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1. The Cremona group, and some of its subgroups

1.1. Cremona groups. Let k be a field and n be a positive integer. The
Cremona group Crn(k) is the group of automorphisms of k(X1, . . . , Xn), the k-
algebra of rational functions in n independent variables. Given n rational functions
Fi ∈ k(X1, . . . , Xn), 1 ≤ i ≤ n, there is a unique endomorphism of this algebra
that maps Xi onto Fi ; this endomorphism is an automorphism if and only if the
rational transformation f defined by f(X1, . . . , Xn) = (F1, . . . , Fn) is a birational
transformation of the affine space Ank. After compactification of Ank into the pro-
jective space Pnk, one gets

Crn(k) = Bir(Ank) = Bir(Pnk). (1)

In homogeneous coordinates [x1 : . . . : xn+1], with Xi = xi/xn+1, every birational
transformation f of Pnk can be written as

f [x1 : . . . : xn+1] = [f1 : . . . : fn+1] (2)

where the fi are homogeneous polynomials in the variables xi, of the same degree
d, and without common factor of positive degree. This degree d is the degree of f .

1.2. Examples, indeterminacy points, and dynamics. The group of auto-
morphisms of Pnk is the group PGLn+1(k) of linear projective transformations. As
a subgroup of Crn(k), it coincides with the set of birational transformations of
degree 1. In dimension 1, Cr1(k) is equal to PGL2(k), because a rational fraction
f(X1) ∈ k(X1) is invertible if and only if its degree is equal to 1.
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1.2.1. Monomial transformations. The multiplicative group Gn
m of dimension

n, which we identify to (A1
k \ {0})n, sits as a Zariski open subset in Pnk. Conse-

quently, Crn(k) contains the group of its algebraic automorphisms i.e. the group
of monomial transformations GLn(Z). For example, (X1, X2) 7→ (1/X1, 1/X2) and
(X1, X2) 7→ (X2

1X2, X1X2) are two monomial transformations of the plane. The
first is denoted by σ in what follows: it can be written as

σ[x1 : x2 : x3] = [x2x3 : x3x1 : x1x2] (3)

in homogeneous coordinates, and is therefore an involution of degree 2. By def-
inition, σ is the standard quadratic involution. If k is the field of complex
numbers C, the second transformation preserves the torus {(X1, X2) ∈ C∗; |X1| =
|X2| = 1} and determines a diffeomorphism of Anosov type on this torus [15].

1.2.2. Indeterminacy points. Birational transformations may have indetermi-
nacy points. For instance, σ is not defined at the three points [1 : 0 : 0], [0 : 1 : 0],
and [0 : 0 : 1]. The set of indeterminacy points of f ∈ Crn(k) is an algebraic subset
of Crn(k) of co-dimension at least 2, and is therefore finite when n = 2.

1.2.3. Hénon mappings. The group Aut(Ank) of polynomial automorphisms of
the affine space Ank is contained in the Cremona group Crn(k). In particular,
all transformations (X1, . . . , Xn) 7→ (X1 + P (X2, . . . , Xn), X2, . . . , Xn), with P
in k[X2, . . . , Xn], are contained in Crn(k). This shows that Crn(k) is “infinite
dimensional” when n ≥ 2.

A striking example of automorphism is furnished by the Hénon mapping

ha,c(X1, X2) = (X2 +X2
1 + c, aX1), (4)

for a ∈ k∗ and c ∈ k. When a = 0, ha,c is not invertible: the plane is mapped
into the line {X2 = 0} and, on this line, h0,c maps X1 to X2

1 + c. The dynamics of
h0,c on this line coincides with the dynamics of the upmost studied transformation
z 7→ z2 +c , which, for k = C, provides interesting examples of Julia sets (see [65]).
For a ∈ C∗, the main features of this dynamical system survive in the dynami-
cal properties of the automorphism ha,c : A2

C → A2
C, such as positive topological

entropy and the existence of infinitely many periodic points [6].

1.3. Subgroups of Cremona groups. Birational transformations are simple
objects, since they are determined by a finite set of data, the coefficients of the
homogeneous polynomials defining them. On the other hand, they may exhibit very
rich dynamical behaviors, as shown by the previous examples. Another illustration
of the beauty of Crn(k) comes from the study of its subgroups.

1.3.1. Mapping class groups. Let Γ be a group which is generated by a finite
number of elements γi, 1 ≤ i ≤ k. Consider the space RΓ of all morphisms of Γ
into SL2(k): it is an algebraic variety over k of dimension at most 3k. The group
SL2(k) acts on RΓ by conjugacy; the quotient space RΓ//SL2(k), in the sense of
geometric invariant theory, is an algebraic variety.
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The group of all automorphisms of Γ acts on RΓ by pre-composition. This
determines an action of the outer automorphism group Out(Γ) by regular tranfor-
mations on RΓ//SL2(k), where Out(Γ) is the quotient of Aut(Γ) by the subgroup of
all inner automorphisms. There are examples for which this construction provides
an embedding of Out(Γ) in the group of automorphisms of RΓ//SL2(k). Funda-
mental groups of closed orientable surfaces of genus g ≥ 3 or free groups Fg with
g ≥ 2 provide such examples. Thus, the mapping class groups Mod(g) and the
outer automorphism groups Out(Fg) embed into groups of birational transforma-
tions [59, 2].

1.3.2. Analytic diffeomorphisms of the plane. Consider the group Bir∞(P2
R)

of all elements f of Bir(P2
R) with no real indeterminacy point: over C, indetermi-

nacy points of f come in complex conjugate pairs. Based on the work of Lukackiı,
Kollár and Mangolte observed that Bir∞(P2

R) determines a dense subgroup in the
group of diffeomorphisms of P2(R) of class C∞ (see [56]).

1.4. Aim and scope. These notes focus on the algebraic structure of (subgroups
of) the Cremona group in two variables. Dynamical properties of birational
transformations are not discussed; this would require a much longer report [22, 53].
Most results concerning Bir(P2

k) extend to Bir(X) for all projective surfaces X;
when this is the case, I state the corresponding theorems in their greater generality.

2. Algebraic subgroups of Cr2(k)

2.1. Algebraic subgroups. The Cremona group Cr2(k) contains two important
algebraic subgroups. The first one is the group PGL3(k) of automorphisms of P2

k.
The second is obtained as follows. Start with the surface P1

k × P1
k, considered as

a smooth quadric in P3
k; its automorphism group contains PGL2(k) × PGL2(k).

By stereographic projection, the quadric is birationally equivalent to the plane, so
that Bir(P2

k) contains a copy of PGL2(k)× PGL2(k).
To introduce the notion of algebraic subgroups in Crn(k), note that the set of

birational transformations of degree at most d is an algebraic variety, which we
denote by Crn(k; d). Let G be an algebraic group over k. One says that G can be
realized as an algebraic subgroup of Crn(k) if there is a positive integer d, and a
rational map ϕ : G 99K Crn(k; d) such that ϕ is an injective homomorphism on the
open subset on which it is well defined (see [34, 71] for precise definitions). Both
PGL3(k) and PGL2(k)× PGL2(k) are algebraic subgroups of Cr2(k). Similarly, all
finite subgroups of Cr2(k) are algebraic subgroups.

Example 2.1. An important subgroup of Cr2(k) which is not algebraic is the
de Jonquières group Jonq2(k), of all transformations of P1

k × P1
k that permute

the fibers of the projection onto the first factor. It is isomorphic to the semi-
direct product PGL2(k) n PGL2(k(x)); for example, it contains all transformations
(X1, X2) 7→ (aX1, Q(X1)X2)) with a in k∗ and Q in k(X1) \ {0}, so that its
“dimension” is infinite.
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2.2. Generating sets and relations. The first main result on Cr2(k) is due to
Noether and Castelnuovo [66, 28]. It exhibits two sets of generators for Cr2(k).

Theorem 2.2 (Noether, Castelnuovo). Let k be an algebraically closed field. The
group Cr2(k) is generated by PGL3(k) and the standard quadratic involution σ. It
is also generated by Jonq2(k) and the involution η(X1, X2) = (X2, X1).

The group Jonq2(k) can be identified with the group of birational transforma-
tions of P2

k that preserve the pencil of lines through the point [1 : 0 : 0], and η to
the involution [x1 : x2 : x3] 7→ [x2 : x1 : x3]. With such a choice, η is in PGL3(k)
and σ in Jonq2(k). Then, Cr2(k) is the amalgamated product of Jonq2(k) and
PGL3(k) along their intersection, divided by one relation, namely σ ◦η = η ◦σ (see
[12] and [50, 51] for former presentations of Cr2(k)).

Remark 2.3. (a).– Similarly, Jung’s theorem asserts that the group of polynomial
automorphisms of the affine plane is the free product of two of its subgroups,
amalgamated along their intersection (see [57] for example).

(b).– For every smooth irreducible curve C, there is a birational transformation
g of P3

k and a surface X ⊂ P3
k such that (i) X is birationally equivalent to C × P1

k

and (ii) g contracts X onto a subset of codimension ≥ 2. Consequently, one needs
as many families as families of smooth curves to generate Cr3(k) (see [68, 20]).

2.3. Algebraic tori and Weyl group. Let k be a field. Let G be a connected
semi-simple algebraic group defined over k. The group G acts on its Lie algebra g
by the adjoint representation; the k-rank of G is the maximal possible dimension
dimk(A) over all connected algebraic subgroups A of G which are diagonalizable
over k in GL(g). Such a maximal diagonalizable subgroup is called a maximal
torus. For example, the R-rank of SLn(R) is n − 1, and diagonal matrices form
a maximal torus. If k = C and the rank of G is equal to r, the centralizer
of a generic element g ∈ G has dimension r. Thus, the rank reflects well the
commutation properties inside G.

Theorem 2.4 (Enriques, Demazure, [43, 34]). Let k be an algebraically closed field,
and Gm be the multiplicative group over k. Let r be an integer. If Gr

m embeds as an
algebraic subgroup in Crn(k), then r ≤ n and, if r = n, the embedding is conjugate
to an embedding into the group of diagonal matrices in PGLn+1(k).

In other words, viewed from its algebraic subgroups, Crn(k) has rank n, and
the group of diagonal matrices plays the role of a maximal torus in Crn(k). Its
normalizer is the semi-direct product of itself with the group of monomial trans-
formations GLn(Z); hence, Crn(k) looks like a group of rank n with Weyl group
isomorphic to GLn(Z). Nevertheless, for n = 2, we shall explain in Section 4 that
Cr2(k) is better understood as a group of rank 1.

2.4. Finite subgroups. One of the rich and well understood chapters on Cr2(k)
concerns the study of its finite subgroups. While there is still a lot to due regarding
arbitrary fields and conjugacy classes of finite groups, there is now a list of all
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possible finite groups and maximal algebraic subgroups that can be realized in
Cr2(C). We refer to [71, 41, 11, 9] for details and references, and to [70] for simple
finite subgroups of Cr3(C). For instance, a finitary version of Theorem 2.4 has
been observed by Beauville in [3] for n = 2 (see [69] for n = 3). Let p 6= char(k)
be a prime integer. Assume that the abelian group (Z/pZ)r embeds into Cr2(k);
if p ≥ 5, then r ≤ 2 and, if r = 2, the image of (Z/pZ)r is conjugate to a subgroup
of the group of diagonal matrices of PGL3(k).

3. An infinite dimensional hyperbolic space

Most recent results are better understood if one explain how Cr2(k) acts by isome-
tries on an infinite dimensional hyperbolic space H∞(P2

k). This construction is due
to Manin and Zariski.

Example 3.1. The standard quadratic involution σ maps a line to a conic. Thus,
it acts by multiplication by 2 on the Picard group of the plane P2

k (or on the
homology group H2(P2(C),Z) if k = C). Since σ is an involution, the action of
σ2 on that group is the identity, not multiplication by 4. This shows that Cr2(k)
does not “act” on the Picard group. The forthcoming construction bypasses this
difficulty by blowing up all possible indeterminacy points.

3.1. The Picard-Manin space.

3.1.1. General construction. Let X be a smooth, irreducible, projective sur-
face. The Picard group Pic(X) is the quotient of the abelian group of divisors
by the subgroup of principal divisors [54]. The intersection between curves of X
determines a quadratic form, the so-called intersection form,

(C,D) 7→ C ·D (5)

on Pic(X); the quotient of Pic(X) by the subgroup of divisors E such that E ·D = 0
for all divisor classes D is denoted by NS(X). The group NS(X) is a free abelian
group and its rank, the Picard number ρ(X), is finite; when k = C, NS(X) can be
identified to H1,1(X; R) ∩H2(X; Z). The Hodge index Theorem asserts that the
signature of the intersection form is equal to (1, ρ(X)− 1) on NS(X).

If π : X ′ → X is a birational morphism, the pull-back map π∗ is an injec-
tive morphism from NS(X) to NS(X ′) that preserves the intersection form; hence
NS(X ′) decomposes as the orthogonal sum of π∗NS(X) and a subspace generated
by classes of curves contracted by π, on which the intersection form is negative
definite. If π1 : X1 → X and π2 : X2 → X are two birational morphisms, there is
a third birational morphism π3 : X3 → X that “covers” π1 and π2, meaning that
π3 ◦ π−1

1 and π3 ◦ π−1
2 are morphisms (X3 is obtained from X by blowing-up all

points that are blown-up either by π1 or by π2).
One can therefore define the inductive limit of the groups NS(X ′), where

π : X ′ → X describes all birational morphisms onto X. This limit

Z(X) := lim
π : X′→X

NS(X ′) (6)
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is the Picard-Manin space of X. It is an infinite dimensional free abelian group.
The intersection forms on NS(X ′) determine a quadratic form on Z(X), the sig-
nature of which is equal to (1,∞). By construction, NS(X) embeds naturally as a
proper subspace of Z(X), and the intersection form is negative on NS(X)⊥.

Example 3.2. The group Pic(P2
k) is generated by the class e0 of a line. Blow-up

one point q1 of the plane, to get a morphism π1 : X1 → P2
k. Then, Pic(X1) is a

free abelian group of rank 2, generated by the class e1 of the exceptional divisor
Eq1 , and by the pull-back of e0 under π1 (still denoted e0 in what follows). More
generally, after n blow-ups Xi → Xi−1 of points qi ∈ Xi−1 one obtains

Pic(Xn) = Ze0 ⊕ Ze1 ⊕ . . .⊕ Zen (7)

where e0 (resp. ei) is the class of the total transform of a line (resp. of the
exceptional divisor Eqi

) by the composite morphism Xn → P2
k (resp. Xn → Xi).

The direct sum decomposition (7) is orthogonal with respect to the intersection
form. More precisely,

e0 · e0 = 1, ei · ei = −1 ∀ 1 ≤ i ≤ n, and ei · ej = 0 ∀ 0 ≤ i 6= j ≤ n. (8)

In particular, Pic(X) = NS(X) for rational surfaces. Taking limits, one sees that
the Picard-Manin space Z(P2

k) is a direct sum Z(P2
k) = Ze0⊕

⊕
q Zeq where q runs

over all possible points that can be blown-up (including infinitely near points).

3.1.2. Hyperbolic space. Fix an ample class e0 in NS(X) ⊂ Z(X). Denote
by Z(X,R) and NS(X,R) the tensor products Z(X) ⊗Z R and NS(X) ⊗Z R.
Elements of Z(X,R) are finite sums uX +

∑
i aiei where uX is an element of

NS(X,R), each ei is the class of an exceptional divisor, and the coefficients ai are
real numbers. Allowing infinite sums

∑
i aiei with

∑
i a

2
i < +∞, one gets a new

space Z(X), on which the intersection form extends continuously [21].
The set of vectors u in Z(X) such that u · u = 1 is a hyperbolöıd. The subset

H∞(X) = {u ∈ Z(X) | u · u = 1 and u · e0 > 0} (9)

is the sheet of that hyperboloid containing ample classes of NS(X,R). With the
distance dist(·, ·) defined by

cosh dist(u, u′) = u · u′, (10)

H∞(X) becomes a complete, simply connected, infinite dimensional riemannian
manifold with constant curvature −1 (see [52, 7, 29]).

The projection of H∞(X) in the projective space P(Z(X)) is injective. The
boundary ∂H∞(X) of its image is the projection of the isotropic cone of the in-
tersection form, and can be identified with the boundary of H∞(X) as a Gromov
hyperbolic space [13]. The closure H∞(X) ∪ ∂H∞(X) is denoted by H∞(X) (this
space is not locally compact).

We denote by Isom(Z(X)) the group of isometries of Z(X) with respect to the
intersection form, and by Isom(H∞(X)) the subgroup that preserves H∞(X).
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3.1.3. Action of Bir(X). Given f ∈ Bir(X), there is a birational morphism
π : X ′ → X, obtained by blowing up indeterminacy points of f , such that f lifts to
a morphism f ′ : X ′ → X (see [54]). By pull back, the transformation f ′ determines
an isometry (f ′)∗ from Z(X) to Z(X ′): identifying Z(X) to Z(X ′) by π∗, we
obtain an isometry f∗ of Z(X). Since all points of X have been blown-up to define
Z(X), birational transformations behave as regular automorphisms on Z(X), and
one can show that the map f 7→ f∗ = (f−1)∗ is a morphism from Bir(X) to the
group Isom(Z(X)); hence, after completion, Bir(X) acts on H∞(X) by isometries.

Theorem 3.3 (Manin, [60]). Let X be a projective surface defined over an al-
gebraically closed field k. The morphism f 7→ f∗ is an injective morphism from
Bir(X) to the group of isometries of Z(X) (hence of H∞(X)).

3.2. Types and degree growth. Isometries of H∞(X) are classified into three
types [16]. Elliptic isometries have a fixed point in H∞(X), and act as rotations
around it. Parabolic isometries have a unique fixed point in H∞(X), located on
∂H∞(X), and all orbits accumulate towards it. Loxodromic isometries have two
fixed points in H∞(X), both of them on ∂H∞(X), one repulsive and one attracting.
Moreover, s ∈ Isom(H∞(X)) is loxodromic if and only if its translation length

L(s) = inf{dist(x, s(x)) | x ∈ H∞(X)} (11)

is positive. In that case, λ(s) = exp(L(s)) is the largest eigenvalue of s as a linear
transformation of Z(X) and, for all vectors u in H∞(X), the sequence λ(s)−nsn(u)
converges in Z(X) towards a non-zero isotropic vector; the isotropic line determined
by this vector corresponds to the attracting fixed point of s on ∂H∞(X).

Since Bir(X) acts faithfully on H∞(X), there are three types of birational
transformations: elliptic, parabolic, and loxodromic, according to the type of the
associated isometry of H∞(X). We now describe how each type can be character-
ized in algebraic terms.

Let h ∈ NS(X,R) be an ample class with self-intersection 1. Define the degree
of f with respect to the polarization h by

degh(f) = f∗(h) · h = cosh(dist(h, f∗h)). (12)

For instance, if f is an element of Bir(P2
k), and h = e0 is the class of a line, then

degh(f) is the degree of f , as defined in §1.1.
The sequence degh(fn)1/n converges towards a real number λ(f) ≥ 1, called

the dynamical degree of f ; its logarithm log(λ(f)) is the translation length of
the isometry f∗, because degh(f) = cosh(dist(h, f∗h)). Consequently, λ(f) does
not depend on the polarization and is invariant under conjugacy. In particular, f is
loxodromic if and only if λ(f) > 1. Elliptic and parabolic transformations are also
classified in terms of degree growth. Say that a sequence of real numbers (dn)n≥0

grows linearly (resp. quadratically) if n/c ≤ dn ≤ cn (resp. n2/c ≤ dn ≤ cn2) for
some c > 0.

Theorem 3.4 (Gizatullin, Cantat, Diller and Favre, see [49, 17, 18, 39]). Let X
be a projective surface defined over an algebraically closed field k, f be a birational
transformation of X, and h be a polarization of X.
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• f is elliptic if and only if the sequence degh(fn) is bounded. In this case,
there exists a birational map φ : Y 99K X and an integer k ≥ 1 such that
φ−1 ◦ f ◦ φ is an automorphism of Y and φ−1 ◦ fk ◦ φ is in the connected
component of the identity of the group Aut(Y ).

• f is parabolic if and only if the sequence degh(fn) grows linearly or quadrat-
ically with n. If f is parabolic, there exists a birational map ψ : Y 99K X and
a fibration π : Y → B onto a curve B such that ψ−1 ◦ f ◦ ψ permutes the
fibers of π. The fibration is rational if the growth is linear, and elliptic (or
quasi-elliptic if char(k) ∈ {2, 3}) if the growth is quadratic.

• f is loxodromic if and only if degh(fn) grows exponentially fast with n: there
is a constant b(f) > 0 such that degh(fn) = b(f)λ(f)n +O(1).

Remark 3.5. If f is parabolic, the push forward of the fibration π : Y → B by ψ
is the unique f -invariant (singular) algebraic foliation [25].

Example 3.6. All transformations (X,Y ) 7→ (X,Q(X)Y ) with Q ∈ k(X) of
degree deg(Q) ≥ 1 are parabolic transformations of P2

k with linear degree growth.
Assume k = C. Let ι be a square or cubic root of −1 and E be the elliptic curve

C/Z[ι]. The linear transformation (x, y) 7→ (x+y, y) of C2 preserves Z[ι]×Z[ι]: it
determines an automorphism f of the abelian surface X = E×E, that commutes to
the automorphism m(x, y) = (ιx, ιy). The sequence degh(fn) grows quadratically.
The quotient X/m is rational, and f induces an automorphism of X/m, hence a
birational transformation of P2

C with quadratic degree growth.

3.3. Comparison with mapping class groups. Let g ≥ 2 be an integer, and
Mod(g) be the mapping class group of the compact orientable surface of genus g.
Theorem 3.4 parallels Nielsen-Thurston classification of isotopy classes of homeo-
morphisms ϕ ∈ Mod(g) (see [45, 22]).

The two types of parabolic transformations f ∈ Bir(X), those with linear or
quadratic degree growth, are respectively called de Jonquières twists and Hal-
phen twists. This is justified by the analogy with Dehn (multi-)twists ϕ ∈ Mod(g)
and by the following two facts (for X = P2

k). If the growth is linear, the invariant
foliation can be transformed into a pencil of lines by an element of Bir(P2

k); hence
f ∈ Jonq2(k) up to conjugacy. If the growth is quadratic, it can be transformed
in a Halphen pencil [55, 40].

Loxodromic elements f ∈ Bir(X) should be compared to pseudo-Anosov classes
ϕ ∈ Mod(g). The dynamical degree λ(f) is a substitute for the stretching factor
of ϕ. The action of f∗ on H∞(X) is somehow analogous to the action of ϕ on
the Teichmüller space. When k = C, fixed points on the boundary ∂H∞(X)
are “represented” by f -invariant closed positive currents on X with a laminar
structure, while fixed points of ϕ on the boundary of Thurston’s compactification
of the Teichmüller space correspond to invariant measured foliations. We refer to
[45, 22, 21] for this dictionary, and to [4, 5, 21, 38, 42, 46] for dynamical properties
of loxodromic birational transformations.
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3.4. Dynamical degrees and automorphisms. If g is an automorphism of
X, λ(g) is equal to the spectral radius of the linear transformation g∗ : NS(X) →
NS(X). This shows that λ(g) is an algebraic number because g∗ preserves the
integral structure of NS(X). A similar phenomenon occurs for f ∈ Bir(X); after a
finite number of blow-ups, the action of f on NS(X) is multiplicative, i.e. (f∗)n =
(fn)∗ for all n ≥ 1 (here f∗ denotes temporarily the action on NS(X)), and λ(f)
is equal to the leading eigenvalue of f∗ (see [39]). For example, if f = σ is the
standard quadratic involution, the three indeterminacy points need to be blown-up.

A Pisot number is a real algebraic integer α > 1, all of whose conjugates α′ 6= α
have modulus < 1. A Salem number is a real algebraic integer β > 1 such that
1/β is a conjugate of β, all other conjugates have modulus 1, and there is at least
one conjugate β′ on the unit circle. The set of Pisot numbers is countable, closed,
and contains accumulation points (the smallest one being the golden mean); the
smallest Pisot number is the root λP ' 1.3247 of t3 = t + 1. Salem numbers
are not well understood yet; its smallest known element is the Lehmer number
λL ' 1.1762, a root of t10 + t9 − t7 − t6 − t5 − t4 − t3 + t+ 1 = 0.

Theorem 3.7 (Diller and Favre, McMullen, Blanc and Cantat [39, 62, 63, 64, 23]).
Let X be a projective surface, defined over an algebraically closed field k. Let f be
a birational transformation of X with dynamical degree λ(f) > 1. Then λ(f) is
either a Pisot number or a Salem number and

(a) if λ(f) is a Salem number, then there exists a birational map ψ : Y 99K X
which conjugates f to an automorphism of Y ;

(b) if f is conjugate to an automorphism, as in (a), λ(f) is either a quadratic
integer or a Salem number.

Moreover, λ(f) ≥ λL, where λL is the Lehmer number and there are examples of
birational transformations of the complex projective plane (resp. of some complex
K3 surfaces) such that λ(f) = λL.

4. Subgroups of finite type and normal subgroups

According to the previous section, the Cremona group acts by isometries on an
infinite dimensional hyperbolic space, and there is a powerful dictionary between
the classification of isometries and the classification of birational maps in terms
of degree growth and invariant fibrations. In this section, we explain how this
dictionary can be used to describe the structure of the group Cr2(k).

4.1. Tits Alternative. A group G satisfies Tits alternative if the following
property holds for all subgroups Γ of finite type in G: either Γ contains a finite
index solvable subgroup or Γ contains a free non-abelian subgroup (i.e. a copy of
the free group Fr, with r ≥ 2). Tits alternative holds for linear groups GLn(k)
(see [72]), but not for the group of C∞-diffeomorphisms of the circle S1 (see [14],
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[48]). If G satisfies Tits alternative, it does not contain groups with intermediate
growth; its finite type subgroups are tame, from a geometric point of view.

The main technique to prove that a group contains a non-abelian free group
is the ping-pong lemma. Let g1 and g2 be two bijections of a set S. Assume
that S contains two non-empty disjoint subsets S1 and S2 such that gm1 (S2) ⊂ S1

and gm2 (S1) ⊂ S2 for all m ∈ Z∗. Then, according to the ping-pong lemma, the
subgroup of Bij(S) generated by g1 and g2 is a free group on two generators [31].
Now, consider a group Γ that acts on a hyperbolic space H∞ and contains two
loxodromic isometries h1 and h2 with four distinct fixed points on ∂H∞. Take
two disjoint neighborhoods S1 and S2 of the sets of fixed points of h1 and h2 in
H∞. Then, the ping-pong lemma applies to sufficiently high powers g1 = hn1 and
g2 = hn2 , and produce a free subgroup of Γ.

This strategy can be used for Bir(X), acting on H∞(X) by isometries. The
difficulty resides in the study of subgroups that do not contain any ping-pong pair
of loxodromic isometries; Theorem 3.4 comes in help to deal with this situation,
and leads to the following result.

Theorem 4.1 ([21]). If X is a projective surface over a field k, the group Bir(X)
satisfies Tits alternative.

If M is a projective variety (resp. a compact kähler manifold), its group of
automorphisms satisfies also the Tits alternative [21].

Question 4.2. Does Crn(k) satisfy Tits alternative for all n ≥ 3 ?

Would the answer be yes, one would obtain a proof of Tits alternative for all
subgroups of Cremona groups: this includes linear groups, mapping class groups
of surfaces, and Out(Fg) for all g ≥ 1 (see §1.3.1; see [8] for Tits alternative
in this context). In the same spirit – comparing subgroups of Cremona groups
to subgroups of linear groups – the most basic question that has not found any
answer yet is the following, which parodies Malcev’s and Selberg’s theorems.

Question 4.3. Are finitely generated subgroups of Crn(k) residually finite ? Does
every finitely generated subgroup of Crn(k) contain a torsion free subgroup of finite
index ? (see [2] for automorphisms of Ank)

4.2. Rank one phenomena. As explained in §2.3, the Cremona group Cr2(k)
behaves like an algebraic group of rank 2, with a maximal torus given by the group
of diagonal matrices in PGL3(k). On the other hand, generic elements of degree
d ≥ 2 in Cr2(C) are loxodromic (not elliptic) and, as such, cannot be conjugate
to elements of this maximal torus. This suggests that Cr2(k) has rank 1 from the
point of view of its generic elements. The following statement provides a strong
version of this principle.

Theorem 4.4 ([21, 23]). Let k be a field. Let X be a projective surface over k and
f be a loxodromic element of Bir(X). Then, the infinite cyclic subgroup of Bir(X)
generated by f has finite index in the centralizer {g ∈ Bir(X) | g ◦ f = f ◦ g}.
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Another rank one phenomena comes from the rigidity of rank 2 subgroups of
Cr2(k). Let G be a real, almost simple, linear algebraic group and Γ be a lattice
in G, i.e. a discrete subgroup such that G/Γ has finite Haar volume. When the
R-rank of G is at least 2, Γ inherits its main algebraic properties from G (see [61]).
For instance, Γ has Kazhdan property (T), according to which all representations
of Γ by unitary motions on a Hilbert space have a global fixed point.

Theorem 4.5 (Deserti, Cantat, [35, 21]). Let k be an algebraically closed field
and X be a projective surface over k. Let Γ be a countable group with Kazhdan
property (T). If ρ : Γ → Bir(X) is a morphism with infinite image, then ρ is
conjugate to a morphism into PGL3(k) by a birational map ψ : X 99K P2

k.

In [35, 36, 37], Déserti draws several algebraic consequences of this result; for
instance, she can list all abstract automorphisms of Cr2(C).

Let G be a simple real Lie group of rank r. As a byproduct of Theorem 4.5,
Cr2(C) does not contain any lattice of G if r ≥ 2, except when G is isomorphic
to PSL3(R) or PSL3(C). This supports Zimmer’s conjecture, which predicts that
such a lattice cannot act faithfully by diffeomorphisms on a compact manifold of
dimension < r. We refer to [47] for a survey on Zimmer’s program, to [19, 27]
for the case of holomorphic diffeomorphisms of compact kähler manifolds, and to
[33, 24] for the existence of rank 1 lattices in Cr2(C).

4.3. Normal subgroups. Let us pursue the comparison between groups of bira-
tional transformations and groups of diffeomorphisms. IfM is a connected compact
manifold and Diff∞0 (M) denotes the group of infinitely differentiable diffeomor-
phisms of M which are isotopic to the identity, then Diff∞0 (M) is a simple group:
it does not contain any normal subgroup except {IdM} and the group Diff∞0 (M)
itself (see [1]). From Noether-Castelnuovo Theorem, one can show that Cr2(C)
is “connected”; hence, there is no need to rule out connected components, as for
diffeomorphisms. Enriques conjectured in 1894 that Cr2(C) is a simple group, and
this is indeed true from the point of view of its algebraic subgroups [44, 10]. On
the other hand, as an abstract group, Cr2(C) is far from being simple.

Theorem 4.6 (Cantat and Lamy, [26]). Let k be an algebraically closed field. The
group Cr2(k) is not a simple group. If k = C is the field of complex numbers,
Cr2(C) contains an uncountable family of distinct normal subgroups.

To prove this theorem, one makes use of the action of Cr2(k) on H∞(P2
k), and

of ideas coming from small cancellation theory and the geometry of hyperbolic
groups in the sense of Gromov, as in [32]. One obtains the existence of a constant
N > 1 with the following property: there is a loxodromic element g in Cr2(k)
such that all elements h 6= Id of the smallest normal subgroup containing gN are
loxodromic elements with λ(h) > λ(g). When k = C, one can choose a generic
element of degree 2 for g.

The same type of strategy is used in various contexts, as in the recent proof,
by Dahmani, Guirardel and Osin, that high powers of pseudo-Anosov elements
generate strict, non-trivial, normal subgroups in mapping class groups. Applied to
the Cremona group, their techniques lead to the following.
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Theorem 4.7 (Dahmani, Guirardel, and Osin, [26, 30]). Let k be an algebraically
closed field. The Cremona group Cr2(k) is sub-quotient universal: every countable
group can be embedded in a quotient group of Cr2(k).

Being sub-quotient universal, while surprising at first sight, is a common feature
of hyperbolic groups [32, 67]. For instance, SL2(Z) is sub-quotient universal [58].
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