hence
if y ÞÑ ∆xpyq only has simple roots, C is smooth in C2. Thus it is enough to check
that if pβ, γ, δ, εq is an arbitrary 4-tuple such that ε ‰ 0, ∆x has only simple roots for
general α.

A simple calculation shows that ∆xpyq “ ay4 ` by3 ` cy2 ` dy ` e, where only
b depends on α, with bpαq “ 2γδ ´ 4αε, and e “ ε2 ‰ 0. Now the discriminant of
∆x, as a degree 4 polynomial in y, is a polynomial expression in pa, b, c, d, eq, and as
a polynomial in b it has a unique leading term 27b4e2. So, pβ, γ, δ, εq being fixed, with
ε ‰ 0, this discriminant depends non-trivially on α; for a general α, this discriminant is
not zero thus ∆x has four distinct roots, so that C is smooth, as was to be proved. �

As for Wehler surfaces, there are two involutions σ1 and σ2 on C, respectively per-
muting the points in the fibers of the projections pπ2q|C : C Ñ P1 and pπ1q|C : C Ñ P1,
that is, σi changes the i-th coordinate, while keeping the other ones unchanged. The
composition f “ σ1 ˝ σ2 is a translation on C mapping p0,8q to p8, 0q; in particular, f
is not the identity.

Lemma 2.5. Fix pβ, γ, δ, εq with ε ‰ 0 and assume that the curve Cp0,β,γ,δ,εq is smooth.
Then the dynamics of the translation f on Cpα,β,γ,δ,εq varies non-trivially with α: it is
periodic for a countable dense set of α’s, and non-periodic for the other parameters.

Proof. For α in the complement of a finite set, Cα :“ Cpα,β,γ,δ,εq is a smooth curve of
genus 1, and f acts as a translation on Cα. Let us analyze the orbit of p0,8q. Denote
by u, v P C Y t8u the complex numbers such that σ2p8, 0q “ p8, vq and pu, vq “
σ1p8, vq “ f 2p0,8q. The translation f is periodic of period 2 if and only if pu, vq “
p0,8q, if and only if p8,8q is a point of Cα, if and only if α “ 0. Hence, f is periodic
of period 2 onC0 but after perturbation it is not of period 2 anymore. For small αwe can
write C “ C{Λα for some lattice Λα “ Z`ZτpCαq and fpzq “ z ` tpCαq, with tpCαq
and τpCαq depending holomorphically on the parameters α. If we further decompose
tpCαq “ apCαq`bpCαqτpCαq, where a and b are two real analytic functions with values
in R, then both a and b must be non constant. Indeed if one of them were constant, then
the other one would be a non-constant real holomorphic function, which is impossible
(see [13, Prop. 2.2] for a similar argument). The result follows. �

2.4. Proof of Theorem 2.1.

2.4.1. From finite orbits to fixed points. Let us form the universal family X Ă W0ˆM ,
where W0 Ă |L| is the open set defined in Section 2.1: the fiber of the projection
X Ñ W0 above X P W0 is precisely the surface X ĂM .
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The group Z{2Z ‹ Z{2Z ‹ Z{2Z acts by automorphisms on X , preserving each fiber
of X Ñ W0: the generators of the first, second and third Z{2Z factors give rise to
involutions rσ1, rσ2 and rσ3 which, when restricted to a fiber X , correspond to the auto-
morphisms σi P AutpXq. These involutions rσi extend to birational involutions of the
Zariski closure X Ă |L| ˆM .

Remark 2.6. If X P |L| is smooth and contains a fiber V “ tpx0, y0qu ˆ P1 Ă X of
π12, the curve V is contained in the indeterminacy locus of σ̃3 (one may consult [23] for
further results: see Theorem 3.3 and the proof of its third and fourth assertions).

Consider the group Z{2Z ‹ Z{2Z ‹ Z{2Z acting on X . Its restriction to the fiber X
gives a subgroup Γ of AutpXq. Let d be a positive integer. There are only finitely many
homomorphisms from Z{2Z‹Z{2Z‹Z{2Z to groups of orderď d!, and the intersection
of the kernels of these homomorphisms is a normal subgroup of finite index. Denote by
Γd the corresponding subgroup of AutpXq. If Γ has an orbit of cardinality ď d on some
surface X , then this orbit is fixed pointwise by Γd. Let us introduce the subvariety

Zd “ tpX, xq ; x P X and @f P Γd , fpxq “ xu Ă X . (2.3)

Since X Ñ W0 is proper, from this discussion we get:

Lemma 2.7. The following properties are equivalent:

(1) for a very general surface X P |L|, every orbit of Γ in X is infinite.
(2) for every d ě 1, the projection Zd Ñ W0 is not surjective;

2.4.2. Preparation. According to Lemma 2.7, to prove Theorem 2.1 it suffices to show
that the projection of Zd Ă X onto W0 is a proper subset for every d ě 1. So, let us
assume that there is an integer d for which Zd surjects onto W0 and seek for a contra-
diction. Pick a small open subset U Ă W0 for the Euclidean topology, over which one
can choose a holomorphic section s : X ÞÑ sX of X Ñ W0 such that sX is fixed by Γd;
equivalently, the image of s is contained in Zd.

The group G “ PGL2pCq ˆ PGL2pCq ˆ PGL2pCq acts on M and on |L|, preserv-
ing W0. Recall that modulo the action of this group, the space of Wehler surfaces is
irreducible and of dimension 17.

2.4.3. Case 1. Let us first assume that we can find U such that sX is fixed neither by
σ̃1, σ̃2, nor σ̃3. As in Lemma 2.4 this implies that for each pair of indices i ‰ j, the fiber
C of pπiqX : X Ñ P1 through sX is smooth near sX and sX P C is not a ramification
point of the projection pπjq|C : C Ñ P1.

As in Section 2.1, fix coordinates px, y, zq onM “ pP1q3 with x, y, and z in CYt8u.
Modulo the action of G, we may assume that for every X in U ,

(a) the point sX is the point p0, 0, 0q in pP1q3;



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 11

(b) X contains p8, 0, 0q, p0,8, 0q, and p0, 0,8q;
(c) the tangent plane to X at the origin is given by the equation x` y ` z “ 0;
(d) the coefficients of x2y2z2 and x, y and z in the equation of X are all equal to the

same complex number.

Note that (a) can be achieved by a single translation, (b) can be obtained by transforma-
tions of the form px, y, zq ÞÑ p x

x´α
, y
y´β

, z
z´γ
q, (c) is achieved by the action of diagonal

maps (note that by our assumption, the tangent plane to X at the origin sX “ p0, 0, 0q
cannot be one of the coordinate planes), and then we obtain (d) by the action of homo-
theties. After such a conjugation, the equation of X is of the form

Ax2y2z2
`Bx2y2z `B1x2yz2

`B2xy2z2
` Cx2yz ` C 1xy2z ` C2xyz2 (2.4)

`Dx2y2
`D1x2z2

`D2y2z2
` Exyz

` Fx2y ` F 1x2z ` F 2xy2
` F3y2z ` F ivxz2

` F vyz2

`Gxy `G1xz `G2yz ` Apx` y ` zq “ 0.

Since this equation is defined up to multiplication by an element of C˚, we are left with
19 parameters.

The automorphism f12 “ σ1 ˝ σ2 preserves the genus 1 fibration pπ3q|X : X Ñ P1.
The fiber of pπ3q|X through p0, 0, 0q is a curve C Ă P1 ˆ P1 given by the equation

Dx2y2
` Fx2y ` F 2xy2

`Gxy ` Apx` yq “ 0. (2.5)

Two cases need to be considered, depending on the smoothness of this curve.

– if this curve is singular, by Lemma 2.4 the coefficients in Equation (2.5) satisfy
a non-trivial relation of the form P3pD,F, F

2, G,Aq “ 0;
– if it is smooth, consider an iterate fm12 of f12 in Γd, with 1 ď m ď d!; then fm12

is a translation of the genus 1 curve C that fixes sX , so that it fixes C pointwise.
From Lemma 2.5, the coefficients in Equation (2.5) satisfy a relation of the form
Q3pD,F, F

2, G,Aq “ 0.

In both cases we get a relation of the form R3pD,F, F
2, G,Aq “ 0 (with R3 “ P3

or Q3) that depends non-trivially on the first factor. Similarly, looking at the dynam-
ics of f23 “ σ2 ˝ σ3 and f31 “ σ3 ˝ σ1, we obtain two further relations of the form
R1pD

2, F 2, F v, G2, Aq “ 0 and R2pD
1, F 1, F iv, G1, Aq “ 0.

We claim that the subset defined by these 3 constraints is of codimension 3: indeed
if we look at the subvariety cut out by the equations Ri “ 0, i “ 1, 2, 3 and slice it by
a 3-plane corresponding to the coordinates D, D1 and D2, then by Lemmas 2.4 and 2.5
and the independence of variables, this slice is reduced to a point. This shows that the
image of the section X ÞÑ sX is at most 16-dimensional, which contradicts the fact that
W0{G is of pure dimension 17. Thus our hypothesis on Zd cannot be true and Case 1
does not hold.
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2.4.4. Case 2. If Case 1 does not hold, every point pX, px, y, zqq of Zd has the property:
px, y, zq P X is a ramification point for at least one of the three projections pπiq|X .
Equivalently, every point of the finite orbit F “ ΓdpsXq Ă X is fixed by at least one
of the three involutions σi. This case is simpler, since a direct count of parameters will
lead to a contradiction.

‚ If a point of F were a ramification point of each pπiq|X , this point would be a
singularity of X , and X would not be in W0. So, each point of F is a ramification point
for at least one and at most 2 of the projections.

‚ Now, assume that every point of F is a ramification point for exactly 2 of the pro-
jections. Choose a local section sX of Zd above a small open set U Ă W0 (for the
Euclidean topology), as in §2.4.3. Permuting the coordinates and using a translation in
G, we assume that sX “ p0, 0, 0q and sX is fixed by σ2 and σ3. After this normalization,
with notation as in Equation (2.1), we haveA010 “ A001 “ A000 “ 0. Let s1X “ σ1psXq;
this point is not equal to sX because otherwise X would be singular at sX . So, we may
use a transformation of the form x ÞÑ x

x´α
in G to assume that s1X “ p8, 0, 0q (i.e.

A200 “ 0). Now by our assumption, this second point must be fixed by σ2 and σ3,
which imposes two more constraints (A201 “ A210 “ 0). Now, consider the curve
C1 Ă X defined by the equation x “ 0. Using elements of G acting on y and z by
y ÞÑ y

y´β
and z ÞÑ z

z´γ
, we may assume that p0,8,8q is on C1 and is a ramification

point for pπ2q|C1 . With such a choice, the coefficients of y2z2 and y2z vanish. At this
stage we did not use the diagonal action of pC˚q3, which stabilizes p0, 0, 0q, p8, 0, 0q,
and p0,8,8q. With this we can impose for instance the same non-zero coefficients
for the terms xy, yz, and zx, so we end up with 17 coefficients, hence at most 16 free
parameters. Again this contradicts the fact that dimpW0q “ 17.

‚ Now, assume that one of the points of the finite orbit F is fixed by σ3 but not by
σ1 and σ2. The analysis is similar to that of the previous case. We may choose this
point to be sX , and using the group G, we can arrange that sX “ p0, 0, 0q, σ1psXq “

p8, 0, 0q, and σ2psXq “ p0,8, 0q; with the notation from Equation (2.1), this means
A000 “ A200 “ A020 “ 0. In addition A001 “ 0 because p0, 0, 0q is fixed by σ3. By our
hypothesis, p8, 0, 0q is fixed by σ2 or σ3 (or both). This implies that at least one of A210

or A201 vanishes. Likewise A120A021 “ 0. Now consider the curve C2 Ă X given by
y “ 0. Given the constraints already listed, the equation of C2 can be written as

αx2z2
` βx2z ` γxz2

` δxz ` εz2
` ιx “ 0. (2.6)

There are 4 ramification points for pπ1q|C2 , counting with multiplicities, and none of
them satisifies z “ 0. So using z ÞÑ z

z´γ
and x Ñ λx we may put one of them at

p1, 0,8q. This imposes α ` γ ` ε “ 0 and β ` δ “ 0.
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Finally, we may still use the subgroup tIduˆC˚ˆC˚ Ă G, which fixes the four points
p0, 0, 0q, p8, 0, 0q, p0,8, 0q and p1, 0,8q, to assume that the non-zero coefficients in
front of yz, xz, and z2 are equal. In conclusion, under our assumption we have found at
least 10 independent linear constraints on the coefficients of the Wehler surface so again
at most 16 free parameters remain.

So, in all cases we get a contradiction, and the proof of Theorem 2.1 is complete.

2.5. An example. Consider the subgroup H of Z{2Z ‹Z{2Z ‹Z{2Z generated by fm23

and fm31, for some large positive integer m (as above, f23 “ σ2 ˝ σ3, f31 “ σ3 ˝ σ1).
The automorphism f23 preserves the fibers of the projection pπ1q|X and its periodic
points form a dense set of fibers (see [13, 17] or §3.1.1 below). The intersection number
between a fiber of pπ1q|X and a fiber of pπ2q|X is equal to 2. So, if m is big enough,
fm23 and fm31 share a common fixed point (in fact » cm4 common fixed points, for some
c ą 0 as m goes to `8). If X P W0, xfm23, f

m
31y is non-elementary because the class

c1 P NSpX;Zq of the invariant fibration of f23 is not fixed by f31, and vice-versa (see
also Lemma 3.13 below). Taking a surface X P W0 that is defined over Q, we get in
particular:

Proposition 2.8. For every integer N ě 0, there is a smooth Wehler surface X defined
over Q and a non-elementary subgroup Γ of AutpXQq with at least N fixed points.

Remark 2.9. If X P W0 and m ě 1, the group xfm23, f
m
31y has infinite index in AutpXq.

Indeed, the index of xpσ2 ˝ σ3q
m, pσ3 ˝ σ1q

my in Z{2Z ‹ Z{2Z ‹ Z{2Z is infinite.

3. NON-ELEMENTARY GROUPS AND INVARIANT CURVES

The main purpose of this section is to establish the following:

Theorem D. Let X be a compact Kähler surface and let Γ be a subgroup of AutpXq
containing a loxodromic element. Then there exists a loxodromic element f in Γ such
that every f -periodic curve is Γ-periodic.

Along the way, some results of independent interest will be obtained: Proposition
3.7, which will be used in §7, gives an effective bound for the degree of a periodic curve
under a loxodromic automorphism; Proposition 3.9 provides a singular model of pX,Γq
without Γ-periodic curves, and discusses ampleness properties of some line bundles:
this will be crucial for the study the dynamical heights in §5.

3.1. Preliminaries. Let X be a compact Kähler surface. By the Hodge index theo-
rem, the intersection form x¨|¨y is non-degenerate and of signature p1, h1,1pXq ´ 1q on
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H1,1pX;Rq. Fix a Kähler form κ0 on X , with
ş

X
κ0 ^ κ0 “ 1, denote its class by rκ0s,

and define the positive cone in H1,1pX;Rq to be the set

PospXq “ tu P H1,1
pX;Rq ; xu|uy ą 0 and xrκ0s|uy ą 0u. (3.1)

Equivalently, PospXq is the connected component of tu P H1,1pX;Rq ; xu|uy ą 0u

containing Kähler forms; in particular, its definition does not depend on κ0. This cone
PospXq contains one of the two connected components, denoted HX , of the hyperboloid
tu P H1,1pX;Rq ; xu|uy “ 1u; we can identify HX with its projection PpHXq in the
projective space PpH1,1pX;Rqq, and in doing so we get HX » PpHXq “ PpPospXqq.
Via this identification, the Hilbert metric on HX coincides with the hyperbolic metric
induced by the intersection form (see [18, §2]), and the boundary BHX is identified to
the projection of the isotropic cone in PpH1,1pX;Rqq.

An automorphism of X has a type (elliptic, parabolic or loxodromic) according to
the type of its induced action on HX . Given a subgroup Γ ď AutpXq, we denote by Γpar

(resp. Γlox) the set of parabolic (resp. loxodromic) automorphisms in Γ.

3.1.1. Parabolic automorphisms (see [13, 15, 17]). If g is parabolic, it permutes the
fibers of a genus 1 fibration πg : X Ñ Bg, and induces an automorphism g of the curve
Bg. The induced automorphism g has finite order, except maybe when X is a torus
C2{Λ (see [20, Prop. 3.6]).

If g is the identity, then g preserves each fiber of πg, acting as a translation on each
smooth fiber. If U0 is a disk in Bg that does not contain any critical value of πg, the uni-
versal cover of π´1

g pU0q is holomorphically equivalent to U0 ˆC, with its fundamental
group Z2 acting by px, yq P U0 ˆC ÞÑ px, y ` a ` bτpxqq for every pa, bq P Z2, where
τ : U0 Ñ C is a holomorphic function taking its values in the upper half plane. In these
coordinates g lifts to a diffeomorphism g̃px, yq “ px, y ` tpxqq for some holomorphic
function t : U0 Ñ C. The m-th iterate gm fixes pointwise a fiber txu ˆC{pZ‘ Zτpxqq

if and only if mtpxq P Z‘Zτpxq. The union of such fibers, for all m ě 1, form a dense
subset of X . This comes from the fact that “t varies independently from τ”, a property
which implies also that the differential of gm at a fixed point is, except for finitely many
fibers, a 2 ˆ 2 upper triangular matrix with 1’s on the diagonal and a non-trivial lower
left coefficient. We refer to [13, 15, 17], and to the proof of Theorem 5.12 for a slightly
different viewpoint on this property, using real-analytic coordinates.

The induced action g˚ onH1,1pX;Rq admits a simple description: if F is any fiber of
πg, its class rF s P H1,1pX;Rq is fixed by g˚, the ray R`rF s is contained in the isotropic
cone, and 1

n2 pg
nq˚w converges towards a positive multiple of rF s for every w P PospXq.

In particular the class rF s is nef. Regarding the induced action on HX , PprF sq is the
unique fixed point of the parabolic map g˚ on HX Y BHX (see [13, 15, 17]).
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Recall that a linear endomorphism of a vector space is unipotent if all its eigenvalues
α P C are equal to 1; it is virtually unipotent if some of is positive iterates is unipotent.
Since the topological entropy of g vanishes, Lemma 2.6 of [24] gives the following(2).

Lemma 3.1. Let X be a complex projective surface. If g P AutpXq is parabolic, then
g˚ is virtually unipotent, both on NSpX;Rq and on H2pX;Rq.

3.1.2. Loxodromic automorphisms (see [15]). The dynamics of a loxodromic automor-
phism f is much richer. The isolated periodic points of f of period m equidistribute
towards a probability measure µf as m goes to `8, the topological entropy of f is pos-
itive, and µf is the unique ergodic, f -invariant probability measure of maximal entropy.

We denote by λpfq the spectral radius of the induced automorphism f˚ on H1,1pXq,
which is larger than 1. Then λpfq and 1{λpfq are eigenvalues of f˚ with multiplicity 1,
with respective nef eigenvectors θ`f and θ´f which are isotropic and generate an f˚-
invariant plane Πf Ă H1,1pX;Rq. Their projectivizations are the two fixed points
on BHX of the induced loxodromic isometry of HX . The remaining eigenvalues have
modulus 1. We normalize the eigenvectors θ˘f by imposing

xθ`f |rκ0sy “ xθ
´
f |rκ0sy “ 1 (3.2)

where κ0 is the Kähler form introduced at the beginning of §3.1 (recall that xrκ0s|rκ0sy “

1). We set mf “
1
2
pθ`f ` θ

´
f q. With such a choice, xmf |mfy “

1
2
xθ`f |θ

´
f y ą 0.

Remark 3.2. Denote by Angκ0
pθ`f , θ

´
f q the visual angle between the boundary points

Ppθ`f q and Ppθ´f q, as seen from rκ0s (or Pprκ0sq). Then

xmf |mfy “

ˆ

sin

ˆ

1

2
Angκ0

pθ`f , θ
´
f q

˙˙2

“
1

2

`

1´ cospAngκ0
pθ`f , θ

´
f qq

˘

, (3.3)

so in particular, 0 ă xmf |mfy ď 1, and the right hand inequality is an equality if and
only if mf “ rκ0s (3). In HX , the geodesic joining Ppθ´f q and Ppθ`f q is the curve Axpfq

parametrized by sθ`f ` tθ
´
f with s P R˚

` and st “ xθ`f |θ
´
f y
´1. The projection of rκ0s on

Axpfq is
?

2
xθ`f |θ

´
f y

1{2mf and

coshpdHprκ0s,Axpfqqq “

?
2

xθ`f |θ
´
f y

1{2
(3.4)

(see [9, Lem. 6.3]).

2This can also be proved directly. For instance, on NSpX;Rq this follows from the fact that the
intersection form is negative definite on rF sK{RrF s and the lattice NSp;Zq is g˚-invariant.

3This can be obtained from elementary Euclidean geometry in the hyperplane x¨|rκ0sy “ 1 by fixing
coordinates in which the quadratic form associated to the intersection product expresses as x20 ´ x21 ´
. . .´ x2n and rκ0s “ p1, 0, . . . 0q.
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mf

θ`f

θ´f

rκ0s

FIGURE 1. On the left is a picture of the Néron-Severi group of X in case
ρpXq “ 3. The green plane is Πf , it intersects the isotropic cone along the
two lines Rθ`f and Rθ´f ; the brown line is its orthogonal complement ΠKf , the
magenta point is rκ0s. If f preserves a curve E, its class is on ΠKf . On the right
is a projective view of the same picture, but now the two brown lines are the
projectivization of the planes pθ`f q

K and pθ´f q
K.

3.1.3. Non-elementary subgroups of AutpXq. In this paragraph we collect a few facts
on non-elementary groups of automorphisms, and refer the reader to [18, §2.3] for de-
tails. By definition a subgroup Γ Ă AutpXq is non-elementary if it acts on HX as a
non-elementary group of isometries or, equivalently, if it contains a non-abelian free
group, all of whose elements f ‰ id are loxodromic. Such a group Γ Ă AutpXq pre-
serves a unique subspace ΠΓ Ă H1,1pX;Rq on which: (i) Γ acts strongly irreducibly
and (ii) the intersection form induces a Minkowski form. Moreover, ΠΓ “ ΠΓ0 for any
finite index subgroup of Γ.

Various sufficient conditions on a subgroup Γ imply that it is non-elementary:

– Γ contains a pair of loxodromic elements pf, gq with
 

θ`f , θ
´
f

(

X
 

θ`g , θ
´
g

(

“ H;
– Γ contains two parabolic elements associated to different fibrations;
– Γ contains a parabolic and a loxodromic element.

If AutpXq contains a non-elementary group Γ, thenX is automatically projective and
ΠΓ is contained in the Néron-Severi group NSpX;Rq (see [18, §3.6]). If in addition
Γ contains a parabolic element, then ΠΓ is defined over Q with respect to the lattice
NSpX;Zq (see [18, Lem. 2.9]).
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The limit set LimpΓq Ă BHX is the closure of the set of fixed points of loxodromic
elements in PpΠΓq, or equivalently the smallest closed invariant subset in BHX . The
following lemma is well-known (see [39, Lem. 3.24]):

Lemma 3.3. If Γ is non-elementary,
 

pPpθ`f q,Ppθ
´
f qq ; f P Γlox

(

is dense in LimpΓq2.

3.2. Periodic curves of loxodromic automorphisms. Our purpose in this paragraph
is to bound the degrees of the periodic curves of a loxodromic automorphism.

Lemma 3.4. Let e be an element of H1,1pX;Rq such that e is orthogonal to mf and
xrκ0s|ey “ 1. Then xe|ey ă 0 and

´xe|ey ě
xmf |mfy

1´ xmf |mfy
“

ˆ

tan

ˆ

1

2
Angκ0

pθ`f , θ
´
f q

˙˙2

.

Note that under the assumption of the lemma mf cannot be equal to rκ0s, so 0 ă

xmf |mfy ă 1 by Remark 3.2.

Proof. Write mf “ rκ0s ` v and e “ rκ0s ` w where v and w are in the orthogonal
complement rκ0s

K. Then, xe|mfy “ 0, so xv|wy “ ´1, and the Cauchy-Schwarz in-
equality gives 1 ď p´xv|vyqp´xw|wyq because the intersection form is negative definite
on rκ0s

K. This inequality is equivalent to 1 ď p1 ´ xmf |mfyqp1 ´ xe|eyq and the result
follows. �

If C Ă X is a curve, define its degree (with respect to κ0) to be:

degpCq “

ż

C

κ0 “ xrCs|rκ0sy, (3.5)

and similarly define the degree of an automorphism g P AutpXq by:

degpgq “

ż

X

κ0 ^ g
˚κ0 “ xrκ0s|g

˚
rκ0sy. (3.6)

In the following lemma, KX denotes the canonical bundle of X:

Lemma 3.5. Let cX ě 0 be a constant such that xKX |¨y ď cXxrκ0s|¨y on the effective
cone. If f P AutpXq is loxodromic and E is a reduced, connected, and f -periodic
curve, then

xθ`f |θ
´
f y degpEq ď 2p1` cXq.

If E is not connected, then E has at most ρpXq ´ 2 connected components, thus

xθ`f |θ
´
f y degpEq ď 2pρpXq ´ 2qp1` cXq ď 2pb2pXq ´ 2qp1` cXq

where ρpXq is the Picard number of X and b2pXq is its second Betti number.
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If E is f -invariant, then rEs is orthogonal to Πf for the intersection form, so the
Hodge index theorem implies that rEs2 ă 0. Thus, if E is irreducible, it is determined
by its class rEs, and Lemma 3.5 shows that f has only finitely many irreducible periodic
curves; this finiteness result strengthens [41, Prop. B] (see also [12] and[15, Prop. 4.1]).
We shall denote by Df the union of these irreducible f -periodic curves.

Example 3.6. We can take cX “ 0 when X is a K3, Enriques, or abelian surface.

Proof of Lemma 3.5. Assume first thatE is connected. Set e “ rEs
degpEq

so that xe|rκ0sy “

1. Since E is reduced and connected, its arithmetic genus xKX ` E|Ey ` 2 is non-
negative (see [5, §II.11]), so

´ xE|Ey ď 2` xKX |Ey ď 2` cX degpEq. (3.7)

On the other hand Lemma 3.4 implies

´ xE|Ey “ ´ degpEq2xe|ey ě
xmf |mfy

1´ xmf |mfy
degpEq2. (3.8)

Putting these two inequalities together we get

degpEq2 ď
1´ xmf |mfy

xmf |mfy
p2` cX degpEqq . (3.9)

Solving for the corresponding quadratic equation in degpEq, and applying the inequality
tp1´ tq ď 1{4 with t “ xmf |mfy finally gives

xmf |mfy degpEq ď p1´ xmf |mfyqcX ` 1{
?

2 ď cX ` 1. (3.10)

For the second assertion, write E as a union of disjoint connected components Ei.
The classes rEis are pairwise orthogonal, and are contained in pθ`f q

KXpθ´f q
K, a subspace

of codimension 2 in the Néron-Severi group of X . This implies that there are at most
ρpXq ´ 2 connected components. �

Proposition 3.7. Let X be a compact Kähler surface endowed with a reference Kähler
form κ0 such that

ş

κ2
0 “ 1. If f P AutpXq is loxodromic and E is an f -invariant curve,

then
degpEq ď 254

pρpXq ´ 2qp1` cXq degpfq56,

where the degrees are relative to κ0 and cX is as in Lemma 3.5.

Proof. As in Remark 3.2, denote by dH the hyperbolic distance on HX and let Axpfq be
the axis of the loxodromic isometry f˚. Lemma 4.8 in [9] implies that(4)

dHprκ0s,Axpfqq ď 28 dHprκ0s, f
˚
rκ0sq “ 28 cosh´1

pdegpfqq.

4It was stated for birational transformations of P2 in [9] but the estimate holds in our setting with the
same proof (actually an easier one since here we work in a finite dimensional hyperbolic space).



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 19

Then, using the formula (3.4) for the distance dHprκ0s,Axpfqq together with the elemen-
tary inequality coshpkxq ď 2k´1 coshpxqk, we obtain

2

xθ`f |θ
´
f y
“ coshpdHprκ0s,Axpfqqq

2
ď 254

pdegpfqq56. (3.11)

The result now follows from Lemma 3.5. �

3.3. Γ-periodic curves, singular models and ampleness. Denote by ΠKΓ the orthogo-
nal complement of ΠΓ with respect to the intersection form.

Lemma 3.8. Let Γ Ă AutpXq be a non-elementary subgroup.

(i) A curve C Ă X is Γ-periodic if and only if rCs P ΠKΓ .
(ii) If Γ contains a parabolic element, and C is irreducible, then C is Γ-periodic if and

only if C is contained in a fiber of πg for every g P Γpar.

Proof. For (i), we note that since the intersection form is negative definite on ΠKΓ , Γ acts
on this space as a group of Euclidean isometries. Thus, if c P ΠKΓ is an integral class,
then Γ˚pcq is a finite set. Since ΠΓ is generated by nef classes, rCs belongs to ΠKΓ if
and only if each of its irreducible components does, so it is enough to prove the result
for an irreducible curve. Now an irreducible curve C with negative self-intersection
is uniquely determined by its class rCs; so if rCs is contained in ΠKΓ , we conclude
that C is Γ-periodic. Conversely, if C is Γ-periodic, a finite index subgroup Γ1 Ă Γ

preserves C. If f P Γ1lox, then xθ`f | rCsy “ 0 because f preserves the intersection form.
But Vectpθ`f , f P Γ1loxq is a Γ1-invariant subspace of ΠΓ, hence by strong irreducibility
it coincides with ΠΓ (see §3.1.3). So, rCs P ΠKΓ , and in particular rCs2 ă 0.

Let us prove the second assertion. If rCs P ΠKΓ and g P Γpar, rCs intersects trivially
the class rF s of the general fiber of πg; this implies that C is contained in a fiber of πg,
and is a component of a singular fiber since rCs2 ă 0. Now, denote by S the set of
irreducible curves which are a component of πg for all g P Γpar; it remains to prove that
each C P S is Γ-periodic. Since Γ is non-elementary, Γpar contains two elements g1 and
g2 with distinct fixed points on the boundary of HX ; these fixed points are respectively
given by the classes rF1s and rF2s of any smooth fiber of πg1 and πg2; hence, πg1 and πg2

can not share any smooth fiber. This shows that elements of S are contained in singular
fibers of πg1 , and in particular S is finite. Moreover, S is Γ-invariant, because Γpar is
invariant under conjugacy, thus every C P S is a Γ-periodic curve. �

The following proposition shows that examples as in [19, §11] do not appear for
non-elementary groups containing parabolic automorphisms.

Proposition 3.9. Let Γ Ă AutpXq be a non-elementary subgroup containing parabolic
automorphisms. There is a birational morphism π0 : X Ñ X0 onto a normal projective
surface X0 and a homomorphism τ : Γ Ñ AutpX0q such that
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(1) π0 contracts all Γ-periodic curves and only them;
(2) π0 is equivariant: π0 ˝ f “ τpfq ˝ π0 for every f P Γ;
(3) there is an ample line bundle A on X0 such that π˚0A is a big and nef line bundle,

whose class belongs to ΠΓ.

Before starting the proof, recall that a line bundle M on X is semi-ample if and only
if Mbm is globally generated (or equivalently base-point free) for some m ą 0 (see [45,
§2.1.B]). Set

FreepX;Mq “ tm P N | mM is base point freeu.

(here we use the additive notation mM for the line bundle Mbm.) This defines a semi-
group in N, and we denote by frpMq the largest natural number such that every element
of FreepX;Mq is a multiple of frpMq. Given k in FreepX;Mq, the line bundle kM
determines a morphism

ΦkM : X Ñ XkM Ă PpH0
pX, kMq_q,

onto a projective (possibly singular) normal varietyXkM . According to Theorem 2.1.27
in [45], there is an algebraic fibre space Φ: X Ñ Y such that

(1) Y is a normal projective variety (see Example 2.1.15 in [45]);
(2) XkM “ Y and ΦkM “ Φ for sufficiently large elements k of FreepX;Mq;
(3) there is an ample line bundle A on Y such that Φ˚A “ frpMqM .

Note that conversely the pull-back of a base point free line bundle by a morphism is
base point free.

Example 3.10. To each g P AutpXqpar corresponds a semi-ample line bundle Lg such
that (i) the members of |Lg| are given by the fibers of πg and (ii) πg : X Ñ Bg coincides
with the fibration Φ: X Ñ Y determined by Lg. The ray R`rLgs Ă H1,1pX;Rq

determines the unique fixed point of g˚ in BHX , and Lg is nef (see Section 3.1).

Proof of Proposition 3.9. By Lemma 3.8 we can fix a finite number of parabolic ele-
ments gi P Γ, 1 ď i ď k, such that the set of irreducible and Γ-periodic curves C Ă X is
exactly the set of irreducible curves which are contained in fibers of πgi for i “ 1, . . . , k.
The line bundle M “

ř

i Lgi is semi-ample, it is nef because the Lgi are and it is big
because M2 ą 0, finally its class belongs to ΠΓ because the classes rLgis belong to
the limit set of Γ (see [18, §2.3.6]). Since M is big, the fibration Φ “ ΦkM : X Ñ Y

defined, as above, by the sufficiently large multiples of M is a birational morphism (a
generically finite fibration is a birational morphism since its fibers are, by definition,
connected). By construction Φ contracts exactly the periodic curves of Γ. So, set-
ting π0 “ Φ and X0 “ Y , we obtain a birational morphism that contracts all periodic
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curves, and only them. Since Γ permutes these curves, it induces a group of automor-
phisms on X0. Moreover, we know that there is an ample line bundle A on X0 such that
π˚0A “ frpMqM ; this proves the third assertion. �

Remark 3.11. In the proof of Proposition 3.9, one may add extra parabolic automor-
phisms gj P Γpar, say with k ` 1 ď j ď `, and replace M by

ř`
i“1miLi for any choice

of integers mi ą 0, while getting the same conclusion. After multiplication by Q˚
`, the

classes constructed in this way form a dense subset of the convex cone
#

ÿ̀

i“1

αic1pLgiq ; ` ě 1, gi P Γpar, and αi P R
˚
` for all i

+

. (3.12)

This cone is Γ-invariant, its closure is the smallest convex cone whose projectivization
contains the limit set LimpΓq, and it spans ΠΓ because ΠΓ is the smallest vector space
containing LimpΓq. Thus, the classes of the form αc1pπ

˚
0Aq, where A runs over the set

of ample line bundles on X0 and α runs over Q˚
`, is a dense subset of this cone.

3.4. Proof of Theorem D. Let us first deal with the case where Γ is elementary. By [15,
Theorem 3.2] there is a loxodromic element f P Γ such that pf˚qZ has finite index in Γ˚.
If AutpXq0 is non-trivial, then X is a torus and then f has no invariant curve (see [15,
Remark 3.3] and [20]). Otherwise, the kernel of the homomorphism Γ Ñ Γ˚ is finite,
fZ has finite index in Γ, and therefore a curve is Γ-periodic if and only if it is f -periodic,
so we are done when Γ is elementary.

When Γ is non-elementary, Theorem D is covered by the following more precise
statement (recall that X is automatically projective in this case [18, Thm. 3.17]).

Proposition 3.12. Let X be a complex projective surface and Γ be a non-elementary
subgroup of AutpXq. Then there exists a loxodromic element f in Γ such that every
f -periodic curve is Γ-periodic. If in addition Γ contains a parabolic element, f can be
chosen of the form h ˝ g, where g and h are parabolic and unipotent.

Proof. Consider a subset S Ă Γlox such that
 

pPpθ`f q,Ppθ
´
f qq ; f P S

(

is dense in
LimpΓq2, as in Lemma 3.3. Let us exhibit an f P S such that every Γ-periodic curve is
f -periodic. By contradiction, we assume that every f P S admits at least one irreducible
periodic curve Cpfq which is not Γ-periodic, and we set cpfq “ rCpfqs. By Lemma
3.8, cpfq does not belong to ΠKΓ , thus u ÞÑ xcpfq|uy is a non-trivial linear form on ΠΓ.
Since the class of any periodic curve is orthogonal to Πf , xcpfq|θ`f y “ xcpfq|θ

´
f y “ 0.

Let U and U 1 be open subsets of BHX intersecting LimpΓq non trivially, and such that
U X U

1
“ H; let x be an element of U X LimpΓq. Define

ApU,U 1q “ tf P AutpXq ; f is loxodromic, Ppθ`f q P U and Ppθ´f q P U
1
u.
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and
DpU,U 1q “ tcpfq ; f P ApU,U 1q X Su. (3.13)

By Lemma 3.5, DpU,U 1q is a finite set. From our assumption on S, there is a sequence
pfnq of elements in ApU,U 1qXS such that x “ limnpPpθ`fnqq. Extracting a subsequence
if necessary we may assume that cpfnq is constant, equal to some c8 P DpU,U 1q, and
we infer that x is contained in cK8. As a consequence, the limit set LimpΓq Ă PpΠΓq is
locally contained in the finite union of hyperplanes PpcK X ΠΓq, for c P DpU,U 1q. By
compactness, LimpΓq is contained in a finite union of hyperplanes, which contradicts
the strong irreducibility of the action of Γ on ΠΓ.

Now, to prove the first assertion of the proposition, we simply put S “ Γlox, which
satisfies the desired density property by Lemma 3.3. For the second assertion, we let
S be the set of loxodromic elements of the form h ˝ g, where g and h are parabolic
and unipotent. To check the density property, we first observe that the set of fixed
points of parabolic elements is dense in LimpΓq: indeed it is enough to consider the
conjugates of a single parabolic transformation. Then, applying the next lemma together
with Lemma 3.1 finishes the proof. �

Lemma 3.13. Let h and h1 be two parabolic elements of AutpXq with distinct fixed
points u and u1 in BHX . Let U and U 1 be small, disjoint neighborhoods of u and u1,
respectively, in PpΠΓq. Then ifN P Z is large enough, fN :“ hN ˝ph1qN is a loxodromic
automorphism such that Ppθ`fN q P U and Ppθ´fN q P U

1.

Proof. Let us denote by Pph˚q the linear projective transformation induced by h˚ on
PpNSpX;Rqq. Since U does not contain u1, Pph1˚qNpUq Ă U 1 if |N | is large enough;
similarly Pph˚qNpU 1q Ă U . So for fN “ hN ˝ ph1qN , Ppf˚Nqmaps U 1 stricly inside itself
and likewise Pppf´1

N q
˚qmaps U strictly inside itself. This implies that fN is loxodromic,

with its α-limit and ω-limit points in U 1 and U respectively. �

4. COMPLEX TORI AND KUMMER EXAMPLES

This section gathers some facts on automorphism groups of complex tori. We also
introduce and study the notion of Kummer group. Part of this material is well-known,
we provide the details for completeness.

4.1. Finite orbits on tori. Consider a compact complex torus A “ Ck{Λ. Each auto-
morphism f of A is an affine transformation fpzq “ Lf pzq ` tf , where z ÞÑ z ` tf is
the translation part and Lf is a linear automorphism, induced by a linear transformation
of Ck that preserves Λ. Let Γ be a subgroup of AutpAq.

Warning. By definition, compact tori and abelian varieties come equipped with their
group structure, in particular with their neutral element, or “origin”. On the other hand,
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an automorphism f with a non-trivial translation part tf does not preserve this group
structure. If x P A is fixed by Γ, conjugating Γ by the translation z ÞÑ z ` x we
may assume that Γ fixes the neutral element of A and acts by linear isomorphisms.
Alternatively, we can transport the group structure by using this translation and put the
neutral element at x: this changes the group structure without changing the underlying
complex manifold. We will frequently do this operation in the following, without always
specifying the change in the group structure of A.

Suppose that the orbit Γpxq Ă A is finite, of cardinality m, and consider the stabilizer
Γ0 Ă Γ of x; its index divides m!. Conjugating Γ by z ÞÑ z ` x, as explained above,
all elements f P Γ0 are linear. In that case, every torsion point has a finite Γ0-orbit,
hence also a finite Γ-orbit; in particular, finite orbits of Γ form a dense subset of A for
the Euclidean topology. The next proposition summarizes this discussion.

Proposition 4.1. LetA be a compact complex torus, and let Γ be a subgroup of AutpAq.
If Γ has a finite orbit, then its finite orbits form a dense subset of A. More precisely if a
periodic point of Γ is chosen as the origin of A for its group law, then all torsion points
of A are periodic points of Γ.

Remark 4.2. If in Proposition 4.1 we moreover assume that dimCA “ 2 and Γ contains
a loxodromic element, then conversely all periodic points of Γ are torsion points. This
follows from Lemma 4.3 below.

4.2. Dimension 2 (see [15, 47]). LetA “ C2{Λ be a compact complex torus of dimen-
sion 2, and let fpzq “ Lf pzq ` tf be a loxodromic element of AutpAq. The loxodromy
means exactly that the eigenvalues α and β of Lf satisfy |α| ă 1 ă |β|. Pick a basis
of Λ, and use it to identify Λ with Z4 and C2 with R4, as real vector spaces. Then, Lf
corresponds to an element Mf P GL4pZq.

Lemma 4.3. Let f be a loxodromic automorphism of a compact complex torus A of
dimension 2. Then:

(1) f has a fixed point, and after translation z ÞÑ z`x by such a fixed point, its periodic
points are exactly the torsion points of A;

(2) there is no f -invariant curve: the orbit fZpCq of any curve is dense in A.

Proof. For (1), using the above notation, fixed points of f are determined by the equa-
tion pLf ´ idqpzq P Λ´ tf , or equivalently pMf ´ idqpzq P Z4 ´ tf . Since the complex
eigenvalues of Lf are distinct from 1, there is at least one fixed point. So, after conjuga-
tion by a translation, we may assume that tf “ 0. Then, periodic points of f correspond
to points x P R4 such that Mn

f pxq´x P Z
4: any solution to such an equation is rational,

which means that it corresponds to a torsion point in A.
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To prove (2) without loss of generality we may assume that tf “ 0. There are two
linear forms ξ`f , ξ´f : C2 Ñ C such that ξ`f ˝ Lf “ αξ`f and ξ´f ˝ Lf “ βξ´f . They
determine two holomorphic 1-forms on A, the kernels of which define two linear foli-
ations: the stable and unstable foliations of f . Both have dense leaves. The class θ`f is
represented by ξ`f ^ ξ`f , up to some positive multiplicative factor. If C Ă A is a com-
plex analytic curve, there is an open subset U of A in which C intersects both foliations
transversely. If y is a torsion point, y is f -periodic, and its stable manifold being dense,
it intersects C. Thus, fnpCq accumulates every torsion point, and is dense in A. In
particular, C is not invariant, as claimed. �

4.3. Kummer structures.

4.3.1. Kummer pairs. Let X be a compact complex surface, and let Γ be a subgroup of
AutpXq. By definition pX,Γq is a Kummer group if there is an abelian surface A, a
finite subgroup G of AutpAq, a subgroup ΓA of AutpAq containing G, and a birational
morphism qX : X Ñ A{G such that:

(a) ΓA normalizes G. Thus, if qA : AÑ A{G is the quotient map, there is a homomor-
phism h P ΓA ÞÑ h P AutpA{Gq such that qA ˝ h “ h ˝ qA for every h P ΓA; we
shall denote by ΓA the image of this homomorphism.

(b) the birational map qX is Γ-equivariant: there is a homomorphism Γ Q f ÞÑ f P

AutpA{Gq, whose image is denoted by Γ, such that qX ˝f “ f ˝ qX for every f P Γ.
(c) the subgroups Γ and ΓA of AutpA{Gq coincide.

To each f P Γ corresponds an element fA of ΓA, unique up to composition with elements
of G; the type of f as an automorphism of AutpXq coincides with the type of fA as an
automorphism of A, and λpfq “ λpfAq.

Remark 4.4. Consider a section ΩA of the canonical bundleKA such that
ş

A
ΩA^ΩA “

1; it is unique up to multiplication by a complex number of modulus one. In particular,
the volume form volA “ ΩA^ΩA is invariant under AutpAq. The quotient of volA by the
action of G determines a probability measure on A{G, and then on X . This probability
measure coincides with the measure of maximal entropy µf for every f P Γlox.

From the definition of a Kummer group, Proposition 4.1 and Remark 4.2 we get:

Proposition 4.5. If pX,Γq is a Kummer group with at least one finite orbit, then its finite
orbits are dense in X for the euclidean topology. Furthermore there exists a dense, Γ-
invariant, Zariski open subset in which all periodic points of loxodromic elements of Γ

coincide.
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4.3.2. Classification of Kummer examples. Let us consider, firstly, the case of an infi-
nite cyclic group generated by a loxodromic Kummer example f . From the classifica-
tion given in [20, 21], we may assume that the finite group G is a cyclic group fixing the
origin of A; in other words, G is induced by a cyclic subgroup of GL2pCq preserving
the lattice Λ such that A “ C2{Λ. And there are only seven possibilities:

(1) G “ tidu and X is a blow-up of an abelian surface.
(2) G “ tid,´idu andA{G is a Kummer surface, in the classical sense; in particular

X is a blow-up of a K3 surface.
(3) A is the torus pC{Zrisq2 and G is the group of order 4 generated by iid ; in this

case X is a rational surface.
(4) A is the torus pC{Zrexpp2iπ{3qsq2 and G is the group of order 3 generated by

expp2iπ{3qid; in this case X is a rational surface.
(5) A is the torus pC{Zrexpp2iπ{3qsq2 and G is the group of order 6 generated by

exppiπ{3qid; in this case X is a rational surface.
(6) Let ζ5 be a primitive fifth root of unity. The cyclotomic field Qrζ5s has two

distinct non-conjugate embeddings in C, σ1 and σ2 determined by σ1pζ5q “ ζ5

and σ2pζ5q “ ζ2
5 . The ring of integers coincides with Zrζ5s and its image by

σ “ pσ1, σ2q is a lattice Λ5 Ă C ‘ C. The abelian surface A is the quotient
C2{Λ5. The group G is generated by the diagonal linear map

px, yq ÞÑ pζ5x, ζ
2
5yq (4.1)

and has order 5. Here, X is rational too.
(7) As in the previous example, A “ C2{Λ5, but now G has order 10 and is gener-

ated by px, yq ÞÑ p´ζ5x, ζ5yq, and again X is rational.

These constraints on pA,Gq apply to non-elementary Kummer groups; in particular
we shall always assume that G is cyclic and fixes the neutral element of A.

In Cases (1) to (5) of the above list, the abelian surface is C2{pΛ0 ˆ Λ0q for some
lattice Λ0 in C. The natural action of GLp2,Zq on C2 preserves Λ0 ˆ Λ0, and induces
a non-elementary subgroup of AutpAq, which commutes to G; as a consequence, it
determines also a non-elementary subgroup of AutpA{Gq. On the other hand, cases (6)
and (7) do not appear:

Lemma 4.6. If pX,Γq is a non-elementary Kummer group, then G is generated by a
homothety and the quotient A{G is not of type (6) or (7) in the classification above.

Proof. The group ΓA permutes the fixed points of G. So, the stabilizer Γ˝A “ StabΓAp0q

of the neutral element is a finite index, non-elementary subgroup of ΓA. Pick any loxo-
dromic element f in Γ˝A; it acts by conjugacy on G, which is finite, so there is a positive
iterate such that fn ˝ g “ g ˝ fn for all g P G. Near the orgin, fn and g are two
commuting linear transformations, fn has two eigenvalues, of modulus ă 1 and ą 1
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respectively, and g must preserve the corresponding stable and unstable directions of f .
Since Γ˝A is non-elementary, these tangent directions form an infinite set as f varies in
the set of loxodromic elements of Γ˝A, so g is a homothety, and we are done. �

4.3.3. Invariant curves. We keep the notation from the previous paragraphs and con-
sider a non-elementary Kummer group pX,Γq. The singularities of A{G are cyclic
quotient singularities, and X dominates a minimal resolution of A{G.

Let us examine Case (2), when G “ tid,´idu. Then G has 16 fixed points, and to
resolve the 16 singularities of A{G one can proceed as follows. First, one blows up the
fixed points, creating 16 rational curves. Then one lifts the action ofG to the blow-up Â.
If E is one of the exceptional divisors, then G fixes E pointwise and acts as w ÞÑ ´w

transversally, so locally the quotient map can be written pw, zq ÞÑ pw2, zq, with E “

tw “ 0u giving rise to a smooth rational curve of self-intersection ´2 on Â{G. This
construction provides the minimal resolution Xmin “ Â{G of A{G, the singularities
being replaced by disjoint p´2q-curves. Cases (3), (4), (5) can be handled with a similar
process because if x P A is stabilized by a subgroup H of G, then H is locally given
around x as a cyclic group of homotheties; so, in the minimal resolution of A{G the
singularities are replaced by disjoint rational curvesEi of negative self-intersectionE2

i P

t´2, . . . ,´6u. Cases (6) and (7) are more delicate however, by Lemma 4.6, we don’t
need to deal with them (see Appendix A for Case (6)).

Lemma 4.7. Let pX,Γq be a non-elementary Kummer group on a smooth projective
surface. Then:

(1) X is abelian if and only if Γ admits no invariant curve;
(2) any connected Γ-periodic curve D is a smooth rational curve, and the induced

dynamics of StabDpΓq on D has no periodic orbit.

Moreover, Df “ DΓ for every f P Γlox.

Proof. The minimal resolution Xmin of A{G is unique, up to isomorphism (see [5,
§III.6], Theorems (6.1) and (6.2), and their proofs). Thus, X dominates Xmin and every
f P Γ preserves the exceptional divisor of the morphism X Ñ Xmin and induces an
automorphism fmin of Xmin. In particular Γ admits an invariant curve, unless G “ tidu
and X “ Xmin “ A. Conversely in that case Γ has no invariant curve, by Lemma 4.3.
This proves the first assertion.

Let us prove the second assertion for the induced group Γmin Ă AutpXminq. Let E
be a connected periodic curve for Γmin. If fmin P Γmin is loxodromic, it comes from an
Anosov map fA : A Ñ A, as in Lemma 4.3, and fA does not have any periodic curve.
Since E is fmin-periodic, it is contained in the exceptional divisor of the resolution
Xmin Ñ A{G; as explained before the lemma, this divisor is a disjoint union of rational
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curves, so E is one of these rational curves Ex “ q´1
Xmin

pqApxqq, where x P A has a
nontrivial stabilizer Gx Ă G. In particular x is fixed by a finite index subgroup ΓA,x
of ΓA. Now since Γ is non-elementary, ΓA and ΓA,x are non-elementary as well, and
since the action of ΓA,x on A is by affine transformations, its action on the exceptional
divisor Ex is that of a non-elementary subgroup of PGL2pCq “ AutpExq. In particular,
ΓA,x does not admit any finite orbit in Ex.

The birational morphism π : X Ñ Xmin is equivariant with respect to Γ and its image
Γmin in AutpXminq. So, π´1 blows up periodic orbits of Γmin. The last few lines show
that, when such a periodic point y P Xmin is blown up, firstly y does not lie on the
exceptional locus of Xmin Ñ A{G, and secondly the exceptional divisor Ey does not
contain any finite orbit. So, X is obtained by simple blowups centered on a finite set of
distinct periodic points of Γmin, every connected component of the exceptional locus of
qX is a smooth rational curve, and there is no Γ-periodic point in these curves. �

5. UNLIKELY INTERSECTIONS FOR NON-ELEMENTARY GROUPS

This section is devoted to the proof of Theorem B. Since the proof comprises many
steps, let us start with a rough outline of the argument.

5.1. Strategy of the proof. If Γ has a Zariski dense set F of finite orbits, a standard
argument shows that there exists a sequence pxnq P FN which is generic in the sense
that it escapes any fixed proper subvariety Y Ă X . Let mxn be the probability measure
equidistributed over the Galois orbit of xn. We want to use arithmetic equidistribution
to show that the sequence of measures pmxnq converges when n Ñ 8. For this, we
need a height function hL associated to some line bundle L on X satisfying appropriate
positivity properties, and such that hL vanishes on F . In §§5.2–5.4 we construct such
height functions: they are associated to the choice of certain finitely supported probabil-
ity measures ν on Γ. Indeed to such a measure, we associate the linear endomorphism
P ˚ν “

ř

νpfqf˚ on the Néron-Severi group of X , and we construct a big and nef line
bundle L such that P ˚ν rLs “ αpνqrLs for some αpνq ą 1; then, hL will be a Weil height
that satisfies the invariance

ř

νpfqhL ˝ f “ αpνqhL. The arithmetic equidistribution
theorem of Yuan shows that the measures mxn converge to a measure µν “ Sν ^ Sν ,
where Sν is a dynamically defined closed positive current with cohomology class equal
to rLs. On the other hand, the measures mxn , hence their limit µ, do not depend on ν.
As we vary the choice of ν, there is enough freedom in the construction to show that for
every f P Γlox, µν can be made arbitrary close to the maximal entropy measure µf . It
follows that µf “ µ is independent of f and is Γ-invariant. In §5.5, using the dynamics
of parabolic elements of Γ we deduce that Supppµq “ X . Then the classification of
Γ-invariant measures from [13, 17] implies that µ has a smooth density, and the main
result of [19] shows that every f P Γlox is a Kummer example (Theorem 5.14 in §5.6).
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At this point the Kummer structure may a priori depend on f , as in Example 5.1 below.
This issue is solved in §5.7 by adding an argument based on Theorem D, which finally
shows that pX,Γq is a Kummer group.

Example 5.1. Let X be a Kummer surface possessing both a Kummer automorphism
f and a non-Kummer one h, as in [43]. Then, f and h ˝ f ˝ h´1 are two Kummer
automorphisms which are not associated with the same Kummer structure; the pair
pX, xf, h ˝ f ˝ h´1yq is not a Kummer group.

5.2. Kawaguchi’s currents.

5.2.1. Action on H1,1. Let X be a Kähler surface and let ν be a probability measure on
AutpXq satisfying the (exponential) moment assumption

ż

`

}f}C1 `
›

›f´1
›

›

C1

˘2
dνpfq ă `8. (5.1)

By [18, Lem. 5.1] this implies the following moment condition on the cohomological
action of Γ:

ż

}f˚}dνpfq ă `8, (5.2)

where f˚ is the endomorphism of H2pX;Rq determined by f and }¨} is any opera-
tor norm. (For the proof of Theorem 5.14, we will only consider finitely supported
measures so the moment conditions will be trivially satisfied.) Let Γν be the subgroup
of AutpXq generated by the support of ν. We define a linear endomorphism Pν of
H2pX;Cq by

Pνpuq “

ż

f˚puq dνpfq. (5.3)

The following lemma is a strong version of the Perron-Frobenius theorem (see [8]).

Lemma 5.2. Assume that Γν does not fix any isotropic line in H1,1pX;Rq. Then, Pν
has a unique eigenvector wν P H1,1pX;Rq such that w2

ν “ 1 and xwν |rκ0sy ą 0. This
eigenvector is big and nef. The eigenvalue αpνq such that

Pνpwνq “ αpνqwν

is larger than 1 and coincides with the spectral radius of Pν; the multiplicity of αpνq is
equal to 1, and all other eigenvalues β P C of Pν satisfy |β| ă αpνq.

Proof. Let u be an isotropic vector, contained in the closure of the positive cone PospXq.
Then, Pνpuq has positive self-intersection, except if f˚puq P Ru for ν-almost every f ,
and then for all f in the support of ν by continuity. Hence, the hypothesis implies that
Pν maps the positive cone strictly inside itself. From the Perron-Frobenius theorem
([8]), Pν has an eigenvector wν in the interior of this cone such that
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(1) wν is a dominant eigenvector: the eigenvalue αpνq such that Pνpwνq “ αwν is
the spectral radius of Pν .

Since wν is in the interior of PospXq, we may assume that wν is in HX . Projectively,
PpPνq contracts strictly the Hilbert metric of the convex set PpPospXqq “ PpHXq;
so, Pν does not have any eigenvector in HX besides wν itself, and the PpPνq-orbit
of any point of PpHXq converges towards Ppwνq. The Kähler cone is also invariant:
PνpKahpXqq Ă KahpXq. Hence, wν is nef (it is in the closure of KahpXq). It is big
because it is nef and has positive self-intersection (see e.g. [45, Thm 2.2.16]). Thus,

(2) this vector wν is the unique eigenvector of Pν in PospXq up to a positive scalar
multiple; it is nef and big.

If w1 is another eigenvector with eigenvalue αpνq and w1 R Rwν , the plane Vectpw1, wνq

intersects HX along a geodesic, all of whose elements satisfy Pνpvq “ αpνqv. From
assertion (2), we get a contradiction. Now, if the multiplicity of αpνq in the characteristic
polynomial of Pν is larger than 1, there exists a vector u R Rwν such that Pνpuq “
αpνqu ` αpνqwν . In the plane Vectpwν , uq the cone PospXq is bounded by two rays;
changing u into u` cwν if necessary (for some c P R), these two rays are R`pwν `auq

and R`pwν ´ buq for some positive real numbers a and b. But then, the image of
R`pwν ´ buq by Pν is not contained in PospXq, a contradiction. It follows that

(3) αpνq is a simple root of the characteristic polynomial of Pν .

Finally,

(4) if Pνpvq “ βv is any complex eigenvector with v R Cwν , then |β| ă αpνq.

Indeed, if β is another eigenvalue with |β| “ αpνq, then β “ αpνqe2iπθ for some θ P R,
and there is a plane V Ă H1,1pX;Rq on which Pν acts as a similitude of strength αpνq
and angle 2πθ; pick v in this plane, then if ε P R˚

` is small, the vector wν ` εv is in
PospXq and the PpPνq-orbit of Ppwν ` εvq in PpHXq stays at constant distance from
Ppwνq, contradicting the contraction property of Pν . This concludes the proof. �

Example 5.3 (See [15], §2, and [19], §2.2). Let f be a loxodromic automorphism, and
take ν to be the probability measure pδf ` qδf´1 with p, q ě 0 and p` q “ 1. Note that
Γν “ fZ does not satisfy the assumption of Lemma 5.2.

Then Pν “ pf˚ ` qpf´1q˚ preserves the f˚-invariant plane Πf Ă H1,1pX;Rq. If
p ą q, the spectral radius of Pν is equal to pλpfq ` q{λpfq, and the corresponding
eigenspace is the isotropic line of Πf corresponding to the eigenvalue λpfq of f ; if
p ă q, the spectral radius is equal to p{λpfq ` qλpfq and the eigenspace is the other
isotropic line in Πf . If p “ q “ 1{2, then pPνq|Πf is the scalar multiplication by

αpfq “
1

2
pλpfq ` 1{λpfqq (5.4)
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and all vectors u P Πf satisfy Pνpuq “ αpfqu. This example shows that the previous
lemma fails for ν, whatever the values of p and q are: the dominant eigenvector is at the
boundary of the hyperbolic space, or is not unique.

5.2.2. Stationary currents. Let us borrow some notation from [18, §6.1]: we fix Kähler
forms κi, the cohomology classes of which provide a basis prκisq of H1,1pX;Rq. Then,
if a is any element of H1,1pX;Rq, there is a unique p1, 1q-form Θpaq “

ř

i aiκi in
Vectpκi, 1 ď i ď h1,1pXqq whose class rΘpaqs is equal to a. If S is any closed positive
current of bidegree p1, 1q, then S “ ΘprSsq ` ddcuS for some upper semi-continuous
function uS : X Ñ R: this function is locally the difference of a plurisubharmonic
function and a smooth function, and it is unique up to an additive constant.

The following proposition is essentially due to Kawaguchi, who proved it in [40]
under slightly more restrictive assumptions.

Proposition 5.4. Let X be a compact Kähler surface, and let vol be a smooth volume
form on X . Let ν be a probability measure on AutpXq satisfying the moment condi-
tion (5.1). Assume that there exists w P H1,1pX;Rq and α ą 1 satisfying

(i) Pνpwq “ αw;
(ii) w is big and nef and w2 “ 1.

Then, there is a unique closed positive current Sν such that
ż

f˚pSνq dνpfq “ αSν and rSνs “ w. (5.5)

This current has continuous potentials: Sν “ Θpwq ` ddcpuq for a unique continuous
function u such that

ş

X
u vol “ 0. In particular, the product Sν ^ Sν is a well-defined

probability measure on X .

Note that here Γν is not assumed to be non-elementary. Actually this proposition will
be applied in two situations:

– when Γν does not fix any boundary point of HX , w “ wν , and α “ αpνq, as in
Lemma 5.2;

– when ν “ 1
2
pδf ` δf´1q for some loxodromic automorphism and w is a fixed

point of 1
αpfq

Pν in HX , as in Example 5.3.

Proof of Proposition 5.4. Fix a Kähler form κ0 onX , as in §3.1. Let β be a smooth form
with rβs “ w. For simplicity, we denote by the same letter Pν the operator

ş

f˚p¨qdνpfq

acting on the cohomology, on differential forms, or on currents. Write pα´1Pνqβ “

β ` ddcphq for some smooth function h. Then,
ˆ

1

α
Pν

˙n

β “ β ` ddc

˜

n´1
ÿ

j“0

1

αj
pPνq

j
phq

¸

, (5.6)
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where pPνqjphqpxq “
ş

h˝fpxqdν‹jpfq is the average of hwith respect to the probability
measure

ş

δfpxqdν
‹jpfq and ν‹j denotes the j-th convolution of ν. The supremum of

|pPνq
jphq| on X satisfies }pPνqjphq}8 ď }h}8 for all j ě 1. From this we deduce that

the series on the right hand side of Equation (5.6) converges geometrically:

ÿ̀

j“k

›

›

›

›

1

αj
pPνq

j
phq

›

›

›

›

8

ď
α ´ αk´`

α ´ 1

}h}
8

αk
ď

α

α ´ 1

}h}
8

αk
. (5.7)

Thus, if we set hν “
ř

jě0
1
αj
pP ˚ν q

jphq and Sν “ β ` ddcphνq we see that Sν is a
closed current which satisfies PνpSνq “ αSν . Furthermore, since β can be written as
a difference of positive closed currents (e.g. by writing β “ pβ ` Cκ0q ´ Cκ0 for a
suitably large positive C), we infer that Sν “ limnÑ8pα

´1Pνq
nβ is also a difference of

positive closed currents. Let us prove that Sν is positive and unique.
By (ii), w is nef, which implies that the set Curpwνq of closed positive currents with

class wν is not empty. The linear operator α´1Pν preserves this compact convex set; as
a consequence, Curpwνq contains a fixed point T of α´1Pν . So we can fix a non-zero
closed positive current T satisfying PνpT q “ αT and rT s “ rSνs. Since T ´ Sν is
cohomologous to zero and expresses as a difference T1´ T2 of positive closed currents,
according to [18, Lemma 6.1], we can write T ´ Sν “ ddcphq where h “ u1 ´ u2, and
ui is an pAκ0q-psh function (A depends only of the mass of the Ti). Changing ui into
ui ´

ş

X
uivol we may assume that

ş

X
uivol “ 0 for i “ 1, 2. From the invariance of

T ´ Sν under α´1Pν we obtain that

1

α
Pνphq “ h` c (5.8)

for some constant c P R; thus, α´nP n
ν phq “ h ` cn where cn converges geometrically

towards some real number c8. From [18, Lemma 6.6], there is a constant C ą 1 such
that

ż

X

1

αn
|P n
ν phq|vol ď

C

αn

ż

X

logpC
›

›Jacpf´1
q
›

›

8
q dν‹npfq (5.9)

for all n ě 1. Thanks to the moment condition (5.2) and the subadditivity property

logp
›

›Jacppf ˝ gq´1
q
›

›

8
q ď logp

›

›Jacpf´1
q
›

›

8
q ` logp

›

›Jacpg´1
q
›

›

8
q,

we see that
ż

X

logp
›

›Jacpf´1
q
›

›

8
q dν‹npfq “

ż

X

logp
›

›Jacpf´1
n ˝ ¨ ¨ ¨ ˝ f´1

1 q
›

›

8
q dνpf1q ¨ ¨ ¨ dνpfnq

ď

n
ÿ

j“1

ż

X

logp
›

›Jacpf´1
j q

›

›

8
q dνpf1q ¨ ¨ ¨ dνpfnq

“ Opnq,
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so the right-hand side of the inequality (5.9) tends to 0 as n goes to `8. Hence
α´nP n

ν phq converges towards 0 in L1pX; volq. Since α´nP n
ν phq “ h`cn also converges

towards h ` c8, we deduce that h is a constant, namely h “ ´c8, and that T “ Sν . In
particular Sν is positive, and is the unique positive closed current satisfying (5.5).

Finally, since Sν has continuous potentials, Sν^Sν is a well-defined positive measure;
its total mass is 1 because 1 “ w2 “ rSνs

2 “
ş

X
Sν ^ Sν . �

Remark 5.5. Here is another setting, closer to [40], in which the same result holds.
Let X be a (singular) complex projective surface and L be an ample line bundle on
X . Pick any integer m ě 1 such that mL is very ample, and consider the Kodaira-
Iitaka embedding ΦmL : X Ñ PN , with PN :“ PpH0pX,mLq_q. Then, L coin-
cides with Φ˚mLpOp1q|Xq and any Fubini-Study form ω determines a smooth p1, 1q-form
κmL :“ Φ˚mLpωq on X (see [28, §1] for forms, currents, and potentials on singular
complex spaces). The form κL :“ 1

m
κmL is locally equal to ddcpvq for some smooth

function, namely v “ 1
m
u ˝ ΦmL where u is a local potential of ω in PN . Now consider

a probability measure ν on AutpXq such that P ˚ν L “ αL, with α ą 1. Then, the proof
of Proposition 5.4 applies, and provides a closed positive current Sν on X with contin-
uous potentials such that P ˚ν Sν “ αSν ; this is proven in [40, Thm. 3.2.1] (Kawaguchi
assumes X to be smooth, but this is only used in the first line of the proof to introduce
the smooth form κL).

Example 5.6. As in Example 5.3, consider the case ν “ 1
2
pδf ` δf´1q, where f is a lox-

odromic automorphism. There are two closed positive currents T`f and T´f , with contin-
uous potentials, such that f˚pT˘f q “ λpfq˘1T˘f ; they are unique up to a positive scalar
factor and their classes generate the isotropic lines Rθ˘f (see [15, §5]). By convention,
we choose them so that xrT`f s|rT

´
f sy “ 1, or equivalently, T` ^ T´ is a probability

measure; to determine them uniquely we further require xrT`f s|rκ0sy “ xrT´f s|rκ0sy.
Beware that this normalization is different from that of θ˘f so a priori rT˘f s ‰ θ˘f . Pick
a class w “ arT`f s ` brT´f s with a, b ą 0 such that w2 “ 1 (equivalently 2ab “ 1).
By uniqueness, the current Sν provided by Proposition 5.4 is equal to aT`f ` bT´f ; in
particular, the measure Sν ^ Sν is equal to T`f ^ T´f which, in turn, is the measure of
maximal entropy µf (see §3.1 and [15, §§5.2, 8.2]). �

5.2.3. Continuity properties of stationary currents. Now, consider a sequence of prob-
ability measures pνnq such that the support of each νn is contained in a fixed finite set
tf1, . . . , fmu:

νn “
ÿ

i

νnpfiqδfi , (5.10)

with coefficients in the simplex of dimension m ´ 1 determined by the constraints
νnpfiq ě 0 and

ř

i νnpfiq “ 1. Assume that pνnq converges towards ν8 “
ř

i ν8pfiqδfi ,
and that none of the groups Γνn fixes a point in BHX . For n P N, we denote bywνn P HX
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the eigenvector of the operator Pνn given by Lemma 5.2, and by Sνn the current given
by Proposition 5.4 for the class wνn; we shall write Sνn “ Θpwνnq ` ddcuνn , as in
Proposition 5.4. For the measure ν8, we make one of the following two assumptions:

(a) Γν8 does not fix any point of BHX Ă PpH1,1pX;Rqq; or
(b) ν8 “ 1

2
pδf ` δf´1q for some loxodromic automorphism f , and wνn converges to

wν8 :“ 1?
2
prT`f s ` rT

´
f sq, with notation as in Example 5.6.

In both cases, Proposition 5.4 provides a unique closed positive current Sν8 with class
rSν8s “ wν8 such that Pν8 “ αpν8qSν8; it coincides with 1?

2
pT`f ` T

´
f q in case (b).

In case (a), by the uniqueness in Lemma 5.2, the classes wνn converge towards wν8;
in case (b) this convergence holds by assumption. Note that the corresponding constants
αpνnq converge as well.

Lemma 5.7. Under the above assumptions,

(1) the sequence of closed positive currents pSνnq converges towards Sν8;
(2) the canonical (continuous) potentials uνn converge uniformly to that of Sν8;
(3) the sequence of measures µn :“ Sνn ^ Sνn converges towards Sν8 ^ Sν8 .

In case (b), Sν8 ^ Sν8 is the unique measure of maximal entropy µf of f .

Proof. The first assertion follows from the uniqueness of the current Sν , obtained in
Proposition 5.4, and the compactness of the space of currents of mass 1. The geometric
convergence obtained from Equation (5.7) shows that the sequence of potentials uνn is
equicontinuous, and by the uniqueness of the normalized potentials, it follows that puνnq
converges uniformly to uν8 . Then the convergence of the sequence of measures pµnq
follows from the continuity properties of wedge products of currents (see [27, III.3.6]).
Finally, the characterization of Sν8^Sν8 in case (b) was explained in Example 5.6. �

5.3. Rational invariant classes. We now construct sequences of probability measures
for which the fixed classes wνn have good positivity and integrality properties; the last
assertion makes use of the contraction π0 : X Ñ X0 constructed in Proposition 3.9.

Proposition 5.8. Let Γ be a non-elementary subgroup of AutpXq such that ΠΓ is defined
over Q. Let f be a loxodromic element of Γ. There is a sequence pνnq of probability
measures on AutpXq such that

(1) The support Supppνnq is a finite subset F of Γ that does not depend on n and
generates a non-elementary subgroup of Γ containing f ;

(2) νnpgq is a positive rational number for all g P F ;
(3) the unique eigenvector wνn of Pνn in HX is an element of R`NSpX;Zq;
(4) the corresponding eigenvalue αpνnq belongs to Q`Xs1,`8r;
(5) νn converges to the measure 1

2
pδf ` δf´1q and wνn converges to 1?

2
prT`f s ` rT

´
f sq.
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If Γ contains a parabolic element g, one can furthermore assume that g belongs to F
and that wνn P R`π

˚
0 rAns for some ample line bundle An on X0.

Proof. For the proof we use the conventions of §3.1.2, in particular the classes θ˘f , which
can be defined by θ˘f “ xT

˘
f |rκ0sy

´1rT˘f s.

Step 1.– Since the representation of Γ on ΠΓ is irreducible, it is also irreducible
over C. Indeed, if W is a proper, Γ-invariant, complex subspace of ΠΓ bR C, then
W does not contain any non-zero real vector u P H1,1pX;Rq; in particular, it does not
contain any isotropic eigenvector of any loxodromic element of Γ. This implies that
W is contained in the orthogonal complement pθ`h q

K for all h P Γlox. But in ΠΓ the
intersection

Ş

hPΓlox
pθ`h q

K is defined over R and is Γ-invariant, so it is trivial.
Thus, according to Burnside’s theorem (see [36]), Γ contains a basis of the real

vector space EndpΠΓq. More precisely, one can find a basis pf˚1 , f
˚
2 , . . . , f

˚
Nq with

N “ pdim ΠΓq
2 such that fi P Γ for all i, f1 “ f and f2 “ f´1 (indeed, f and f´1

are linearly independent endomorphisms). In particular, the set of linear combinations
ř

i αif
˚
i with αi ě 0 contains a non-empty, open, and convex cone of EndpΠΓq.

If Γ contains a parabolic element g we can further require that g belongs to the basis,
because f˚, g˚, and pf´1q˚ are linearly independent, as can be seen by diagonalizing f˚.

Step 2.– Set F “ tf1, f2, ¨ ¨ ¨ , fNu and ∆N “ tpνiq P RN
` ;

ř

i νi “ 1u. Let ∆˝
N

be the interior of this simplex. Points in ∆˝
N correspond to probability measures ν “

ř

i νiδfi whose support is equal to F . When ν P ∆˝
N , the group Γν is non-elementary

by Step 1, so by Lemma 5.2 Pν has a unique fixed point wν in HX . As a consequence,
the map ν P ∆˝ ÞÑ wν is continuous.

Now, consider a sequence pνnq of elements of ∆˝
N converging to aδf ` p1 ´ aqδf´1 ,

with 0 ă a ă 1. Normalize the fixed point wνn by setting wn :“ xwνn |rκ0sy
´1wνn , so

that xwn|rκ0sy “ 1 and wn stays in a compact subset of H1,1pX;Rq. If wnj converges
to w along a subsequence pnjq the limit is a nef eigenvector of the operator af˚ ` p1´
aqpf´1q˚ associated to an eigenvalue ě 1. Thus, if a is small the limit must be equal
to θ´f and the sequence pwnq converges towards this eigenvector (see Example 5.3).
Conversely, if 1´ a is small, then the limit is θ`f .

The subset

∆˝
Npεq “ tpνiq P ∆˝

N ; νi ď ε, @i ě 3u (5.11)

is connected. So, the closure of its image by the continuous map ν ÞÑ xwν |rκ0sy
´1wν

is a compact and connected subset of ΠΓ, and the intersection of these compact sets is
also connected. This set is contained in the segment rθ´f , θ

`
f s because it is contained in

PospXq and in the union of eigenvectors of af˚ ` p1 ´ aqpf´1q˚, for a P r0, 1s. Since
it contains the endpoints of this segment, it actually coincides with it.
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From this we deduce that there exists a sequence of probability measures νn P ∆˝
N

such that xwνn |rκ0sy
´1wνn converges to the class 1

2
pθ`f ` θ

´
f q, hence

– wνn converges to the class 1?
2
prT`f s ` rT

´
f sq.

Then the arguments given in Example 5.3, Example 5.6, and Lemma 5.7 show that:

– Pνn converges towards 1
2
pf˚ ` pf´1q˚q;

– αpνnq converges towards αpfq “ 1
2
pλpfq ` 1{λpfqq.

Step 3.– At this stage the coefficients νnpfiq and the eigenvalues αpνnq are positive
real numbers. Let Un be a small open neighborhood of νn “ pνnpfiqq in ∆˝

N . As a
consequence of the first step, the map ν 1 P Un ÞÑ wν1 contains a small neighborhood
of wνn in ΠΓ Ă NSpX;Rq. Thus, after a small perturbation of νn we may assume that
wνn is an element of R`NSpX;Zq. According to Proposition 3.9 and Remark 3.11,
when Γ contains parabolic elements, we may further choose wνn to be proportional to
the pullback rπ˚0Ans of an ample class.

The equation satisfied by wνn is αpνnqwνn “
ř

i νnpfiqf
˚
i pwνnq. Write wνn “ ηnw̃n

for some w̃n in NSpX;Qq and ηn in R`; the equation becomes

αpνnqw̃n “
N
ÿ

i“1

νnpfiqf
˚
i pw̃nq. (5.12)

This is a linear relation of the form β0w̃n “
ř

i βif
˚
i pw̃nq, where w̃n and the f˚i pw̃nq

belong to NSpX;Qq and the βi are positive real numbers (with β0 ą 1). Thus, given
any ε ą 0, there is a relation of the form β̃0w̃n “

ř

i β̃if
˚
i pw̃nq where the coefficients

β̃i are rational numbers which are ε-close to the original βi. This proves that we can
perturb νn one more time to add the assumption that the νnpfiq and αpνnq are positive
rational numbers. �

5.4. Arithmetic equidistribution. Assume that the normal projective surface X and
the subgroup Γ of AutpXq are defined over some number field k Ă Q. (X is not
assumed to be smooth here.) For y in XpQq, let my denote the uniform probability
measure supported on the Galois orbit of y,

my “
1

degpyq

ÿ

y1PGalpQ:kqpyq

δy1 ; (5.13)

here, degpyq is the degree of the closed point defined by y, or equivalently the cardinality
of the orbit of y under the action of the Galois group GalpQ : kq, and the sum ranges
over all points y1 in this orbit. A sequence pxjq of points of XpQq is generic if the only
Zariski closed subset of X containing infinitely many of the xj’s is X . Equivalently,
pxjq converges to the generic point of X for the Zariski topology.
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In the following theorem, Γν is the group generated by the support of ν, and Sν is
the current given by Proposition 5.4 and Remark 5.5 (associated to the normalized class
xw|wy´1{2w).

Theorem 5.9. Let X be a normal projective surface defined over a number field k.
Let ν be a probability measure on AutpXkq with finite support F and rational weights
νpfq P Q`, for f in F . Assume that

(i) P ˚ν w “ αw for some ample class w in NSpX;Qq and some eigenvalue α ą 1;
(ii) pxjq P XpQqN is a generic sequence such that each xj is a periodic point of Γν .

Then, the sequence of probability measures pmxjq converges towards the measure Sν ^
Sν , and this measure is Γν-invariant.

It is important here that w is a rational class, that is w P NSpX;Qq instead of just
NSpX;Rq, since we rely on results of Kawaguchi, Yuan and Zhang that require this
assumption. It is also crucial that X is not supposed to be smooth because this result
will be applied to the model X0 constructed in §3.3. When Γν is non-elementary, the
eigenvector w must be proportional to wν and α “ αpνq (as in Lemma 5.2).

As explained in Section 5.1, a consequence of the theorem is that the limit Sν ^ Sν
of the sequence pmxjq, depends only on Γν (but not on the weights νpfq); this will
ultimately imply that Assumption (ii) happens only in very rare situations.

Example 5.10. Under the assumption of Theorem 5.9, assume furthermore that X is an
abelian surface. Since Γν has a periodic point x1, the stabilizer Γx1 “ StabΓν px1q has
finite index in Γν ; conjugating by a translation we can take x1 as the neutral element for
the group law on X » C2{Λ. Then, the periodic points of Γx1 (and of Γν) are exactly
the torsion points of X (see §4.1). By the equidistribution theorem of Szpiro, Ullmo,
and Zhang, the measuresmxj converge towards the Haar measure ofX (see [53]). Also,
Γx1 is induced by a subgroup Γ̃x1 of GL2pCq preserving the lattice Λ, and Γν is a group
of affine automorphisms with linear part given by Γ̃x1 and translation part given by the
finite subset Γνp0q Ă X . Every cohomology class u in H1,1pX;Rq has a distinguished
representative, given by the unique translation invariant p1, 1q-form ωu on X such that
rωus “ u. Since Γν acts by affine automorphisms, the operator α´1Pν preserves ωwν ,
and the current Sν is given by xwν |wνy´1{2ωwν . Thus, for abelian surfaces, Theorem 5.9
corresponds to the theorem of Szpiro, Ullmo, and Zhang together with the fact that
ωwν ^ ωwν is proportional to the volume form inducing the Haar measure on X .

Preliminary remarks for the proof of Theorem 5.9. Set Γ “ Γν . Let π : Y Ñ X be a
minimal resolution ofX; it is unique, up to isomorphism (see [5, §III.6], Theorems (6.1)
and (6.2)), and Γ lifts to a group of automorphisms ΓY of Y ; we shall also consider ν
as a measure on ΓY . The pull-back π˚ : PicpXq Ñ PicpY q is an embedding, and an
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isometry for the intersection form. Since π˚NSpX;Rq is ΓY -invariant and contains
classes with positive self-intersection, we deduce that Γ is elementary if and only if
ΓY is, and ΠΓY “ π˚ΠΓ Ă π˚NSpX;Rq if Γ is non-elementary. Also, π˚w satisfies
Pνpπ

˚wq “ απ˚w in NSpY ;Rq.
If Γ is elementary, we apply [15, Theorem 3.2] on Y . Two cases may occur. In the

first case, ΓY fixes a class u ‰ 0 in the closure of the positive cone PospY q; but then
xπ˚w|uy ą 0 because xπ˚w|π˚wy ą 0, and xPνpπ˚wq|uy “ xπ˚w|uy because u is
invariant: this contradicts α ą 1. So, we are in fact in the second case: ΓY (resp. Γ)
contains a loxodromic element f and preserves the pair of lines RrT`f s YRrT´f s. So,
even when Γ is elementary, we know that it contains a loxodromic element.

Now, assume that Pic0
pXq is non-trivial; equivalently, Pic0

pY q is non-trivial. Since
ΓY contains a loxodromic element, we deduce from [15, Theorem 10.1] that Y is a
blow-up of an abelian surface (for Pic0

pY q is trivial when Y is birationally equivalent
to a rational, K3, or Enriques surfaces). But then, X is smooth and is also a blow-up of
an abelian surface. If X itself is not an abelian surface, the exceptional divisor E of the
blow up is Γ-invariant; as above since w is ample and α ą 1 we obtain a contradiction.
So X is abelian, and Theorem 5.9 follows from the discussion in Example 5.10. Thus
in what follows, we may assume Pic0

pXq “ 0 to simplify the exposition. �

Proof of Theorem 5.9. We now assume that Pic0
pXq “ 0 and that Γν contains a loxo-

dromic element.
The proof is based on standard ideas from arithmetic equidistribution theory. For the

reader’s convenience we provide background and details (see also [46] for the appli-
cability of arithmetic equidistribution in this context). Changing w into a multiple, we
may assume w P NSpX;Zq. Multiplying the equation

ř

f νpfqf
˚pwq “ αw by the least

common multiple b of the denominators, we obtain the linear relation
ÿ

fPF

npfqf˚pwq “ dw; (5.14)

in which d “ bα and the coefficients npfq “ bνpfq are positive integers such that
ÿ

fPF

npfq “ b ă d “ bα (5.15)

because α ą 1. Denote by D a divisor with class w, and by L the line bundle OXpDq.
Since Pic0

pXq is trivial, the Equality (5.14) implies
â

fPF

pf˚Lqbnpfq “ Lbd (5.16)

up to an isomorphism of line bundles that we do not specify. From this identity, Kawa-
guchi constructs in [40, §1] a function ĥL : XpQq Ñ R` which satisfies the relation
ř

f npfqĥL ˝ f “ dĥL and differs from the naive Weil height function associated to L
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only by a bounded error. It will be referred to as as the canonical stationary height
(associated to ν andL). This height function may be decomposed as a sum of continuous
local height functions, see [40, §4]. Arakelov theory also provides a canonical adelic
metric on pX,Lq; in particular, for each place v of k, there is a metric | ¨ |v on the line
bundle pXkv , Lkvq, where kv is an algebraic closure of the v-adic completion of k, such
that

ź

fPF

|spfpxqq|npfqv “ |spxq|dv (5.17)

for every local section s of L defined over k. In our setting, an embedding k Ă C is
fixed; it corresponds to one of the places of k. The adelic metric corresponding to that
place gives a continuous metric on L, and from the relation (5.17) and the uniqueness
of the current Sν we see that the curvature current of the metric is precisely the current
Sν from Proposition 5.4 (see also Remark 5.5).

Lemma 5.11. A point x P XpQq satisfies ĥLpxq “ 0 if and only if its Γν-orbit is finite.

Proof (see [40], Prop. 1.3.1). Let k1 be any number field containing k. The set tx P
Xpk1q ; ĥLpxq “ 0u is Γν-invariant and by Northcott’s theorem it is finite, so every
element of that set has a finite orbit. Let us prove the other implication. Iterating the
relation

ř

f npfqĥL ˝ f “ dĥL and evaluating it on a periodic point x yields αnĥLpxq “
ř

gPΓ ν
‹npgqĥLpgpxqq where ν‹n is the n-th convolution of ν. The right hand side is

bounded because ĥLpgpxqq takes only finitely many values, and on the left hand side the
term αn goes to `8; thus ĥLpxq “ 0, as asserted. �

Let Ak denote the ring of adèles of the number field k. The sections of L defined
over k determine a lattice H0pX,Lq in H0pX,Lq bAk, and the quotient pH0pX,Lq b

Akq{H
0pX,Lq is therefore compact. Denote by L the line bundle L endowed with its

canonical adelic metric. For each place v, denote by Bv Ă H0pX,Lq b kv the unit ball
with respect to the v-adic component | ¨ |v of the adelic metric of L. Let λL be a Haar
measure on H0pX,Lq bAk. The quantity

χpX,Lq “ log
λLp

ś

vPMk
Bvq

λLpH0pX,Lq bAk{H0pX,Lqq
(5.18)

does not depend on the choice of Haar measure. Taking tensor products, we get a
sequence of adelic metrized line bundles pL

bn
qně1, and by definition the arithmetic

volume of L is

xvolχpX,Lq “ lim sup
nÑ`8

χpX,L
bn
q

n3{6
. (5.19)

This is to be compared with the usual volume volpX,Lq of L, which by definition is the
limsup of 2

n2h
0pX,Lbnq, as n tends to `8. A fundamental inequality of Zhang asserts
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that if pxjq is a generic sequence in XpQq,

lim inf
j

ĥLpxjq ě
xvolχpX,Lq

3volpX,Lq
. (5.20)

This follows from an adelic version of the Minkowski theorem on the existence of inte-
ger points in lattices (see e.g. [57] or Lemma 5.1 in [25]).

As for the usual volume, the arithmetic volume can be interpreted in terms of arith-
metic intersection. Indeed, to L is associated an arithmetic degree ydegpc1pLq

3q, and it is
shown in [57] that xvolχpX,Lq “ydegpc1pLq

3q ě 0 (see also [40, Thm 2.3.1]). Thus, the
existence of a generic sequence of periodic points pxjq shows that xvolχpX,Lq “ 0 and
ĥLpxjq “ xvolχpX,Lq for all j.

We are now in position to apply Yuan’s equidistribution theorem (see [56, 6]): the
sequence of measures pmxjq converges towards the probability measure Sν ^ Sν as j
goes to 8. If f is any element of Γν , the points fpxjq also form a generic sequence
of Γ-periodic points. Since the actions of Γ and GalpQ : kq commute, we infer that
f˚pmxjq “ mfpxjq, so taking the limit as j Ñ 8 yields f˚pSν ^ Sνq “ Sν ^ Sν , and
finally Sν ^ Sν is Γν-invariant. �

5.5. Density of active saddle periodic points. Let f be a loxodromic automorphism
of X . We say that a periodic point of f is active if it is contained in the support of the
measure of maximal entropy µf . From [31, 15] we know that a saddle periodic point
that is not contained in any f -periodic curve is active (see [15], Theorem 8.2).

Theorem 5.12. Let X be a compact Kähler surface, and Γ be a non-elementary sub-
group of AutpXq that contains a parabolic automorphism. Then, given any non-empty
open subset V Ă X (for the Euclidean topology), there exists a point x P V and a loxo-
dromic element f P Γ such that x is an active saddle periodic point of f . In particular,
the union of the supports of the measures µf , for f P Γlox, is dense in X .

Before proceeding to the proof, let us point out the following fact, which readily
follows from Lemma 3.5, together with the fact that an irreducible curve with negative
self-intersection is determined by its class in NSpX;Zq Ă NSpX;Rq.

Lemma 5.13. Let U and U 1 be two disjoint open subsets of PpNSpX;Rqq containing
nef classes and introduce the set

ApU,U 1q “ tf P AutpXq ; f is loxodromic, PprT`f sq P U and PprT´f sq P U
1
u.

Then, the union of all periodic curves of all elements ofApU,U 1q is a finite set of curves.

Proof of Theorem 5.12. Pick g in Γpar. Since Γ is non-elementary we can conjugate g
by an element of Γlox to produce a pair g, h P Γpar with distinct fixed points BHX .
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Step 1.– Assume that X is a blow-up of an abelian surface A, and pick f in Γlox. By
Lemma 4.3, its periodic points are dense, and all of them are active because µf is the
pull back to X of the Haar measure on A. Thus any open subset of X contains active
saddle periodic points.

From now on, assume that X is not a blow-up of an abelian surface.

Step 2.– From Section 3.1, g preserves a unique fibration πg : X Ñ Bg and the auto-
morphism induced by g on Bg is periodic. Replacing g by some iterate, we assume that
πg ˝ g “ πg. Let U Ă Bg be a small disk containing no critical value of πg. There
is a real analytic diffeomorphism Φ: π´1pUq Ñ U ˆ R2{Z2 and a real analytic map
ϕ : U Ñ R2 such that πU ˝ Φ “ πg and gΦ :“ Φ ˝ g ˝ Φ´1 satisfies

gΦpb, zq “ pb, z ` ϕpbqq (5.21)

for all points pb, zq P U ˆ R2{Z2. According to [13, 17], ϕ is generically of maximal
rank: there is a finite set Z Ă U such that pDϕqb : TbU Ñ R2 has rank 2 for every
b P UzZ; hence, tb P U ; ϕpbq P Q2{Z2u is dense in U . If ϕpbq “ pa0{N, b0{Nq for
some integers a0, b0 and N , then every point q “ pb, zq in the fiber is fixed by gNΦ and

pDgNΦ qx “

ˆ

id2 0
NpDϕqb id2

˙

. (5.22)

Thus, in any holomorphic coordinate system px, yq in which πg expresses as πgpx, yq “
x, the differential of gN at the fixed point Φ´1pqq is of the form p 1 0

a 1 q with a ‰ 0.

Step 3.– The invariant fibrations πg and πh are transversal in the complement of a proper
Zariski closed set Tangpπg, πhq. According to Lemma 5.13 and Lemma 3.13, we can
find an integer N ą 0, and a divisor F Ă X such that all elements g`N ˝ h`N with ` ě 1

are loxodromic and do not have any periodic curve outside F .

Step 4.– Let D be the union of the singular and multiple fibers of πg and of πh, of
Tangpπg, πhq, and of the divisor F ; D is a divisor of X . Let V be an open subset of X .
Then V contains a small ball V 1 such that

– V 1 does not intersect D;
– πgpV 1q and πhpV 1q are topological disks Ug and Uh in Bg and Bh respectively;
– there are local coordinates px, yq in V 1 (resp. x in Ug and y in Uh) such that
pπgq|V 1px, yq “ x and pπhq|V 1px, yq “ y.

Step 2 provides a point px0, y0q P V 1 and an integerN ą 0 such that gN fixes the fiber of
πg through px0, y0q pointwise, hN fixes the fiber of πh through px0, y0q pointwise, and

pDgNqpx0,y0q “

ˆ

1 0
a 1

˙

, and pDhNqpx0,y0q “

ˆ

1 b
0 1

˙

(5.23)

for some non-zero complex numbers a and b. If ` P Z is sufficiently large, f`N “

pDg`Nqpx,yq ˝ pDh
`Nqpx,yq is a loxodromic automorphism, px0, y0q is a fixed point of f`N



FINITE ORBITS FOR GROUPS OF AUTOMORPHISMS OF PROJECTIVE SURFACES 41

which is not contained in a periodic curve of f`N (because px0, y0q is not in F ), which
is shown to be a saddle by an explicit computation. Thus, as explained before the proof,
px0, y0q is active, and we are done. �

5.6. Measure rigidity and Kummer examples.

Theorem 5.14. LetX be a complex projective surface and let Γ be a subgroup of AutpXq.
Assume that

(i) X and Γ are defined over a number field k Ă Q;
(ii) Γ is non-elementary and contains a parabolic automorphism.

If Γ has a Zariski dense set of finite orbits, then every loxodromic automorphism in Γ is
a Kummer example.

Proof. Step 1.– From the Zariski dense set of finite orbits we can extract a generic
sequence of Γ-periodic points pxjq P XpQqN.

Since Γ is non-elementary, it contains a loxodromic element f . The isolated periodic
points of f are defined over Q, becauseX and f are defined over Q, and the non-isolated
periodic points of f form a finite number of f -periodic curves (see §3.2). Thus, we can
find a Zariski dense set of Γ-periodic points x1i in XpQq. If Z Ă X is an irreducible
curve that contains infinitely many of the x1i, then Z is defined over Q too. There are
only countably many curves defined over Q. Thus, by a diagonal argument, we find an
infinite sequence of periodic points xj P XpQq such that pxjq is generic.

In what follows, pxjq denotes such a generic sequence of periodic points. Consider the
contraction π0 : X Ñ X0 of the union DΓ of all Γ-periodic curves (see Proposition 3.9);
the group Γ also acts on the normal projective surface X0. Note that the projection
pπ0pxjqq P X0pQq

N is also generic.

Step 2.– There exists a Γ-invariant measure m such that µf “ m for all loxodromic f .
Fix an arbitrary element f in Γlox. By [18, Lemma 2.9], ΠΓ is defined over Q so

applying Proposition 5.8 we obtain a sequence of probability measures pνnq. Denote
by Sνn and Sνn,0 the currents, on X and X0 respectively, given by Proposition 5.4 and
Remark 5.5; by construction π˚0Sνn,0 “ Sνn , where the pull-back is obtained by locally
pulling back the continuous potentials.

For the moment we fix the integer n. Theorem 5.9 shows that the sequence of proba-
bility measures mπ0pxjq converges towards Sνn,0 ^ Sνn,0 as j goes to `8. In particular,
Sνn,0 ^ Sνn,0 is a fixed Γ-invariant probability measure µ0 :“ limjmπ0pxjq that does
not depend on n. Since Sνn,0 has continuous potentials, this measure gives no mass to
proper analytic subsets ofX0. Let µ be the probability measure which is equal to π˚0 pµ0q

onXzDΓ and gives no mass toDΓ. Since Sνn has continuous potentials, µ “ Sνn^Sνn .
In X , the sequence

`

mxj

˘

converges to µ. Indeed, if a subsequence of
`

mxj

˘

converges
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towards some probability measure λ, then pπ0q˚λ “ µ0, and since µ0 does not charge
any point of X0, we infer that λ is equal to π˚0 pµ0q on XzDΓ and does not charge DΓ,
which means that λ “ µ. Thus, by compactness of the set of probability measures, mxj

converges towards µ.
Now, we let n Ñ 8. By Proposition 5.8 (5), Proposition 5.4, and Lemma 5.7,

Sνn ^ Sνn “ µ converges towards µf as n goes to `8. Thus µ “ µf for all loxodromic
elements f in Γ. In particular, µ is f -ergodic hence Γ-ergodic.

Step 3.– Conclusion.
As already explained, µ gives no mass to proper algebraic subsets ofX . Furthermore,

Theorem 5.12 implies that the support of µ is equal to X . Thus, Theorem 0.2 of [13]
(see also [17]) shows that µ is absolutely continuous with a smooth density. Since
µ “ µf , the Main Theorem of [19] implies that pX, fq is a Kummer example, as was to
be shown. �

5.7. From Kummer examples to Kummer groups. In this paragraph we prove the
following theorem, which together with Theorem 5.14 implies Theorem B. Its formu-
lation, involving subgroups generated by unipotent parabolic elements, is intended for
further use in §8.

Theorem 5.15. Let X be a compact Kähler surface, and Γ be a non-elementary sub-
group of AutpXq containing parabolic elements. Assume that, given any pair of unipo-
tent parabolic elements pg, hq P Γ2

par, every loxodromic element f P xg, hy is a Kummer
example. Then pX,Γq is a Kummer group.

Proof. Consider the birational morphism π0 : X Ñ X0 given in Proposition 3.9. By
Proposition 3.12, there exists a loxodromic transformation f , of the form h ˝ g for some
unipotent elements g, h in Γpar, such that its maximal invariant curve Df coincides
with DΓ. By assumption, f is a Kummer example, which entails that X0 is a quotient
A{G, with A “ C2{Λ an abelian surface and G a finite subgroup of AutpAq generated
by a diagonal map g0 P GL2pCq of order 2, 3, 4, 5, 6 or 10 (see §4.3.2).

The group Γ induces a group of automorphisms of X0. View X0 as an orbifold: its
fundamental group is Λ ¸ G and its universal cover ĂX0 is C2. Concretely, this means
that X0 is the quotient of C2 by the group of affine transformations with linear part in
G and translation part in Λ. The canonical hermitian metric on C2 is invariant under the
affine action of Λ ¸ G. If h̃ : C2 Ñ C2 is a lift of some h P Γ to ĂX0 (5), the norm of
Dh̃px,yq with respect to this hermitian metric is constant along the orbits of Λ¸G, hence

5To prove the existence of such a lift, note that h maps the regular part of X0 to itself, so first lift
h|RegpX0q to C2zπ´1pSingpX0qq, which is simply connected, and then use Hartogs extension to extend
h̃ accross the discrete set π´1pSingpX0qq.
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it is bounded since the action is co-compact. This implies that the holomorphic map

px, yq P C2
ÞÑ Dh̃px,yq (5.24)

is constant. So, if we denote by rΓ the group of all possible lifts of all elements of Γ to
C2 “ ĂX0, then rΓ is a group of affine transformations that contains Λ ¸ G as a normal
subgroup and satisfies Γ̃{pΛ ¸ Gq “ Γ. The action by conjugation of Γ̃ on Λ ¸ G

preserves the subgroup Λ of translations. Therefore, Λ is also normal in rΓ: this shows
that rΓ induces a group of automorphisms ΓA “ rΓ{Λ of the abelian surface A “ C2{Λ

that covers X0. The proof is complete. �

6. AROUND THEOREM B: CONSEQUENCES AND COMMENTS

6.1. Corollaries. The following corollary of Theorem B applies for instance to general
Wehler examples defined over Q.

Corollary 6.1. LetX be a smooth projective surface and let Γ be a subgroup of AutpXq.
Assume that:

(i) X and Γ are defined over a number field;
(ii) X is not an abelian surface;

(iii) Γ contains a parabolic automorphism, and has no invariant curve.

Then Γ admits only finitely many finite orbits.

Proof. Suppose Γ has infinitely many finite orbits; since Γ does not preserve any curve,
these orbits form a Zariski dense subset. Let g be a parabolic automorphism of Γ. If
the fibration πg were Γ-invariant, then Γ would preserve the curve

Ť

yPΓpxq π
´1
g pπgpyqq

for every Γ-periodic point x. Thus, there is an element h in Γ that does not preserve
πg, and h´1 ˝ g ˝ h P Γ is a parabolic map associated to a different fibration. Hence Γ

is non-elementary (see §3.1.3) and Theorem B shows that Γ is a Kummer group. But,
since X is not abelian, a Kummer subgroup of AutpXq admits an invariant curve (see
Lemma 4.7): this contradiction concludes the proof. �

The next result is in the spirit of the “dynamical Manin-Mumford problem”.

Corollary 6.2. Let X be a smooth projective surface and Γ be a subgroup of AutpXq,
both defined over a number field. Suppose that Γ is non-elementary and contains para-
bolic elements. Let C Ă X be an irreducible curve containing infinitely many periodic
points of Γ. Then,

(1) either C is Γ-periodic and is fixed pointwise by a finite index subgroup of Γ;
(2) or pX,Γq is a Kummer group and C comes from a translate of an abelian subvariety

(of dimension 1).
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In both cases the genus of C is 0 or 1. Thus, a curve of genus ě 2 contains at most
finitely many periodic points of Γ.

To be specific, with the notation of §4.3, the second assertion means the following:
there is a translate E ` t of an elliptic curve E Ă A such that qXpCq “ qApE ` tq.
Moreover, if we choose the origin of A at a periodic point of ΓA, we can choose t to be
a torsion point of A. We keep these notations in the following proof.

Proof. Let PerpCq be the set of periodic points of Γ in C; it is Zariski dense in C, for C
is irreducible. The Zariski closure of ΓpPerpCqq is either a Γ-invariant curve or X .

In the first case C is contained in DΓ, a finite index subgroup Γ1 Ă Γ preserves C,
and the restriction Γ1

|C has infinitely many periodic points in C. In this case C has
(arithmetic) genus 0 or 1 by [30, Theorem 1.1]. A group of automorphisms of a curve
with at least three periodic orbits is finite, because it admits a finite index subgroup
fixing 3 points; thus, a finite index subgroup of Γ fixes C pointwise.

In the second case, Theorem B shows that pX,Γq is a Kummer group. Since C cannot
be periodic, its image qXpCq Ă A{G is a non-trivial curve whose lift to A contains a
Zariski dense subset of ΓA-periodic points. Choose one of these periodic points as the
origin of A. By Proposition 4.1 and Remark 4.2, the ΓA-periodic points are exactly
the torsion points of A, and conclusion (2) follows from Raynaud’s theorem (formerly
known as the Manin-Mumford conjecture) [49]. �

6.2. Finitely generated groups. It turns out that Γ is often defined over a number field
when X is.

Proposition 6.3. Let X be a projective surface defined over a number field k. Assume
that AutpXq contains a loxodromic element, and that X is not an abelian surface. Then
any finitely generated subgroup of AutpXq is defined over a finite extension of k.

Corollary 6.4. If X is a K3 or Enriques surface defined over a number field k, AutpXq
is defined over a finite extension of k.

Indeed, AutpXq is finitely generated in this case (see [52]).

Proof of the proposition. It is enough to show that any automorphism f P AutpXq is de-
fined over a finite extension of k. Under our assumption, AutpXq˚ Ă GLpH˚pX,Zqq is
infinite, AutpXq0 is trivial, and the homomorphism f P AutpXq ÞÑ f˚ P GLpH˚pX,Zqq

has finite kernel (see [15, Theorem 10.1]); more precisely, if H is any ample divisor, the
stabilizer of rHs is a finite subgroup AutpX; rHsq of AutpXq.

Fix a finite extension k1 of k and a basis of NSpX;Zq given by classes of divisors Di

which are defined over k1. Fix an ample divisor H defined over k1. By assumption X
and the Di are defined by polynomial equations over k1, in some PN . Now, consider
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an automorphism f of X , defined by polynomial formulas with coefficients in some
extension K of k1. Any field automorphism ϕ P GalpK : k1q conjugates f to an
automorphism fϕ of X: this defines a map ϕ P GalpK : k1q ÞÑ fϕ P AutpXq. On the
other hand xpfϕq˚rDis|rDjsy “ xf˚rDis|rDjsy for any pair pi, jq because the divisors
Di are defined over k1; thus, pfϕq˚ “ f˚ on NSpX;Zq, and fϕ˝f´1 belongs to the finite
group AutpX; rHsq, so the set tfϕ ; ϕ P GalpK : kqu is finite, and we are done. �

6.3. Open problems. In the case of the affine plane A2, it follows from [32] that any
non-elementary subgroup of AutpA2

kq, for any number field k, has at most finitely many
finite orbits (see [32] for the definition of “non-elementary” in this case). This motivates
the following question:

Question 6.5. Is Theorem B true without assuming the existence of a parabolic element
in Γ?

To understand the difficulties behind Question 6.5, let us comment on three arguments
that required the hypothesis Γpar ‰ H. First, it was used to show that ΠΓ Ă NSpX;Rq

is defined over Q and to construct the projective surface X0 (which is then used in
the construction of the canonical stationary height). The point is that in general the
contraction of the divisor DΓ is a well-defined complex analytic surface, but it is not
projective (see [18, Example 2.10] and [19, §11]). We expect that this issue could be
circumvented by applying more advanced techniques from Arakelov geometry. Second,
Theorem 5.12 also relies on the existence of parabolic elements; the point was to show
that all active periodic points of all loxodromic elements of Γ cannot be simultaneously
contained in some real surface. For instance, it is unclear to us whether there can exist
a real projective surface XR, with a non-elementary subgroup Γ Ă AutpXRq, such that
all periodic points of all elements f P Γztidu are contained in the real part XpRq of X .
Third, parabolic automorphisms are crucially used in the classification of Γ-invariant
probability measures given in [13, 17]. We expect that the techniques from [10, 18]
will soon lead to a complete classification of Γ-invariant probability measures, for any
non-elementary group Γ Ă AutpXq. Such a classification would then open the way to
an extension of Theorem B to all non-elementary groups (defined over a number field).

Remark 6.6. In [42, Question 3.3], Kawaguchi formulates two interesting questions
which are closely related to our main results as well as to Question 6.5.

(1) First, he asks whether two loxodromic automorphisms f and g of a complex pro-
jective surface X with a Zariski dense set of common periodic points automatically
have the same periodic orbits. As it is formulated, the answer is no, because of
Kummer examples: if we start with two loxodromic automorphisms of an abelian
surface A fixing the origin and generating a non-elementary subgroup, then one can
blow-up the origin, and the automorphisms lift to automorphisms with the same
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periodic orbits (coming from torsion points of A), except for their fixed points on
the exceptional divisors, which do differ (see Lemma 4.7, Assertion (2)). So, his
question needs to be modified by asking whether f and g have the same periodic
points, except for finitely many of them.

(2) The second part of [42, Question 3.3] asks whether two loxodromic automorphisms
of a Wehler surface having a Zariski dense set of common periodic points automat-
ically generate an elementary group. There are (singular) Kummer examples in the
Wehler family (see [14, §8.2]), and they provide counter-examples to this question.
Taking these comments into consideration, Kawaguchi’s second question can now
be reformulated as: if two loxodromic automorphisms f and g of a complex projec-
tive surface X have a Zariski dense set of common periodic points, then is it true
that either fm “ gn for some m,n ě 1, or f and g generate a Kummer group? This
seems harder than Question 6.5, because common periodic points do not directly
provide common periodic orbits. A natural companion to the last question is: when
do two loxodromic automorphisms have the same measure of maximal entropy?

One may also ask for effective bounds on the cardinality of a maximal finite Γ-
invariant subset of XpCq in terms of the data (compare [29]). Proposition 2.8 says
that such a bound should at least depend on the degrees of the generators of Γ.

Lastly, a natural question is whether the number field assumption in Theorem B is
necessary at all: this is what the next section is about.

7. FROM NUMBER FIELDS TO C

In this section we show how a specialization argument allows to extend Corollary 6.1
beyond the number field case. A full generalization of Theorem B to complex coeffi-
cients would require further ideas (see §7.4 for a short discussion). For concreteness we
first treat the case of Wehler surfaces and then explain the extra ingredients required to
address the general case.

7.1. Wehler surfaces. We resume the notation from §2. The complete linear sys-
tem |L| parameterizing Wehler surfaces is a projective space of dimension 26, which
yields a moduli space of dimension 17 modulo the action of AutpP1q3. There is a dense,
Zariski open subset W0 Ă |L| such that if X P W0, then X is a smooth Wehler surface
and for every 1 ď j ‰ k ď 3, πj,k : X Ñ P1 ˆ P1 is a finite morphism. Let ΓX be the
group generated by the three involutions σi.

Theorem 7.1. If X is a smooth Wehler surface for which the projections πj,k : X Ñ

P1 ˆ P1 are finite maps, then ΓX admits only finitely many finite orbits.

For the proof we follow the approach of [32, §5 and Thm D] closely.
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Proof. Let G “ pZ{2Zq ‹ pZ{2Zq ‹ pZ{2Zq with generators a1, a2, a3 and let χ : G Ñ

AutpXq be the unique homomorphism such that χpaiq “ σi. By definition, ΓX “ χpGq.
Let ci denote the class of the curve X X tzi “ Cstu. The subspace Zc1 ‘ Zc2 ‘ Zc3

of NSpX,Zq is invariant by χpGq˚ Ă GLpNSpX,Zqq and this representation does not
depend on X P W0: the matrices of the involutions σ˚i “ χpaiq

˚ in the basis pc1, c2, c3q

have constant integer coefficients (see e.g. [18, Lem. 3.2]). Thus we can define Glox

(resp. Gpar) to be the set of elements h P G such that for any X P W0, χphq acts as
a loxodromic (resp. parabolic) map on NSpX,Zq. Here, we implicitly use the fact that
the type of h P AutpXq is the same as the type of h˚ in restriction to any h˚-invariant
subspace of H1,1pX;Rq on which the intersection form is not negative definite. In
particular, the type of h coincides with the type of h˚ as an isometry of Vectpc1, c2, c3q.

Fix a system of affine coordinates px, y, zq and write the equations of Wehler surfaces
as in Equation (2.1); this gives a system of homogeneous coordinates on |L|, and |L| can
be considered as a projective space defined over Q. Then, endow |L| » P26pCq with the
Q-Zariski topology. Fix X P W0, let b P P26 (for “base point”) denote the parameter
corresponding to X , and S be the closure of tbu for this topology: this is a subvariety of
P26 defined over Q in which b is, by construction, a generic point. We put S0 “ SXW0,
and we restrict the universal family X Ñ P26 of Wehler surfaces to a family XS0 Ñ S0,
with a fiber preserving action of the group G. The fiber over s is denoted by Xs and the
natural homomorphism GÑ AutpXsq by χs; thus, X coincides with Xb.

Lemma 7.2. For every s P S0pCq,

(1) Xs is a smoothK3 surface which does not contain any fiber of πi,j , i ‰ j P t1, 2, 3u;
(2) h P G belongs to Glox (resp. Gpar) if and only if χsphq is a loxodromic (resp.

parabolic) element of AutpXsq;
(3) χspGq is a non-elementary subgroup of AutpXsq without invariant curve.

Proof of Lemma 7.2. The first assertion follows from the results of §2.1 and the inclu-
sion S0 Ă W0. Likewise χspGq has no invariant curve by §2.2. The second assertion
follows from our preliminary remarks on the definition of Glox and Gpar, and it also
implies that χspGq is non-elementary. �

Assume now by contradiction that ΓX admits infinitely many finite orbits. Then:

Lemma 7.3. For every s P S0pCq, χspGq has infinitely many finite orbits.

This lemma concludes the proof of the theorem. Indeed pick s P S0pQq. By Lemma
7.2, χspGq is non-elementary, contains parabolic elements; and the Zariski closure of
the set of finite orbits of χspGq coincides with Xs, for otherwise it would be an invariant
curve. Then, by Theorem B, pXs, χspGqq must be a Kummer group. But Xs is a K3
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surface and a Kummer group on a non-abelian surface admits an invariant curve, so that
we get a contradiction with Lemma 7.2.(3). �

Proof of Lemma 7.3. We first describe the set of finite ΓX-orbits as a countable union
of subvarieties by arguing as in §2.4.1. Let Gd be the intersection of the kernels of all
homomorphisms from G to groups of order ď d!; it is a finite index subgroup of G.
For any action of G, if the orbit of a point x has cardinality ď d, then x is fixed by Gd.
Conversely if x is fixed by Gd, then its G-orbit is finite. Define a subvariety Zd of X by

Zd “ tx P X ; @g P Gd, χpgqpxq “ xu . (7.1)

Finally put Z “
Ť

dě1 Zd. Then the ΓX-orbit of x P X is finite if and only if x P Z. We
can now define a subvariety Zd of XS0 which is the fibered analogue of Zd, namely

Zd “ tps, xq ; x P Xs, @g P Gd, χspgqpxq “ xu , (7.2)

and put Z “
Ť

Zd. We let Zs (resp. Zd,s) be the intersection of Z (resp. Zd) with Xs.
Set f “ a3a2a1 P G. An explicit computation shows that f P Glox and the eigenval-

ues of χspfq˚ on Vectpc1, c2, c3q are ´1, λpfq “ 9 ` 4
?

5, and 1{λpfq. The eigenline
corresponding to´1 is R ¨ pc1´3c2` c3q, its orthogonal complement in Vectpc1, c2, c3q

is the plane Πχspfq, and this plane contains the class c1 ` 2c2 ` c3. This class is ample,
because it is a convex combination, with positive coefficients, of the Chern classes ci of
the line bundles π˚i pOP1p1qq, i “ 1, 2, 3. Since any invariant curve must be orthogonal
to Πχspfq, we deduce that χspfq has no invariant curve (for all s P S0).

Now assume by contradiction that there is a parameter t P S0pCq such that Zt is
finite. Let Pn be the set of fixed points of χpfnq, so that P “

Ť

n Pn is the set of all
periodic points of χpfq; likewise let Pn and P be their respective fibered versions. Note
that Z Ă P . For fixed n, let Yn be the (reduced) subvariety of XS0 whose underlying
set is Z X Pn. More precisely the sequence of subvarieties Ym

n :“
Ťm
d“1 Zd X Pn is

non-decreasing with m, so it stabilizes, and we define Yn “ Ym
n for m sufficiently

large; its fibers will be denoted by Yn,s (Yn,s is the intersection of Yn with Xs, it may be
non-reduced). For the generic point b the cardinality of Yn,b tends to infinity with n.

Now, the argument is identical to that of Lemma 5.3 and Theorem D in [32] (6). For
x P Yn,s, its multiplicity multpx,Yn,sq as a point in Yn,s is equal to its multiplicity as a
fixed point of χspfqn. Nakayama’s lemma implies that the function

s ÞÑ
ÿ

xPYn,s

multpx,Yn,sq

6Our setting is actually simpler since we are dealing with automorphisms on a projective surface rather
than birational mappings, so the properness issue analyzed in [32] is not relevant here.
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is upper semicontinuous for the Zariski topology, hence
ÿ

xPYn,t

multpx,Yn,tq ě
ÿ

xPYn,b

multpx,Yn,bq ÝÑ
nÑ8

`8. (7.3)

On the other hand, Zt is a finite set, so there exists n0 such that for all n ě 1, Yn,t Ă
Pn0,t, and the theorem of Shub and Sullivan [50] asserts that for every x P Pn0,t, the
multiplicity of x as a fixed point of χtpfqn is bounded as nÑ 8. This contradicts (7.3)
and concludes the proof. �

7.2. Groups without invariant curve. Let us recall Theorem C.

Theorem 7.4. Let X be a compact Kähler surface and let Γ be a subgroup of AutpXq.
Assume that (i) X is not an abelian surface, and (ii) Γ contains a parabolic element and
has no invariant curve. Then Γ admits only finitely many finite orbits.

Proof. The idea is of the proof is the same as that of Theorem 7.1, however new techni-
calities arise. As in Corollary 6.1, Γ is automatically non-elementary, soX is projective.
Arguing by contradiction, we suppose that Γ admits infinitely many finite orbits. Ap-
plying Theorem D, we fix f P Γlox without invariant curve. We also fix a parabolic
element g P Γ.

Step 1.– Geometry of X .– Since Γ is non-elementary, X is a blow-up of an abelian
surface, of a K3 surface, of an Enriques surface, or of the projective plane (see [15,
Thm. 10.1]). In the first three cases, there is a unique minimal model ϕ : X Ñ X , and
the exceptional divisor of ϕ is AutpXq-invariant. Since Γ has no invariant curve, X is
already equal to its minimal model X , and since by assumption X is not abelian, in this
case X is a K3 or an Enriques surface.

Step 2.– Reduction to a finitely generated subgroup.– The group generated by f and
g satisfies assumption (ii) and since it is contained in Γ it also admits infinitely many
finite orbits. From now on, we replace Γ by xf, gy and assume Γ to be finitely generated.

Step 3.– Specialization formalism.– Embed X into a projective space PNC . Fix a finite
set of divisors Ej in X whose classes form a basis of NSpX;Zq, let H Ă X be a
hyperplane section, and let Ω be a non-trivial rational section of Kb2

X , where KX is the
canonical bundle. If X is a K3 or an Enriques surface, we assume that Ω is regular,
hence does not vanish. Let R Ă C be the Q-subalgebra generated by the coefficients
of a system of homogeneous equations for X , the Ej , H , and Ω, and by the coefficients
of the formulas defining a finite symmetric set of generators of Γ. (We shall actually
further enlarge R in §7.3.2.)

Let K “ FracpRq. It is the field of rational functions of some algebraic variety V ,
defined over Q. There is a dense, Zariski open subset S of V , which may be assumed
to be an affine subset, such that all elements of R correspond to regular functions on S.
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Note that in what follows, by Zariski topology we mean the Q-Zariski topology. Nev-
ertheless, since we will use transcendental arguments, SpCq will also be considered as
a complex analytic space endowed with its Euclidean topology.

By specialization, i.e. evaluation of the elements ofR at s P S, we can viewX Ă PN ,
Γ, the Ej , H , and Ω as families over S; that is, there is a proper morphism π : X Ñ S

endowed with a group of fiber preserving automorphisms rΓ, together with a (complex)
base point b P S so that the fiber Xb may be identified with X , and furthermore rΓb “ Γ,
Ej,b “ Ej , Hb “ H , rΩb “ Ω, etc. The point b P S may be thought of as the generic
point of S (i.e. its closure for the Zariski topology is S) so in particular b is a regular
point of S and S is smooth in a complex neighborhood of b. If X is a K3 or an Enriques
surface, changing S into some Zariski dense affine open subset, we may assume that rΩs

does not vanish on any Xs.

Step 4.– Types of automorphisms and invariant curves.–

Lemma 7.5. There is a Zariski open subset S1 Ă S such that:

(1) above S1pCq, the projection X Ñ S is a submersion; for s P S1pCq, Xs is smooth
and it is not an abelian surface;

(2) for s P S1pCq, fs is loxodromic and there exists a Euclidean neighborhood B of b
such that for s P B, fs admits no invariant curve;

(3) for s P S1pCq, gs is parabolic.

Proof of (1). The surface Xb is smooth, and by construction there is a Zariski dense
open subset S1 of S above which X Ñ S is a submersion, so the set of parameters s for
which Xs is singular is a proper Zariski closed set S1 (we will further reduce S1 finitely
many times in the proof, keeping the same notation). For the second conclusion, we
observe that there is a Zariski open subset on which π : X Ñ S is a submersion, hence
by Ehresmann’s lemma the fibers in this open subset are diffeomorphic to X . On the
other hand a surface which is diffeomorphic to a complex torus and possesses a non-
elementary group of automorphisms is automatically an abelian surface. Since X is not
abelian, we conclude that the same is true for any fiber Xs, s P S1. �

Proof of (2). The loxodromic nature of fs follows from the lower semi-continuity of the
dynamical degree for birational mappings on surfaces (see [55, Thm. 4.3]), which we
apply here for the C-Zariski topology.

Let us show that fs has no invariant curve for s P S1 close to b. Indeed, recall
from Proposition 3.7 that there is a uniform bound on the degree of an invariant curve.
Here we compute the degree of a curve on Xs (resp. of fs) with respect to the normal-
ized ample class xHs|Hsy

´1{2rHss induced by the hyperplane section Hs. If cX is as
in Proposition 3.7, the inequality 1

2
rDivprΩsqs ď cXxHs|Hsy

´1{2rHss is satisfied on a
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Zariski open set. Then by Bishop’s theorem, if psiq is a sequence of points converging
to b such that fsi preserves a curve Ci, we can extract a subsequence along which pCiq
converges towards a curve C in Xb (see [26, §16] for the relevant notions). This curve
is fb-invariant, which contradicts our assumption on f . �

The proof of the the third assertion of Lemma 7.5 is a little tedious and will be post-
poned to Section 7.3 below.

Step 5.– Conclusion.– We pick a point t in S1pQq X B, and argue exactly as in the
case of Wehler surfaces. Indeed observe first that the assumptions of Corollary 6.1 are
satisfied at the parameter t. Next, since all periodic points of ft of a given period are iso-
lated, we can apply to ft the strategy of the proof of Theorem 7.1, based on Nakayama’s
lemma and the theorem of Shub and Sullivan; it implies that Γt has infinitely many
periodic orbits on Xt, thereby reaching the desired contradiction. �

7.3. Proof of Lemma 7.5(3). By Step 1, X is a K3 surface, an Enriques surface, or a
blow-up of the projective plane. By the lower semi-continuity of the dynamical degree,
for every s P S1, gs is parabolic or elliptic, so we need to show that the set of parameters
for which gs is elliptic is Zariski closed.

7.3.1. K3 and Enriques surfaces. Assume that X is a K3 (resp. an Enriques) surface.
Above S1pCq, every fiber Xs has the diffeomorphism type of Xb, in particular it is
simply connected and KXs is trivial (resp. its fundamental group is Z{2Z and Kb2

XS
is trivial), so it is also a K3 (resp. an Enriques) surface, for K3 (resp. Enriques) are
characterized by these properties (see [5, Chap. VI]). For such a surface, the group
th P AutpXsq ; h˚ “ id on H2pXs;Zqu has at most 4 elements (see [48]). The second
Betti number is fixed, equal to 22 (resp. 10), and if h˚ P GLpH2pXs;Zqq has finite order,
then its order divides some fixed integer k, because GL22pZq (resp. GL10pZq) contains
a finite index, torsion free subgroup. Thus, gs is elliptic if and only if g4k

s “ id. This
implies that the set of parameters s for which gs is elliptic is Zariski closed and does not
contain b, and we are done in this case.

7.3.2. Rational surfaces. Now, we assume that X is rational. This case is slightly more
delicate because there exists automorphisms of P2 of arbitrary large finite order.

Let πg : X Ñ B be the invariant fibration of g, with B “ P1 since X is rational.
Changing g by some positive iterate, we may assume that the action of g in the base B
is the identity. As explained in [16, 22], πg comes from a Halphen pencil; in particular,
there is a pencil of curves in P2, defined by some rational function ϕ : P2 99K P1, and
a birational morphism η : X Ñ P2 that blows up the base points of this pencil (and
possibly other points too), such that πg coincides with ϕ ˝ η. The last blow-up which
is necessary to resolve the indeterminacies of ϕ provides a curve which is transverse to
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the fibration and has negative self-intersection. So, there is an irreducible multi-section
E of πg such that E2 ă 0.

Let us add to our Q-algebra R the coefficients of the formulas defining πg, ϕ, η,
E, etc. Reducing S1 if necessary, we get a family of automorphisms gs preserving
each fiber of a genus 1 fibration πg,s : Xs Ñ P1, with an irreducible multisection Es
of negative self-intersection. As for K3 and Enriques surfaces, the following lemma
finishes the proof.

Lemma 7.6. There is an integer ` ą 0 such that if s P S1 and gs is elliptic, then g`s “ id.

Proof. Set m “ xrEs|rF sy where F is any fiber of πg. Above S1 the surfaces Xs are
pairwise diffeomorphic, so they have the same second Betti number and there is an
integer k ą 0 such that ph˚qk “ id for every elliptic automorphism of Xs, for every
s P S1. Now, if gs is elliptic, then pgks q

˚rEss “ rEss and this implies gks pEsq “ Es.
Since gs preserves every fiber, and Es intersects every fiber in at most m points, we
deduce that gk¨m!

s fixes a point in each fiber. But an automorphism of a curve of genus 1

which fixes a point has order at most 12, so g12k¨m!
s “ idXs , and we are done. �

7.4. Discussion. It would be interesting to extend Theorem B in its general form be-
yond number fields, that is, without assuming that DΓ “ H. Fix pf, gq P Γlox ˆ Γpar, as
above. The main difficulty appears in the following situation: Γ fixes DΓ pointwise, and
for every parameter s P SpQq, the alleged Zariski dense set of finite orbits of Γ special-
izes as a finite subset of Xs which intersects pDΓqs. In that case, the theorem of Shub
and Sullivan does not apply directly because it only deals with isolated fixed points; so,
a finer understanding of the Lefschetz fixed point formula is required. We believe that
the tools introduced in [38] and in an unpublished chapter of Xie’s thesis [54] may lead
to a solution of this problem.

8. CANONICAL VECTOR HEIGHTS

Let k be a number field and k » Q be an algebraic closure of k. LetX be a projective
surface defined over k and Γ be a subgroup of AutpXkq. We consider the vector space

PicpX;Rq “ PicpXkq bZ R (8.1)

of R-divisors of Xk modulo linear equivalence; doing so, we annihilate the torsion
part of Pic0

pXq. Keep in mind that when X is birational to an abelian variety, the
vector space Pic0

pX;Rq :“ Pic0
pXq bZ R is infinite-dimensional. The Weil height

machine extends to PicpX;Rq by R-linearity (see [37, §B.3.2]). Recall from §1.4 that
a canonical vector height on Xpkq for the group Γ is, by definition, a function h :

PicpX;Rq ˆXpkq Ñ R` such that

(a) h is linear with respect to the first factor L P PicpX;Rq;
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(b) for every L P PicpX;Rq, hpL, ¨q is a Weil height associated to L;
(c) h is Γ-equivariant: for every f P Γ, hpL, fpxqq “ hpf˚L, xq.

Note that if PicpXkq is tensorized by Q instead of R and Property (a) is stated over Q
we get an equivalent notion. Given any Γ-invariant subspace V Ă PicpX;Rq, one may
also study the notion of restricted canonical vector height h : V ˆ Xpkq Ñ R. This
is most significant when V contains classes with positive self-intersection, in which
case it surjects onto ΠΓ under the natural map D P PicpX;Rq Ñ rDs P NSpX;Rq.
(In the following we use brackets to distinguish a class in NSpX;Rq from a class in
PicpX;Rq.)

If Ak is an abelian variety and Γ is a subgroup of AutpAkq fixing its neutral element,
the Néron-Tate height onA is a canonical vector height for Γ (see [37, Theorem B.5.6]).
The same holds more generally if the neutral element is Γ-periodic, because in this case
Γp0q is made of torsion points (see Remark 4.2).

In this section, we describe automorphism groups of surfaces which are non-elementary,
contain parabolic elements, and possess a (restricted) canonical vector height hcan: The-
orems E, E’, and E” show that pX,Γq is a Kummer group and hcan is derived from the
Néron-Tate height.

8.1. Invariant classes and canonical vector heights. In the following lemmas, hcan

is a restricted canonical vector height for pX,Γq, defined in some Γ-invariant subspace
Vcan Ă PicpX;Rq. We shall say that a class rEs in NSpX;Rq is almost Γ-invariant if
f˚rEs “ ˘rEs for all f in Γ.

Lemma 8.1. Let rEs P NSpX;Rq be almost Γ-invariant. The function

hrEs,ϕpD, xq “ hcanpD, xq ` xrEs|Dyϕpxq

is a restricted canonical vector height on Vcan ˆ Xpkq if and only if either rEs is or-
thogonal to Vcan, or ϕ : Xpkq Ñ R is bounded and satisfies ϕpxqrEs “ ϕpfpxqqf˚rEs

for all f P Γ.

In this situation, we shall say that hrEs,ϕ is derived from the height hcan.

Proof. If rEs is orthogonal to Vcan, then hrEs,ϕ “ hcan on VcanˆXpkq and there is noth-
ing to prove. Otherwise, we can fix a class D P Vcan such that xrEs|Dy ‰ 0. If hrEs,ϕ
is a canonical vector height, then ϕ “ xrEs|Dy´1phrEs,ϕ ´ hcanqpD, ¨q is bounded, be-
cause hrEs,ϕpD, ¨q and hpD, ¨q are Weil heights associated to the same divisor. Further-
more ϕ satisfies ϕpxqrEs “ ϕpfpxqqf˚rEs because hrEs,ϕ and hcan are Γ-equivariant
and xrEs|f˚pDqy “ xf˚rEs|Dy for all f P Γ. The reverse implication is straightfor-
ward. �
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Lemma 8.2. Assume that Γ contains a loxodromic element. Let C Ă X be an ir-
reducible Γ-periodic curve. If the class of C belongs to Vcan, or if Vcan contains a
Γ-periodic class D such that OpDq|C is ample, then the restriction homomorphism
f P StabΓpCq ÞÑ f|C has finite image.

Proof. IfC is Γ-periodic then its self-intersection is negative, the restriction of OXp´Cq

to C has positive degree, and pOXp´Cqq|C is therefore ample. So, it is enough to
consider the case where Vcan contains a periodic class D such that OpDq|C is ample.

By changing Γ in a finite index subgroup, we may assume ΓpCq “ C. If σ is an
automorphism of C over k, it maps C to a Γ-invariant curve Cσ. There are only finitely
many Γ-invariant irreducible curves (the components of DΓ), because Γ contains a lox-
odromic element (see §3.2). Thus, the orbit of C under the group of automorphisms of
C over k is finite and C is defined over a number field. In particular, Cpkq is dense
in CpCq.

Set Γ1 “ StabΓpDq, and Pick x0 P Cpkq. Then hcanpD, yq “ hcanpD, x0q for every
y in Γ1px0q; since hcanpD, ¨q is a Weil height for D, and OpDq|C is ample, Northcott’s
theorem implies that tx P Cpk1q ; hcanpD, xq “ hcanpD, x0qu is finite for every number
field k1; thus, Γ1px0q is a finite set. Since Cpkq is infinite, we can argue as in the proof
of Corollary 6.2 to deduce that Γ1

|C is finite, as asserted. �

Lemma 8.3. Assume Pic0
pXq “ 0 and identify PicpX;Rq with NSpX;Rq.

(1) If Vcan contains a class with positive self-intersection, then it contains ΠΓ.
(2) If Vcan contains ΠΓ, and if C is an irreducible rational Γ-periodic curve, then,

hcanpD, xq “ 0 for every D P ΠΓ and x P Cpkq.

Proof. If Vcan contains a class in the positive cone it contains the limit set LimpΓq,
hence also ΠΓ (see [18, §2.3]); this proves the first assertion. For the second one, pick
a probability measure ν on Γ with finite support, and assume that P ˚ν pDq “ αpνqD for
some D in ΠΓ and some αpνq P R. Then,

ř

f νpfqhcanpD, fpxqq “ αpνqhcanpD, xq by
equivariance and linearity. On the other hand, OpDq|C has degree 0, because xD|Cy “
0, and is therefore trivial because C is rational. So, hcanpD, ¨q is bounded on Cpkq.
Since αpνq ą 1, this implies that hcanpD, xq “ 0 for every x P Cpkq. To conclude, note
that such eigenvectors D generate ΠΓ when we vary ν (see §5.3). �

8.2. From canonical vector heights to Kummer groups.

Theorem E. Let X be a smooth projective surface and Γ be a subgroup of AutpXq,
both defined over a number field k. Suppose that

(i) Γ is non-elementary and contains parabolic elements;
(ii) there exists a canonical vector height hcan for pXpkq,Γq on a Γ-invariant subspace

of PicpX;Rq which contains a divisor with positive self-intersection.
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Then pX,Γq is a Kummer group. If in addition hcan is defined on PicpX;Rq ˆ Xpkq,
then X is an abelian surface.

The smoothness of X is essential for the last conclusion to hold; for instance, if
pX0,Γq is a singular Kummer example with no Γ-invariant curve, we shall see that the
Néron-Tate height induces a canonical vector height on PicpX0;Rq ˆX0pkq.

The remainder of this subsection is devoted to the proof of Theorem E. Let us already
observe that once pX,Γq is known to be a Kummer group, the last conclusion readily
follows from Lemmas 4.7 and 8.2. So all we have to show is that pX,Γq is a Kummer
group.

8.2.1. Reduction to Pic0
pXq “ 0. Suppose Pic0

pXq ‰ t0u. Then, Γ being non-
elementary, [15, Theorem 10.1] shows that X is either an abelian surface or a blowup
of such a surface along a finite orbit of Γ, and by definition pX,Γq is a Kummer group.

So, from now on, we assume Pic0
pXq “ t0u and identify PicpX;Rqwith NSpX;Rq.

8.2.2. A key lemma. Assumption (ii) provides a canonical vector height hcan for pX,Γq
in restriction to ΠΓ (see Lemma 8.3). Recall from [51, 41] that for every f P Γlox

there exist canonical heights h˘f , respectively associated to the classes θ˘f , such that
h`f pfpxqq “ λpfqh`f pxq and h´f pf

´1pxqq “ λpfqh´f pxq. They satisfy:

– h˘f ě 0 on Xpkq;
– if Df denotes the maximal invariant curve of f then, for x P Xpkq, h`f pxq `
h´f pxq “ 0 if and only if x is a periodic point or x P Df (see [41, §5]).

Furthermore any Weil height h associated to θ`f such that hpfpxqq “ λpfqhpxq coin-
cides with h`f : indeed k :“ h ´ h`f is bounded because h and h`f are Weil heights
associated to the same class, so the relation kpfpxqq “ λpfqkpxq forces it to be identi-
cally zero. Thus, the next lemma follows immediately from the defining Properties (a),
(b), and (c) (see [42, Prop. 3.4] or [3, §1]).

Lemma 8.4. If Pic0
pXq “ t0u and if hcan is a canonical vector height for pX,Γq in

restriction to ΠΓ, then hcanpθ
˘
f , ¨q “ h˘f p¨q for every f P Γlox.

Remark 8.5. If x belongs to the maximal invariant curve DΓ and c belongs to ΠΓ then
hcanpc, xq “ 0. Indeed for every f P Γlox, DΓ Ă Df so hcanpθ

˘
f , xq “ h`f pxq “ 0, and

since the classes pθ˘f qfPΓlox
span ΠΓ, the result follows by linearity. This extends the

second assertion of Lemma 8.3 to invariant curves which are not rational.

Now, recall that the classes θ˘f are normalized by xθ˘f |rκ0sy “ 1. Let us view HX and
PpHXq as subsets of tu P H1,1pX;Rq ; xu|uy ą 0, xu|rκ0sy “ 1u. Setting

rΠΓ “ ΠΓ X tx¨|rκ0sy “ 1u , (8.2)
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LimpΓq can now be viewed as a subset of rΠΓ which generates ΠΓ as a vector space. The
starting point of the proof of Theorem E is the following key lemma, inspired from the
approach of Kawaguchi in [42].

Lemma 8.6. In addition to the assumptions of Theorem E, suppose that

(iii) there exists f P Γlox such that rθ`f , θ
´
f sXIntpConvpLimpΓqqq ‰ H, where Convp¨q

is the convex hull and Intp¨q stands for the interior relative to rΠΓ.

Then pX,Γq is a Kummer group.

Proof. Set d “ dim rΠΓ. Replacing k by a finite extension, we may assume that the
birational morphism π0 : X Ñ X0 constructed in Proposition 3.9 is defined over k; this
morphism contracts the maximal Γ-invariant curve DΓ.

Let ν be a probability measure on Γ, whose support is finite and contains f as well
as elements of Γpar. Let wν be the eigenvector of the operator Pν for the eigenvalue
αpνq given by Lemma 5.2. As in Proposition 5.8, we may assume that wν is a rational
class and is the pull-back of an ample class rA0s on X0; by muliplying wν by a positive
integer, we also assume that wν is an integral class.

Let L be the line bundle given by the class wν , and ĥL be the associated canonical
stationary height, as in the proof of Theorem 5.9. This is the unique Weil height such
that

ř

h νphqĥL ˝ h “ αpνqĥL. By the linearity of the canonical vector height and the
uniqueness of ĥL, we get ĥLp¨q “ hcanpwν , ¨q.

Pick w “ aθ`f ` bθ
´
f in the interior of ConvpLimpΓqq, with a, b in R` and a` b “ 1.

Then by linearity and Lemma 8.4, hcanpw, ¨q “ ah`f ` bh´f . Caratheodory’s theorem
provides a subset Λ of LimpΓq such that |Λ| “ d` 1 and w belongs to the interior of the
simplex ConvpΛq. By the density of fixed points of loxodromic elements in LimpΓq, we
may assume that Λ is made of classes θ`g for g in a finite subset ΛΓ of Γlox. If ε ą 0 is
small enough, w´ εwν stays in IntpConvpΛqq; so, there are positive coefficients βg, for
g P ΛΓ, such that w ´ εwν “

ř

gPΛΓ
βgθ

`
g . By the linearity of hcan, we infer that

ah`f p¨q ` bh
´
f p¨q “

ÿ

gPΛΓ

βgh
`
g p¨q ` εĥLp¨q. (8.3)

Now, if x P Xpkq is f -periodic, then h`f pxq “ h´f pxq “ 0, and since ĥL and the
h`g pxq are non-negative, we deduce that ĥLpxq “ 0. The line bundle L is the pull-back
of an ample line bundle A0 on X0; thus, by Lemma 5.11, the Γν-orbit of π0pxq in X0 is
a finite set. Since f has a Zariski dense set of periodic points, Theorem B implies that
pX,Γνq is a Kummer group.

Since we can further choose Γν to contain any a priori given finite subset of Γ, we
conclude from Theorem 5.15 that pX,Γq is a Kummer group. �
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From this point, the proof of Theorem E is completed in two steps. We first deal with
the case dim ΠΓ ď 4 by directly checking the Assumption (iii) of Lemma 8.6. This
covers general Wehler surfaces (which is the setting of [42]) since dim ΠΓ “ 3 in this
case. The general case is treated in a second stage by a dimension reduction argument.

8.2.3. Conclusion when dim ΠΓ ď 4. Since Γ is non-elementary, dim ΠΓ ě 3, so we
need to consider the cases dim ΠΓ “ 3 and dim ΠΓ “ 4 .

For dim ΠΓ “ 3, i.e. d “ dimprΠΓq “ 2, the intersection of rΠΓ with the positive cone
is the Klein model of the hyperbolic disk H2. If Assumption (iii) is not satisfied, then
for every f P Γlox, LimpΓq is entirely contained on one side of the geodesic rθ`f , θ

´
f s.

Fix 4 points in LimpΓq Ă BH2 » S1, labelled in circular order pp1, p2, p3, p4q. By
Lemma 3.3 provides elements f and g in Γlox such that pθ`f , θ

`
g , θ

´
f , θ

´
g q is arbitrary

close to pp1, p2, p3, p4q. Then rθ`f , θ
´
f s intersects rθ`g , θ

´
g s transversally in the disk H2,

so LimpΓq intersects both sides of rθ`f , θ
´
f s, a contradiction.

Now assume dim ΠΓ “ 4, i.e. d “ 3. Then ConvpLimpΓqq is a convex body in
dimension 3. The conclusion relies on the following lemma (see below for a proof).

Lemma 8.7. Let p1, . . . , p5 be five points in general position in R3. Then there is a pair
of indices i ‰ j such that any plane containing pi and pj separates the remaining points
into two non-trivial sets.

Now fix such a 5-tuple of points in LimpΓq and approximate the given pair ppi, pjq
by pθ`f , θ

´
f q, for some f P Γlox. Then, rθ`f , θ

´
f s intersects the interior of ConvpLimpΓqq,

and Lemma 8.6 finishes the proof of Theorem E (when dimpΠΓq ď 4).

Proof of Lemma 8.7. Express p5 as a barycenter of the remaining points:

p5 “ Barppp1;α1q, . . . , pp4;α4qq. (8.4)

The general position assumption means that the αi are non-zero. If all the coefficients
αi are positive, p5 lies in the interior of the tetrahedron Convtp1, . . . , p4u, so any plane
containing p4 and p5 separates the vertices of the triangle Convtp1, p2, p3u into two non-
trivial parts. Therefore, the pair of indices pi, jq “ p4, 5q works in this case. If exactly
one of the coefficients is negative, say α`, then consider the pair p`, 5q, and denote by i,
j, k the remaining indices (i.e. ti, j, ku “ t1, 2, 3, 4uzt`u). The segment rp`, p5s cuts the
triangle Convtpi, pj, pku in a point h of its relative interior. Thus, any plane containing
p` and p5 also contains h, and separates tpi, pj, pku non-trivially. The only remaining
case is when there are three positive and two negative coefficients, say α3 and α4; then,
p1 is a barycenter of the remaining points with 3 positive and 1 negative coefficients, so
we are done in this case too. �
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Remark 8.8. The theorem of Steinitz (see [35, §13.1]) is a far-reaching generalization
of Lemma 8.7. There is no analogue of this lemma in higher dimension (see [35, §4.7]),
hence the need for a different argument when dim ΠΓ ě 5.

8.2.4. Conclusion of the proof of Theorem E. Recall from Lemma 3.1 that g˚ is virtu-
ally unipotent for every g P Γpar.

Lemma 8.9. Let g1 and g2 be unipotent parabolic elements in AutpXq with distinct
invariant fibrations. Then, Γ0 :“ xg1, g2y is non-elementary and dimpΠΓ0q ď 4.

Proof. Since πg1 ‰ πg2 , Γ0 is non-elementary (see §3.1.3). The subspace W :“

Fixpg˚1 q X Fixpg˚2 q of NSpX;Rq is fixed pointwise by Γ0. Thus WK is Γ0-invariant,
it contains ΠΓ0 (see [18, Prop. 2.8]), and all we need to show is that dimpWKq ď 4. To
see this, note that a unipotent Euclidean isometry is the identity, thus if g P O`p1, dq
is parabolic and unipotent, the structure of parabolic isometries of Hd (see [34, §I.5])
implies that Fixpg˚q Ă Rd`1 is a subspace of codimension 2, and we are done. �

From Lemma 8.9 and Section 8.2.3, we deduce that pX, xg1, g2yq is a Kummer group
for every pair of unipotent elements g1, g2 P Γpar generating a non-elementary subgroup.
Thus by Theorem 5.15, pX,Γq itself is a Kummer group, and Theorem E is established.

8.3. Canonical vector heights on abelian surfaces. In this section, A is an abelian
surface, defined over some number field k and Γ Ă AutpAkq is non-elementary. Denote
by hNT : PicpAqˆApkq Ñ R the Néron-Tate height on A; it vanishes identically on the
torsion part of PicpAq, so we may also consider it as a function on PicpA;Rq ˆ Apkq.
When 0 P A has a finite Γ-orbit, hNT is a canonical vector height (see [37, Thm. B.5.6]).

Let hcan be a restricted canonical vector height for pAk,Γq, defined on some Γ-
invariant subspace Vcan of PicpA;Rq. Our goal is to compare it to hNT.

By definition, a divisor D on A is symmetric if r´1s˚D is linearly equivalent to D,
where rms denotes multiplication by m; likewise it is antisymmetric if r´1s˚D » ´D

or equivalently if D P Pic0
pAq (see [37, Prop. A.7.3.2]). If f P AutpAq fixes the origin,

it commutes to r´1s, so that f˚ preserves symmetry and antisymmetry.

Remark 8.10. Any class rDs P NSpAq can be lifted to a symmetric divisor class D P

PicpAq, which is unique up to a 2-torsion element in Pic0
pAq. Thus, D admits a unique

symmetric lift in PicpA;Rq. By using such a lift it makes sense to consider also hNTp¨, ¨q

(resp. hcanp¨, ¨q) as a function on NSpA;Rq ˆ Apkq (resp. on the projection of Vcan in
NSpA;Rq). This observation will be used repeatedly in the following.

Remark 8.11. The Picard number of any complex abelian surface satisfies ρpAq P
t1, 2, 3, 4u. When AutpAq contains a non-elementary group Γ, we obtain 3 ď dim ΠΓ ď

ρpAq ď 4. Moreover, ρpAq “ 4 if and only if A is isogenous to BˆB, for some elliptic
curve B with complex multiplication (see [7, ex.10 p.142]).
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Proposition 8.12. If Vcan contains Pic0
pAq bZ R, then Γ has a finite orbit in Apkq.

Proof. In this proof it is enough to consider hcan as a function on Pic0
pAq ˆXpkq, by

composing with the natural homomorphism Pic0
pAq Ñ Pic0

pA;Rq.

Step 1.– If D is an element of Pic0
pAq, then for every f P Γlox, every periodic point

x of f satisfies hcanpD, xq “ 0.
Assume f qpxq “ x for some q ě 1. The endomorphism f q ´ id is an isogeny of A

because f is loxodromic (see Section 4.2). Thus, its dual pf qq˚ ´ id is an isogeny of
Pic0

pAq and we can find E P Pic0
pAq such that pf qq˚E ´ E “ D. By equivariance

hcanppf
qq˚E, xq “ hcanpE, xq, and then by linearity hcanpD, xq “ 0.

Step 2.– Let k1 be a finite extension of k, and let P be a subset of Apk1q. If, for every
D P Pic0

pAq, the set thNTpD, xq ; x P P u Ă R is bounded, then P is finite.
To see this, consider the abelian groupApk1q; by the Mordell-Weil theorem, its rank is

finite, so modulo torsion it is isomorphic to Zr for some r ě 0. Set Wk1 “ Apk1q bZ R,
a real vector space of dimension r. Let H be an ample symmetric divisor on Ak, then
hNTpH, ¨q determines a positive definite quadratic form on V ; let x¨|¨yH be the bilinear
pairing associated to hNTpH, ¨q. If s is an element of Apkq, and ts P AutpAkq is the
translation by s, then Ds :“ H ´ t˚sH is an element of Pic0

pAq and hNTpDs, ¨q induces
an affine linear form Apk1q Ñ R; namely, hNTpDs, ¨q “ ´2xs|¨yH . Since x¨|¨yH is
positive definite on Wk1 (see [37, Prop. B.5.3]), one can find r elements si P Apk1q such
that the linear forms `i :“ xsi|¨yH constitute a basis of the dual of Wk1 . Our assumption
says that each `ipP q is a relatively compact subset of R; this implies that P is contained
in a compact, hence finite, subset of the lattice Apk1q Ă V .

Step 3.– Γ has a finite orbit.
Let f be a loxodromic element of Γ, and x be a fixed point of f . Its Γ-orbit is made

of fixed points of conjugates of f . Note that Γpxq is contained in Apk1q for some finite
extension of k. By the first step, hcan vanishes on Pic0

pAq ˆ Γpxq. Since hcan and hNT

are Weil heights, |hcanpD, ¨q ´ hNTpD, ¨q| ď BpDq for each divisor class D P Pic0
pAq,

whereBpDq ě 0 depends onD. Thus, |hNTpD,Γpxqq| ď BpDq for everyD P Pic0
pAq,

and the second step implies that Γpxq is finite. �

Proposition 8.13. Assume that the neutral element has a finite Γ-orbit. Then hcan coin-
cides with the Néron-Tate height on

– the set of symmetric divisors whose numerical class belongs to ΠΓ,
– the set of antisymmetric divisors,

whenever one of these sets is contained in Vcan.

In the following proofs, we denote by Πs
Γ the subspace PicpA;Rqmade of symmetric

elements E P PicpA;Rq such that rEs P ΠΓ.
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Proof. Let Γ0 ď Γ be the finite index subgroup fixing the origin. Let us show that hcan “

hNT on Πs
ΓˆApkq. For this, we use Remark 8.10, identify Πs

Γ with ΠΓ, and consider hcan

and hNT as functions on ΠΓˆApkq. Now, if f P Γ0,lox, we get hNTpθ
`
f , ¨q “ hcanpθ

`
f , ¨q

because the difference is bounded on Apkq, and is multiplied by λpfq ą 1 under the
action of f (as in Lemma 8.4). Since the classes θ`f , for f P Γlox, generate ΠΓ, our
claim is established.

Let us now deal with antisymmetric divisors. Identifying Pic0
pAkq with the dual

abelian variety A_
k

of A, we have to show that hcan coincides with hNT on A_pk1q

for every finite extension k1 of k. By the Mordell-Weil theorem A_pk1q is a finitely
generated abelian group so

W_
k1 :“ A_pk1q bZ R (8.5)

is a real vector space of dimension r, for some r ă `8. Consider the function Φ :

pD, xq ÞÑ hcanpD, xq ´ hNTpD, xq. When D is fixed, ΦpD, ¨q is bounded: |ΦpD, xq| ď
BpDq for all x P Apkq. On the other hand when x is fixed, ΦxpDq :“ ΦpD, xq defines a
linear form Φx : W_

k1 Ñ R. Applying the previous boundedness property to fpxq, for f
ranging in Γ0, and using the equivariance ΦpD, fpxqq “ Φpf˚D, xq we obtain that for
every x P Apkq, Φx is bounded on every Γ˚0-orbit Γ˚0pDq Ă W_

k1 .
We claim that this forces Φx to vanish, which is the desired result. For this we analyze

the dual action of Γ0. Let f be a loxodromic element of Γ0, and f_k1 be the induced linear
map on W_

k1 “ A_pk1q bZ R. Let Lf be the linear lift of f to C2, as in §4.1 and 4.2.

Lemma 8.14. The endomorphism f_k1 is semi-simple and its complex eigenvalues are
complex conjugate to those of Lf ; none of them has modulus 1.

Let us take this for granted and conclude the proof. Since f_k1 is semi-simple, W_
k1

is a direct sum of f_k1-invariant irreducible factors
À

W_
i , each of dimension 1 or 2.

For each W_
i , denote by λi the corresponding eigenvalue of f_k1 , and pick some Di P

W_
i zt0u. If W_

i is a line, then λi P R˚ and |λi| ‰ 1. Since Φx is bounded on
tpf_k1q

npDiq ; n P Zu, the line W_
i is contained in ker Φx. If W_

i is a plane, then
f_k1 |W_

i
is a similitude with |λi| ‰ 1 and Argpλiq ‰ 0 mod p2πZq. If Φx|W_

i
‰ 0,

t|Φx| ď BpDiquXW
_
i is a strip, which furthermore contains the orbit tpf_k1q

npDiq, n P Zu.
This is not compatible with the properties of λi, and this contradiction shows that
W_
i Ă ker Φx, so finally Φx “ 0, as claimed. �

Proof of Lemma 8.14. The complex torus underlying A_C is isomorphic to a quotient
of the space of C-antilinear forms on C2. So, if f P AutpAq is induced by a lin-
ear map Lf P GL2pCq, the automorphism of A_ determined by f˚ is induced by the
conjugate transpose L

t

f (see [7, §2.4]). When f is loxodromic, the eigenvalues of
Lf satisfy |α| ă 1 ă |β|; we deduce that the automorphism of AutpA_Cq determined
by f˚ is also loxodromic, with eigenvalues α and β, and the minimal polynomial of
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L
t

f is pX ´ αqpX ´ βq. Let P be the minimal, real, unitary polynomial such that
pX ´ αqpX ´ βq divides P (by construction degpP q P t2, 3, 4u and P has no repeated
factors). Since P pL

t

f q “ 0, we infer that P pf_k1q “ 0 and the result follows. �

Proposition 8.15. Let Ak be an abelian surface defined over a number field k. Let Γ

be a non-elementary subgroup of AutpAkq, for which the neutral element 0 P Apkq is
periodic. Then one of the following situation occurs:

(1) NSpA,Rq “ ΠΓ and the Néron-Tate height is the unique canonical vector height
on PicpA;Rq.

(2) NSpA,Rq “ ΠΓ

K

‘RrEs for some rEs P NSpA;Rqzt0u, and the canonical vector
heights on PicpA;Rq are exactly the functions of the form hcanpD, xq “ hNTpD, xq`

xrEs|Dyϕpxq, whereϕ : Apkq Ñ R is any bounded function such thatϕpfpxqqf˚rEs “
ϕpxqrEs for all f in Γ.

Proof. When NSpA,Rq “ ΠΓ, Proposition 8.13 and the decomposition of any divisor
class as a sum D “ Ds ` Da with Ds symmetric and Da antisymmetric imply that
hcan “ hNT. So by Remark 8.11 we may assume that ρpAq “ 4 and dimpΠΓq “ 3.
Pick rEs P ΠKΓzt0u. The line RrEs is Γ-invariant, and the intersection form is negative
on RrEs; as a consequence, there is a homomorphism αrEs : Γ Ñ t`1,´1u such that
f˚rEs “ αpfqrEs for all f P Γ. Then for fixed x,

∆xpDq “ hcanpD, xq ´ hNTpD, xq, (8.6)

defines a linear form on PicpA;Rq, which by Proposition 8.13 vanishes identically on
Πs

Γ. So, ∆pD, xq “ xrEs|Dyϕpxq for some real valued function ϕ, and the conclusion
follows from Lemma 8.1. �

8.4. Synthesis.

8.4.1. Canonical vector heights. Putting together Theorem E and Proposition 8.15 gives:

Theorem E’. Let X be a smooth projective surface, defined over a number field k.
Let Γ be a non-elementary subgroup of AutpXkq that contains parabolic elements. Let
hcan be a canonical vector height on PicpX;Rq ˆ Xpkq for the group Γ. Then, X is
an abelian surface and hcan is derived from a translate of the Néron-Tate height by a
periodic point y of Γ:

hcanpD, xq “ hNTpD, x` yq ` xrEs|Dyϕpxq

for some almost-invariant class rEs P NSpX;Rq and some bounded functionϕ : Xpkq Ñ

R such that ϕpfpxqqf˚rEs “ ϕpxqrEs for f P Γ.

Note that hcan is just a translate of hNT when E is numerically trivial.
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8.4.2. Restricted canonical vector heights. Let us add the assumption

Pic0
pXq “ 0, (8.7)

to the hypotheses of Theorem E. Our goal is to describe all possibilities for pVcan, hcanq.
Since Pic0

pXq “ 0, X is not a blow-up of an abelian surface and Theorem E implies
that pX,Γq is a Kummer group of type (2), (3), (4), or (5) in the nomenclature of §4.3.2.
We make use of the notation of §4.3.1 and 4.3.2. The origin 0 P A is a fixed point of
the cyclic group G, and the orbit ΓAp0q is finite. Since G is generated by a finite order
homothety px, yq ÞÑ pαx, αyq on A, G acts trivially on NSpA;Rq and on symmetric
divisors. Thus, NSpA{G;Rq can be identified to NSpA;Rq and to the subspace of
PicpA;Rq generated by symmetric divisors; let

ι : NSpA;Rq Ñ NSpX;Rq (8.8)

denote the corresponding embedding, given by ι “ q˚XpqAq˚. On the space of symmetric
divisors, the Néron-Tate height is G-invariant and Γ-equivariant, so it induces a canoni-
cal vector height hA{GNT p¨, ¨q onA{G for ΓA. Then, it induces a restricted canonical vector
height on ιpNSpA;Rqq ˆXpkq, namely

hXNT : pD, xq ÞÝÑ h
A{G
NT ppqXq˚D, qXpxqq. (8.9)

In what follows, we denote by Ei the disjoint irreducible rational curves contracted
by qX (see Lemma 4.7); their classes generate ιpNSpA;RqqK Ă NSpX;Rq. The height
hXNT vanishes on

Ť

iEipkq, because the Ei are mapped to torsion points of A.

Lemma 8.16. We have ΠΓ “ ιpΠΓAq Ă Vcan Ă ιpNSpA;Rqq.

Proof. The first equality comes from the equivariance of qX and qA. The first inclusion
follows from Lemma 8.3 and the assumption (ii) of Theorem E. It remains to prove the
last inclusion. If Vcan is not contained in q˚XpNSpA{G;Rqq, there is an index i, and a
class D in ΠKΓ X Vcan such that xD|Eiy ą 0, i.e. OpDq|Ei is ample. The action of Γ

on ΠKΓ factorizes through a finite group (see [18, Lem. 2.9]), so D is Γ-periodic and
by Lemma 8.2, the group Γ|Ei is finite; this contradicts Lemma 4.7, and the conclusion
follows. �

Let D be an element of ΠΓ. By Lemma 8.3, hcanpD, xq “ 0 for all x P
Ť

iEipkq.
Thus, pD, xq ÞÑ hcanpιpDq, q

´1
X pqApxqqq is a well defined restricted canonical vector

height on ΠΓA ˆ Apkq (see Remark 8.10), which gives height 0 to the fixed points of
elements of Gztidu. By Proposition 8.13, this height coincides with the Néron-Tate
height on ΠΓA ˆ Apkq.

This yields a complete description of hcan when Vcan “ ΠΓ.
By Lemma 8.16 and Remark 8.11, the remaining possibility is that dimpVcanq “

4 and dimpΠΓq “ 3. Choose an almost ΓA-invariant class rEs in NSpA;Rq, as in
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Proposition 8.15, and a divisor F in X such that rF s “ ιprEsq. Each element D P Vcan

decomposes as a sum

D “ D1 `
xrF s|Dy

xrF s|rF sy
rF s (8.10)

with D1 in ΠΓ. Then, for x in
Ť

iEipkq, we get

hcanpD, xq “
xrF s|Dy

xrF s|rF sy
hcanprF s, xq. (8.11)

Define a function by setting ψpxq “ xrF s|rF sy´1hcanprF s, xq on
Ť

iEipkq and ψpxq “
0 otherwise. It satisfies the equivariance ψpfpxqqf˚rF s “ ψpxqrF s because hcan is
equivariant and rF s is almost invariant, and it is bounded because OpF q|Ei is trivial for
each Ei. Now, if we set

h1canpD, xq “ hcanpD, xq ´ xrF s|Dyψpxq (8.12)

we get a new restricted canonical vector height on VcanˆXpkq that vanishes on
Ť

iEipkq.
This height comes from a canonical vector height on A{G, and since as seen before
NSpA{G;Rq can be identified to NSpA;Rq, it yields a canonical vector height for
pA,ΓAq restricted to the space of symmetric divisors. The second assertion of Propo-
sition 8.15 entails that this last height is derived from the Néron-Tate height for some
function ϕ; since ΓA contains G, and G fixes rEs, ϕ is G-invariant. Coming back to X ,
we get that hcan is derived from the Néron-Tate height too. In formulas,

hcanpD, xq “ hXNTpD, xq ` xrF s|DyΦpxq (8.13)

where Φ: Xpkq Ñ R is a bounded function which satisfies Φpfpxqqf˚rF s “ ΦpxqrF s

for f P Γ. This function is equal to ψ on
Ť

iEipkq and to ϕ ˝ qX on its complement.
To conclude, using the above notation, let us summarize these results in a (somewhat

imprecise) statement.

Theorem E”. Let X be a smooth projective surface, defined over a number field k, and
such that Pic0

pXkq “ 0. Let Γ be a non-elementary subgroup of AutpXkq containing
parabolic elements. Let hcan be a restricted canonical vector height on VcanˆXpkq for
the group Γ, where Vcan Ă PicpX;Rq is Γ-invariant and contains classes with positive
self-intersection. Then pX,Γq is a Kummer group associated to an abelian surface A,
Vcan is contained in ιpNSpA;Rqq and

– either Vcan “ ΠΓ and hcan coincides with the Néron-Tate height hXNT;
– or ΠΓ is a codimension 1 subspace of Vcan and hcan is derived from hXNT.

APPENDIX A. KUMMER SURFACES OF TYPE (6)

In case (6), we get a cyclic quotient singularity of type 1
5p1, 2q, resolved by a string of two

rational curves of respective self-intersections´3 and´2 (see [5, §III.6] and [44, §2]). The ring
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of invariant functions for the group G is generated by the four monomials u0 “ x5, u1 “ x3y,
u2 “ xy2, u3 “ y5, and the quotient surface is locally isomorphic to the surface W in C4

determined by the equations u0u2 “ u2
1, u1u3 “ u3

2. Now, take three copies V0, V1, V2 of C2,
with coordinates pv0, w0q, pv1, w1q, and pv2, w2q respectively, and glue together the open sets
V0ztw0 “ 0u and V1ztv1 “ 0u by v1 “ 1{w0, w1 “ v0w

3
0, and the open sets V1ztw1 “ 0u by

v2 “ 1{w1, w2 “ v1w
2
1. The result is a smooth surface Y , which is a neighborhood of a string of

two smooth rational curves: the curve E1 corresponding to the axis tp0, w0q ; w0 P Cu (glued
to tpv1, 0q ; v1 P Cu) and the curve E2 corresponding to the axis tp0, w1q ; w1 P Cu (glued to
tpv2, 0q ; v2 P Cu); the self-intersections of these curves are respectively equal to ´3 and ´2.
There is a G-invariant rational map from C2 to Y , given in coordinates pvi, wiq by

v0 “ x5, w0 “ y{x2; v1 “ x2{y, w1 “ y3{x; v2 “ x{y3, w2 “ y5. (A.1)

The surface Y is a desingularization of W “ C2{G, with projection Y ÑW given by

u0 “ v0 “ v3
1w1 “ v5

2w
3
2, (A.2)

u1 “ v0w0 “ v2
1w1 “ v3

2w
2
2, (A.3)

u2 “ v0w
2
0 “ v1w1 “ v2w2, (A.4)

u3 “ v2
0w

5
0 “ v1w

2
1 “ w2. (A.5)

If F is a linear automorphism of C2 that normalizes G and F induces a loxodromic automor-
phism of the torus C2{Λ5, then F px, yq “ pαx, βyq for some eigenvalues α, β with |α| ą
1 ą |β|. On the quotient space W it acts by pu0, u1, u2, u3q ÞÑ pα5u0, α

3βu1, αβ
2u2, β

5u3q,
and on Y it acts locally by pv0, w0q ÞÑ pα5v0, α

´2βw0q (resp. pα2β´1v1, α
´1β3w1q and

pαβ´3v2, β
5w2q). In particular, the linear projective map induced by Fon E1 (resp. E2) is

given by w0 ÞÑ α´2βw0 (resp. w1 ÞÑ α´1β3w1). Since |α´2β| ă 1 and |α´1β3| ă 1, F has
exactly two periodic points on each Ei, namely two saddle fixed points. �
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