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ABSTRACT. Recent results concerning the dynamics of holomorphic dif-
feomorphisms of compact complex surfaces are described, that require a
nice interplay between algebraic geometry, complex analysis, and dynami-
cal systems.

RÉSUMÉ. Nous décrivons quelques résultats récents concernant la dynamique
des difféomorphismes holomorphes des surfaces complexes compactes. Ceci
nécessite des outils de géométrie algébrique, d’analyse complexe et de sys-
tèmes dynamiques.

1. INTRODUCTION

1.1. Automorphisms.

1.1.1. Automorphisms. Let M be a compact complex manifold. By defini-
tion, holomorphic diffeomorphisms f : M → M are called automorphisms;
they form a group, the group Aut(M) of automorphisms of M. Endowed with
the topology of uniform convergence, Aut(M) is a topological group and a
theorem due to Bochner and Montgomery shows that this topological group is
a complex Lie group, whose Lie algebra is the algebra of holomorphic vector
fields on M (see [21]). The connected component of the identity in Aut(M) is
denoted by Aut(M)0, and the group of connected components of Aut(M) is

Aut(M)] = Aut(M)/Aut(M)0.

1.1.2. Curves. If M = P1(C) then Aut(M) is the group of linear projective
transformations PGL2(C). In particular, Aut(M) is connected, and the dy-
namics of all elements f ∈ Aut(M) is easily described. (However, the the-
ory of Kleinian groups shows the richness of the dynamics of subgroups of
Aut(P1(C))).

If M = C/Λ is an elliptic curve, the connected component of the identity
Aut(M)0 coincides with the abelian group C/Λ, acting by translations. The
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group Aut(M) is the semi-direct product of Aut(M)0 by the finite group F of
similarities of C preserving Λ. The group F contains z 7→ −z, and is generated
by this involution in all cases except when Λ is similar to Z[

√
−1], and then

|F | = 4, or when Λ is similar to Z[ω], where ω is a cubic root of 1, and then
|F |= 6.

If M is a connected curve of genus g ≥ 2, Hurwitz’s Theorem shows that
Aut(M) is finite, with at most 84(g−1) elements.

1.1.3. Connected components. Starting with dim(M) = 2, the group Aut(M)
may have an infinite number of connected components.

As an example, let E = C/Λ be an elliptic curve and M = En be the product
of n copies of E; in other words, M is the torus Cn/Λn. The group GLn(Z) acts
linearly on Cn, preserves the lattice Λn ⊂ Cn, and therefore embeds into the
group Aut(M). All non-trivial elements B in GLn(Z) act non-trivially on the
homology of M, so that distinct matrices fall in distinct connected components
of Aut(M). Thus, Aut(M)] is infinite if n≥ 2.

As a specific example, one can take

B =
(

2 1
1 1

)
.

The automorphism induced by B on E×E is an Anosov diffeomorphism : It
expands a holomorphic linear foliation of E×E by a factor (3 +

√
5)/2 > 1

and contracts another transverse linear foliation by (3−
√

5)/2 < 1.
This example shows that there are compact complex surfaces X for which

Aut(X) has an infinite number of connected components and Aut(X) contains
elements f : X→ X that exhibit a rich dynamics; as we shall explain, these two
properties are intimately linked together. The following paragraph provides
another example that will be used all along this survey.

1.2. An example. Consider the affine space of dimension 3, with coordinates
(x1,x2,x3), and compactify it as P1×P1×P1. Denote by πi the projection
onto P1×P1 that forgets the i-th factor; for example, in affine coordinates,

π2(x1,x2,x3) = (x1,x3).

Let X ⊂ P1×P1×P1 be a smooth surface such that all three projections πi

induce ramified covers of degree 2, still denoted πi, from X to P1×P1. Equiv-
alently, X is defined in the affine space by a polynomial equation

P(x1,x2,x3) = 0
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that has degree 2 with respect to each variable. For instance, one can take

P(x1,x2,x3) = (1+ x2
1)(1+ x2

2)(1+ x2
3)+Ax1x2x3−2,

for all parameters A 6= 0, as in [101]. Since πi : X → P1×P1 is a 2 to 1 cover,
there is an involutive automorphism si of X such that πi ◦ si = πi. For example,
if (x1,x2,x3) is a point of X , then

s2(x1,x2,x3) = (x1,x′2,x3)

where x2 and x′2 are the roots of the equation P(x1, t,x3) = 0 (with x1 and x2
fixed).

As we shall see in the following pages, there are no non-trivial relations
between these involutions. In other words, the subgroup of Aut(X) gener-
ated by s1, s2, and s3 is isomorphic to the free product Z/2Z ∗Z/2Z ∗Z/2Z.
Moreover, if f is a non trivial element of this group, then

• either f is conjugate to one of the si, and then f is an involution;
• or f is conjugate to an iterate (si ◦ s j)n of one of the compositions

si◦s j, i 6= j, and the dynamics of f is easily described since the closure
of typical orbits are elliptic curves;
• or f has a rich dynamics, with positive topological entropy, an infinite

number of saddle periodic points, etc.

FIGURE 1. Here, X is defined by a polynomial with real coeffi-
cients. The automorphism f = s1◦s2◦s3 preserves the real part X(R).
On the left, several orbits are plotted, while on the right, an approxi-
mation of a stable manifold of a saddle fixed point is drawn. (Picture
realized by V. Pit, based on a program by C.T. McMullen [100])
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1.3. Aims and scope. This text describes the dynamics of automorphisms of
compact complex surfaces when it is rich, as in the example f = s1 ◦ s2 ◦ s3
above. We restrict the study to compact Kähler surfaces. This is justified by
the fact that the topological entropy of all automorphisms vanishes on compact
complex surfaces which are not Kähler, as explained in Section 2.5 and the
Appendix.

Not much is known, but a nice interplay between algebraic geometry, com-
plex analysis, and dynamical systems provides a few interesting results. This
leads to a precise description of the main stochastic properties of the dynam-
ics of automorphisms, whereas topological properties seem more difficult to
obtain.

Our goal is to present the main results of the subject to specialists of alge-
braic geometry and to specialists of dynamical systems as well; this implies
that several definitions and elementary explanations need to be given that are
common knowledge for a large proportion of potential readers. No proof is
detailed but a few arguments are sketched in order to enlighten the interplays
between algebraic geometry, complex analysis, and dynamical systems. When
a result holds for automorphisms of projective surfaces over any algebraically
closed field k, we mention it.

We tried as much as possible to focus on topics which are not covered by
other recent surveys on holomorphic dynamics in several complex variables;
we recommend [115], [38], [78], [5], and [58], for complementary material.

1.4. Acknowledgement. Thanks to Eric Bedford, Olivier Debarre, Julie Déserti,
Hélène Esnault, Charles Favre, Curtis T. McMullen, and Olivier Wittenberg
for interesting comments and references.
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2. HODGE THEORY AND AUTOMORPHISMS

Let X be a connected, compact, Kähler surface. Our goal in this section is to
describe the action of automorphisms f ∈ Aut(X) on the cohomology groups
of X . The Hodge structure plays an important role; we refer to the four books
[75], [122], [2] and [97] as general references for this topic, and to [38] for
details concerning the action of Aut(X) on the cohomology of X .

2.1. Hodge decomposition, intersection form, and Kähler cone.

2.1.1. Cohomology groups. Hodge theory implies that the de Rham cohomol-
ogy groups Hk(X ,C) split into direct sums

Hk(X ,C) =
M

p+q=k

H p,q(X ,C),

where classes in the Dolbeault cohomology groups H p,q(X ,C) are represented
by closed forms of type (p,q). For example, H1,0(X ,C) and H2,0(X ,C) cor-
respond respectively to holomorphic 1-forms and holomorphic 2-forms. This
bigraded structure is compatible with the cup product. Complex conjugation
permutes H p,q(X ,C) with Hq,p(X ,C); it defines a real structure on the com-
plex vector space H1,1(X ,C), for which the real part is

H1,1(X ,R) = H1,1(X ,C)∩H2(X ,R),

and on the space H2,0(X ,C)⊕H0,2(X ,C). We denote by hp,q(X) the dimen-
sion of H p,q(X ,C).

2.1.2. Intersection form. Since X is canonically oriented by its complex struc-
ture, it admits a natural fundamental class [X ] ∈ H4(X ,Z); this provides an
identification of H4(X ,Z) with Z. Hence, the intersection form defines an
integral bilinear form on H2(X ,Z). We denote by 〈·|·〉 the bilinear form which
is induced on H1,1(X ,R) by the intersection form:

∀u,v ∈ H1,1(X ,R), 〈u|v〉=
Z

X
u∧ v.(1)

1here u and v are implicitly represented by (1,1)-forms and the evaluation of the cup prod-
uct of u and v on the fundamental class [X ] is identified to the integral of u∧ v on X
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Theorem 2.1 (Hodge index Theorem). Let X be a connected compact Kähler
surface. On the space H1,1(X ,R), the intersection form 〈·|·〉 is non-degenerate
and of signature (1,h1,1(X)−1).

In particular, 〈·|·〉 endows H1,1(X ,R) with the structure of a Minkowski
space that will play an important role in the following Sections.

Remark 2.2. If Ω is a non-zero holomorphic 2-form thenZ
X

Ω∧Ω > 0, (2.1)

where Ω is the complex conjugate. As a consequence, the intersection form is
positive definite on the real part of H2,0(X ,C)⊕H0,2(X ,C), and the signature
of the intersection form on H2(X ,R) is (2h2,0(X)+1,h1,1(X)−1).

Example 2.3. Let X be a smooth surface of degree (2,2,2) in P1×P1×P1, as
in Section 1.2. In the affine space C×C×C, with coordinates (x1,x2,x3), X is
defined by a polynomial equation P(x1,x2,x3) = 0. Since X is smooth, every
point of X is contained in an open set where one of the partial derivatives of P
does not vanish; hence, we can define a holomorphic 2-form Ω on the affine
part of X by

Ω =
dx1∧dx2

∂P/∂x3
=

dx2∧dx3

∂P/∂x1
=

dx3∧dx1

∂P/∂x2
.

As the reader can check, this form extends to X as a non-vanishing holomor-
phic 2-form ΩX , because P has degree 2 with respect to each variable (an in-
stance of the “adjunction formula”, see [75]). Now, if Ω′ is another holomor-
phic 2-form, then Ω′ = ψΩX for some holomorphic, and therefore constant,
function ψ : X → C. Thus, H2,0(X ,C) is generated by [ΩX ] and h2,0(X) = 1;
by conjugation, h0,2(X) = 1.

The generic fibers of the projection

σ1 : (x1,x2,x3) ∈ X → x1 ∈ P1

are elliptic, with a finite number of singular fibers – for a generic choice of P,
one sees that π has exactly 24 singular fibers which are isomorphic to a rational
curve with a double point. This implies that X is simply connected with Euler
characteristic 24. Thus, H1(X ,Z), H1,0(X ,C), and H0,1(X ,C) vanish, and
H1,1(X ,C) has dimension 20. Consequently, the signature of the intersection
form on H2(X ,R) is (3,19).
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2.1.3. Kähler and nef cones. Classes [κ] ∈ H1,1(X ;R) of Kähler forms are
called Kähler classes. The Kähler cone of X is the subset K (X)⊂H1,1(X ,R)
of all Kähler classes. This cone is convex and is contained in one of the two
connected components of the cone {u ∈ H1,1(X ,R) | 〈u|u〉 > 0}. Its closure
K (X) ⊂ H1,1(X ,R) is the nef cone (where “nef” simultaneously stands for
“numerically eventually free” and “numerically effective”).

2.1.4. The Néron-Severi group. The Néron-Severi group of X is the discrete
subgroup of H1,1(X ,R) defined by

NS(X) = H1,1(X ,R)∩H2(X ,Z).

Lefschetz Theorem on (1,1)-classes asserts that this space coincides with the
group of Chern classes of holomorphic line bundles on X . The dimension
ρ(X) of NS(X) is the Picard number of X ; by definition ρ(X) ≤ h1,1(X).
Similarly, we denote by NS(X ,A) the space NS(X)⊗Z A for A = Q, R, C.

When Y is a projective surface defined over an algebraically closed field
k, the Néron-Severi group NS(Y ) is defined as the group of classes of curves
modulo numerical equivalence; this definition coincides with the definition
just given when k = C and Y = X is a complex projective surface.

Remark 2.4. Let X be a projective surface, embedded as a degree d surface
in some projective space Pn(C). Recall that the line bundle O(1) on Pn(C) is
the inverse of the tautological line bundle: Holomorphic sections of O(1) are
given by linear functions in homogeneous coordinates and their zero-sets are
hyperplanes of Pn(C); the Chern class of O(1) is a Kähler class (represented
by the Fubini-Study form). Restricting O(1) to X , we obtain a line bundle,
the Chern class of which is an integral Kähler class with self-intersection d.
Equivalently, intersecting X with two generic hyperplanes, one gets exactly d
points. This shows that 〈·|·〉 restricts to a non-degenerate quadratic form of
signature (1,ρ(X)−1) on NS(X ,R) when X is projective.

In the other direction, the description of Kähler cones for surfaces (see [24,
95]) and Kodaira’s embedding Theorem imply that X is a projective surface as
soon as NS(X) contains classes with positive self-intersection.

Example 2.5. Let X be a smooth surface of degree (2,2,2) in P1×P1×P1.
Each projection of the three projections σi : X → P1 determines a fibration of
X by curves of genus 1 (with singular fibers). Denote by [Ci] the class of the
generic fiber of σi; these classes generate a free abelian subgroup Z3 of NS(X).
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Noether-Lefschetz Theorem (see [123], or [122], Theorem 15.33) implies that
NS(X) coincides with this subgroup for generic surfaces of degree (2,2,2).

When X is a torus C2/Λ, the second cohomology group has dimension 6.
Since H2,0(X ,C) has dimension 1 (it is generated by the class of dx∧ dy),
the Picard number ρ(X) is at most 4. For example, generic tori have Picard
number 0 and ρ(C/Z[

√
−1]×C/Z[

√
−1]) = 4. (see [17])

2.2. Automorphisms.

2.2.1. Action on cohomology groups. The group Aut(X) acts by pull-back on
H∗(X ,Z), where H∗(X ,Z) stands for the graded direct sum of the cohomology
groups Hk(X ,Z). This action provides a morphism

f ∈ Aut(X) 7→ ( f ∗)−1 ∈ GL(H∗(X ,Z)), (2.2)

the image of which preserves

(1) the graded structure, i.e. each subspace Hk(X ,Z), acting trivially on
H0(X ,Z) and H4(X ,Z);

(2) the Poincaré duality;
(3) the Hodge decomposition, commuting with complex conjugation;
(4) the Kähler cone K (X).

Moreover,

(5) the cup product is equivariant with respect to the action of Aut(X); in
particular, Aut(X) preserves the intersection form 〈·|·〉 on H1,1(X ,R).

The connected component of the identity Aut(X)0 ⊂ Aut(X) acts trivially
on the cohomology of X ; the following Theorem shows that this group has
finite index in the kernel of the morphism (2.2).

Theorem 2.6 (Lieberman [98], see also Fujiki [71]). Let M be a compact
Kähler manifold. If [κ] is a Kähler class on M, the connected component of
the identity Aut(X)0 has finite index in the group of automorphisms of M fixing
[κ].

In other words, the group of connected components Aut(M)] almost embeds
into GL(H∗(M,R)). When M is a curve, the group Aut(X)0 coincides with
the kernel of the representation Aut(M) → GL(H∗(M,R)), but already for
surfaces, there are (few) examples of automorphisms which are not isotopic to
the identity but act trivially on H∗(M,Q) (see [113], [26]).
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2.2.2. Eigenvalues and dynamical degree. On the space H2,0(X ,C) (resp. on
H0,2(X ,C)), the group Aut(X) preserves the positive hermitian product

([Ω], [Ω′]) 7→
Z

X
[Ω]∧ [Ω′]

from Equation (2.1). This shows that the image of Aut(X) in GL(H2,0(X ,C))
(resp. in GL(H0,2(X ,C))) is contained in a unitary group.

Since Aut(X) preserves the Hodge decomposition and the integral structure
of the cohomology, it preserves the Néron-Severi group. When X is projective,
NS(X) intersects the Kähler cone (see Remark 2.4) and by Hodge index The-
orem, the intersection form is negative definite on its orthogonal complement
NS(X)⊥ ⊂ H1,1(X ,R).

These facts imply the following Lemma.

Lemma 2.7. Let X be a compact Kähler surface, and f be an automorphism
of X. Let u ∈ H2(X ,C) be a non-zero eigenvector of f ∗, with eigenvalue λ. If
|λ|> 1, then u is contained in H1,1(X ,C), and is contained in NS(X ,C) when
X is projective.

Let now u be an eigenvector of f ∗ in H1(X ,C) with eigenvalue β. Its (1,0)
and (0,1) parts u1,0 and u0,1 are also eigenvectors of f ∗, with the same eigen-
value β. Since u1,0 is represented by a holomorphic 1-form, we have

u1,0∧u1,0 6= 0

as soon as u1,0 6= 0. Thus ββ is an eigenvector of f ∗ in H1,1(X ,R).

Lemma 2.8. The square of the spectral radius of f ∗ on H1(X ,C) is bounded
from above by the largest eigenvalue of f ∗ on H1,1(X ,R). The spectral radius
of f ∗ on H∗(X ,C) is equal to the spectral radius of f ∗ on H1,1(X ,R).

We shall denote by λ( f ), or simply λ, the spectral radius of f ∗; this number
is the dynamical degree of f . As we shall see in Sections 2.4.3 and 4.4.2,
λ( f ) is an eigenvalue of f ∗, λ( f ) is and algebraic integer, and its logarithm
is equal to the topological entropy of f as a transformation of the complex
surface X .

Example 2.9 (see Section 7.3 for explicit examples). Let f0 be a birational
transformation of the plane P2(C). By definition, the degree deg( f0) of f0 is
the degree of the pre-image of a generic line by f0. Equivalently, there are



HOLOMORPHIC DYNAMICS ON PROJECTIVE SURFACES 10

homogeneous polynomials P, Q, and R of the same degree d and without com-
mon factors of degree > 1 such that f0[x : y : z] = [P : Q : R] in homogeneous
coordinates; this number d is equal to deg( f0).

Assume, now, that there is a birational map ϕ : X 99K P2(C) such that f :=
ϕ−1 ◦ f0 ◦ ϕ is an automorphism of X . Then λ( f ) = limn deg( f n

0 )1/n. This
formula justifies the term “dynamical degree”.

2.3. Isometries of Minkowski spaces. This paragraph is a parenthesis on the
geometry of Minkowski spaces and their isometries.

2.3.1. Standard Minkowski spaces. The standard Minkowski space R1,m is
the real vector space R1+m together with the quadratic form

x2
0− x2

1− x2
2− . . .− x2

m.

Let 〈·|·〉m be the bilinear form which is associated to this quadratic form. Let w
be the vector (1,0, . . . ,0); it is contained in the hyperboloid of vectors u with
〈u|u〉m = 1. Define Hm to be the connected component of this hyperboloid that
contains w, and let distm be the distance on Hm defined by (see [15, 85, 118])

cosh(distm(u,u′)) = 〈u|u′〉m.

The metric space (Hm,distm) is a riemannian, simply-connected, and complete
space of dimension m with constant sectional curvature −1; these properties
uniquely characterize it up to isometry. (2)

The projection of Hm into the projective space P(R1,m) is one-to-one onto
its image. In homogeneous coordinates, its image is the ball x2

0 > x2
1 + . . .+x2

m,
and the boundary is the sphere obtained by projection of the isotropic cone
x2

0 = x2
1 + . . .+x2

m. In what follows, Hm is identified with its image in P(R1,m)
and its boundary is denoted by ∂Hm; hence, boundary points correspond to
isotropic lines in R1,m.

2.3.2. Isometries. Let O1,m(R) be the group of linear transformations of R1,m

preserving the bilinear form 〈·|·〉m. The group of isometries Isom(Hm) coin-
cides with the subgroup of O1,m(R) that preserves the chosen sheet Hm of the
hyperboloid {u ∈ R1,m | 〈u|u〉m = 1}. This group acts transitively on Hm, and
on its unit tangent bundle.

2The riemannian structure is defined as follows. If u is an element of Hm, the tangent
space TuHm is the affine space through u that is parallel to u⊥, where u⊥ is the orthogonal
complement of Ru with respect to 〈·|·〉m; since 〈u|u〉m = 1, the form 〈·|·〉m is negative definite
on u⊥, and its opposite defines a positive scalar product on TuHm; this family of scalar products
determines a riemannian metric, and the associated distance coincides with distm (see [15]).
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If h ∈ O1,m(R) is an isometry of Hm and v ∈ R1,m is an eigenvector of h
with eigenvalue λ, then either λ2 = 1 or v is isotropic. Moreover, since Hm is
homeomorphic to a ball, h has at least one eigenvector v in Hm∩∂Hm. Thus,
there are three types of isometries: Elliptic isometries, with a fixed point u in
Hm; parabolic isometries, with no fixed point in Hm but a fixed vector v in
the isotropic cone; loxodromic (or hyperbolic) isometries, with an isotropic
eigenvector v corresponding to an eigenvalue λ > 1. They satisfy the following
additional properties (see [15]).

(1) An isometry h is elliptic if and only if it fixes a point u in Hm. Since 〈·|·〉m
is negative definite on the orthogonal complement u⊥, the linear transforma-
tion h fixes pointwise the line Ru and acts by rotation with respect to 〈·|·〉m on
the orthogonal complement u⊥.

(2) An isometry h is parabolic if it is not elliptic and fixes a vector v in the
isotropic cone. The line Rv is uniquely determined by the parabolic isome-
try h. For all points u in Hm, the sequence hn(u) converges towards the bound-
ary point Rv in the projective space P(R1,m) as n goes to +∞ and −∞.

(3) An isometry h is hyperbolic if and only if h has an eigenvector v+
h with

eigenvalue λ > 1. Such an eigenvector is unique up to scalar multiplica-
tion, and there is another, unique, isotropic eigenline Rv−h corresponding to
an eigenvalue < 1; this eigenvalue is equal to 1/λ. If u is an element of Hm,

1
λn hn(u)−→

〈u|v−h 〉m
〈v+

h |v
−
h 〉m

v+
h

and

1
λn h−n(u)−→

〈u|v+
h 〉m

〈v+
h |v
−
h 〉m

v−h

as n goes to +∞. On the orthogonal complement of Rv+
h ⊕Rv−h , h acts as a

rotation with respect to 〈·|·〉m.

The type of h is also characterized by the growth of the iterates hn: For any
norm ‖ · ‖ on the space End(R1,m), the sequence ‖ hn ‖ is bounded if h is
elliptic, grows like Csten2 if h is parabolic, and grows like λn if h is hyperbolic
(with λ > 1 as in (3) above).

2.4. Types of automorphisms and geometry. Let X be a connected, com-
pact, Kähler surface.
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FIGURE 2. Three types of automorphisms (from left to right): El-
liptic, parabolic, and loxodromic. Elliptic isometries preserve a point
in Hm and act as a rotation on the orthogonal complement. Parabolic
isometries fix an isotropic vector v; all positive and negative orbits in
Hm converge towards the line Rv; the orthogonal complement of Rv
contains it, and is tangent to the isotropic cone. Loxodromic isome-
tries dilate an isotropic line, contract another one, and act as a rotation
on the intersection of the planes tangents to the isotropic cone along
those lines (see also Figure 3 below).

2.4.1. The hyperbolic space HX . The intersection form on H1,1(X ,R) is non-
degenerate of signature (1,h1,1(X)− 1); as such, it is isometric to the stan-
dard Minkowski form in dimension h1,1(X). One, and only one sheet of the
hyperboloid {u ∈ H1,1(X ,R) | 〈u|u〉 = 1} intersects the Kähler cone K (X):
We denote by HX this hyperboloid sheet ; as in Section 2.3, the intersection
form endows HX with the structure of a hyperbolic space Hm of dimension
m = h1,1(X)−1.

2.4.2. Isometries induced by automorphisms. Since automorphisms of X act
by isometries with respect to the intersection form and preserve the Kähler
cone, they preserve the hyperbolic space HX . This provides a morphism

Aut(X)→ Isom(HX).

By definition, an automorphism f is either elliptic, parabolic, or loxodromic,
according to the type of f ∗ ∈ Isom(HX).(3)

2.4.3. Loxodromic automorphisms. Let f be a loxodromic automorphism, and
let λ( f ) be its dynamical degree. We know from Sections 2.2.2 and 2.3.2 that
λ( f ) is the unique eigenvalue of f ∗ on H2(X ,C) with modulus > 1. It is real,

3In the literature, the terminology used for “loxodromic” is either “hyperbolic” or “hyper-
bolic on the cohomology”, or “with positive entropy” depending on the authors.
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positive, and its eigenspace is a line: This line is defined over R, is contained
in H1,1(X ,C), and is isotropic with respect to the intersection form. More-
over, λ( f ) is an algebraic number because λ( f ) is an eigenvalue of f ∗ and f ∗

preserves the lattice H2(X ,Z). Since the other eigenvalues of f ∗ on H2(X ,C),
beside λ( f ) and its inverse 1/λ( f ), have modulus 1, this implies that λ( f ) is
either a quadratic integer or a Salem number.(4)

Remark 2.10. The set of Salem numbers is not well understood. In particular,
its infimum is unknown. However, dynamical degrees of automorphisms pro-
vide only a small subset of the set of Salem numbers, and McMullen proved
that the minimum of all dynamical degrees λ( f ), for f describing the set of all
loxodromic automorphisms of compact Kähler surfaces, is equal to Lehmer’s
number λ10 ' 1.17628, the largest root of

x10 + x9− x7− x6− x5− x4− x3 + x+1.

This is the smallest known Salem number; for comparison, the smallest qua-
dratic integer is the golden mean, λG ' 1.61803. Lehmer’s number is real-
ized as the dynamical degree of automorphisms on some rational surfaces (see
[7, 102]) and K3 surfaces (both on projective, and non-projective K3 surfaces,
see [103] and [101] respectively).

The Kähler cone K (X) is contained in the convex cone R+HX . Let [κ] be an
element of K (X). Then, from §2.3.2, (1/λ( f )n)( f ∗)n[κ] converges towards
a non-zero eigenvector of f ∗ for the eigenvalue λ( f ). Thus, there exists a
non-zero nef vector v+

f ∈ H1,1(X ,R) such that

f ∗v+
f = λ( f )v+

f .

We fix such an eigenvector v+
f in what follows; this choice is unique up to a

positive scalar factor, because the eigenspace for λ( f ) is a line. The same argu-
ment, applied to f−1, provides a nef vector v−f such that f ∗v−f = (1/λ( f ))v−f .
Changing v−f in a scalar multiple, we assume that

〈v+
f |v
−
f 〉= 1.

The orthogonal complements of v+
f and of v−f intersect along a codimension 2

subspace
N f := (v+

f )⊥∩ (v−f )⊥ ⊂ H1,1(X ,R);

4By definition, an algebraic number λ is a Salem number if λ is real, λ > 1, its degree
is ≥ 4, and the conjugates of λ are 1/λ and complex numbers of modulus 1. In particular,
quadratic integers are not considered as Salem numbers here.
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FIGURE 3. Action of a loxodromic automorphism on H1,1(X ,R).
The two invariant isotropic lines Rv+

f and Rv−f generate on orange
plane; the vector spaces (Rv+

f )⊥ and (Rv−f )⊥ are tangent to the
isotropic cone, and their intersection N f is the orthogonal comple-
ment to the orange plane.

the intersection form 〈·|·〉 is negative definite on N f .

2.4.4. Elliptic and parabolic automorphisms. The following result provides a
link between this classification in types and the geometry of the transformation
f : X → X .

Theorem 2.11 (Gizatullin, Cantat [74, 34]). Let X be a connected, compact,
Kähler surface. Let f be an automorphism of X.

(i) If f is elliptic, a positive iterate f k of f is contained in the connected
component of the identity Aut(X)0; in particular f ∗ ∈ GL(H∗(X ,Z))
has finite order.

(ii) If f is parabolic, there is an elliptic fibration π f : X → B, and an au-
tomorphism f of the curve B such that π f ◦ f = f . If C is a fiber of the
fibration, its class [C] is contained in the unique isotropic line which
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is fixed by f ∗; in particular, this line intersects NS(X)\{0}. If f does
not have finite order, then X is isomorphic to a torus C2/Λ.

Moreover, f is elliptic if and only if ‖ ( f n)∗ ‖ is a bounded sequence, f is
parabolic if and only if ‖ ( f n)∗ ‖ grows quadratically, and f is loxodromic if
and only if ‖ ( f n)∗ ‖ grows exponentially fast, like λ( f )n.

2.4.5. Projective surfaces over other fields. Assume that X is a complex pro-
jective surface. Since NS(X ,R) intersects the Kähler cone, it intersects also
HX on an Aut(X)-invariant totally isometric subspace. Thus, the type of every
automorphism f is the same as the type of f ∗ as an isometry of the hyperbolic
subspace HX ∩NS(X ,R). In particular, if f is loxodromic, the two isotropic
eigenlines are contained in NS(X ,R). On the other hand, there is no vector
u in NS(X) such that f ∗u = λu with λ > 1, because f ∗ determines an auto-
morphism of the lattice NS(X). Hence, when f is loxodromic, the eigenline
corresponding to the eigenvalue λ( f ) is irrational with respect to the lattice
NS(X).

Let now Y be a smooth projective surface defined over an algebraically
closed field k. Let f be an automorphism of Y . Then f acts on the Néron-
Severi group NS(Y ) by isometries with respect to the intersection form, where
NS(Y ) is defined as the group of numerical classes of divisors (see [79] for
Néron-Severi groups). Hodge index Theorem applies, and shows that NS(Y,R)
is a Minkowski space with respect to its intersection form. Consequently,
automorphisms of Y can also be classified in three categories in accordance
with the type of the isometry f ∗ of NS(Y,R); as said above, this definition
is compatible with the previous one – which depends on the action of f ∗ on
H1,1(X ,R) – when X is a smooth complex projective surface.

Theorem 2.11 also applies to this setting, as shown by Gizatullin in [74].

2.4.6. Two examples.

A family of complex tori.– Consider an elliptic curve E = C/Λ, and the
abelian surface X = E ×E, as in Section 1.1.3. The group SL2(Z) acts lin-
early on C2 and this action preserves the lattice Λ×Λ, so that SL2(Z) embeds
as a subgroup of Aut(X). Let B be an element of SL2(Z) and tr(B) be the trace
of B. Then, the automorphism fB of X induced by B is

• elliptic if and only if B =±Id or tr(B) =−1, 0, or 1;
• parabolic if and only if tr(B) =−2 or 2 and B 6=±Id;



HOLOMORPHIC DYNAMICS ON PROJECTIVE SURFACES 16

• loxodromic if and only if |tr(B)|> 2; in this case, the dynamical degree
of fB is the square of the largest eigenvalue of B.

Since the type of an automorphism depends only on its action on the coho-
mology of X , all automorphisms of the form t ◦ fB where t ∈ Aut(X)0 is a
translation have the same type as fB.

Remark 2.12. The appendix of [73] list all 2-dimensional tori with a loxo-
dromic automorphism.

FIGURE 4. Action of involutions.– On the left, a picture of NX with
the triangular cone R+[C1]+ R+[C2]+ R+[C3] and its images under
the three involutions. On the right, a projective view of the same
picture: The triangular cone becomes a pink ideal triangle ∆.

Surfaces of degree (2,2,2) in P1(C)×P1(C)×P1(C).– Let X be a smooth
surface of degree (2,2,2) in P1×P1×P1. Let NX ⊂NS(X) be the subgroup of
the Néron-Severi group which is generated by the three classes [Ci], i = 1,2,3,
where [Ci] is the class of the fibers of the projection σi : X → P1 defined by
σi(x1,x2,x3) = xi. One easily checks that the three involutions s∗i preserve the
space NX ; on NX , the matrix of s∗1 in the basis ([C1], [C2], [C3]) is equal to −1 0 0

2 1 0
2 0 1

 ,

and the matrices of s∗2 and s∗3 are obtained from it by permutation of the coor-
dinates. Thus, on NX , si is the orthogonal reflexion with respect to the plane
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Span([C j], [Ck]) (for {i, j,k}= {1,2,3}). The space HX ∩ (NX ⊗R) is isomet-
ric to the Poincaré disk. Denote by ∆ the ideal triangle of the disk with vertices
[C1], [C2], [C3]. Then ∆ is a fundamental domain for the action of the group
generated by the s∗i , as shown on Figure 4. The group generated by the invo-
lution s∗i acts by symmetries of the tessellation of the disks by ideal triangle.
This proves that there are no non-obvious relations between the involutions, as
stated in the Introduction.

The transformation si ◦ s j, for i 6= j, is parabolic, and all parabolic elements
in the group 〈s1,s2,s3〉 are conjugate to some iterate of one of these parabolic
automorphisms. A prototypical example of a loxodromic automorphism is the
composition g = s3 ◦ s2 ◦ s1. Its action on NX is given by the matrix −1 −2 −6

2 3 10
2 6 15

 ,

and the eigenvalues of this matrix are

λ = 9+4
√

5,
1
λ

= 9−4
√

5, and −1.

Thus, the dynamical degree of g is λ(g) = 9+4
√

5.

2.5. Classification of surfaces. Compact complex surfaces have been clas-
sified (see [2]), and this classification, known as Enriques-Kodaira classifica-
tion, has been extended to projective surfaces over algebraically closed fields
by Mumford and Bombieri. This classification can be used to list all types of
surfaces that may admit a loxodromic automorphism. Since this classification
is not used in the sequel, we postpone the statement to an Appendix to this
survey.

All we need to know is that, after contraction of smooth periodic curves with
self-intersection −1, there are four main types of surfaces with loxodromic
automorphisms: Rational surfaces obtained from P2 by a finite sequence of at
least ten blow-ups, tori, K3 surfaces and Enriques surfaces. Complex Enriques
surfaces are quotients of K3 surfaces by a fixed point free involution, so that
the main examples, beside the well known case of tori, are given by rational
surfaces and K3 surfaces.

Surfaces of degree (2,2,2) are examples of K3 surfaces; Section 7.3 pro-
vides examples on rational surfaces.



HOLOMORPHIC DYNAMICS ON PROJECTIVE SURFACES 18

3. GROUPS OF AUTOMORPHISMS

In order to illustrate the strength of our knowledge of Isom(HX), let us study
the structure of subgroups of Aut(X)]. In this Section, we denote by Aut(X)∗

the image of Aut(X) in GL(H∗(M,Z)); up to finite index, Aut(X)∗ coincides
with Aut(X)].

This section is a parenthesis which is not used in the rest of this article.

3.1. Torsion. Let us start with a remark concerning torsion in Aut(X)]. Let A
be a subgroup of Aut(X), and A∗ be its image in GL(H∗(X ,Z)). The subgroup
G3 of all elements g in GL(H∗(X ,Z)) such that

g = Id mod(3)

is a finite index, torsion free, subgroup of GL(H∗(X ,Z)).(5) Denote by A∗0 its
intersection with A∗ and by A0 its pre-image in A. Then A0 is a finite index
subgroup of A and A∗0 is torsion free.

Lemma 3.1. Let X be a connected, compact Kähler surface. Up to finite
index in the group Aut(X), every elliptic element of Aut(X) acts trivially on
the cohomology of X.

The same statement holds for arbitrary compact Kähler manifolds M if “el-
liptic” is replaced by “with finite order on H1,1(M,R)".

3.2. Free subgroups and dynamical degrees. We can now prove the fol-
lowing result that provides a strong form of Tits alternative for subgroups of
Aut(X)∗.

Theorem 3.2 (Strong Tits Alternative, see [27, 30, 111, 126]). Let X be a
connected compact Kähler surface. If A is a subgroup of Aut(X)∗, there is a
finite index subgroup A0 of A which satisfies one of the following properties

• A0 contains a non-abelian free group, all of whose elements g∗ 6= Id
are loxodromic isometries of H1,1(X ,R);
• A0 is cyclic and acts by loxodromic isometries on H1,1(X ,R);

5To prove that it is torsion free, suppose that there is a finite order element g in G3 \{Id}.
Changing g into an iterate gk we assume that the order of g is prime: gp = Id for some prime
integer p. Write g = Id + 3lA where A is a matrix with integer coefficients and one of them
is not divisible by 3. Then gp = Id + 3l pA + 32l p(p− 1)/2A2 + ... = Id. Thus 3 divides p,
hence 3 = p, and one obtains that A = 0 modulo 3l+1, a contradiction. (this argument is due
to Minkowski)
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• A0 is a free abelian group of rank at most h1,1(X ,R)− 2 whose ele-
ments g∗ 6= Id are parabolic isometries of H1,1(X ,R) (fixing a common
isotropic line).

Remark 3.3. From the classification of compact Kähler surfaces, and of holo-
morphic vector fields on surfaces, one easily proves the following: If Aut(X)]

contains a loxodromic element, either X is a torus, or Aut(X)0 is trivial (see
[39, 23]). Consequently, Theorem 3.2 can be used to describe subgroups of
Aut(X) (instead of Aut(X)] or Aut(X)∗).

Proof. By §3.1, we can assume that A is torsion free, so that it does not contain
any elliptic element. Thus, either A contains a loxodromic element, or all
elements of A\{Id} are parabolic.

Assume A contains a loxodromic element h∗. If A does not fix any isotropic
line of H1,1(X ,R), then the ping-pong Lemma (see [43, 30]) implies that A
contains a free non-abelian subgroup all of whose elements f 6= Id are loxo-
dromic. Otherwise, A fixes an isotropic line Rv. Denote by

α : A→ R+

the morphism defined by g∗v = α(g∗)v for all g∗ in A. Since h∗ fixes Rv, and
h∗ is loxodromic, α(h∗) = λ(h)±1 and Rv is an irrational line with respect to
H2(X ,Z). Since this line is A-invariant and irrational, we obtain: A contains no
parabolic element, α(g∗) = λ(g)±1 for all g in A, and α is injective. Moreover,
all values of α in an interval [a,b]⊂R∗+ are algebraic integers of degree at most
dim(H2(X ,Z)) whose conjugates are bounded by max(b,1/a). Consequently,
α takes only finitely many values in compact intervals, its image is discrete,
hence it is cyclic. Thus, either A contains a non-abelian free group, or A is
cyclic.

Assume A does not contain any loxodromic element. Then all elements
of A \ {Id} are parabolic. As in [30], this implies that A preserves a unique
isotropic line Ru ⊂ H1,1(X ,R). If g∗ is an element of A, its eigenvalues in
H2(X ,Z)⊗C are algebraic integers, and all of them have modulus 1. By
Kronecker Lemma, all of them are roots of 1. This implies that a finite index
subgroup of A acts trivially on u⊥/(Ru). From this, it follows easily that, up
to finite index, A is abelian of rank at most h1,1(X)−2 = dim(u⊥)−1. �

3.3. Mapping class groups. Let S be a connected, closed, and oriented sur-
face of genus g ≥ 2. The modular group, or mapping class group, of S is the
group Mod(S) of isotopy classes of homeomorphisms of S; thus, Mod(S) is
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the group of connected components of the group of homeomorphisms of S, and
is a natural analogue of the group Aut(X)]. Let us list a few useful analogies
between modular groups Mod(S) and groups of automorphisms Aut(X).

TABLE 1. Automorphisms versus mapping classes.– Here, f
is an automorphism of a connected, compact Kähler surface X ,
and h is a pseudo Anosov homeomorphism of a closed oriented
surface S. (see the following Sections for topological entropy
and the laminar currents T±f )

Compact Kähler surface X Higher genus, closed surface S

f acts on the hyperbolic h acts on the Teichmüller space T (S)
space HX (resp. on the complex of curves)

f is loxodromic h is pseudo-Anosov

dynamical degree λ( f ) dilatation factor λ(h)

cohomology classes v+
f and v−f fixed points of h on ∂T (S)

htop( f ) = logλ( f ) htop(h) = logλ(h)

closed laminar currents T +
f and T−f measured stable, unstable foliations of h

On one hand, Aut(X)] acts almost faithfully on the cohomology of X ; on the
other hand, Mod(S) coincides with the group of outer automorphisms of the
fundamental group π1(S). Thus, both Aut(X)] and Mod(S) are determined by
their respective action on the algebraic topology of the surface. For instance

• Aut(X)] acts by isometries on the hyperbolic space HX and we derived
from this action a strong form of Tits Alternative for subgroups of
Aut(X)] (see Theorem 3.2);
• similarly, Mod(S) acts on the complex of curves of S, a Gromov hy-

perbolic space (see [87, 99]), and Mod(S) satisfies also a strong form
of Tits alternative (see [86, 16]). For example, solvable subgroups are
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almost abelian, and torsion free abelian subgroups have rank at most
3g (see [18]).

Thus, subgroups of Mod(S) satisfy properties which are similar to those listed
in Theorem 3.2.

If f ∗ is an element of Aut(X)∗, we know that f ∗ is either elliptic, parabolic,
or loxodromic; this classification parallels Nielsen-Thurston classification of
mapping classes g ∈Mod(S): Elliptic automorphisms correspond to finite or-
der elements of Mod(S), parabolic to composition of Dehn twists along pair-
wise disjoint simple closed curves, and loxodromic to pseudo-Anosov classes
(there are no "reducible" transformations beside “Dehn twists” in the realm
of automorphisms of compact Kähler surfaces). As we shall see, when f is
a loxodromic automorphism, the classes [v±f ] are represented by laminar cur-
rents on the surface X , that will play a role similar to the stable and unstable
foliations for pseudo-Anosov homeomorphisms.

As explained in [30], this analogy is even more fruitful for birational trans-
formations of X .

3.4. Construction of automorphisms. Most surfaces do not admit loxodromic
automorphisms (or even automorphisms f 6= Id). For example, if one blows
up n ≥ 10 generic points in P2(C), the group of automorphisms of the sur-
face that one gets is trivial (see [81, 94]). As explained in Section 2.5 and in
the Appendix, surfaces with loxodromic automorphisms fall in four classes:
Rational surfaces, tori, K3 surfaces and Enriques surfaces.

For simplicity, let us work over the field of complex numbers C. Since tori
are well understood and Enriques surfaces are quotient of K3 surfaces by a
fixed point free involution, we focus on K3 surfaces and rational surfaces.

To construct K3 surfaces with loxodromic automorphisms, one can ap-
ply the so-called Torelli Theorem, which asserts that the automorphisms of
a K3 surface X are in bijections with the invertible linear transformations of
H∗(X ,Z) that preserve the Hodge structure, the intersection form, and the set
of homology classes of smooth rational curves on X . This result is difficult to
use in practice, because one needs a precise understanding of (i) the interplay
between the Hodge structure and the integral structure of the cohomology and
(ii) the set of rational curves (or, what is the same, classes in NS(X) with self-
intersection −2). Good references to see how automorphisms of K3 surfaces
can be cooked up with this method are [101, 104, 103], [112].



HOLOMORPHIC DYNAMICS ON PROJECTIVE SURFACES 22

The case of rational surfaces is more delicate, but leads to more examples.
Let us describe one of them. Let C be a smooth cubic curve in P2. If p is a
point on C, a birational involution σp : P2 99K P2 can be defined as follows.
For each point m ∈ P2, draw the line (mp) joining m to p; if not tangent to C,
this line intersects C in three points, p, q and r; there is a unique projective
linear involution on this line which fixes q and r (it is conjugate to z 7→ −z,
fixing 0 and ∞); the image of m by this involution is the point σp(m). Thus,
σp is a birational transformation of P2 which fixes C point-wise and preserves
the pencil of lines through p. One can resolve the indeterminacies of σp by
blowing up a finite number of points of C: The point p, and the four points
z ∈C such that (pz) is tangent to C at z. Once these points have been blown
up, σp is an automorphism that fixes (the strict transform of) C point-wise.
Thus, starting with l distinct points pi, one can do successively all necessary
blow-ups to lift the transformations σpi to automorphisms of a rational surface.
Blanc proves in [19] that these automorphisms generate a free product Z2/Z∗
. . .Z2/Z of l copies of Z2/Z. If l ≥ 3, it follows from Theorem 3.2 that this
group contains loxodromic elements.

There is no clear understanding yet on the condition that a rational surface
X must satisfy to have a loxodromic automorphism, or a large group of au-
tomorphisms. We refer to [80, 7, 9, 102] for constructions of examples, to
[8, 48] for their deformations, and to [31] for restrictions on the size of such
groups of automorphisms.

4. PERIODIC CURVES, PERIODIC POINTS, AND TOPOLOGICAL ENTROPY

We now focus on the dynamics of loxodromic automorphisms on connected
compact Kähler surfaces.

The main goal of this Section is to explain how ideas of algebraic geometry,
including geometry over finite fields, of topology, and of dynamical systems
can be used to study periodic curves and periodic points of loxodromic auto-
morphisms.

4.1. Periodic curves. Let E ⊂ X be a curve which is invariant under the lox-
odromic automorphism f . We denote by [E] its class in H1,1(X ,R). (6) Since
f ∗[E] = [E], [E] is contained in the orthogonal complement N f of the plane
Rv+

f ⊕Rv−f . Thus, the intersection form is negative definite on the subspace

6This class is the dual of the homology class of E. Equivalently, [E] is the Chern class of
the line bundle OX (E).
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of H1,1(X ,R) generated by the classes of all f -invariant or f -periodic curves.
Grauert-Mumford contraction Theorem (see [2]) can therefore be applied to
this set of curves, and provides the following result.

Proposition 4.1 (Cantat, Kawaguchi, see [34, 37, 93]). Let f be a loxodromic
automorphism of a connected, compact, Kähler surface X. There exist a (sin-
gular) surface X0, a birational morphism π : X → X0, and an automorphism
f0 of X0 such that

(1) π◦ f = f0 ◦π;
(2) a curve E ⊂ X is contracted by π if and only if E is f -periodic, if and

only if [E] is contained in N f .

This implies that the number of f -periodic curves is finite when f is loxo-
dromic. Moreover, we can assume that f does not have any periodic curve if
we admit singular models X0 for the surface X . When f is an automorphism
of a projective surface Y defined over an algebraically closed field k, as in
Section 2.4.5, the same result holds.

Theorem 4.2 (Castelnuovo, see [20, 42, 53]). Let f be a loxodromic automor-
phism of a connected, compact, Kähler surface X. If E is a connected periodic
curve of f , then E has genus 0 or 1.

In his initial statement, Castelnuovo assumed the curve E to be irreducible,
but this hypothesis has been removed by Diller, Jackson and Sommese. The
genus of E can be defined in terms of the genus formula g(E) = E · (E +
KX)/2+1, where KX is the canonical class of X ; it coincides with 1−χ(OC),
where χ denotes the Euler characteristic (see [53]).

The inequality g(E)≤ 1 imposes drastic constraints on E. First, E has genus
0 if and only if E is a tree of smooth rational curves. Assume now that E has
genus 1. Then, there exists a birational morphism η : X → X1 such that (i)
X1 is smooth, i.e. η is a composition of contractions of exceptional curves of
the first kind, (ii) f induces an automorphism η◦ f ◦η−1 of X1, (iii) there is a
meromorphic 2-form on X1 which does not vanish and whose divisor of poles
coincides with η(E). The curve η(E) has genus 1 and is one of the following
curves:

• a smooth curve of genus 1, or a rational curve with a node, or a rational
curve with a cusp;
• a union of two smooth rational curves meeting tangentially, or inter-

secting transversely at two distinct points;
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• a union of three smooth rational curves intersecting transversely at a
single point;
• a cycle of k ≥ 3 smooth rational curves.

In particular, the singularities of the surface X0, obtained by blowing down the
periodic curves of f , are very special.

Remark 4.3. Loxodromic automorphisms of complex tori have no periodic
curve. On a K3 surface (resp. on an Enriques surface), the genus formula
shows that all irreducible periodic curves are smooth rational curves. There
are examples of rational surfaces X with an automorphism f such that f is
loxodromic and f fixes an elliptic curve point-wise (see §3.4 above, or Exam-
ple 3.1 and Remark 3.2 in [37]).

4.2. Fixed points formulae. Lefschetz Formula provides a link between fixed
points of f and its action on the cohomology of X .

4.2.1. Lefschetz Formula (see [75]). Let M be a smooth oriented manifold
and g be a smooth diffeomorphism of M. Let p be an isolated fixed point of
g, and U be a chart around p. One defines the index Ind(g; p) of g at p as the
local degree of the map IdM − g. The graph Γg ⊂ M×M of g intersects the
diagonal ∆ at (p, p). This intersection is transversal if and only if 1 is not an
eigenvalue of the tangent map Dgp, if and only if det(Dgp− Id) 6= 0. In this
case, the index of g at p satisfies

Ind(g; p) = sign(det(Dgp− Id)).

Another equivalent definition of Ind(g; p) is as follows. Orient Γg around
(p, p) in such a way that the map x 7→ (x,g(x)) preserves the orientation; then
Ind(g; p) is the intersection number of Γg with the diagonal ∆ at (p, p). Thus,
one gets

∑
g(p)=p

Ind(g; p) = ∆ ·Γg

where ∆ ·Γg denotes the intersection number of ∆ and Γg, a quantity which
can be computed in terms of the action of g∗ on the cohomology of M. One
obtains ∆ ·Γg = L(g) where L(g) denotes the Lefschetz number

L(g) :=
dimM

∑
k=0

(−1)ktr(g∗|Hk(M,R)).

Thus,
∑

g(p)=p
Ind(g; p) = L(g)
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when all fixed points of M are isolated. If all fixed points of g are non-
degenerate, one gets the estimate |Fix(g)| ≥ |L(g)|.

4.2.2. Shub-Sullivan Theorem, and automorphisms. In order to apply Lef-
schetz fixed points Formula to count periodic points, one needs to control the
indices of the iterates gn. This is exactly what the following result does.

Theorem 4.4 (Shub-Sullivan, [114]). Let g : U → Rm be a map of class C 1,
where U is an open subset of Rm that contains the origin 0. Assume that 0
is an isolated fixed point of all positive iterates gn, n > 0. Then Ind(gn;0) is
bounded as a function of n.

Let f be a loxodromic automorphism of a compact Kähler surface X . Sup-
pose that f does not have any curve of periodic points; then all periodic points
are isolated, because the set of periodic points of period n > 0 is an ana-
lytic subset of X without components of positive dimension. From Lefschetz
Formula and Shub-Sullivan Theorem, there is an infinite number of periodic
points, because L( f n) grows like λ( f )n as n goes to +∞. As a simple corollary,
we obtain

Corollary 4.5. If f is a loxodromic automorphism of a compact Kähler sur-
face, the set Per( f ) of periodic points of f is infinite.

To prove the existence of an infinite number of isolated periodic points (i.e.
of periodic points that are not contained in curves of periodic points), one
needs (i) a Lefschetz Formula that would take into account curves of fixed
points and (ii) a control of the indices along such curves; this is done in [88]
for area preserving automorphisms (see [88] for examples showing that indices
of f k along curves of fixed points are not always bounded).

4.2.3. Holomorphic fixed point formulae. In the holomorphic setting, one can
derive more precise formulae. Let f be a holomorphic endomorphism of a
compact complex manifold M. For each integer r ∈ {0, . . . ,dimC(M)}, define
Lefschetz number of index r by

Lr( f ) =
s=dimC(M)

∑
s=0

(−1)str( f ∗|Hr,s(M,C)).

For example, when M is a complex surface, Poincaré duality implies

L0( f ) = L2( f ) = 1− tr( f ∗|H0,1)+ tr( f ∗|H0,2)

L1( f ) = 2tr( f ∗|H1,0)− tr( f ∗|H1,1).
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Theorem 4.6 (Atiyah-Bott fixed point Theorem, [1]). Let f be a holomorphic
endomorphism of a compact complex manifold M. If all fixed points of f are
non-degenerate, then

Lr( f ) = ∑
f (p)=p

tr(∧rD fp)
det(Id−D fp)

.

As a consequence, on a compact Kähler surface with no non-zero holo-
morphic form every endomorphism has at least one fixed point. This remark
applies, for example, to surfaces obtained from the projective plane by a finite
sequence of blow-ups. See [120, 101] for applications.

4.3. Periodic points are Zariski dense. As explained in the previous para-
graph, every loxodromic automorphism of a compact Kähler surface has an
infinite number of periodic points. Here is a stronger result for projective sur-
faces, which is taken from works of Fakhruddin, Hrushowski, and Xie.

Theorem 4.7 (see [69] and [124]). Let k be an algebraically closed field. Let
X be an irreducible projective surface and f be an automorphism of X, both
defined over k. If f is loxodromic, the set Per( f ) ⊂ X(k) is Zariski dense in
X. Moreover, for every curve Z ⊂ X there is a periodic orbit of f in X \Z.

Finer results hold when f is an automorphism of a connected compact Käh-
ler surface (see below §4.4.3).

Let us try to convey some of the ideas that lead to a proof of this Theorem.
First, recall that loxodromic automorphisms have a finite number of periodic
curves, as shown in Section 4.1.

4.3.1. Finite fields. Let us first assume that both X and f are defined over a
finite field Fq, with q elements. Pick a point x in X and choose a finite exten-
sion Fql of Fq such that x ∈ X(Fql). Since f is defined over Fq, f permutes the
points of the finite set X(Fql), so that the orbit of x is finite. This shows that
all points are periodic !

There is another, more powerful, technique to construct periodic points over
finite fields. Let Z be any Zariski closed proper subset of X . We shall construct
a periodic orbit of f which is entirely contained in the complement of Z, a
result that is stronger than the existence of a periodic point in X \Z.

Let Fq be an algebraic closure of Fq, and let Φq : X → X be the geometric
Frobenius automorphism (on Fq, Φq raises numbers t to the power tq). First,
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note that the orbit of Z under the action of the Frobenius morphism is Zariski
closed: There is an integer k ≥ 0 such that[

n
Φ

n
q(Z) = Z∪Φq(Z)∪ . . .∪Φ

k
q(Z)

because Z is defined over a finite extension of Fq. Denote by Z′ this proper, Φq-
invariant, Zariski closed subset of X . Then, fix an affine Zariski open subset
U ⊂ X that does not intersect Z′. Denote by Γ f ⊂ X ×X the graph of f , and
by Γ f (U) its intersection with U×U . We can apply the following Theorem to
S = Γ f (U).

Theorem 4.8 (Hrushovski). Let U be an irreducible affine variety over Fq.
Let S ⊂U ×U be an irreducible variety over Fq, and let Φq be the Frobenius
automorphism on U. If the two projections of S on U are dominant, the set of
points of S of the form (x,Φm

q (x)), for x in U and m≥ 1, is Zariski dense in S.

Thus, there exists a positive integer m and a point x∈U such that (x,Φm
q (x))

is contained in Γ f (U); in other words,

f (x) = Φ
m
q (x).

Since f is defined over Fq, it commutes to Φq, and

f n(x) = Φ
mn
q (x) ∈ X \Z′

for all n≥ 1. But x is periodic under Φq, because its coordinates live in a finite
extension of Fq, hence f n(x) = x for some positive integer n. This provides a
periodic orbit in the complement of Z′, as desired.

4.3.2. Arbitrary fields. Assume now that X and f are defined over the field of
rational numbers Q. After reduction modulo a sufficiently large prime power
q = pl , one gets an automorphism

fq : XFq → XFq .

The Néron-Severi group of X(C) is generated by classes of curves which are
defined on a finite extension K of Q. Thus, if p and l are large enough, the
action of fq on NS(XFq) is loxodromic, with the same dynamical degree as
f : XC → XC. In particular, fq has a finite number of periodic curves and
Per( fq) ⊂ XFq(Fq) is Zariski dense in XFq . Pick an isolated periodic point m
of some period n, i.e. a periodic point m ∈ XFq(Fq) which is not contained in
a curve of periodic points. Then one can lift m to a periodic point m̂ ∈ X(Q)
(roughly speaking, the equation f n(m) = m determines a scheme of dimension
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1, which is not contained in the special fiber XFq because m is an isolated fixed
point of f n; thus, its intersection with the generic fiber provides a periodic
point). Since the set of such points m is Zariski dense, the lifts m̂ form a
Zariski dense subset of X(Q).

When k is an arbitrary, algebraically closed field, one first replaces it by
a finitely generated subring over which X and f are defined. Then standard
techniques show that the same strategy – reduction plus lift – can be applied.

4.4. Topological entropy and saddle periodic points. Let us come back to
the dynamics of loxodromic automorphisms on compact Kähler surfaces, and
apply tools from dynamical systems to understand periodic points.

4.4.1. Entropy. Let g be a continuous transformation of a compact metric
space Z, with distance dist. The topological entropy htop(g) is defined as
follows. Let ε be a positive number and n be a positive integer. One says that a
finite subset A of Z is separated at scale ε during the first n iterations, or simply
that A is (ε,n)-separated, if and only if, for any pair of distinct points a and b
in A, there exists a time 0≤ k < n such that

dist(gk(a),gk(b))≥ ε.

The maximum number of elements in (ε,n)-separated subsets is denoted by
N(ε,n). Then, one defines successively

htop(g;ε) = limsup
n→+∞

1
n

logN(ε,n)

and, taking finer and finer scales of observation of the dynamics,

htop(g) = lim
ε→0

htop(g;ε).

So, topological entropy measures the rate at which the dynamics of g creates
distinct orbits, when observed with an arbitrarily small, but positive, scale. As
an example, the transformation z 7→ zd of the unit circle {z ∈ C; |z| = 1}, has
entropy log(d).

4.4.2. Gromov-Yomdin formula. Computing topological entropy is a difficult
problem in practice, but for holomorphic transformations f : M→M of com-
pact Kähler manifolds, entropy coincides with the logarithm of the spectral
radius of f ∗ ∈ GL(H∗(M,C)):
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Theorem 4.9 (Gromov [77], Yomdin [125, 76]). Let f be a diffeomorphism of
a compact manifold M. Let λ( f ) be the spectral radius of the linear transfor-
mation f ∗ : H∗(M,C)→ H∗(M,C).

• If M and f are of class C ∞, then htop( f )≥ logλ( f ).
• If M is a Kähler manifold and f is holomorphic, htop( f ) = logλ( f ).

For automorphisms of compact Kähler surfaces, one gets

htop( f ) = logλ( f )

where λ( f ) is the dynamical degree of f ∗.

Remark 4.10. a.– When f is an automorphism of a compact Kähler man-
ifold M, one can replace λ( f ) by the largest eigenvalue of f ∗ on the sumL

p H p,p(M,R) in Gromov-Yomdin Theorem.

b.– Let f be an automorphism of a projective variety M, both defined over a
finite field k. Let l be a prime integer, distinct from the characteristic of k. One
can define étale cohomology groups H∗ét(M,Ql) and look at the eigenvalues of
f ∗ on these groups. For surfaces, all eigenvalues on the orthogonal comple-
ment of the Néron-Severi group NS(X) are roots of unity: See [68] for a proof
and interesting questions.

Example 4.11. Let M = SL2(C)/Γ where Γ is a co-compact lattice in SL2(C).
Let t be a positive real number. The automorphism ft of M defined by left
multiplication by (

exp(t) 0
0 exp(−t)

)
is isotopic to the identity (let t go to 0), but has positive entropy (the flow
defined by ft is the geodesic flow on the unit tangent bundle to a hyperbolic
manifold of dimension 3). This does not contradict Gromov’s Theorem be-
cause M is not Kähler (see [72], page 120).

4.4.3. Saddle periodic points. Let p be a periodic point of the automorphism
f and let k be its period. One says that p is a saddle (or hyperbolic) periodic
point if one eigenvalue of the tangent map D( f k)p has modulus > 1 and the
other has modulus < 1. Since f has topological entropy log(λ( f )) and X has
dimension 2, one can apply a result due to Katok.

Theorem 4.12 (Katok, [90]). Let f be a loxodromic automorphism of a com-
pact Kähler surface. The number N( f ,k) of saddle periodic points of f of
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period at most k grows like λ( f )k: For all ε > 0,

limsup
1
k

log(N( f ,k))≥ log(λ( f )− ε).

The same result holds for isolated periodic points in place of saddle periodic
points.

In particular, f has an infinite number of isolated periodic points. This
implies that periodic points of f are Zariski dense: If the Zariski closure were
contained in a curve Z, this curve would be invariant by f and, by definition,
it would contain all periodic points; but an automorphism of a curve has only
finitely many isolated periodic points.

Katok’s proof requires several non trivial dynamical constructions, includ-
ing the full strength of Pesin theory. It provides f -invariant compact subsets
Λl ⊂ X , l ≥ 1, and numbers εl going to 0 when l goes to +∞, such that (i)
the restriction of f to Λl is conjugate to a horse-shoe map (and is therefore
well understood, see [91]), and (ii) the number of periodic points of period n
in each of these sets grows like (λ( f )− εl)n with n.

5. INVARIANT CURRENTS

5.1. Currents (see [75, 46]).

5.1.1. Definitions. Let X be a compact Kähler surface, and ∧1,1(X ,R) be the
space of smooth real valued (1,1)-forms on X with its usual Fréchet topology.
By definition, a (1,1)-current is a continuous linear functional on ∧1,1(X ,R).
For simplicity, (1,1)-currents are called currents in this text. The value of a
current T on a form ω is denoted by (T |ω).

Example 5.1. a.– Let α be a continuous (1,1)-form, or more generally a
(1,1)-form with distribution coefficients. Then α defines a current {α} (also
denoted by α in what follows):

({α}|ω) =
Z

X
α∧ω.

b.– Let C ⊂ X be a curve. The current of integration on C is defined by

({C}|ω) =
Z

C
ω.

This is well defined even if C is singular; moreover, {C} extends to a lin-
ear functional on the space of continuous forms for the topology of uniform
convergence.
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Recall that a (1,1)-form ω is positive if ω(u,
√
−1u)≥ 0 for all tangent vec-

tors u. A current T is positive if it takes non-negative values on the convex
cone of positive forms. When positive, T extends as a continuous linear func-
tional on the space of continuous (1,1)-forms with the topology of uniform
convergence. Given two currents T and T ′, one says that T is larger than T ′,
written T ≥ T ′, if the difference T −T ′ is a positive current.

A current is closed if it vanishes on the space of exact forms. For example,
the current associated to a smooth (1,1)-form α is positive (resp. closed) if
and only if α is a positive (resp. closed) form. The current of integration on a
curve C ⊂ X is positive and closed (because C has empty boundary).

5.1.2. Cohomology classes. Let T be a closed current. Then T defines a linear
form on the space H1,1(X ,R), and there is a unique cohomology class [T ] such
that

(T |ω) = 〈[T ]|[ω]〉

for all closed forms ω of type (1,1). By definition, [T ] is the cohomology class
of T .

5.1.3. Mass and compact sets of currents. Let T be a positive current on a
Kähler surface X . Let κ be a Kähler form on X . The trace measure of T is the
positive measure ‖ T ‖ defined byZ

X
ξ ‖ T ‖= (T |ξκ)

for all smooth functions ξ; it depends on the choice of the Kähler form κ. The
mass M(T ) of T is the total mass of the trace measure ‖ T ‖. When T is closed,
we obtain

M(T ) = 〈[T ]|[κ]〉,

so that the mass depends only on the cohomology class [T ].
The space of currents is endowed with the weak topology: A sequence of

currents (Ti) converges towards a current T if (Ti|ω) converges towards (T |ω)
for all smooth forms. The set of positive currents with mass at most B (B
any positive real number) is a compact convex set for this topology. In par-
ticular, if Ti is a sequence of closed positive currents with uniformly bounded
cohomology classes, one can extract a converging subsequence.
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5.1.4. Potentials. The differential operator d decomposes as d = ∂+∂ where,
in local coordinates zi = xi +

√
−1yi, the operators ∂ and ∂ are given by

∂ = ∑
i

1
2

(
∂

∂xi
−
√
−1

∂

∂yi

)
dzi, ∂ = ∑

i

1
2

(
∂

∂xi
+
√
−1

∂

∂yi

)
dzi.

Denote by dc the operator 1
2π

(∂−∂); then

ddc =
√
−1
π

∂∂.

Let T be a closed and positive current. Locally, T can be written as

T = ddcu

for some function u, called a local potential of T (see [75], §3.2). The posi-
tivity of T is equivalent to the pluri-subharmonicity of u, which means that
(i) u is upper semi-continuous with values into {−∞}∪R, (ii) u is not iden-
tically −∞, and (ii) u is subharmonic along all holomorphic disks ϕ : D→ X
(i.e. u ◦ϕ is either identically −∞ or subharmonic on D). Pluri-subharmonic
functions are locally integrable, and the equation T = ddcu means that

(T |ω) =
Z

X
u ddc

ω

for all smooth forms ω with support in the open set where the equality T =
ddcu is valid. When the local potentials of T are continuous (resp. smooth,
Hölder continuous, etc), one says that T has continuous (resp. smooth, Hölder
continuous, etc) potentials.

5.1.5. Multiplication (see [4, 46]). In general, distributions, and currents as
well, can not be multiplied, but Bedford and Taylor introduced a pertinent way
to multiply two closed positive currents T1 and T2 when one of them, say T2,
has continuous potentials. The product, a positive measure T1∧T2, is defined
by the following local formula:

(T1∧T2|ψ) = (T1|u2ddc(ψ))

for all smooth functions ψ with support on open sets where T2 = ddc(u2);
when both T1 and T2 have continuous potentials, this definition is symmetric
in T1 and T2.

Cohomology classes and products of currents are compatible, which means
that the total mass of the measure T1 ∧ T2 is equal to the intersection of the
classes [T1] and [T2] (for closed positive currents with continuous potentials).
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5.1.6. Automorphisms. Let f be an automorphism of X , and T be a current.
Define f∗T by

( f∗T |ω) = (T | f ∗ω), ∀ ω ∈ ∧1,1(X ,R).

The operator f∗ maps closed (resp. positive) currents to closed (resp. positive)
currents. Define f ∗ by f ∗ = ( f−1)∗; it satisfies [ f ∗T ] = f ∗[T ] where the right
hand side corresponds to the action of f on the cohomology group H1,1(X ,R).

Example 5.2. If C ⊂ X is a curve, then f∗{C} is the current of integration on
the curve f (C). If α is a (1,1)-form, then f ∗{α}= { f ∗α}.

5.2. The currents T +
f and T−f and the probability measure µ f .

Theorem 5.3 (see [34, 57, 59]). Let f be a loxodromic automorphism of a
compact Kähler surface X. There is a unique closed positive current T +

f such
that [T +

f ] = v+
f . The local potentials of T +

f are Hölder continuous,

f ∗T +
f = λ( f )T +

f ,

and R+T +
f is an extremal ray in the convex cone of closed positive currents.

The extremality means that a convex combination sT + (1− s)T ′ of two
closed positive currents T and T ′ is proportional to T +

f if and only if both T
and T ′ are proportional to T +

f .
Applied to f−1, this result shows that there is a unique closed positive cur-

rent T−f such that [T−f ] = v−f . This current has Hölder continuous potentials,
satisfies

f ∗T−f =
1

λ( f )
T−f ,

and the ray R+T−f is also extremal.

Corollary 5.4. Let f be a loxodromic automorphism of a compact Kähler
surface X. Let C ⊂ X be a curve, and {C} be the current of integration on C.
Then

1
λ( f )n ( f n)∗{C}→ 〈[C]|v−f 〉T

+
f

as n goes to +∞. Let κ be a Kähler form on X, and {κ} the current determined
by this form. Then

1
λ( f )n ( f n)∗κ→ 〈[κ]|v−f 〉T

+
f

as n goes to +∞.
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Proof of Corollary 5.4. Let C be a curve, and [C] be its cohomology class.
Decompose [C] as

[C] = [C]+ +[C]−+[C]N

where [C]± is contained in Rv±f and [C]N is in the orthogonal complement
N f . Since 〈[C]|v+

f 〉= 〈[C−]|v+
f 〉 and 〈v+

f |v
−
f 〉= 1, we have [C+] = 〈[C]|v−f 〉v

+
f .

When n goes to +∞, the sequence ( f ∗)n[C]N is bounded and ( f n)∗[C]− goes
to 0. Thus,

1
λ( f )n ( f n)∗[C]→ 〈[C]|v−f 〉v

+
f .

In particular, the sequence of currents ( f n)∗{C}/λ( f )n has bounded mass,
and all limits of convergent subsequences are currents with cohomology class
〈[C]|v−f 〉v

+
f . Since 〈[C]|v−f 〉T

+
f is the unique closed positive current with co-

homology class 〈[C]|v−f 〉v
+
f , the sequence ( f ∗)n{C}/λ( f )n converges towards

〈[C]|v−f 〉T
+
f .

The same proof applies to Kähler forms κ. �

5.2.1. The measure µ f . Since T +
f and T−f have continuous potentials, we can

multiply them: This defines a probability measure

µ f = T +
f ∧T−f ;

the total mass of µ f is 1 because our choice for the cohomology classes v+
f and

v−f implies

〈[T +
f ]|[T−f ]〉= 〈v+

f |v
−
f 〉= 1.

The probability measure µ f is f -invariant because T +
f is multiplied by λ( f )

while T−f is divided by the same quantity.
Note that µ f is uniquely determined by the diffeomorphism f and the f -

invariant complex structure on X : Both T +
f and T−f are uniquely determined by

the equation f ∗T±f = λ( f )±T±f up to scalar multiplication, so that the product
µ f = T +

f ∧T−f is uniquely determined once one imposes µ f (X) = 1.

Remark 5.5. Since T +
f and T−f have Hölder continuous potentials, one can

show that the Hausdorff dimension of µ is strictly positive. We refer to [67]
for a discussion of this topic for endomorphisms of projective spaces.
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5.3. The measure µ f is mixing. The following statement is deeper than Corol-
lary 5.4. It applies, for example, when S is the current of integration over a
disk ∆ contained in a stable manifold of f (see §6.1.2 below).

Theorem 5.6 (Bedford-Smillie, Fornaess-Sibony, see [11, 34, 70]). Let f be
a loxodromic automorphism of a connected compact Kähler surface X. Let S
be a positive current and ψ : X → R+ be a smooth function which vanishes in
a neighborhood of the support of ∂S. Then

1
λ( f )n ( f n)∗(ψS)

converges towards

(T−f |ψS)T +
f

in the weak topology as n goes to +∞.

The number (T−f |ψS) is the total mass of the positive measure T−f ∧ (ψS).
One drawback of this statement resides in the difficulty to decide whether
T−f ∧ (ψS) is not zero, but there is at least one interesting and easily accessible
corollary.

Corollary 5.7 (see [11, 34, 70]). If f is a loxodromic automorphism of a con-
nected compact Kähler surface, the measure µ f is mixing (hence ergodic).

Ergodicity means that all f -invariant measurable subsets have measure 0
or 1. The mixing property is stronger, and says that µ f ( f n(A)∩B) converges
towards µ f (A)µ f (B) as n goes to ∞ for all pairs (A,B) of measurable subsets
of X . Equivalently, µ f is mixing if and only ifZ

X
(φ◦ f n)ψ dµ f →

Z
X

φ dµ f

Z
X

ψ dµ f

for all pairs of smooth (resp. smooth and non-negative) functions (φ,ψ) on X .
To prove the Corollary, start with two smooth functions φ and ψ with non-

negative values. By definition of µ f we haveZ
X
(φ◦ f n)ψ dµ f = (T +

f ∧T−f |(φ◦ f n)ψ)

= ((φT +
f )∧T−f |(ψ◦ f−n))

=
(

1
λ( f )n ( f n)∗(φT +

f )∧T−f |ψ
)



HOLOMORPHIC DYNAMICS ON PROJECTIVE SURFACES 36

because f ∗T−f = λ( f )−1T−f . From Theorem 5.6, we obtain

1
λ( f )n ( f n)∗(φT +

f )→ cT +
f , with c =

Z
X

φ dµ f .

Since products of currents are compatible with weak convergence, the se-
quence

R
X(φ◦ f n)ψ dµ f converges towards

c (T +
f ∧T−f |ψ) =

Z
X

φ dµ f

Z
X

ψ dµ f ,

as desired.

6. ENTIRE CURVES, STABLE MANIFOLDS, AND LAMINARITY

6.1. Entire curves and stable manifolds.

6.1.1. Entire curves. By definition, an entire curve on X is a non-constant
holomorphic map ξ : C→ X . Fix such a curve, and a Kähler form κ on X .
For each real number r ≥ 0, denote by Dr ⊂ C the open disk of radius r, and
denote by A(r) and L(r) the area and perimeter of ξ(Dr):

A(r) =
Z r

t=0

Z 2π

θ=0
‖ ξ
′(teiθ) ‖2

κ tdtdθ (6.1)

L(r) =
Z 2π

θ=0
‖ ξ
′(teiθ) ‖κ tdθ, (6.2)

where ‖ ξ′(teiθ) ‖κ is the norm of the velocity vector ξ′(teiθ) with respect to the
Kähler metric defined by κ. By Cauchy-Schwartz inequality, one gets Ahlfors
inequality

L(r)2 ≤ 2πr
dA
dr

(r).

It implies that the infimum limit of the ratio L(r)/A(r) vanishes. As a conse-
quence, there are sequences of radii (rn), going to +∞ with n, such that

1
A(rn)

{ξ(Drn)}

converges toward a closed positive current.
Another useful family of currents is defined by

N(r) =
1

T (r)

Z r

0
{ξ(Dt)}

dt
t

with

T (r) =
Z r

0
A(t)

dt
t

.
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Then, Ahlfors and Jensen inequalities, together with Nakai-Moishezon Theo-
rem, imply the following result.

Theorem 6.1 (Positivity of Ahlfors currents, see [22, 34, 47, 106]). Let X
be a compact Kähler surface with a Kähler form κ. Let ξ : C→ X be an
entire curve. There exist sequences of radii (rn) going to ∞ such that (N(rn))
converges towards a closed positive current. Let T be such a current.

(1) If ξ(C) is contained in a compact curve E, its normalization has genus
0 or 1 (E may be singular), and T is equal to the current 〈κ|[E]〉−1{E}.

(2) If A(r) is bounded, then ξ(C) is contained in a rational curve E.

If ξ(C) is not contained in a compact curve, then

(3) [T ] intersects all classes of curves non-negatively, i.e. 〈[T ]|[C]〉 ≥ 0 for
all curves C ⊂ X;

(4) [T ] is in the nef cone and 〈[T ] | [T ]〉 ≥ 0.

6.1.2. Stable manifolds. Let now p be a saddle periodic point of the loxo-
dromic automorphism f , and let k be its period (there is an infinite number of
such points by Theorem 4.12). Locally, f k is continuously linearizable: There
is an open subset U of X containing p, and a local homeomorphism ψ : U→V
onto a ball V ⊂ C2 such that ψ(p) = (0,0) and

ψ◦ ( f k)◦ψ
−1(x,y) = (αx,βy)

where α, β are the eigenvalues of D( f k)p, |α| < 1 and |β| > 1. Thus, locally,
the set of points q near p such that f kn(q) stays in U and converges towards
p as n goes to +∞ is the image of the horizontal axis by ψ−1. This set is the
local stable manifold W s

loc(p) of p.
The stable manifold W s(p) is the set of points q in X such that f kn(q)

converges towards p as n goes to +∞. This set coincides with the increasing
union of all f−kn(W s

loc(p)), n ≥ 1. Unstable and local unstable manifolds are
defined similarly.

By the Stable Manifold Theorem, W s
loc(p) is a smooth holomorphic curve

which is tangent to the eigenspace with eigenvalue α at p. Hence, every sta-
ble manifold W s(p) is the holomorphic image of a Riemann surface which is
homeomorphic to the plane R2. By construction, f induces an automorphism
of this Riemann surface which fixes p and acts as a contraction around p. This
implies that W s(p) is not isomorphic to the unit disk, because all automor-
phisms of D are isometries with respect to the Poincaré metric. From Riemann
uniformization Theorem, we deduce that W s(p) is parametrized by an entire
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curve ξs
p : C→ X such that ξs

p is injective, ξs
p(0) = p and ξs

p(C) = W s(p). The
map ξs

p is unique up to composition with similitudes z 7→ γz. This implies that

f k ◦ξ
s
p(z) = ξ

s
p(αz).

Theorem 6.2 (see [10, 11] and [34]). Let f be a loxodromic automorphism of
a compact Kähler surface X. Let p be a saddle periodic point of f of period
k, and ξs

p : C→ X be a parametrization of its stable manifold. If ξs
p(C) has

finite area, it is contained in a periodic rational curve of period k. If ξs
p(C)

has infinite area, then all closed limits of sequences Nξs
p
(rn) coincide with a

positive multiple of T +
f .

An important feature of this Theorem is that T +
f can be recovered from ev-

ery saddle periodic point (once periodic curves have been contracted). This
will lead to a strong relationship between saddle periodic points and the in-
variant probability measure µ f .

Remark 6.3. a.– Let ϕ : D→R+ be a smooth function with compact support
such that ϕ(0) > 0. Denote by {(ξs

p)∗(ϕD)} the current that is defined by

({(ξs
p)∗(ϕD)}|ω) =

Z
D

ϕ(ξs
p)
∗
ω.

Theorem 5.6 implies that the sequence

1
λ( f )kn ( f kn)∗{(ξs

p)∗(ϕD)}

converges towards a multiple of T +
f ; by Theorem 6.2, the limit can not be zero,

and is therefore a positive multiple of T +
f . Similarly, T−f is an Ahlfors current

for unstable manifolds of saddle periodic points of f . Since T +
f ∧T−f does not

vanish, this suggest that the stable and unstable manifolds of saddle periodic
points p and q always intersect, except when p or q is contained in a periodic
curve; this fact is proved in Section 6.4.2.

b.– One can also deduce the following asymptotic behavior from Theo-
rem 6.2, in which A(r) denotes the area of ξs

p(Dr),

limsup
r→∞

log(A(r))
log(r)

=
log(λ( f ))
| log(α1/k)|

.

This means that the growth rate of ξs
p is the ratio between the topological

entropy of f and the Lyapunov exponent of f at p (see [35]).
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Proof of the first assertion of Theorem 6.2. Replacing f by f k, we assume that
p is a fixed point. Let T be a closed current for which exists a sequence of radii
(rn) such that Nξs

p
(rn) converges towards T . Since f ∗{ξs

p(Dt)} = {Dt/α} ≥
{Dt} for all t ≥ 0, we get

f ∗Nξs
p
(rn) =

1
Tξs

p
(rn)

Z rn

t=0
f ∗{ξs

p(Dt)}
dt
t
≥ Nξs

p
(rn)

and f ∗T ≥ T . This implies that

〈( f m)∗[T ]|[κ]〉 ≥ 〈[T ]|[κ]〉

for all Kähler classes [κ] and all positive integers m. Since f ∗ preserves inter-
sections

1
λ( f )m 〈[T ]|[κ]〉= 〈( f m)∗[T ]| 1

λ( f )m ( f m)∗[κ]〉 ≥ 〈[T ]| 1
λ( f )m ( f m)∗[κ]〉

and, taking limits on both sides, 0 ≥ 〈[T ]|[T +
f ]〉. Moreover, Theorem 6.1-(4)

implies 〈[T ]|[T ]〉 ≥ 0. By Hodge index Theorem, [T ] is proportional to [T +
f ]

and, by Theorem 5.3, T is a positive multiple of T +
f . �

6.2. Laminarity. Since T +
f is obtained as Ahlfors currents for stable mani-

folds, i.e. for injective entire curves ξs
p : C→ X , one expects that the structure

of T +
f retains some information from the injectivity of the entire curves ξs

p
(see Figure 1, right, and the close-up in Figure 5). This leads to the theory of
laminar currents.

FIGURE 5. Laminar structure
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6.2.1. Uniformly laminar currents. Let Γ be a family of disjoint horizontal
graphs in the bidisk D×D: Each element of Γ intersects the vertical disk
{0}×D in a unique point; if a is such a point of intersection and Γa is the graph
of the family Γ containing a, there exists a holomorphic mapping ϕa : D→ D
such that Γa = {(x,ϕa(x)); x ∈ D}.

Remark 6.4. Let A be the set of intersection-points a of the graphs Γa ∈Γ with
the vertical disk {0}×D. Then, Γ determines a holomorphic motion of the set
A parametrized by the disk D (see [61]): A moves along the graphs from its
initial position in {0}×D to nearby disks {z}×D by a = ϕa(0) ∈ A 7→ ϕa(z).
By the so-called Λ-Lemma, (i) this motion extends to a motion of its closure
A and (ii) the motion from {0}×D to {z}×D is Hölder continuous.

FIGURE 6. Uniform lamination. A family of horizontal graphs in a bidisk.

Given a finite positive measure ν on {0}×D (or on A), one obtains a mea-
sured family of disjoint graphs (Γ,ν); it determines a closed positive current
TΓ,ν in D×D, which is defined by

(TΓ,ν|ω) =
Z

a∈D

Z
Γa

ω dν(a) =
Z

a∈D

Z
D

ϕ
∗
aω dν(a).

One says that TΓ,ν is the current of integration over (Γ,ν).
By definition, a flow box Γ of a complex surface Z is a closed set of disjoint

horizontal graphs in a bidisk D×D'U ⊂ Z; a measured flow box is a flow
box Γ, together with a transverse measure ν. Thus, every measured flow box
(Γ,ν) defines a current of integration T|Γ,ν on U . A current T on the surface
Z is uniformly laminar if T is locally given by integration over a measured
flow box. If T is uniformly laminar, those flow boxes can be glued together to
define a lamination of the support of T .
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Example 6.5. Let X = C2/Λ be a complex torus. Let α be a non-zero holo-
morphic 1-form on X ; such a form is induced by a constant 1-form adx+bdy
on C2, and the kernel of α determines a holomorphic foliation Fα on X , whose
leaves are projections of parallel lines ax + by = Cste. Let T be the current
{α∧α}. Then T is uniformly laminar: Locally, T is given by integration over
disks in the leaves of the foliation Fα with respect to Lebesgue measure on the
transversal.

6.2.2. Laminar currents (see [10, 34, 66]). A positive current T on a complex
surface Z is laminar if there is an increasing sequence of open subsets Ωi ⊂ Z,
i ∈ N, and an increasing sequence of currents Ti supported on Ωi such that

(i) for each i, ‖ T ‖ (∂Ωi) = 0, i.e. the boundary of Ωi does not support
any mass of T ;

(ii) each Ti is uniformly laminar in its domain of definition Ωi;
(iii) the sequence of currents (Ti)i≥1 weakly converges towards T .

Equivalently, T is laminar if there is a family of disjoint measured flow boxes
(Γi,νi) such that

T = ∑
i

T|Γ,νi.

Thus, every laminar current has a representation

T =
Z

A
{∆a} dµ(a) (6.3)

as a current of integration over a measured family of disjoint disks (each disk
∆a is the image of D by an injective holomorphic map ϕa : D→ C which
extends to a neighborhood of D in C). In general, those disks ∆a can not be
glued together into a lamination, as the following example shows.

Example 6.6. Let p be a point of the projective plane P2(C). Identify the
set of lines through p with the projective line P1(C); each line Lx, x ∈ P1(C),
determines a current of integration {Lx}. Let νp be a probability measure on
this set of lines. Then

Tp =
Z

P1(C)
{Lx}dνp(x)

is a laminar current. Let q ∈ P2(C) be a second point and νq be a probabil-
ity measure on the space of lines through q. This provides a second laminar
current Tq. Suppose that (i) the supports of νp and νq have zero Lebesgue
measure, but (ii) both νp and νq are given by continuous potentials (i.e. dν =
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ddc(u) locally on P1(C), with u continuous). Then Tp +Tq is laminar, has con-
tinuous potentials, and Tp ∧Tq is a well-defined positive (non-zero) measure
(see [63] for details). This example shows that the constitutive disks of Tp +Tq

can not be glued together to form a lamination of its support.

6.3. The current T +
f is laminar.

Theorem 6.7 (de Thélin, [44]). Let Ω be a bounded open subset of C2. Let
(Cn) be a sequence of curves, defined in neighborhoods of Ω, and let (dn) be
a sequence of positive real numbers such that (1/dn){Cn} converges towards
a closed positive current T on Ω. If genus(Cn) ≤ Cstedn, the current T is
laminar.

Remark 6.8. Let κ be a Kähler form on C2, and let Area(Cn) denote the area
of the curve Cn with respect to κ. If T is not zero, then

Area(Cn)
dn

=
〈{Cn}|κ〉

dn
→ 〈T |κ〉

so that dn is asymptotically proportional to, and can be replaced by, Area(Cn).

Being laminar is a local property. To explain how the proof of Theorem
6.7 starts, one can therefore choose a linear projection π : C2→C and assume
that Ω is a bidisk D×D on which π coincides with the projection on the first
factor. Let rm = 2−m. For each m ≥ 1, tesselate the complex line C into the
open squares of size rm defined by

Qm(i, j) = rmQ0 + rm(i, j), (i, j) ∈ Z2,

where Q0 = {(x,y)∈R2 = C; |x|< 1, |y|< 1}. This induces a tessellation Q m

of the unit disk D into pieces Qm(i, j)∩D. Fix an index n and consider the
curve Cn. For each element Q of Q m, organize the connected components D
of π−1(Q)∩Cn in two families:

• D is a good component if π : D→ Q is an isomorphism,
• D is a bad component otherwise (eg. π : D→ Q has degree > 1).

Denote by Gn,m the set of all good components when Q runs over all tiles of
the tessellation Q m, and define the currents

{Gn,m}= ∑
D∈Gn,m

{D}.

By construction, each {Gn,m}/dn is uniformly laminar on an open subset Ωm

of Ω (Ωm is the union of the π−1(Qm(i, j)∩D)) . Moreover, when m is fixed,
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FIGURE 7. Good and bad components. Two bad components drawn
above the center left tile (red) and five good components above the
center right tile (black).

these currents are laminar with respect to the same bidisks and projections;
this implies that the limit of these currents as n goes to infinity, m being fixed,
is uniformly laminar on Ωm. For all (n,m) the total mass of {Gn,m} is bounded
from above by dn. If the total area of bad components becomes small with
respect to dn when n and m become large, this will show that T is laminar. The
control of bad components is precisely what de Thélin obtains, using ideas
from Ahlfors and Nevanlinna theory, under the assumption genus(Cn) = O(dn)
and for a generic projection π (see [44]).

In our context, one can apply this strategy to

Cn = f−n(C), dn = λ( f )n, T = T +
f ,

where C is as in Corollary 5.4. For those examples, and with carefully chosen
bidisks Ω⊂ X and projections π : Ω→ D, one obtains the estimate (see [62])

0≤ (T − 1
dn
{Gn,m}|κ)≤ Cster2

m.

Hence, T is laminar, with an explicit rate of convergence of order O(r2
m) in

the proof. Such currents are said to be strongly approximated by algebraic
curves (see [63] and [66], Prop. 5.1); if T is such a current – i.e. closed,
positive, laminar and strongly approximated by algebraic curves – and T does
not charge any analytic set, we say that T is a good laminar current.

Theorem 6.9 (Bedford-Lyubich-Smillie, see [3, 34, 62]). Let f be a loxo-
dromic automorphism of a compact Kähler surface X. Both T +

f and T−f are
laminar, and are good laminar currents when X is projective.
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Note, however, that the currents T +
f and T−f are rarely uniformly laminar,

as Figure 5 suggests (see [34], §7, and [38]).

Remark 6.10. Assume that X contains a curve C such that λ( f )−n( f n)∗{C}
converges towards T +

f . The Néron-Severi group NS(X ,R) contains the classes
( f n)∗[C], and therefore [T +

f ] as well; it contains also [T−f ]. Since [T +
f ]+ [T−f ]

has positive self-intersection, this implies that NS(X) contains classes with
positive self-intersection, so that X is projective. This is the reason why X is
assumed to be projective in the last part of Theorem 6.9.

6.4. Good laminar currents, and contraction properties for T±f . When a
current is laminar, its building disks may intersect transversally with positive
probability, as in Example 6.6. Good laminar currents inherit a stronger lami-
nar structure (see [62, 63, 64, 65]).

6.4.1. Analytic continuation and weak lamination. Let T be a laminar current.
One says that a disk ∆ = ϕ(D) is subordinate to T if there is an open set
Ω⊂ X containing ∆ and a uniformly laminar current S on Ω such that S ≤ T ,
∆ is contained in the support of S, and ∆ lies inside one of the leaves of the
lamination associated to S.

If Γ is a flow box, one defines T|Γ by Formula (6.3) but restricted to disks
∆a contained in disks of Γ.

For good laminar currents T , Dujardin proved that

(1) If two disks ∆1 and ∆2 are subordinate to T , they are compatible:
Their intersection is an open subset of ∆1 and ∆2;

(2) If Γ is any flow box, the restriction T|Γ is uniformly laminar: There is a
measure νT such that T|Γ is the current of integration over the measured
family of graphs (Γ,νT ).

As a corollary, if ∆ is subordinate to T , then all disks contained in the analytic
continuation of ∆ are subordinate to T . Thus, disks subordinate to T , or more
generally flow boxes whose constitutive disks are subordinate to T , can be
glued together in a compatible way. This provides a “weak lamination” for the
support of T , and T is determined by a holonomy invariant transverse measure
for this weak lamination.

Remark 6.11. Consider a current T +
f where f is a loxodromic automorphism.

Since R+T +
f is extremal in the convex cone of closed positive currents, the

transverse invariant measure for T +
f is ergodic: If it decomposes into a sum of
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two non-trivial, holonomy invariant, transverse measures ν1 and ν2, then ν1 is
proportional to ν2 (see [64]).

6.4.2. Geometric product. The second crucial fact concerning good laminar
currents is a geometric definition of their intersection. Let T1 and T2 be two
good laminar currents with continuous potentials. The product T1 ∧ T2 has
been defined in Section 5.1.5 using Bedford-Taylor technique. One may also
be tempted to represent each Ti in the form

Ti =
Z

Ai

{∆a} dµi(a),

as in Formula (6.3), and define

T1∩T2 =
Z

A1

Z
A2

{∆a1 ∩∆a2} dµ1(a1)dµ2(a2)

where {∆a1 ∩∆a2} is the sum of the Dirac masses on the set ∆a1 ∩∆a2 if this
set is finite, and is zero otherwise. If both T1 and T2 have continuous potential,
one may expect (7)

T1∧T2 = T1∩T2;

if this equality holds, one says that the product of T1 and T2 is geometric.
Good laminar currents with continuous potentials satisfy this Formula (see
[64]). The intersection of such currents is therefore a sum of geometric in-
tersections of uniformly laminar currents in flow boxes. Since T +

f and T−f
are good laminar currents with continuous potentials, the product T +

f ∧T−f is
geometric. Since T +

f and T−f are Ahlfors currents with respect to stable and
unstable manifolds, one obtains the following statement (see Remark 6.3, a).

Theorem 6.12 (Bedford-Lyubich-Smillie, [10]). Let f be a loxodromic auto-
morphism of a connected compact Kähler surface. Let p and q be saddle
periodic points of f . Assume that the stable manifold W s

p and the unstable
manifold W u

q are not contained in periodic algebraic curves. Then

• the set of transverse intersections of W s
p and W u

q is dense in the support
of µ f ,
• every intersection of W s

p and W u
q is contained in the support of µ f .

7If T1 = T2 is the current of integration over a compact curve C with non zero self inter-
section, one can not hope to define the product of T1 with T2 in such a simple way. But good
laminar currents do not charge compact curves.
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6.4.3. Contraction properties along T +
f . Thanks to Section 6.4.1, we now

have a well behaved notion of disks subordinate to the good laminar current
T +

f . Since T +
f is multiplied by λ( f ) under the action of f ∗, most of those

constitutive disks must be contracted by f . This is precisely what Dujardin
proved in [66].

To state the result, consider a flow box Γ in some bidisk U 'D×D. Denote
by A the intersection of Γ with the vertical disk {0}×D, as in Section 6.2.1,
and by ∆a the unique element of Γ containing a ∈ A. Restricting T +

f to Γ

one obtains a uniformly laminar current T +
f |Γ given by a measure ν+ on A (see

§6.4.1, Property (2)):

T +
f |Γ =

Z
a∈Γ

{∆a} dν
+(a).

Dujardin’s Theorem controls the diameter of images f n(∆a) (for any riemann-
ian metric on X):

Theorem 6.13 (Dujardin, [66]). Let f be a loxodromic automorphism of a
connected complex projective surface X. Let Γ be a flow box and ν+ be the
transverse measure associated to T +

f |Γ. For all ε ∈ (0,1) there is a constant
C(ε) and a subset Aε of measure ν+(Aε) > ν+(A)(1− ε) such that

diam( f n(∆a))≤C(ε)
n

λ( f )n/2 , ∀ a ∈ Aε.

7. FATOU AND JULIA SETS

7.1. Definition. Let g be an automorphism of a compact complex manifold M.
A point x ∈ M is in the Fatou set Fat(g) of g if there exists an open neigh-
borhood U of p on which the sequence (gn)n∈Z forms a normal family of
holomorphic mappings from U to X . Taking only positive (resp. negative)
iterates one can also define the forward Fatou set Fat+(g) (resp. backward
Fatou set Fat−(g)).

Remark 7.1. Let d be the dimension of M. If p is a fixed point in Fat(g), then
(gn) is a normal family in a neighborhood of p, so that g is locally linearizable
near p: There is a germ of holomorphic diffeomorphism ψ : (U, p)→ (Cd,0)
and a unitary transformation D such that

ψ◦g◦ψ
−1 = D.

The linear transformation D is conjugate to Dgp by Dψp. In the other direc-
tion, if Dgp is a unitary transformation and g is locally conjugate to Dgp, then
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p is in the Fatou set. Section 7.3 below provides examples of this type for
automorphisms of projective surfaces.

Lemma 7.2. The Fatou set Fat( f ) of a loxodromic automorphism does not
intersect the supports of T +

f and T−f .

Proof. Let U be an open subset of the Fatou set on which ( f n)n∈Z is a normal
family. Let ni be an increasing sequence of integers along which ( f ni) con-
verges towards a holomorphic map g : U → X . Write T +

f as the limit of the
sequence of currents λ( f )−ni( f ni)∗κ where κ is a Kähler form on X . On U ,
( f ni)∗κ converges towards g∗κ. Dividing by λ( f )ni , one obtains T +

f = 0 on U .
The same argument applies for T−f . �

7.2. Kobayashi hyperbolicity and pseudo-convexity.

7.2.1. Kobayashi pseudo-distance (see [96]). Let M be a complex manifold
(or, more generally, a complex analytic space). A chain of disks Ψ between
two points x and y is a finite family of marked disks

ψi : (D;zi,1,zi,2)→ (M;xi,1,xi,2), 1≤ i≤ l,

such that
• ψi(zi,1) = xi,1 and ψi(zi,2) = xi,2;
• x1,1 = x, xi,2 = xi+1,1 for all 1≤ i≤ l−1, and xl,2 = y.

The hyperbolic length of such a chain is

hl(Ψ) =
i=l

∑
i=1

distD(zi,1,zi,2).

The Kobayashi pseudo-distance distM(x,y) between two points x and y is the
infimum of the hyperbolic length hl(Ψ) over all chains of disks Ψ joining x to
y (see [96]). The Kobayashi pseudo-distance satisfies all axioms of a distance,
except that it can take the value +∞ (exactly when x and y are in two distinct
connected components of M), and it may vanish for pairs of distinct points.
One says that M is Kobayashi hyperbolic if distM(x,y) > 0 for all x 6= y in M.

Remark 7.3. a.– When M = D, the Kobayahsi pseudo-distance coincides with
the Poincaré metric distD. When M = C, the Kobayashi pseudo-distance distC
vanishes identically.

b.– Holomorphic mappings between complex manifolds are distance de-
creasing: distN( f (x), f (y))≤ distM(x,y) if f : M→ N is holomorphic. In par-
ticular, M is not hyperbolic when it contains an entire curve.
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c.– When M is Kobayashi hyperbolic, the topology induced by distM is the
same as the topology of M as a complex manifold (cf. Barth Theorem in [96]).

7.2.2. Brody re-parametrization and hyperbolicity. Fix a hermitian metric on
the manifold M. Assume that there exists a sequence of holomorphic map-
pings ψm : D→M such that ‖ ψ′m(0) ‖ goes to ∞ with m, where ψ′(0) is the
velocity vector of the curve at z = 0, the center of the unit disk, and ‖ ψ′m(0) ‖
is its norm with respect to the fixed hermitian metric.

Lemma 7.4 (Brody Lemma, see [96], Chap. III). There exists a sequence of
real numbers rm and automorphisms hm ∈ Aut(D) such that

(1) rm goes to +∞ with m;
(2) ϕm(z) = ψm ◦hm(z/rm) is holomorphic on Drm , and its velocity at the

origin has norm 1;
(3) the norm of the derivative of ϕm satisfies limsupm maxz∈K ‖ϕ′m(z) ‖≤ 1

for all compact subsets K ⊂ C.

Suppose now that M is compact. By (3), the sequence (ϕm) is equicon-
tinuous. Hence, a subsequence of (ϕm) converges towards an entire curve
ϕ : C→M such that

‖ ϕ
′(0) ‖= 1, and ‖ ϕ

′(z) ‖≤ 1, ∀z ∈ C.

Such an entire curve is called a Brody curve. As a corollary of this construc-
tion, one gets the following Theorem.

Theorem 7.5 (Brody, see [96]). Let M be a compact complex manifold, with
a fixed hermitian metric ‖ · ‖. Then M is Kobayashi hyperbolic if and only if
there is a uniform upper bound on ‖ψ′(0) ‖ for all holomorphic disks ψ : D→
M, if and only if there is no Brody curve ϕ : C→M.

7.2.3. Fatou sets are almost hyperbolic. We are now in a position to explain
the following result.

Theorem 7.6 (Dinh-Sibony [56], Moncet [106], Ueda [119]). Let f be a lox-
odromic automorphism of a compact Kähler surface X. The Fatou set Fat( f )

(1) coincides with the complement of the supports of T +
f and T−f , i.e.

Fat( f ) = X \Support(T +
f +T−f ),

(2) is Kobayashi hyperbolic modulo periodic curves,
(3) is pseudo-convex.
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To be more precise, the second assertion says that the Kobayashi pseudo-
distance distFat( f ) vanishes exactly along the set of algebraic periodic curves
C of the following types:

• C is elliptic and contained in Fat( f );
• C is rational and C∩Fat( f ) is equal to C minus 0, 1, or 2 points.

Note, however, that I do not know of any example of a loxodromic automor-
phism f : X → X such that Fat( f ) contains a smooth curve C of genus 1 (ex-
amples of Fatou sets containing rational curves are given in §7.3).

To prove this Theorem, one studies the complement

Ω = X \Support(T +
f +T−f )

of the support of T +
f and T−f . This set is f -invariant and contains Fat( f ). If

it is not Kobayashi hyperbolic, there exists a Brody curve ϕ : C→Ω which is
obtained as limits of disks contained in Fat( f ); this curve satisfies ϕ∗T +

f = 0
and ϕ∗T−f = 0. Let A be an Ahlfors current associated to ϕ, as in Section
6.1.1. Suppose that ϕ is not contained in a compact curve; then 〈[A]|[A]〉 ≥ 0,
by Theorem 6.1-(4). Dinh and Sibony prove that A does not intersect T +

f and
T−f , a fact which is not obvious because the supports of A, of T +

f , and of T−f
could very well be contained in Ω\Ω and could have non trivial intersection.
Therefore

〈[A]|[T +
f ]〉= 〈[A]|[T−f ]〉= 0,

By Hodge index Theorem, these equalities imply 〈[A]|[A]〉 < 0, a contradic-
tion. Thus, ϕ(C) is contained in a compact curve C. This curve is either ellip-
tic or rational, A = {C}, and [A] does not intersect [T +

f ] and [T−f ]. According
to Proposition 4.1, C is periodic. This shows that Ω is Kobayashi hyperbolic
modulo rational or elliptic periodic curves.

7.3. Examples. Consider the birational map f : P2 99K P2 given in affine and
homogeneous coordinates by

f (x,y) = (a+ y,b+ y/x)

f [x : y : z] = [axz+ yx : bxz+ yz : zx],

for some parameter (a,b) ∈ C2. It has three indeterminacy points, namely

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], and p3 = [0 : 0 : 1].

Denote by ∆ the triangle whose edges are the three coordinate axis {x = 0},
{y = 0}, and {z = 0}. Each axis of ∆ is blown down to a point by f : The first
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on p2, the third on p1, and the second axis {y = 0} on the point

p4 = [a : b : 0].

Define p4+m = f m(p4), for m≥ 1, pick an integer n≥ 1, and suppose that the
parameter (a,b) has been chosen in such a way that

(1) p j /∈ ∆ for all 4≤ j ≤ n, (in particular, f is well defined at p j)
(2) pn+1 = p3.

Blowing up all points (p j)n
j=1, one gets a rational surface X → P2 on which

f lifts to a well defined automorphism f̂ : X → X . As shown by Bedford and
Kim and by McMullen, this leads to an infinite family of automorphisms on
rational surfaces (the number of possible parameters (a,b) and the number of
blow ups increase with n). The dynamical degree of f̂ depends only on n, is
equal to 1 if and only if n ≤ 9, and is equal to the unique root λn > 1 of the
polynomial equation

tn−2(t3− t−1)+(t3 + t2−1) = 0

when n ≥ 10. The sequence (λn) is increasing and converges towards the
smallest Pisot number, i.e. the root λP > 1 of t3 = t + 1. When n = 10 the
dynamical degree is equal to Lehmer’s number (see Section 2.4.3).

For n = 10, there is a parameter (a,b) = (a,a) with

a' 0.04443−0.44223
√
−1

that satisfies Properties (1) and (2) above. The dynamical degree of the corre-
sponding automorphism f̂ is equal to Lehmer’s number. This automorphism
has a fixed point q such that the tangent map D f̂q is (conjugate to) a unitary
transformation with eigenvalues α and β. Moreover, α and β are algebraic
numbers, and are multiplicatively independent. Results from Diophantine ap-
proximation imply that products like αkβl are not well approximated by roots
of 1, so that Siegel’s linearization Theorem can be applied (see [101, 102]): In
a neighborhood of the fixed point q, f̂ is conjugate to its linear part D f̂q; this
neighborhood is therefore contained in the Fatou set of f̂ .

Blowing up q, one obtains example of loxodromic automorphisms with in-
variant rational curves in the Fatou set. In [9], a similar construction leads to
examples of Fatou components that contain several fixed points and invariant
rational curves (moreover, when these curves are blown-down, the singularity
is not a quotient singularity).
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7.4. Julia sets. There are three Julia sets for each loxodromic automorphism
f . The forward Julia set J+( f ) is the complement of the forward Fatou set
Fat+( f ). The backward Julia set J−( f ) is the complement of Fat−( f ). The
Julia set J( f ) is the intersection J+( f )∩J−( f ). The support of T +

f (resp. T−f )
is contained in J−( f ) (resp. J+( f )); the support of µ f is contained in J( f ).

In the previous paragraph, examples of loxodromic automorphisms with
non-empty Fatou set have been described. One can construct examples for
which the Lebesgue measure of J+( f ) vanishes and the forward orbit of every
point in Fat+( f ) goes to an attracting fixed points (see [102]). Beside these
examples, not much is known. For instance, the following questions remain
open. Does there exist a loxodromic automorphism of a projective K3 surface
– for example a smooth surface of degree (2,2,2) in P1×P1×P1 – with non-
empty Fatou set ? Does there exist a loxodromic automorphism f of a K3
surface for which µ f is singular with respect to Lebesgue measure ? (Based on
Figure 1, one may expect a positive answer to the second question). We refer
to [38] for other open problems of this type.

8. THE MEASURE OF MAXIMAL ENTROPY AND PERIODIC POINTS

In this section, two important characterizations of the measure µ f are de-
scribed. Both of them show that µ f , a measure which is uniquely determined
by the f -invariant complex structure on the manifold X , is also uniquely de-
termined by its dynamical properties.

8.1. Entropy, Pesin’s Theory, and laminarity.

8.1.1. Entropy of invariant measures. Let (Z,T ,µ) be a probability space,
with σ-algebra T and probability measure µ. Let g be a measure preserving
transformation of (Z,T ,µ). Let P = {Pi ;1 ≤ i ≤ l} be a partition of Z into
a finite number of measurable subsets Pi: The Pi are disjoint, have positive
measure, and cover a subset of full measure in Z. One defines the entropy of
P with respect to µ by

h(P ,µ) =−∑
i

µ(Pi) log(µ(Pi)).

By pull back, g transforms P into a new partition g∗P of Z, whose elements
are the subsets g−1(Pi). Iterating, we get a sequence of partitions g−k(P ), and
we denote by

Pn = P ∨g−1(P )∨ . . .∨g−n+1(P )
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the partition generated by the first n elements of this sequence. The entropy of
g with respect to µ is then defined as the supremum

h(g,µ) = sup
P

{
limsup

n

1
n
h(Pn,µ)

}
over all measurable partitions of Z in a finite number of pieces (see [91]).

Assume, now, that g is a continuous transformation of a compact space Z.
Let T be the σ-algebra of Borel subsets of Z. Then g has at least one invariant
probability measure µ on (Z,T ). By the so called variational principle [91], it
turns out that the supremum of h(g,µ) over all g-invariant probability measures
is equal to the topological entropy of g:

htop(g) = sup
µ

h(g,µ).

Newhouse’s Theorem asserts that this supremum is a maximum when g is a
diffeomorphism of class C ∞ on a compact manifold (see [109]).

8.1.2. Pesin Theory (see [91]). Let us come back to the study of a loxodromic
automorphism f : X→ X . Since f has positive topological entropy, there exist
invariant, ergodic, probability measures ν with h( f ;ν) > 0. The Lyapunov
exponents of f with respect to such a measure ν are defined point-wise by

χ
+(x) = limsup

n→+∞

1
n

log ‖ D( f n)x ‖

χ
−(x) = limsup

n→−∞

1
n

log ‖ D( f−n)x ‖ .

Since ν is ergodic, both χ+ and χ− are constant on a set of full measure.
Ruelle’s inequality implies that χ+ is positive and χ− is negative (both count
with multiplicity two because f preserves the complex structure).

By Osseledet’s Theorem, the tangent space TxX splits ν-almost everywhere
into the direct sum Eu(x)⊕Es(x) of two lines such that f∗Es(x) = Es( f (x)),
the derivative of f n along Es(x) decreases as exp(−nχ−(x)) with n, and the
lines Eu(x) satisfy similar properties for f−1. By Pesin’s Theory, there are
stable and unstable manifolds

ξ
s/u
x : C→ X

through ν-almost every point x. The image of the stable manifold ξs
x is the

set of points y in X such that the distance between f n(x) and f n(y) goes to
0 with n. It is tangent to Es(x) at x; f maps ξs

x to ξs
f (x) (with a different

parametrization).
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One can show (see [34]) that the sequence of currents λ( f )−n( f n)∗{ξs
∗(ψD)}

converges towards a positive multiple of T +
f for ν-almost every point in Λ f (ν)

(here ψ is any non-negative smooth function with compact support in D such
that ψ(0) > 0). Thus, ν-almost every point determines T +

f and T−f through its
stable and unstable manifolds. Since µ f = T +

f ∧T−f , it follows that µ f takes
every invariant measure with positive entropy “into account”.

In what follows, we denote by Λ f (ν) a measurable set of full measure such
that every x∈Λ f (ν) has non zero Lyapunov exponents and stable and unstable
manifolds as above. By definition, the union Λ f of those sets Λ f (ν) where ν

describes the set of invariant and ergodic probability measures with positive
entropy is the set of hyperbolic (or saddle) points.

8.1.3. Laminar versus dynamical structures. Let us compare the local struc-
ture of the dynamics of f to the local structure of the currents T +

f and T−f , as
given by the flow boxes from §6.4.1.

Let U ⊂ X be a bidisk, U ' D×D. Let x ∈ Λ f ∩U be a hyperbolic point.
The connected component of ξs

x(C)∩U that contains x is the local stable
manifold of x in U , and is denoted by W s

loc(x). A similar definition applies for
local unstable manifolds. A Pesin box (U,K) is a pair of a bidisk U ' D×D
in X , and a compact subset K of U such that

• every point x in K is a hyperbolic point and its local stable and unstable
manifolds are horizontal and vertical graphs in U .
• for all pairs of distinct points (x,y) in K, W s

loc(x)∩W u
loc(y) is a singleton

and is contained in K.

In particular, the local stable (resp. unstable) manifolds determine a lamination
Ks (resp. Ku) in U . From the second property, one may identify K to the
product of the transversal Au = K∩W u

loc(x) and As = K∩W s
loc(y) (for all pairs

(x,y) ∈ K2).
Let (U,K) be a Pesin box. Restricting T +

f to the lamination Ks, as in Sec-
tion 6.4.1, one obtains a current of integration T +

f |Ks on Ks with respect to a
transverse measure µ+

K . Similarly, T−f determines a transverse measure µ−K for
Ku. Since T +

f and T−f are Ahlfors currents with respect to stable and unstable
manifolds and the constitutive disks of T±f are contracted by f± (see Theorem
6.13), it can be shown that (see [10, 34, 66])

(1) Pesin boxes provide a complete family of flow boxes for T +
f ; in other

words, T +
f is a sum of T +

f |Ks over a family of Pesin boxes;
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(2) the restriction µ f |K is equal to the product µ+
K ⊗µ−K (on K ' Au×As);

(3) the Lyapunov exponents χ+(µ f ) and χ−(µ f ) satisfy

χ
+(µ f )≥

1
2

log(λ( f )) > 0 >−1
2

log(λ( f ))≥ χ
−(µ f ).

The second property shows that µ f has a product structure in Pesin boxes. This
is a strong property, from which follows that the dynamical system (X ,µ, f ) is
measurably equivalent to a Bernouilli shift. In other words, the dynamics of f
with respect to µ f is equivalent to the dynamics of a random coin flip.

8.2. Two characterizations of µ f . This interplay between Pesin’s Theory
and the laminar structure of T +

f and T−f leads to two characterizations of the
invariant measure µ f .

Theorem 8.1 (see [10, 34, 66]). Let f be a loxodromic automorphism of a
compact Kähler surface X. The measure µ f has maximal entropy, i.e.

h( f ,µ f ) = htop( f ) = log(λ( f )),

and is the unique invariant probability measure with maximal entropy.

Thus, the measure µ f is the unique point on the compact convex set of f -
invariant probability measures at which the entropy h( f , ·) is maximal. This is
an implicit characterization of µ f .

Theorem 8.2 (Bedford-Lyubich-Smillie [10, 3, 34]). Let f be a loxodromic
automorphism of a complex projective surface X. Let Per( f ,k) be the set of
isolated periodic points of f with period at most k. Then

1
λ( f )k ∑

p∈Per( f ,k)
δp

converges towards µ f as k goes to +∞. The same result holds if Per( f ,k) is
replaced by the set Persad( f ,k) of saddle periodic points of period at most k.

If p is a saddle periodic point, either p is contained in the support of µ f , or
p is contained in a cycle of periodic rational curves.

Hence, µ f is determined by the repartition of periodic points of f . This
provides a simple characterization of µ f , using only the simplest dynamical
objects (periodic points) associated to f : X → X .
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8.3. Application: Complex versus real dynamics.

Corollary 8.3. Let X be a smooth projective surface defined over the real
numbers R. Let f be a loxodromic automorphism of X defined over R. The
entropy of f : X(R)→X(R) is equal to the entropy of f : X(C)→X(C) if, and
only if all saddle periodic points of f which are not are contained in rational
periodic curves are contained in X(R).

Proof. The topological entropy of f on X(R) is at most equal to the entropy
on X(C).

Assume that almost all saddle periodic points are contained in X(R). Then
µ f (X(R)) = 1, and, by the variational principle, the topological entropy of f
on X(R) is equal to the entropy on X(C).

Assume now that the entropy of f on X(R) is equal to the entropy on X(C).
Then, by Newhouse’s Theorem and the uniqueness of the measure of maximal
entropy, µ f is supported on X(R). Let p be a saddle periodic point of f . If p
is not contained in a periodic curve, Theorem 6.12 shows that p is contained
in the support of µ f . Thus, p is contained in X(R). �

There are examples of automorphisms of rational surfaces, defined over R,
for which the entropy on X(C) and X(R) coincide (see [9]). This phenomenon
is not possible on tori, because all automorphisms are induced by complex
affine transformations of the universal cover C2. It is an open problem to
decide whether such examples exist on K3 surfaces. See [105, 106] for a
discussion of this problem.

9. COMPLEMENTS

Since we focussed on the dynamics of automorphisms of surfaces, we didn’t
address several interesting questions. What about birational transformations,
higher dimensions, etc ? We list a few references that may help the reader.

9.1. Birational transformations. Let X be a connected compact Kähler sur-
face, with a Kähler form κ. Denote by Bir(X) the group of its birational (or
bimeromorphic) transformations. Let f be an element of Bir(X). If f is not
an automorphism, the indeterminacy sets Ind( f ) and Ind( f−1) are not empty;
iterating f , it may happen that the union of indeterminacy points of iterates of
f is dense in X(C). The sequence

dn =
Z

X
( f n)∗κ∧κ
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controls several features of the dynamics of f . One can classify birational
transformations f such that the dynamical degree

λ( f ) = lim
n→+∞

(dn)1/n

is equal to 1; up to conjugation by birational maps, the list is the same as
in Theorem 2.11, with one more case: It may happen that dn grows linearly
with n, in which case f preserves a pencil of rational curves (see [74, 49]).
Moreover, the group Bir(X) acts on an infinite dimensional hyperbolic space
H∞ and this classification into types can be explained in terms of elliptic, par-
abolic and loxodromic isometries; such a classification can then be used to
study groups of birational transformations (see [30, 40]).

When f is a birational transformation with λ( f ) > 1, the dynamics of f
should be similar to the dynamics of loxodromic automorphisms. Unfortu-
nately, the techniques described in the previous paragraphs do not apply di-
rectly when there are indeterminacy points. Assume, however, that

∑
n≥0

1
λ( f )n logdist( f n(Ind( f−1)), Ind( f )) < +∞

(this is Bedford-Diller condition). Then pluri-potential theory can be applied
successfully to construct good f -invariant laminar currents and the unique
measure of maximal entropy; this measure describes the distribution of pe-
riodic points: See [6] and [66], as well as [50, 51, 52]. On the other hand,
there are families of birational mappings ft for which the strategy through
pluri-potential analysis fails for a dense set of parameters t (see [25]).

9.2. Higher dimension. We did not mention any result concerning the dy-
namics of automorphisms on higher dimensional complex manifolds, but many
results have been obtained recently. Here is a short list of relevant references

• [57] and [59] consider invariant currents and measures for automor-
phisms in any dimension; they prove uniqueness results, mixing prop-
erties, etc.
• [89] shows that most stable manifolds are uniformized by Ck, where

k is the complex dimension of the stable manifold; [45] provides esti-
mates for the Lyapunov exponents.
• [59] and [55] use all these results to study naturally invariant measures

similar to the measure µ f in the case of automorphisms of surfaces, but
for automorphisms of higher dimensional manifolds.
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Groups of automorphisms of compact Kähler manifolds are not well under-
stood yet, but Hodge Theory provides a powerful tool in any dimension, which
can be used in a spirit similar to Section 3.2: See [54], [29], [126], and [32],
for example.

9.3. Other topics. Similar tools can be applied to describe the dynamics of
(non-invertible) endomorphisms of compact complex manifolds; see [115],
and [58] for two surveys on this topic.

In the case of automorphisms of the plane C2 (and certain affine surfaces,
see [36]), the currents T +

f and T−f have global potentials: There are Green
functions G+

f and G−f such that T±f = ddcG±f on C2 and G±f ◦ f = λ( f )±G±f .
Those invariant functions provide new tools that can be used to obtain deeper
results. See [117] and [5] for two surveys. While most results described in
the previous paragraphs concern the stochastic properties of the dynamics of
automorphisms, there are important results concerning topological aspects of
the dynamics of automorphisms of C2 (see [83, 84], [82], and [12, 13, 14] for
example).

Let us end this section with a construction that dates back to the first half of
the twentieth century (see [110]). Let g be an endomorphism of the projective
space Pn. Assume that g is defined over rational numbers: There are homo-
geneous polynomial functions Pi ∈Q[x0, . . . ,xn], such that (i) g[x0 : . . . : xn] =
[P0 : . . . : Pn] and (ii) the Pi do not have common factors of degree > 1. The
degree of the polynomial functions Pi does not depend on i and is the degree
of g, denoted deg(g).

If m ∈ Pn(Q) is a rational point, one can find coordinates [x0 : . . . : xn] for
m such that each xi is an integer, and the largest common factor of the xi is 1;
then, one defines the logarithmic height of m by h(m) = maxi log |xi|. One can
show that the limit

ĥg(m) = lim
n

1
deg(g)n h(gn(m))

exists for all rational points m of Pn. This function ĥg is the canonical height
of g. It contains some arithmetic and dynamical information; for instance, a
point m in Pn(Q) has pre-periodic orbit if and only if ĥg(m) = 0.

A similar construction holds for loxodromic automorphisms f . One gets
two canonical heights ĥ+

f and ĥ−f . Roughly speaking, ĥ+
f can be decom-

posed as a sum of heights ĥ+
f ,p, one for each prime number p, and one for
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the archimedean place p = ∞, and it turns out that ĥ+
f ,∞ provides the local po-

tentials for the current T +
f . Thus, the canonical heights add up informations

from the complex and the p-adic dynamics of f .
We refer to [116], [92], and [93] for canonical heights in the context of

automorphisms of projective surfaces, and to [41] for a survey on canonical
heights and equidistribution results (see also [28] for a short introduction).

10. APPENDIX: CLASSIFICATION OF SURFACES

Thanks to Enriques-Kodaira classification of surfaces (see [2]), we describe the
geometry of surfaces that admit a loxodromic automorphism.

10.1. Kodaira dimension. Let X be a connected compact complex surface. Consider
the canonical bundle KX = det(T ∗X). Its holomorphic sections are holomorphic 2-
forms, and the holomorphic sections of its tensor powers K⊗n

X can be expressed in
local coordinates in the form a(z1,z2)(dz1 ∧ dz2)n for some holomorphic function a.
Fix a positive integer n, fix a point x ∈ X , and consider the evaluation map

evx : Ω ∈ H0(X ,K⊗n
X ) 7→Ωx ∈ det(T ∗x X).

Since det(T ∗x X) has dimension 1, it can be identified with C, and this identification
is unique up to a non-zero scalar multiple. Thus, either evx vanishes identically, or it
defines an element [evx] of P(H0(X ,K⊗n

X )∗). If H0(X ,K⊗n
X ) is not reduced to {0}, this

construction provides a meromorphic mapping

Φn : x ∈ X 99K [evx] ∈ P(H0(X ,K⊗n
X )∗).

By definition, the Kodaira dimension kod(X) is equal to−∞ if H0(X ,K⊗n
X ) is reduced

to {0} for all n≥ 1, and is equal to the maximum of dim(Φn(X)), n≥ 1, otherwise.

10.2. Automorphisms. The group Aut(X) acts linearly by pull-back on the sections
of K⊗n

X , and preserves the positive homogeneous function

ω ∈ H0(X ,K⊗n
X ) 7→

Z
X
(Ω∧Ω)1/n.

Hence, the image of Aut(X) in GL(H0(X ,K⊗n
X )∗) is relatively compact and, in fact,

is a finite group (see [121, 108]).
The meromorphic mapping Φn is equivariant with respect to the natural action

of Aut(X) on X and its projective linear action on P(H0(X ,K⊗n
X )∗). Hence, when

dim(Φn(X)) > 0, one obtains a non-trivial factorization of the dynamics, with a pro-
jective linear action of a finite group on the image Φn(X).

As an easy consequence, a connected compact complex surface with a loxodromic
automorphism has Kodaira dimension 0 or −∞.
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10.3. Classification of surfaces with loxodromic automorphisms. Among com-
pact complex surfaces with kod(X) = 0, there are three important types.

• complex tori of dimension 2, i.e. quotients of C2 by a lattice Λ;
• K3 surfaces, i.e. simply connected surfaces with trivial canonical bundle (or

equivalently, surfaces with a non vanishing holomorphic 2-form and trivial
first Betti number);
• Enriques surfaces, i.e. quotients of K3 surfaces by fixed point free involu-

tions.
This does not exhaust the list of surfaces with kod(X) = 0; there are also bi-elliptic
surfaces, which are quotients of tori, Kodaira surfaces, which are not Kähler, and
blow-ups of all these five types of surfaces. Surfaces of degree (2,2,2) in P1×P1×P1

are examples of K3 surfaces.
There are three types of surfaces with negative Kodaira dimension. The first type

is given by rational surfaces, i.e. surfaces which are birationally equivalent to the
projective plane P2. The second type is made of ruled surfaces π : X → B, where the
generic fibers of π are rational curves and the basis B has genus ≥ 1. The third type is
given by V II0-surfaces (those surfaces are not Kähler). Section 7.3 provides examples
of rational surfaces with loxodromic automorphisms.

The following result classifies surfaces with interesting automorphisms and ex-
plains why we focussed on compact Kähler surfaces.

Theorem 10.1 (Cantat [33], Nagata [107]). Let X be a connected compact complex
surface. Assume that Aut(X) contains an automorphism f with positive topological
entropy (resp. assume that X is Kähler and Aut(X) contains a loxodromic automor-
phism f ). Then X is a Kähler surface, and

• either X is obtained from the plane P2(C) by a finite sequence of at least ten
blow-ups;
• or there is a holomorphic birational map π : X → X0 such that π ◦ f ◦ π−1

is an automorphism of X0 and X0 is a torus, a K3 surface, or an Enriques
surface (X0 is the “minimal model of X”).

10.4. Positive characteristic. Let us now consider projective surfaces defined on
algebraically closed field k. Enriques-Kodaira’s classification has been extended to
this context by Bombieri and Mumford. New phenomena appear when both kod(Y ) =
0 and the characteristic of k is positive, the main cases being char(k) = 2, or 3; for
example, there are K3 surfaces which are unirational in characteristic 2, a fact which
is impossible for complex surfaces.

Nevertheless, with appropriate definitions (8), the previous Theorem remains valid:
If Aut(Y ) contains a loxodromic automorphism f , then either Y is obtained from P2

k
by a sequence of at least ten blow-ups, or there is a birational morphism π : Y → Y0

8A K3 surface Y is a surface with Kodaira dimension kod(Y ) = 0, Betti numbers b1(Y ) = 0
and b2(Y ) = 22, and characteristic χ(OY ) = 2. An Enriques surface is a surface with Kodaira
dimension kod(Y ) = 0, Betti numbers b1(Y ) = 0 and b2(Y ) = 10, and characteristic χ(OY ) =
1.
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such that π ◦ f ◦ π−1 is an automorphism of Y0 and Y0 is an abelian surface, a K3
surface, or an Enriques surface.

More interestingly, one can construct surfaces in positive characteristic with au-
tomorphisms groups which are surprisingly large compared to the case of complex
surfaces (see the theory of complex multiplication for tori, [60] for an example on a
K3 surface, and [31] for rational surfaces).
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