KHOVANSKY-TEISSIER INEQUALITIES, MONOMIAL MAPS, AND DYNAMICAL DEGREES

SERGE CANTAT

ABSTRACT. Beside the Khovansky-Teissier inequalities, there are no additional (log-linear) inequalities: this can already be observed on dynamical degrees.

1. LOG CONCAVITY OF DYNAMICAL DEGREES

Let us recall a few basic facts on dynamical degrees. See [1] for a good reference.

Let $f: \mathbb{P}_{\mathbf{K}}^m \dashrightarrow \mathbb{P}_{\mathbf{K}}^m$ be a birational transformation of the projective space of dimension *m*, over a field **K**. For each integer $k \in \{0, ..., m\}$, the *k*-th dynamical degree $\lambda_k(f)$ is defined by

$$\lambda_k(f) = \lim_{n \to +\infty} \left(((f^n)^* (H^k)) \cdot (H^{m-k}) \right)^{1/n}$$
(1.1)

where H^k and H^{m-k} are projective subspaces of $\mathbb{P}^m_{\mathbf{K}}$ of codimensions k and m-k respectively, $E \cdot F$ denotes the intersection number between algebraic subsets, and $(f^n)^*E$ is the pull back of E. The limit is well defined, and does not depend on the projective subspaces H^k and H^{m-k} .

It turns out that the intersection products between ample divisors satisfy certain convexity properties, known as Khovansky-Teissier inequalities. These inequalities imply that the dynamical degrees are log-concave. In other words, if we set

$$\ell_k(f) = \log(\lambda_k(f)) \tag{1.2}$$

(where log is the neperian logarithm), then

$$2\ell_k \ge \ell_{k-1} + \ell_{k+1} \qquad (\forall 1 \le k \le m-1).$$
(1.3)

Date: 2022.

¹Dang, Nguyen-Bac Degrees of iterates of rational maps on normal projective varieties. Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, 1268–1310

KHOVANSKY-TEISSIER

Since $\ell_0(f) = 0 = \ell_m(f)$ for all $f \in Bir(\mathbb{P}^m_{\mathbf{K}})$, we deduce that $(\ell_1(f), \ldots, \ell_{m-1}(f))$ is equal to $(0, \ldots, 0)$ if and only if $\ell_k(f) = 0$ for some $1 \le k \le m-1$.

2. MONOMIAL MAPS

Let \mathbb{G} denote the multiplicative group (thus $\mathbb{G}(\mathbf{K}) = \mathbf{K}^{\times}$). Let $A = (a_{i,j})$ be an $m \times m$ matrix with integer coefficients and determinant ± 1 . Then, A determines an automorphism of the multiplicative group $(\mathbb{G})^m$, defined by

$$f_A(x_1, \dots, x_m) = (x_1^{a_{1,1}} \cdots x_m^{a_{1,m}}, \dots, x_1^{a_{m,1}} \cdots x_m^{a_{m,m}})$$
(2.1)

Since \mathbb{G}^m is a dense open subset of \mathbb{P}^m , f_A induces a birational transformation of $\mathbb{P}^m_{\mathbf{K}}$, for any field **K**. Favre and Wulcan, and Jan-Li Lin, gave a formula for the dynamical degrees of f_A . Let $\alpha_1, \ldots, \alpha_m$ be the eigenvalues of A, computed in **C**, counted with multiplicities. Set $\rho_i = |\alpha_i|$, and assume that

$$\rho_1 \ge \rho_2 \ge \cdots \rho_m. \tag{2.2}$$

Note that $\rho_1 \cdots \rho_m = 1$ because det $(A) = \pm 1$. Then,

$$\lambda_k(f_A) = \rho_1 \cdots \rho_k \tag{2.3}$$

for every $1 \le k \le m - 1$. In other words

$$\ell_k(f_A) = \sum_{j=1}^k \log(\rho_j).$$
 (2.4)

Note that, modulo the linear change of variables given by (2.4), the Khovansky-Teissier inequalities are equivalent to $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_m$ and $\rho_1 \cdots \rho_m = 1$.

3. The dynamical shape

In dimension m = 1, there is a unique dynamical degree and $\lambda_1(f) = 1$ for all f because $Bir(\mathbb{P}^1_{\mathbf{K}}) = Aut(\mathbb{P}^1_{\mathbf{K}}) = PGL_2(\mathbf{K})$. Now, suppose $m \ge 2$.

Consider the subset $L_{\mathbf{K}}(m)$ of \mathbf{R}^{m-1}_+ defined by

$$L_{\mathbf{K}}(m) = \{ (\ell_1(f), \dots, \ell_{m-1}(f)) ; f \in \mathsf{Bir}(\mathbb{P}^m_{\mathbf{K}}) \}.$$
(3.1)

It is contained in the convex cone defined by the inequalities (1.2) and the positivity of the ℓ_i . Modulo positive homotheties, \mathbf{R}^{m-1}_+ becomes a simplex $\Delta(m) = (\mathbf{R}^{m-1}_+)/\mathbf{R}^*_+$. Now, if we project $L_{\mathbf{K}}(m)$ into $\Delta(m)$ and take the closure of this projection, we get a compact subset

$$\Lambda_{\mathbf{K}}(m) \subset (\mathbf{R}^{m-1}_{+})/\mathbf{R}^{*}_{+}.$$
(3.2)

This subset is contained in the closed convex subset $\Theta(m) \subset \Delta(m)$ determined by the Khovansky-Teissier inequalities.

Theorem 3.1. For any field **K** and any dimension $m \ge 2$,

- (1) The convex set $\Theta(m)$ is a simplex of dimension m-2.
- (2) The projections of the vectors $(\ell_1(g), \dots, \ell_{m-1}(g))$ for all monomial maps $g \in GL_m(\mathbb{Z})$ form a dense subset of $\Theta(m)$.
- (3) The compact subset $\Lambda_{\mathbf{K}}(m)$ coïncides with $\Theta(m)$.

4. Proof

4.1. Assertion 1. By construction, $\Theta(m)$ is a compact subset of $\Delta(m)$ defined by m-1 inequalities. For $(u_1, \ldots, u_{m-1}) \in \Theta(m)$, the concavity inequalities give $ku_1 \ge u_k \ge \frac{m-k}{m-1}u_1$. Thus, $\Theta(m)$ does not intersect the boundary of $\Delta(m)$ (which is defined by $u_1 \cdots u_{m-1} = 0$). Thus, $\Theta(m)$ is a compact subset of the interior of $\Delta(m)$ and $\Theta(m)$ is a simplex of dimension m-2.

4.2. Assertion 2. Consider m - 1 integers $n_1 > n_2 > ... > n_{m-1}$, and the polynomial function

$$P(t) = t(t-n_1)\cdots(t-n_{m-1}) + \varepsilon$$

where $\varepsilon = \pm 1$. By construction, *P* has integer coefficients and degree *m*. Assume the n_j be large. Then, there is an $\eta > 0$, small compared to 1 (in particular compared to the distance between the n_i , such that the sign of P(t) changes as follows: for $t > n_{m-1} + \eta P(t)$ is positive; for $t \in]n_{m-2} + \eta, n_{m-1} - \eta[$ it is negative; etc. This implies that P(t) has *m* distinct roots, α_i with

$$\alpha_j \simeq n_j \tag{4.1}$$

for $j \le m-1$ (up to an error of η) and $\alpha_m = \varepsilon(\alpha_1 \cdots \alpha_{m-1})^{-1}$.

Let A_P be the companion matrix of P. Then, with the notation of the second section, we have $\rho_i = \alpha_i$ for $i \le m-1$. The dynamical degrees of the monomial map f_{A_P} are given by (2.3) and (2.4). Thus, given any vector (u_1, \ldots, u_{m-1}) in $\Theta(m)$, we can take a large multiple $(\ell_1, \ldots, \ell_{m-1})$ of it, make the change of variable defined by Equation (2.4) to get real numbers ρ_i , and then define n_i to be the integral part of ρ_i . This gives a polynomial P for which f_{A_P} satisfies $\lambda_k(f_{A_P}) \simeq \ell_k$, as desired.

4.3. Assertion 3. This is a direct consequence of the second assertion.

KHOVANSKY-TEISSIER

5. COMPLEMENT

If $X_{\mathbf{K}}$ is a(n irreducible) projective variety of dimension *m*, one can also define the dynamical degrees $\lambda_k(f)$ for every $f \in \text{Bir}(X_{\mathbf{K}})$ and $0 \le k \le m$; for this, *H* is replaced by some hyperplane section. Similarly, if *M* is a compact Kähler manifold, $\lambda_k(f)$ is defined for any bimeromorphic transformation *f* of *M*; here, *H* is replaced by a Kähler form.

The inequalities (1.2) hold in this more general context, and one can ask for a description of $\Lambda_{\mathbf{K}}(X)$ (resp. $\Lambda(M)$), with obvious generalizations. A priori, $\Lambda_{\mathbf{K}}(X)$ depends strongly on the geometry of X; for instance, the codimension of $\Lambda_{\mathbf{K}}(X)$ in $\Delta(m)$ is larger than, or equal to the Kodaira dimension of X.

Theorem 5.1. *There are complex abelian varieties X of dimension m such that* $\Delta(X) = \Theta(m)$.

Proof. Take $E = \mathbb{C}/L$ an elliptic curve, define $X = E^m$ and note that $\operatorname{GL}_m(\mathbb{Z})$ acts linearly on $X = \mathbb{C}^m/L^m$, each matrix A in $\operatorname{GL}_m(\mathbb{Z})$ inducing an automorphism $g_A \colon X \to X$. With the notation of the second section, the dynamical degrees of g_A satisfy $\ell_k(g_A) = 2\sum_{j=1}^k \rho_j$. Thus, the proof of our first theorem extends to this context.

I don't know what to expect for the cubic hypersurface in $\mathbb{P}^{m+1}_{\mathbb{C}}$, for instance.

UNIV RENNES, CNRS, IRMAR - UMR 6625, F-35000 RENNES, FRANCE *Email address*: serge.cantat@univ-rennes1.fr