FAMILIES OF COMMUTING AUTOMORPHISMS, AND A CHARACTERIZATION OF THE AFFINE SPACE

SERGE CANTAT, ANDRIY REGETA, AND JUNYI XIE

ABSTRACT. We prove that the affine space of dimension $n \geq 1$ over an uncountable algebraically closed field k is determined, among connected affine varieties, by its automorphism group (viewed as an abstract group). The proof is based on a new result concerning algebraic families of pairwise commuting automorphisms.

1. INTRODUCTION

1.1. Characterization of the affine space. In this paper, k is an algebraically closed field and \mathbb{A}_k^n denotes the affine space of dimension n over k.

Theorem A.— Let k be an algebraically closed and uncountable field. Let n be a positive integer. Let X be a reduced, connected, affine variety over k. If its automorphism group $\text{Aut}(X)$ is isomorphic to $\text{Aut}(\mathbb{A}_k^n)$ as an abstract group, then X is isomorphic to \mathbb{A}_k^n as a variety over k.

Note that no assumption is made on $\dim(X)$; in particular, we do not assume $\dim(X) = n$. This theorem is our main goal. It would be great to lighten the hypotheses on k, but besides that the following remarks show the result is optimal:

- The affine space \mathbb{A}_k^n is not determined by its automorphism group in the category of quasi-projective varieties because

 (1) $\text{Aut}(\mathbb{A}_k^n)$ is naturally isomorphic to $\text{Aut}(\mathbb{A}_k^n \times Z)$ for any projective variety Z with $\text{Aut}(Z) = \{\text{id}\}$;

 (2) for every algebraically closed field k there is a projective variety Z over k such that $\dim(Z) \geq 1$ and $\text{Aut}(Z) = \{\text{id}\}$ (one can take a general curve of genus ≥ 3; see [11] and [12, Main Theorem]).

- The connectedness is crucial: $\text{Aut}(\mathbb{A}_k^n)$ is isomorphic to the automorphism group of the disjoint union of \mathbb{A}_k^n and Z if Z is a variety with $\text{Aut}(Z) = \{\text{id}\}$.

1.2. Previous results. The literature contains already several theorems that may be compared to Theorem A. We refer to [2] for an interesting introduction and for the case of the complex affine plane; see [6, 7] for extension and generalisations of Déserti’s results in higher dimension. Some of those results assume $\text{Aut}(X)$ to be isomorphic to $\text{Aut}(\mathbb{A}_k^n)$ as an ind-group; this is a rather strong hypothesis. Indeed,
there are examples of affine varieties \(X\) and \(Y\) such that \(\text{Aut}(X)\) and \(\text{Aut}(Y)\) are isomorphic as abstract groups, but not isomorphic as ind-groups (see [8, Theorem 2]). In [9] the authors prove that an affine toric surface is determined by its group of automorphisms in the category of affine surfaces; unfortunately, their methods do not work in higher dimension.

1.3. Commutative families. The proof of Theorem A relies on a new result concerning families of pairwise commuting automorphisms of affine varieties. To state it, we need a few standard notions. If \(V\) is a subset of a group \(G\), we denote by \(\langle V \rangle\) the subgroup generated by \(V\), i.e. the smallest subgroup of \(G\) containing \(V\). We say that \(V\) is commutative if \(fg = gf\) for all pairs of elements \(f\) and \(g\) in \(V\) or, equivalently, if \(\langle V \rangle\) is an abelian group. In the following statement, \(\text{Aut}(X)\) is viewed as an ind-group, so that it makes sense to speak of algebraic subsets of it (see the definitions in Section 2.2).

Theorem B. Let \(k\) be an algebraically closed field and let \(X\) be an affine variety over \(k\). Let \(V\) be a commutative irreducible algebraic subvariety of \(\text{Aut}(X)\) containing the identity. Then \(\langle V \rangle\) is an algebraic subgroup of \(\text{Aut}(X)\).

It is crucial to assume that \(V\) contains the identity. Otherwise, a counter-example would be given by a single automorphism \(f\) of \(X\) for which the sequence \(n \mapsto \text{deg}(f^n)\) is not bounded (see Section 2.1). To get a family of positive dimension, consider the set \(V\) of automorphisms \(f_a: (x, y) \mapsto (x, axy)\) of \((\mathbb{A}^1_k \setminus \{0\})^2\), for \(a \in k \setminus \{0\}\); \(V\) is commutative and irreducible, but \(\langle V \rangle\) has infinitely many connected components (hence \(\langle V \rangle\) is not algebraic). However, even if \(V\) does not contain the identity, the subset \(V \cdot V^{-1} \subseteq \text{Aut}(X)\), is irreducible, commutative and contains the identity; if its dimension is positive, Theorem B implies that \(\text{Aut}(X)\) contains a commutative algebraic subgroup of positive dimension.

1.4. Acknowledgement. We thank Jean-Philippe Furter, Hanspeter Kraft, and Christian Urech for interesting discussions related to this article.

2. Degrees and ind-groups

2.1. Degrees and compactifications. Let \(X\) be an affine variety. Embed \(X\) in the affine space \(\mathbb{A}^N_k\) for some \(N\), and denote by \(x = (x_1, \ldots, x_N)\) the affine coordinates of \(\mathbb{A}^N_k\). Let \(f\) be an automorphism of \(X\). Then, there are \(N\) polynomial functions \(f_i \in k[x]\) such that \(f(x) = (f_1(x), \ldots, f_N(x))\) for \(x \in X\). One says that \(f\) has degree \(\leq d\) if one can choose the \(f_i\) of degree \(\leq d\); the degree \(\text{deg}(f)\) can then be defined as the minimum of these degrees \(d\). This notion depends on the embedding \(X \hookrightarrow \mathbb{A}^N_k\).

Another way to proceed is as follows. To simplify the exposition, assume that all irreducible components of \(X\) have the same dimension \(k = \text{dim}(X)\). Fix a compactification \(X_0\) of \(X\) by a projective variety and let \(\overline{X} \to X_0\) be the normalization
of \mathcal{X}_0. If H is an ample line bundle on \mathcal{X}, and if f is a birational transformation of \mathcal{X}, one defines $\deg_H(f)$ (or simply $\deg(f)$) to be the intersection number

$$\deg(f) = (f^*H) \cdot (H)^{k-1}. \quad (2.1)$$

Since $\text{Aut}(X) \subset \text{Bir}(\mathcal{X})$, we obtain a second notion of degree. It is shown in [1, 16] that these notions of degrees are compatible: if we change the embedding $X \hookrightarrow \mathbb{A}^N_k$, or the polarization H of X, or the compactification \overline{X}, we get different degrees, but any two of these degree functions are always comparable, in the sense that there are positive constants satisfying

$$a \deg(f) \leq \deg'(f) \leq b \deg(f) \quad (\forall f \in \text{Aut}(X)). \quad (2.2)$$

A subset $V \subset \text{Aut}(X)$ is of bounded degree if there is a uniform upper bound $\deg(g) \leq D < +\infty$ for all $g \in V$. This notion does not depend on the choice of degree. If $V \subset \text{Aut}(X)$ is of bounded degree, then $V^{-1} = \{f^{-1} : f \in V\} \subset \text{Aut}(X)$ is of bounded degree too, but we shall not use this result (see [1] and [3] for instance).

2.2. Automorphisms of affine varieties and ind-groups. The notion of an ind-group goes back to Shafarevich, who called these objects infinite dimensional groups in [14]. We refer to [3, 5] for detailed introductions to this notion.

2.2.1. Ind-varieties. By an ind-variety we mean a set \mathcal{V} together with an ascending filtration $\mathcal{V}_0 \subset \mathcal{V}_1 \subset \mathcal{V}_2 \subset \ldots \subset \mathcal{V}$ such that the following is satisfied:

1. $\mathcal{V} = \bigcup_{k \in \mathbb{N}} \mathcal{V}_k$;
2. each \mathcal{V}_k has the structure of an algebraic variety over k;
3. for all $k \in \mathbb{N}$ the inclusion $\mathcal{V}_k \subset \mathcal{V}_{k+1}$ is a closed immersion.

We refer to [3] for the notion of equivalent filtrations on ind-varieties.

A map $\Phi : \mathcal{V} \to \mathcal{W}$ between ind-varieties $\mathcal{V} = \bigcup_k \mathcal{V}_k$ and $\mathcal{W} = \bigcup_l \mathcal{W}_l$ is a morphism if for each k there is $l \in \mathbb{N}$ such that $\Phi(\mathcal{V}_k) \subset \mathcal{W}_l$ and the induced map $\Phi : \mathcal{V}_k \to \mathcal{W}_l$ is a morphism of algebraic varieties. Isomorphisms of ind-varieties are defined in the usual way. An ind-variety $\mathcal{V} = \bigcup_k \mathcal{V}_k$ has a natural Zariski topology: $S \subset \mathcal{V}$ is closed (resp. open) if $S_k := S \cap \mathcal{V}_k \subset \mathcal{V}_k$ is closed (resp. open) for every k. A closed subset $S \subset \mathcal{V}$ inherits a natural structure of ind-variety and is called an ind-subvariety. An ind-variety \mathcal{V} is said to be affine if each \mathcal{V}_k is affine.

We shall only consider affine ind-varieties and for simplicity we just call them ind-varieties. An ind-subvariety S is an algebraic subvariety of \mathcal{V} if $S \subset \mathcal{V}_k$ for some $k \in \mathbb{N}$; by definition, a constructible subset will always be a constructible subset in an algebraic subvariety of \mathcal{V}.

2.2.2. Ind-groups. The product of two ind-varieties is defined in the obvious way. An ind-variety G is called an ind-group if the underlying set G is a group such that the map $G \times G \to G$, defined by $(g, h) \mapsto gh^{-1}$, is a morphism of ind-varieties. If a subgroup H of G is closed for the Zariski topology, then H is naturally an
ind-subgroup of \(G \); it is an **algebraic subgroup** if it is an algebraic subvariety of \(G \). A connected component of an ind-group \(G \), with a given filtration \(G_0 \subset G_1 \subset G_2 \subset \ldots \), is an increasing union of connected components \(G_i \) of \(G_i \). The **neutral component** \(G^0 \) of \(G \) is the union of the connected components of the \(G_i \) containing the neutral element \(\text{id} \in G \). We refer to [3], and in particular to Propositions 1.7.1 and 2.2.1, showing that \(G^0 \) is an ind-subgroup in \(G \) whose index is at most countable (the proof of [3] works in arbitrary characteristic).

Theorem 2.1. Let \(X \) be an affine variety over an algebraically closed field \(k \). Then \(\text{Aut}(X) \) has the structure of an ind-group acting “morphically” on \(X \); this means that the action \(G \times X \to X \) of \(G \) on \(X \) induces a morphism of algebraic varieties \(G_i \times X \to X \) for every \(i \in \mathbb{N} \).

In particular, if \(V \) is an algebraic subset of \(\text{Aut}(X) \), then \(V(x) \subset X \) is constructible for every \(x \in X \) by Chevalley’s theorem. The proof can be found in [5, Proposition 2.1] (see also [3, Theorems 5.1.1 and 5.2.1]): the authors assume that the field has characteristic 0, but their proof works in the general setting. To obtain a filtration, one starts with a closed embedding \(X \hookrightarrow A^N_k \), and define \(\text{Aut}(X)_d \) to be the set of automorphisms \(f \) such that \(\max \{ \deg(f), \deg(f^{-1}) \} \leq d \). For example, if \(X = A^n_k \), the ind-group filtration \((\text{Aut}(A^n_k)_d) \) of \(A^n_k \) is defined by the following property: an automorphism \(f \) is in \((\text{Aut}(A^n_k)_d) \) if the polynomial formulas for \(f = (f_1, \ldots, f_n) \) and for its inverse \(f^{-1} = (g_1, \ldots, g_n) \) satisfy

\[
\deg f_i \leq d \quad \text{and} \quad \deg g_i \leq d, \quad (\forall i \leq n).
\]

Note that an ind-subgroup is algebraic if and only if it is of bounded degree. Thus, we get the following basic fact.

Proposition 2.2. Let \(X \) be an affine variety over an algebraically closed field \(k \). Let \(V \) be an irreducible algebraic subset of \(\text{Aut}(X) \) that contains \(\text{id} \). Then \(\langle V \rangle \) is an algebraic subgroup of \(\text{Aut}(X) \), acting algebraically on \(X \), if and only if \(\langle V \rangle \) is of bounded degree.

Proof. If \(\langle V \rangle \) is algebraic, then it is contained in some \(\text{Aut}(X)_d \) and, as such, is of bounded degree; moreover, Theorem 2.1 implies that the action \(\langle V \rangle \times X \to X \) is algebraic. If \(\langle V \rangle \) is of bounded degree, then \(\langle V \rangle^{-1} = \langle V \rangle \) is of bounded degree too, and \(\langle V \rangle \) is contained in some \(\text{Aut}(X)_d \). The Zariski closure \(\overline{\langle V \rangle} \) of \(\langle V \rangle \) in \(\text{Aut}(X)_d \) is an algebraic subgroup of \(\text{Aut}(X) \); we are going to show that \(\overline{\langle V \rangle} = \langle V \rangle \). We note that \(\langle V \rangle \) is the increasing union of the subsets \(W = V \cdot V^{-1} \subset W \cdot W \subset \cdots \subset W^k \subset \cdots \) (note that \(W \) contains \(V \) because \(\text{id} \in V \), and by Chevalley theorem, each \(W^k \subset \overline{\langle V \rangle} \) is constructible. The \(W^k \) are irreducible, because \(V \) is irreducible; by noetherianity, there exists \(l \geq 1 \) such that \(W^l = \bigcup_{k \geq l} W^k \subset \overline{\langle V \rangle} \). Since \(\langle V \rangle \subset \bigcup_{k \geq 1} W^k \), we get \(W^l = \overline{\langle V \rangle} \); thus, there exists a Zariski dense open subset \(U \) of \(\overline{\langle V \rangle} \) which is contained in \(W^l \). Now, pick any element \(f \) in \(\overline{\langle V \rangle} \). Then \((f \cdot U) \) and \(U \) are
two Zariski dense open subsets of \(\overline{V} \), so \((f \cdot U)\) intersects \(U \) and this implies that \(f \) is in \(U \cdot U^{-1} \subset \langle V \rangle \). So \(\overline{V} \subset \langle V \rangle \).

\[\square \]

3. \textbf{Algebraic Varieties of Commuting Automorphisms}

Let \(k \) be an algebraically closed field. Let \(X \) be an affine variety over \(k \) of dimension \(d \). In this section, we prove Theorem B. Since \(V \) is irreducible and contains the identity, every irreducible component of \(X \) is invariant under the action of \(V \) (and \(\langle V \rangle \)); thus, we may and do assume \(X \) to be irreducible.

3.1. \textbf{Invariant fibrations, base change, and degrees.} Let \(B \) and \(Y \) be irreducible affine varieties, and let \(\pi: Y \to B \) be a dominant morphism. By definition, \(\text{Aut}_\pi(Y) \) is the group of automorphisms \(g: Y \to Y \) such that \(\pi \circ g = \pi \).

Let \(B' \) be another irreducible affine variety, and let \(\psi: B' \to B \) be a finite morphism. Pulling-back \(\pi \) by \(\psi \), we get a new variety \(Y \times_B B' = \{ (y, b') \in Y \times B' ; \pi(y) = \psi(b') \} \); the projections \(\pi_Y: Y \times_B B' \to Y \) and \(\pi': Y \times_B B' \to B' \) satisfy \(\psi \circ \pi' = \pi \circ \pi_Y \). There is a natural homomorphism

\[\tau_\psi: \text{Aut}_\pi(Y) \hookrightarrow \text{Aut}_{\pi'}(Y \times_B B') \]

(3.1)

defined by \(\tau_\psi(g) = g \times_B \text{id}_{B'} \). For every \(g \in \text{Aut}_\pi(Y) \), we have

\[g \circ \pi_Y = \pi_Y \circ \tau_\psi(g) \quad \text{and} \quad \pi' = \pi' \circ \tau_\psi(g). \]

If \(\tau_\psi(g) = \text{id} \) then \(g \circ \pi_Y = \pi_Y \) and \(g = \text{id} \) because \(\pi_Y \) is dominant; hence, \(\tau_\psi \) is an embedding.

Lemma 3.1. If \(S \) is a subset of \(\text{Aut}_\pi(Y) \), then \(S \) is of bounded degree if and only if its image \(\tau_\psi(S) \) in \(\text{Aut}_{\pi'}(Y \times_B B') \) is of bounded degree.

Proof of Lemma 3.1. We can suppose that \(B' \) is normal, because the normalization is a finite morphism (thus, composing it with \(\psi \) gives a finite morphism).

Let \(\overline{B} \subset \mathbb{P}^M_k \) and \(Y' \subset \mathbb{P}^N_k \) be irreducible projective varieties containing \(B \) and \(Y \) as affine open subsets. Let \(\overline{Y} \) be the Zariski closure of the graph of \(\pi \) in \(Y' \times \overline{B} \). Then \(\overline{Y} \) is an irreducible projective variety containing (a copy of) \(Y \) as an affine open subset, with a morphism \(\pi: \overline{Y} \to \overline{B} \) satisfying \(\pi|_Y = \pi \). Denote by \(\varphi: \overline{B} \to B \) the normalization of \(\overline{B} \) in \(k(B') \); it is a finite morphism. Then \(\overline{Y} \times_\overline{B} \overline{B}' \) is an irreducible projective variety containing \(Y \times_B B' \) as an affine open subset, and the projection \(\pi_{\overline{Y}}: \overline{Y} \times_\overline{B} \overline{B}' \to \overline{Y} \) is finite.

Let \(L \) be an ample line bundle on \(\overline{Y} \). Since \(\pi_{\overline{Y}} \) is finite, the line bundle \(H := \pi_{\overline{Y}}^*L \) is an ample line bundle on the projective variety \(\overline{Y} \times_\overline{B} \overline{B}' \). For every \(g \in \text{Aut}_\pi(Y) \), \(\tau_\psi(g) \) is an automorphism of \(Y \times_B B' \); it can be considered as a birational transformation of \(\overline{Y} \times_\overline{B} \overline{B}' \), and we get

\[\tau_\psi(g)^*H \cdot (H)^{\dim(Y)-1} = (\pi_{\overline{Y}})_*((\tau_\psi(g)^*H) \cdot (H)^{\dim(Y)-1})) \]

(3.3)

\[= \deg_{top}(\psi) \times \left((g^*L) \cdot (L)^{\dim(Y)-1}\right). \]

(3.4)
where $\deg_{\text{top}}(\psi) = \deg_{\text{top}}(\varphi)$ is the degree of the finite map $\psi: B' \to B$. Thus, the degree $\deg_{G}(g)$ for $g \in S$ is bounded by some constant D_{Y} if and only if $\deg_{H}(\iota_{\psi}(g))$ is bounded by $\deg_{\text{top}}(\psi)D_{Y}$.

Let us come back to the example $f(x, y) = (x, xy)$ from Section 1.3. This is an automorphism of the multiplicative group $\mathbb{G}_{m} \times \mathbb{G}_{m}$ that preserves the projection onto the first factor. The degrees of the iterates $f^{m}(x, y) = (x, x^{m}y)$ are not bounded, but on every fiber $\{x = x_{0}\}$, the restriction of f^{m} is the linear map $y \mapsto (x_{0})^{m}y$, of constant degree 1. More generally, if $x \in B \mapsto A(x)$ is a regular map with values in $\text{GL}_{N}(k)$, then $g: (x, y) \mapsto (x, A(x)y)$ is a regular automorphism of $B \times \mathbb{A}^{N}_{k}$ and, in most cases, we observe the same phenomenon: the degrees of the restrictions $g^{n}|_{\{(x_{0})\} \times \mathbb{A}^{N}_{k}}$ are bounded, but the degrees of g^{n} are not. The next proposition provides a converse result. To state it, we make use of the following notation. Let B be an irreducible affine variety, and let $O(B)$ be the k-algebra of its regular functions. By definition, \mathbb{A}^{N}_{B} denotes the affine space $\text{Spec}O(B)[x_{1}, \ldots, x_{n}]$ over the ring $O(B)$ and $\text{Aut}_{B}(\mathbb{A}^{N}_{B})$ denotes the group of $O(B)$-automorphisms of \mathbb{A}^{N}_{B}. Similarly, $\text{GL}_{N}(O(B))$ is the linear group over the ring $O(B)$. The inclusion $\text{GL}_{N}(O(B)) \subset \text{Aut}_{B}(\mathbb{A}^{N}_{B})$ is an embedding of ind-groups.

If X is an affine variety over k with a morphism $\pi: X \to B$, we denote by η the generic point of B and X_{η} the generic fiber of π. If G is a subgroup of $\text{Aut}_{\pi}(X)$, then its restriction to X_{η} may have bounded degree even if G is not a subgroup of $\text{Aut}(X)$ of bounded degree: this is shown by the previous example.

Proposition 3.2. Let X be an irreducible and normal affine variety over k with a dominant morphism $\pi: X \to B$ to an irreducible affine variety B over k. Let η be the generic point of B and X_{η} the generic fiber of π. Let G be a subgroup of $\text{Aut}_{\pi}(X)$, whose restriction to X_{η} is of bounded degree. Then there exists

(a) a nonempty affine open subset B' of B,

(b) an embedding $\tau: X_{B'} := \pi^{-1}(B') \hookrightarrow \mathbb{A}^{N}_{B'}$ over B' for some $N \geq 1$,

(c) and an embedding $\rho: G \hookrightarrow \text{GL}_{N}(O(B')) \subset \text{Aut}_{B'}(\mathbb{A}^{N}_{B'})$,

such that $\tau \circ g = \rho(g) \circ \tau$ for every $g \in G$.

Notation. For $f \in \text{Aut}(X)$ and $\xi \in O(X)$ (resp. in $k(X)$), we denote by $f^{*}\xi$ the function $\xi \circ f$. The field of constant functions is identified to $k \subset O(X)$.

Proof of Proposition 3.2. Shrinking B, we assume B to be normal.

Pick any closed embedding $X \hookrightarrow \mathbb{A}^{l}_{B} \subset \mathbb{P}^{l}_{B}$ over B. Let X' be the Zariski closure of X in \mathbb{P}^{l}_{B}. Let \overline{X} be the normalization of X' with the structure morphism $\overline{\pi}: \overline{X} \to B$; thus, $\overline{\pi}: \overline{X} \to B$ is a normal and projective scheme over B containing X as a Zariski open subset. Moreover, $D := \overline{X} \setminus X$ is an effective divisor of \overline{X}. Denote by \overline{X}_{η} the generic fiber of $\overline{\pi}$ and by D_{η} the generic fiber of $\overline{\pi}|_{D}$. Shrinking B again if...
necessary, we may assume that all irreducible components of \(D \) meet the generic fiber, i.e. \(D = \overline{D_0} \).

Write \(X = \text{Spec} A \). Let \(M \) be a finite dimensional subspace of \(A \) such that \(1 \in M \) and \(A \) is generated by \(M \) as a \(k \)-algebra. Since the action of \(G \) on \(X_\eta \) is of bounded degree, there exists \(m \geq 0 \) such that the divisor

\[
(3.5) \quad (\text{Div}(g^*v) + mD)|_{X_\eta}
\]
is effective for every \(v \in M \) and \(g \in G \). Now, consider \(\text{Div}(g^*v) + mD \) as a divisor of \(X \) and write \(\text{Div}(g^*v) + mD = D_1 - D_2 \) where \(D_1 \) and \(D_2 \) are effective and have no common irreducible component. Since \(g \in \text{Aut}_\pi(X) \), we get \(g^*v \in A \) and \(D_2 \cap X = \emptyset \). Moreover, \(D_2 \cap \overline{X_\eta} = \emptyset \). So \(D_2 \) is contained in \(X \setminus X \), but then we deduce that \(D_2 \) is empty because \(\overline{X} \setminus X \) is covered by \(D \) and \(D = \overline{D_0} \).

Observe that \(H^0(\overline{X}, mD) \) is a finite \(O(B) \)-module. Denote by \(N \) the \(G \)-invariant \(O(B) \)-submodule of \(A \) generated by the \(g^*v \), for \(g \in G \) and \(v \in M \). Since \(N \subseteq H^0(\overline{X}, mD) \), it is a finitely generated \(O(B) \)-module. Let \(\tau \) be the morphism \(X \hookrightarrow \text{Spec} O(B)[N] \) over \(B \) induced by the inclusion \(N \subseteq A \). Let \(\rho \) be the morphism sending \(g \) to the endomorphism

\[
(3.6) \quad \rho(g) \in \text{GL}_B(\text{Hom}(N, B)) \subseteq \text{Aut}_B(\text{Spec} O(B)[N])
\]
developed by \(\rho(g)(w) = g^*w \) for all \(w \in N \); then \(\tau \circ g = \rho(g) \circ \tau \) for every \(g \in G \). \(\square \)

3.2. Orbits. If \(S \) is a subset of \(\text{Aut}(X) \) and \(x \) is a point of \(X \) the \(S \)-orbit of \(x \) is the subset \(S(x) = \{ f(x); \ f \in S \} \). Let \(V \) be an irreducible algebraic subvariety of \(\text{Aut}(X) \) containing \(\text{id} \). Set \(W = V \cdot V^{-1} \). Then, \(W \) is constructible, and the group \(\langle V \rangle \) is the union of the sets

\[
(3.7) \quad W^k = \{ f_1 \circ \cdots \circ f_k; \ f_j \in W \ \text{for all} \ j \}.
\]
Since \(W \) contains \(\text{id} \), the \(W^k \) form a non-decreasing sequence

\[
(3.8) \quad W^0 = \{ \text{id} \} \subset W \subset W^2 \subset \cdots \subset W^k \subset \cdots
\]
of constructible subsets of \(\text{Aut}(X) \); their closures are irreducible, because so is \(V \). In particular, \(k \mapsto \dim(W^k) \) is non-decreasing. The \(W^k \)-orbit of a point \(x \in X \) is the image of \(W^k \times \{ x \} \) by the morphism \(\text{Aut}(X) \times X \to X \) defining the action on \(X \): applying Chevalley’s theorem one more time, \(W^k(x) \) is a constructible subset of \(X \).

Proposition 3.3. The orbits \(W^k(x) \) satisfy the following properties.

1. The function \(k \in \mathbb{Z}_{\geq 0} \mapsto \dim(W^k(x)) \) is non-decreasing.
2. The function \(x \in X \mapsto \dim(W^k(x)) \) is semi-continuous in the Zariski topology: the subsets \(\{ x \in X; \ \dim(W^k(x)) \leq n \} \) are Zariski closed for all pairs \((n,k)\) of integers.
3. The integers

\[
s(x) := \max_{k \geq 0} \{ \dim(W^k(x)) \} \quad \text{and} \quad s_x := \max_{x \in X} \{ s(x) \}
\]
are bounded from above by \(\dim(X) \).

(4) There is a Zariski dense open subset \(\mathcal{U} \) of \(X \) and an integer \(k_0 \) such that \(\dim(W^k(x)) = s_X \) for all \(k \geq k_0 \) and all \(x \in \mathcal{U} \).

(5) For every \(x \) in \(X \), \(W^k(x) = \langle W \rangle(x) \) if \(k \) is large enough.

Proof. The first assertion follows from the inclusions (3.8), and the third one is obvious. The map \(W^k \times X \to X \) given by the action \((f,x) \mapsto f(x) \) is a morphism. The second and fourth assertion follow from Chevalley’s constructibility result and the semi-continuity of the dimension of the fibers (see [4, Exercise 3.19] and [15, Section I.6.3, Theorem 7] respectively). The fifth property follows from noetheri-

3.3. **Open orbits.** Let us assume in this paragraph that \(s_X = \dim X \): there is an orbit \(W^k(x_0) \) which is open and dense and coincides with \(\langle W \rangle(x_0) \). We fix such a pair \((k,x_0)\).

Let \(f \) be an element of \(\langle W \rangle \). Since the point \(f(x_0) \) is in the set \(W^k(x_0) \), there is an element \(g \) of \(W^k \) such that \(g(x_0) = f(x_0) \), i.e. \(g^{-1} \circ f(x_0) = x_0 \). By commutativity, \((g^{-1} \circ f)(h(x_0)) = h(x_0) \) for every \(h \) in \(W^k \), and this shows that \(g^{-1} \circ f = id \) because \(W^k(x_0) \) is dense in \(X \). Thus, \(\langle W \rangle \) coincides with \(W^k \), and \(\langle W \rangle = \langle V \rangle \) is an irreducible algebraic subgroup of the ind-group \(Aut(X) \).

Thus, Theorem B is proved in case \(s_X = \dim X \). The proof when \(s_X < \dim X \) occupies the next section, and is achieved in § 3.4.4.

3.4. **No dense orbit.** Assume now that there is no dense orbit; in other words, \(s_X < \dim(X) \). Fix an integer \(\ell > 0 \) and a \(W \)-invariant open subset \(\mathcal{U} \subset X \) such that

\[
(3.9) \quad s(x) = s_X \quad \text{and} \quad W^\ell(x) = \langle W \rangle(x)
\]

for every \(x \in \mathcal{U} \) (see Proposition 3.3, assertions (4) and (5)).

3.4.1. **A fibration.** Let \(C \) be an irreducible algebraic subvariety of \(X \) of codimension \(s_X \) that intersects the general orbit \(W^\ell(x) \) transversally (in a finite number of points). There exists an integer \(k > 0 \) and a dense open subset \(Y \subset \mathcal{U} \) such that the following conditions are satisfied:

(i) for each \(x \in Y \) the intersection of \(C \) and \(W^\ell(x) \) is transverse and contains exactly \(k \) points;

(ii) \(Y \) is \(W \)-invariant.

To each point \(x \in Y \), we associate the intersection \(C \cap W^\ell(x) \), viewed as a point in the space \(C^{[k]} \) of cycles of length \(k \) and dimension 0 in \(C \). This gives a dominant morphism

\[
(3.10) \quad \pi: Y \to B
\]
for some irreducible variety \(B = \pi(Y) \subset C^k \). The group \(\langle W \rangle \) is now contained in \(\text{Aut}_\pi(Y) \). Shrinking \(B \), we may assume that it is normal. Let \(\eta \) be the generic point of \(B \).

The fiber \(\pi^{-1}(b) \) of \(b \in B \), we denote by \(Y_b \). By construction, for every \(b \in B(k) \), \(Y_b \) is an orbit of \(W \); and Section 3.3 shows that \(Y_b \) is isomorphic to the image \(\langle W \rangle_b \) of \(\langle W \rangle \) in \(\text{Aut}(Y_b) \): this group \(\langle W \rangle_b \) coincides with the image of \(W' \) in \(\text{Aut}(Y_b) \) and the action of \(W' \) on \(Y_b \) corresponds to the action of \(\langle W \rangle_b \) on itself by translation. Thus, Section 3.3 implies the following properties

1. the generic fiber of \(\pi \) is normal and, shrinking \(B \) again, we may assume \(Y \) to be normal;
2. the action of \(\langle W \rangle \) on the generic fiber \(Y_\eta \) has bounded degree.

3.4.2. Reduction to \(Y = U_B \times_B (\mathbb{G}_m^r) \). In this section, the variety \(Y \) will be modified, so as to reduce our study to the case when \(Y \) is an abelian group scheme over \(B \).

By Proposition 3.2, after shrinking \(B \), there exists an embedding \(\tau : Y \hookrightarrow \mathbb{A}^N_B \) for some \(N \geq 0 \) and a homomorphism \(\rho : \langle W \rangle \hookrightarrow \text{GL}_N(O(B)) \subset \text{Aut}_B(\mathbb{A}^N_B) \) such that

\[
\tau \circ g = \rho(g) \circ \tau \quad (\forall g \in \langle W \rangle).
\]

Via \(\tau \), we view \(Y \) as a \(B \)-subscheme of \(\mathbb{A}^N_B \). Denote by \(\langle W \rangle_\eta \) the Zariski closure of \(\langle W \rangle \) in \(\text{GL}_N(k(B), Y_\eta) \subset \text{Aut}(Y_\eta) \), where \(\text{GL}_N(k(B), Y_\eta) \) is the subgroup of \(\text{GL}_N(k(B)) \) which preserves \(Y_\eta \).

Let us consider the inclusion of \(\text{GL}_N(O(B)) \) into \(\text{GL}_N(k(B)) \), and compose it with the embedding of \(W \) into \(\text{GL}_N(O(B)) \). There is a natural inclusion of sets \(W \hookrightarrow W \otimes_k k(B) \): a point \(x \) of \(W \), viewed as a morphism \(x : \text{Spec} k(x) \rightarrow W \), is mapped to the point

\[
x^B : \text{Spec} k(x) (B \otimes_k k(B)) = \text{Spec} k(x) \otimes_k k(B) \rightarrow W \otimes_k k(B).
\]

The image of this inclusion is Zariski dense in \(W \otimes_k k(B) \). The morphism \(W \hookrightarrow \text{GL}_N(k(B), Y_\eta) \) naturally extends to a morphism \(W \otimes_k k(B) \hookrightarrow \text{GL}_N(k(B), Y_\eta) \). It follows that \(\langle W \rangle_\eta \) is the Zariski closure of \(\langle W \otimes_k k(B) \rangle \) in \(\text{GL}_N(k(B), Y_\eta) \). Since \(W \otimes_k k(B) \) is geometrically irreducible, \(\langle W \rangle_\eta \) is a geometrically irreducible commutative linear algebraic group over \(k(B) \). As a consequence ([10], Chap. 16.b), there exists a finite extension \(L \) of \(k(B) \) and an integer \(s \geq 0 \) such that

\[
\langle W \rangle_\eta \otimes_{k(B)} L \simeq U_L \times \mathbb{G}_m^s_L
\]

where \(U_L \) is a unipotent commutative linear algebraic group over \(L \).

Let \(\psi : B' \rightarrow B \) be the normalization of \(B \) in \(L \). We obtain a new fibration \(\pi' : Y \times_B B' \rightarrow B' \), together with an embedding \(\iota_\psi \) of \(\text{Aut}(Y) \) in \(\text{Aut}_\pi(Y \times_B B') \); by Lemma 3.1, the subgroup \(\langle W \rangle \) has bounded degree if and only if its image \(\iota_\psi(W) \) has bounded degree too. After such a base change, we may assume that
Replacing \(B \) on this basic remark, with two extra difficulties: the structure of where \(U \) acts on \(Y \) subtle in positive characteristic (see [13], §VII.2); instead of iterating one element \(n \) dependently of \(na \) where each \(a \) \nomenclature{\(W \)}{acts on \(Y \) by translation; here \(U(B) \) and \(\mathbb{G}_{m,B}^s(B) \) denote the ind-varieties of sections of the structure morphisms \(U_B \to B \) and \(\mathbb{G}_{m,B}^s \to B \) respectively.

Remark 3.4. A section \(\sigma : B \to U_B \) defines an automorphism of \(U_B \simeq B \times B U_B \) by \(\delta(\sigma \times _B \id) \), where \(\delta : U_B \times U_B \to U_B \) is the multiplication morphism of \(U_B \); it defines in the same way an element of \(\Aut_\pi(Y) \). Similarly \(\mathbb{G}_{m,B}^s(B) \) embeds into \(\Aut_\pi(Y) \), so \(U_B(B) \times \mathbb{G}_{m,B}^s(B) \subseteq \Aut_\pi(Y) \), and this is the meaning of (3.14).

Note that \(U_B(B) \times \mathbb{G}_{m,B}^s(B) \) and \(\Aut_\pi(Y) \) are ind-varieties over \(k \) and the inclusions in (3.14) are morphisms between ind-varieties.

So, now, to prove Theorem B, we only need to show that \(W \) is contained in an algebraic subgroup of \(U_B(B) \times \mathbb{G}_{m,B}^s(B) \).

3.4.3. Structure of \(U_B \).

Lemma 3.5. The ind-group \(U_B(B) \) is a union of algebraic groups.

Before describing the proof, let us assume that \(U_B \) is just an \(r \)-dimensional additive group \(\mathbb{G}_{a,B}^r \). Then, each element of \(U_B \) can be written

\[
(3.15) \quad f = (a^1(z), \ldots, a^r(z))
\]

where each \(a^j(z) \) is an element of \(\mathbb{O}(B) \); its \(n \)-th iterate is given by \(f^n = (na^1(z), \ldots, na^r(z)) \). Then, the degree of \(f^n \), viewed as an automorphism of \(Y \), is bounded, independently of \(n \), by (a function of) the degrees of the \(a^j \). Our proof is a variation on this basic remark, with two extra difficulties: the structure of \(U_B \) may be more subtle in positive characteristic (see [13], §VII.2); instead of iterating one element \(f \), we need to control the group \(U_B \) itself.

Proof. Denote by \(\pi : U_B \to B \) the structure morphism. Fix some dominant morphism \(\pi_0 : B_0 \to B \) with \(B_0 \) an affine variety. The morphism \(\iota_{\pi_0} : U_B(B) \hookrightarrow (U_B \times B B_0)(B_0) \) defined by

\[
(3.16) \quad (s : B \to U_B) \mapsto (s \times_B \id : B_0 \to U_B \times_B B_0)
\]

is an embedding of ind-groups. To prove Lemma 3.5, we may always do such a base change, so we might assume that \(B \) is affine.

We prove Lemma 3.5 by induction on the relative dimension of \(\pi : U_B \to B \). If the relative dimension is zero, there is nothing to prove. So, we assume that the lemma holds for relative dimensions at most \(\leq \ell \), with \(\ell \geq 0 \), and we want to prove it when the relative dimension is \(\ell + 1 \).
Denote by U_η the generic fiber of π. There exists a finite field extension L of $k(B)$ such that $U_L := U_\eta \otimes_{k(B)} L$ is in an exact sequence:

$$(3.17) \quad 0 \to G_{a,L} \to U_L \xrightarrow{q_L} V_L \to 0,$$

where V_L is an irreducible unipotent group of dimension ℓ and V_L is isomorphic to A^ℓ_L as an L-variety; moreover, there is an isomorphism of L-varieties $\phi_L: U_L \to V_L \times G_{a,L}$ such that the quotient morphism q_L is given by the projection onto the first factor. So we have a section $s_L: V_L \to U_L$ such that $q_L \circ s_L = id$ (see [13]).

Doing the base change given by the normalization of B in L, and then shrinking the base if necessary, we may assume that

- there is an exact sequence of group schemes over B:

$$(3.18) \quad 0 \to G_{a,B} \to U_B \xrightarrow{q_B} V_B \to 0,$$

where V_B is a unipotent group scheme over B of relative dimension ℓ;
- there is an isomorphism of B-schemes $V_B \cong A^\ell_B$;
- s_L extends to a section $s_B: V_B \to U_B$ over B: $q_B \circ s_B = id$.

For $b \in B$, denote by U_b, V_b, q_b, s_b the specialization of U_B, V_B, q_B, s_B at b. The morphism of B-schemes $\beta: U_B \to V_B \times G_{a,B}$ sending a point x in the fiber U_b to the point $(q_b(x), y - s_b(x))$ of the fiber $V_b \times G_{a,b}$ defines an isomorphism. We use β to transport the group law of U_B into $V_B \times G_{a,B}$; this defines a law $*$ on $V_B \times G_{a,B}$, given by

$$(3.19) \quad a_1 \ast a_2 = \beta(\beta^{-1}(a_1) + \beta^{-1}(a_2)),$$

for a_1 and a_2 in $V_B \times G_{a,B}$. Denote by $O(V_B \times B)$ the function ring of the k-variety $V_B \times B$. There is an element $F(b, x_1, x_2)$ of $O(V_B \times B)[y_1, y_2]$ such that

$$(3.20) \quad F(b, x_1, x_2)(y_1, y_2) = C_0(b, x_1, x_2)(y_1) + C_2(b, x_1, x_2)(y_1) y_2.$$

The function $C_2(b, x_1, x_2)(y_1)$ does not vanish on $V_B \times B$, so $C_1 \otimes B^1 \simeq A^{2\ell + 1} \times B$; thus, C_2 is an element of $k(B)$. By symmetry we get

$$(3.21) \quad F(b, x_1, x_2)(y_1, y_2) = C_0(b, x_1, x_2) + C_1(b) y_1 + C_2(b) y_2$$

and

$$(3.22) \quad (x_1, y_1) \ast (x_2, y_2) = (x_1 + x_2, C_0(b, x_1, x_2) + C_1(b) y_1 + C_2(b) y_2).$$

Now, apply this equation for $x_1 = x_2 = 0$ (the neutral element of V_B), to deduce that C_1 and C_2 are both equal to the constant function 1 on B.

CHARACTERIZATION OF THE AFFINE SPACE 11
We identify now the ind-varieties $U_B(B)$ and $V_B(B) \times \mathbb{G}_a(B)$. Then, each element of $U_B(B)$ is given by a section $(S, T) \in V_B(B) \times \mathbb{G}_a(B)$; we shall define its degree to be $\deg(S, T) := \max\{\deg(S), \deg(T)\}$. And for $d \in \mathbb{N}$, we denote by $V_B(B)_d$ (resp. $\mathbb{G}_a(B)_d$) the subspace of sections of degree at most d in $V_B(B)$ (resp. $\mathbb{G}_a(B)$).

The group law in $U_B(B)$ corresponds to the law

$$ (S_1, T_1) \ast (S_2, T_2) = (S_1 + S_2, C_0(S_1, S_2) + T_1 + T_2) $$

because $C_1 = C_2 = 1$; here $C_0 : V_B(B) \times V_B(B) \to \mathbb{G}_a(B)$ is a morphism of ind-varieties. There exists an increasing function $\alpha : \mathbb{N} \to \mathbb{N}$ such that

$$ \deg(C_0(S_1, S_2)) \leq \alpha(d) $$

for all sections S_1 and $S_2 \in V_B(B)_d$.

By the induction hypothesis, there is an increasing function $\gamma : \mathbb{N} \to \mathbb{N}$ such that the group $(V_B(B)_d)$ is an algebraic group contained in $V_B(B)_{\gamma(d)}$. It follows that

$$ U_B(B) = \bigcup_{d \geq 0} (V_B(B)_d) \times \mathbb{G}_a(B)_{\alpha(\gamma(d))}. $$

To conclude, we only need to prove that each $(V_B(B)_d) \times \mathbb{G}_a(B)_{\alpha(\gamma(d))}$ is an algebraic group. But this follows from (3.23) and (3.24) because

$$ \deg(C_0(S_1, S_2) + T_1 + T_2) \leq \max\{\deg(C_0(S_1, S_2)), \deg(T_1), \deg(T_2)\} $$

(3.26)

$$ \leq \alpha(\gamma(d)) $$

for all (S_1, T_1) and (S_2, T_2) in $(V_B(B)_d) \times \mathbb{G}_a(B)_{\alpha(\gamma(d))}$. \hfill \qed

3.4.4. Subgroups of $\mathbb{G}_m^s(B)$ and conclusion.

Lemma 3.6. If Z is an irreducible subvariety of $\mathbb{G}_m^s(B)$ containing id, then $\langle Z \rangle$ is an algebraic subgroup of $\mathbb{G}_m^s(B)$.

Proof of Lemma 3.6. Pick a projective compactification \overline{B} of B. After taking the normalization of \overline{B}, we may assume \overline{B} to be normal. If h is any non-constant rational function on \overline{B}, denote by $\text{Div}(h)$ the divisor $(h)_0 - (h)_\infty$ on \overline{B}.

Let $y = (y_1, \ldots, y_s)$ be the standard coordinates on \mathbb{G}_m^s. Each element $f \in \mathbb{G}_m^s(B)$ can be written as $(b^f_1(z), \ldots, b^f_s(z))$, for some $b^f_j \in O^*(B)$. Let R be an effective divisor whose support $\text{Support}(R)$ contains $\overline{B} \setminus B$. Replacing R by some large multiple, Z is contained in the subset P_R of $\mathbb{G}_m^s(B)$ made of automorphisms $f \in \mathbb{G}_m^s(B)$ such that $\text{Div}(b^f_j) + R \geq 0$ and $\text{Div}(1/b^f_j) + R \geq 0$ for all $i = 1, \ldots, s$. Let us study the structure of this set $P_R \subset \mathbb{G}_m^s(B)$.

Let K be the set of pairs (D_1, D_2) of effective divisors supported on $\overline{B} \setminus B$ such that D_1 and D_2 have no common irreducible component, $D_1 \leq R$, $D_2 \leq R$ and D_1 and D_2 are rationally equivalent. Then K is a finite set. For every pair $\alpha = (D^\alpha_1, D^\alpha_2) \in K$, we choose a function $h_\alpha \in O^*(Y)$ such that $\text{Div}(h_\alpha) = D^\alpha_1 - D^\alpha_2$; if h is another element of $O^*(Y)$ such that $\text{Div}(h) = D_1 - D_2$, then $h/h_\alpha \in \mathbb{k}^*$. By
convention \(\alpha = 0 \) means that \(\alpha = (0, 0) \), and in that case we choose \(h_\alpha \) to be the constant function 1. For every element \(\beta = (\alpha_1, \ldots, \alpha_s) \in K^s \), denote by \(P_\beta \) the set of elements \(f \in G_m^n(B) \) such that \(b_i^f \in \mathcal{O}^n(B) \) satisfies \(\text{Div}(b_i^f) = D_1^{a_1} - D_2^{a_2} \) for every \(i = 1, \ldots, s \). Then \(P_\beta \cong G_m^n(k) \) is an irreducible algebraic variety. Moreover, \(\id \in P_\beta \) if and only if \(\beta = 0 \), and \(P_0 \) is an algebraic subgroup of \(G_m^n(B) \).

Observe that \(P_R \) is the disjoint union \(P_R = \bigsqcup_{\beta \in K^s} P_\beta \). Since \(\id \in Z \), \(Z \) is irreducible, and \(Z \subseteq P_R \), we obtain \(W \subseteq P_0 \). Since \(P_0 \) is an algebraic subgroup of \(G_m^n(B) \), \(\langle Z \rangle \) coincides with \(Z^\ell \) for some \(\ell \geq 1 \), and \(\langle Z \rangle \) is a connected algebraic group.

\[\square \]

Proof of Theorem B. By Proposition 2.2, we only need to prove that \(W = \langle V \rangle \) is of bounded degree. By Lemma 3.1 \(W \) is a subgroup of bounded degree if and only if \(W \subset \text{Aut}_\pi(Y) \) is a subgroup of bounded degree. Moreover, by (3.14), \(W \) is a subgroup of \(U_B(B) \times G_m^n(B) \subset \text{Aut}_\pi(Y) \). Denote by \(\pi_1 : U_B(B) \times G_m^n(B) \to U_B(B) \) the projection to the first factor and \(\pi_2 : U_B(B) \times G_m^n(B) \to G_m^n(B) \) the projection to the second. By Lemma 3.5, there exists an algebraic subgroup \(H_1 \) of \(U_B(B) \) containing \(\pi_1(W) \). Since \(\pi_2(W) \) is irreducible and contains \(\id \), Lemma 3.6 shows that \(\pi_2(W) \) is contained in an algebraic subgroup \(H_2 \) of \(G_m(B) \). Then \(W \) is contained in the algebraic subgroup \(H_1 \times H_2 \) of \(U_B(B) \times G_m^n(B) \). This concludes the proof. \[\square \]

4. Actions of additive groups

Theorem 4.1. Let \(k \) be an uncountable, algebraically closed field. Let \(X \) be a connected affine variety over \(k \). Let \(G \subset \text{Aut}(X) \) be an algebraic subgroup isomorphic to \(G_r^r \), for some \(r \geq 1 \). Let \(H = \{ h \in \text{Aut}(X) \mid gh = hg \text{ for every } g \in G \} \) be the centralizer of \(G \). If \(H/G \) is at most countable then \(G \) acts simply transitively on \(X \), so that \(X \) is isomorphic to \(G \) as a \(G \)-variety.

This section is devoted to the proof of this result. A proof is also described in [3, §11.4] when \(X \) is irreducible and the characteristic of \(k \) is 0.

Lemma 4.2. Let \(X \) be an irreducible affine variety endowed with a faithful action of \(G = G_r^r \). Let \(I \) be a non-zero, \(G \)-invariant ideal of \(O(X) \). If

\[I^G := \{ \xi \in I \mid g^*\xi = \xi \text{ for every } g \in G \} \]

is contained in the field \(k \) of constant functions, then

1. every non-zero, \(G \)-invariant ideal \(J \subset O(X) \) coincides with \(O(X) \);
2. \(G \) acts simply transitively on \(X \);
3. \(X \) can be identified to \(G \), with \(G \) acting on it by translations.

In particular, \(I = O(X) \).

Proof of Lemma 4.2. Let \(\xi \) be a non-zero element of \(I \). To prove the first assertion, pick \(\psi \in J \setminus \{0\} \), then \(\xi \psi \in IJ \setminus \{0\} \). Let \(V \) be the linear subspace of \(O(X) \) generated by the orbit \(\{ g^*(\xi \psi) \mid g \in G \} \). Firstly, \(V \) is contained in \(IJ \) because \(I \) and \(J \)
are G-invariant. Secondly, the dimension of V is finite, for G acts regularly on X (see [17, §1.2]). Thus, G being isomorphic to \mathbb{G}_a^r, there exists a G-invariant vector $\varphi \in V \setminus \{0\} \subseteq J$. Since $I^G \subseteq k$, the function φ is a constant, and J must be equal to $O(X)$ because it contains φ.

To prove the second and third assertions, fix a point $x \in X$. The closure $\overline{G(x)}$ of the orbit $G(x)$ is a closed, G-invariant subvariety, and the same is true for $X \setminus G(x)$. Looking at the ideal of functions vanishing on those subvarieties we obtain $X = G(x)$. Since G is abelian and acts faithfully on X, the stabilizer of x must be trivial. Thus, G acts simply transitively on X.

Let X be an affine variety over k, and let G be a subgroup of $\text{Aut}(X)$ isomorphic to \mathbb{G}_a^r for some $r > 0$. Denote by X_1, \ldots, X_l the irreducible components of X. Then all X_i, $i = 1, \ldots, l$, are invariant under G; permuting the X_i if necessary, there exists $s \leq l$ such that the action of G on X_i is nontrivial if and only if $i \leq s$.

For every $i \leq l$, denote by $\pi_i : O(X) \to O(X_i)$ the quotient map. Let J_i be the ideal of functions $\xi \in O(X)$ vanishing on the closed subset $\cup_{j \neq i} X_j$; its projection $I_i := \pi_i(J_i)$ is an ideal of $O(X_i)$. Observe that I_i is non-zero, is invariant under the action of G, and is contained in the ideal of $O(X_i)$ associated to the closed subset $X_i \cap (\cup_{j \neq i} X_j)$. In particular, $I_i = O(X_i)$ if and only if X_i is a connected component of X.

The homomorphism $\pi_i|_{J_i} : J_i \to I_i$ is a bijection. Indeed, it is a surjective homomorphism by definition. And if $\pi_i|_{J_i} (\xi) = 0$, then $\xi|_{X_i} = 0$ and since $\xi \in J_i$, $\xi|_{X_j} = 0$ for all $j \neq i$, thus $\xi = 0$, so that $\ker(\pi_i|_{J_i}) = 0$.

We denote by $(\pi_i|_{J_i})^{-1} : I_i \to J_i$ the inverse of $\pi_i|_{J_i}$.

Lemma 4.3. Let k be an uncountable, algebraically closed field. Let X be an affine variety, and G be an algebraic subgroup of $\text{Aut}(X)$ isomorphic to \mathbb{G}_a^r. Let

$$H := \{ h \in \text{Aut}(X) \mid gh = hg \text{ for every } g \in G \}$$

be the centralizer of G. If H/G is at most countable then $I_i^G \subseteq k$ for every irreducible component X_i on which G acts non-trivially.

Proof of Lemma 4.3. Keeping the notation that precedes the statement of the lemma, we only need to treat the case $i = 1$. Fix an identification $\mathbb{G}_a^r \simeq G$. Then, we get an identification

$$O(X) = \text{Mor}(X, \mathbb{G}_a^r) = \text{Mor}(X, G)$$

for which $(O(X)^G)'$ corresponds to $\text{Mor}(X, G)^G$ (here G acts on X only). We also identify G to the group of constant morphisms in $\text{Mor}(X, G)$; then, G becomes a subgroup of the additive group $(O(X)^G)'$. Let us modify the action of G on X, as in [3, §0.7]:

$$O(X) = \text{Mor}(X, \mathbb{G}_a^r) = \text{Mor}(X, G)$$
Fact 1.– Define $\Psi : (O(X)^G)^r \to \text{End}(X)$ by $\Psi(\xi) : x \mapsto \xi(x)(x)$ for every $x \in X$. Then Ψ is a homomorphism of additive groups.

We need to prove that $\Psi(\xi_1 + \xi_2) = \Psi(\xi_1) \circ \Psi(\xi_2)$ for every pair of elements $\xi_1, \xi_2 \in (O(X)^G)^r$. For $x \in X$, we have

$$\Psi(\xi_1 + \xi_2)(x) = (\xi_1(x) + \xi_2(x))(x) = \xi_1(x)((\xi_2(x)(x))).$$

On the other hand, we know that $\xi_1(y) = \xi_1(\xi_2(x)(y))$ for every pair $(x,y) \in X \times X$, because $\xi_2(x) \in G$ and $\xi_1 \in (O(X)^G)^r = \text{Mor}(X,G)^G$. We obtain $\xi_1(x) = \xi_1(\xi_2(x)(x))$, and the following computation proves the claim

$$\Psi(\xi_1 + \xi_2)(x) = \xi_1(\xi_2(x)(x))((\xi_2(x)(x))) = \Psi(\xi_1)(\Psi(\xi_2)(x)).$$

This fact implies that Ψ is a homomorphism from the additive group $(O(X)^G)^r$ to the group of automorphisms $\text{Aut}(X)$. We note that $\Psi|_G = \text{id}$; since $(O(X)^G)^r$ is abelian, $\Psi((O(X)^G)^r)$ is a subgroup of the centralizer H that contains G. Since H/G is countable, so is $(O(X)^G)^r/\Psi^{-1}(G)$.

Now, define $\Phi : (I_1^G)^r \to \text{Aut}(X)$ to be the composition of Ψ with the inclusion $((\pi_1|_r)^{-1})' : (I_1^G)^r \hookrightarrow (O(X)^G)^r$. We obtain an inclusion

$$(I_1^G)^r/\Phi^{-1}(G) \hookrightarrow (O(X)^G)^r/\Psi^{-1}(G);$$

hence, $(I_1^G)^r/\Phi^{-1}(G)$ is also countable.

Fact 2.– We have $\Phi^{-1}(G) = (I_1^G)^r$.

To prove this equality, denote by G_x the stabilizer of $x \in X$ in G, and for $\xi \in (I_1^G)^r$, set

$$Y(\xi) := \bigcap_{x \in X} (\xi(x) + G_x).$$

Then $Y(\xi)$ is an affine linear subspace of $G \simeq \mathbb{A}^r(k) = k^r$, and $\xi \in \Phi^{-1}(G)$ if and only if $Y(\xi) \neq \emptyset$. It follows that $\Phi^{-1}(G)$ is a linear subspace of $(I_1^G)^r$. Since k is uncountable and $(I_1^G)^r/\Phi^{-1}(G)$ is at most countable, we get $\Phi^{-1}(G) = (I_1^G)^r$.

It follows that for every $\xi \in (I_1^G)^r$,

$$0 \neq Y(\xi) = \bigcap_{x \in X} (\xi(x) + G_x) \subseteq W(\xi) := \bigcap_{x \in X_1} (\xi(x) + G_x).$$

Choose $\eta \in (I_1^G)^r$ such that $\dim(W(\eta))$ is minimal, and then choose $x_1, \ldots, x_m \in X_1$, such that $W(\eta) = \bigcap_{i=1}^m (\eta(x_i) + G_{x_i})$. To conclude, we assume that I_1^G contains a non-constant function α, and then we shall modify η to get a new function τ with $\dim(W(\tau)) < \dim(W(\eta))$, in contradiction with our choice for η. For this purpose, set $\beta = \prod_{i=1}^m (\alpha - \alpha(x_i))$. Then, choose $y \in X_1 \setminus \{x_1, \ldots, x_m\}$ such that $G_y \neq G$, $\alpha(y) \neq 0$ and $\beta(y) \neq 0$, and set

$$\gamma := \frac{\alpha \beta}{\beta(y) \alpha(y)}.$$
By construction, we get

1) $\gamma \in O(X_1)^G I_1^G \subseteq I^G$;
2) $\gamma(x_i) = 0$ for all $i = 1, \ldots, m$;
3) $\gamma(y) = 1$.

Pick $g \in W(\xi)$. The set U of elements $h = (a_1, \ldots, a_r) \in G$ such that $g \notin h + \xi(y) + G_y$ is Zariski dense in G. Take $(a_1, \ldots, a_r) \in U$ and set

$$\tau := \xi + (a_1 \gamma, \ldots, a_r \gamma).$$

By construction, τ is an element of $(I^G)^r$; and, changing (a_1, \ldots, a_r) in U if necessary, we may assume that $\tau \notin k^r$. From the properties (2) and (3) above, we get $\tau(x_i) = \eta(x_i)$ for $i = 1, \ldots, m$ and $\tau(y) = \eta(y) + (a_1, \ldots, a_r)$. We have

$$W(\tau) \subseteq \left(\bigcap_{i=1}^m (\tau(x_i) + G_{x_i}) \right) \cap (\tau(y) + G_y)$$

$$= \left(\bigcap_{i=1}^m (\eta(x_i) + G_{x_i}) \right) \cap (\eta(y) + (a_1, \ldots, a_r) + G_y)$$

Since $g \in W(\eta)$ but $g \notin (\eta(y) + (a_1, \ldots, a_r) + G_y)$, we get $\dim W(\tau) \leq \dim W(\eta) \cap (\eta(y) + (a_1, \ldots, a_r) + G_y) < \dim W(\eta)$. This proves the lemma.

Proof of Theorem 4.1. We keep the same notation. By Lemma 4.3, $I_1^G \subseteq k$. Let $G_1 \subset \text{Aut}(X_1)$ be the restriction of G. There exists $m \in \{1, \ldots, r\}$, such that $G_1 \cong \mathbb{G}_a^m$. We have $I_1^G = I_1^G \subseteq k$. By Lemma 4.2, $I_1 = O(X_1)$ and $X_1 \cong G_1$ as a G_1-variety. Since $I_1 = O(X_1)$, X_1 is a connected component of X. Since X is connected, $X = X_1$ and $G_1 = G$. This concludes the proof.

5. PROOF OF THEOREM A

In this section, we prove Theorem A. So, k is an uncountable, algebraically closed field, X is a connected affine algebraic variety over k, and $\phi : \text{Aut}(\mathbb{A}^n_k) \to \text{Aut}(X)$ is an isomorphism of (abstract) groups.

5.1. Translations and dilatations. Let $\text{Tr} \subset \text{Aut}(\mathbb{A}^n_k)$ be the group of all translations and Tr_i the subgroup of translations of the i-th coordinate:

$$\begin{align*}
(x_1, \ldots, x_n) &\mapsto (x_1, \ldots, x_i + c, \ldots, x_n) \\
\end{align*}$$

for some c in k. Let $D \subset \text{GL}_n(k) \subset \text{Aut}(\mathbb{A}^n_k)$ be the diagonal group (viewed as a maximal torus) and let D_i be the subgroup of automorphisms

$$\begin{align*}
(x_1, \ldots, x_n) &\mapsto (x_1, \ldots, ax_i, \ldots, x_n) \\
\end{align*}$$

for some $a \in k^*$. A direct computation shows that Tr (resp. D) coincides with its centralizer in $\text{Aut}(\mathbb{A}^n_k)$.
Lemma 5.1. Let G be a subgroup of Tr whose index is at most countable. Then, the centralizer of G in $\text{Aut}(\mathbb{A}^n)$ is Tr.

Proof of Lemma 5.1. The centralizer of G contains Tr. Let us prove the reverse inclusion. The index of G in Tr being at most countable, G is Zariski dense in Tr. Thus, if h centralizes G, we get $hg = gh$ for all $g \in \text{Tr}$, and h is in fact in the centralizer of Tr. Since Tr coincides with its centralizer, we get $h \in \text{Tr}$. □

5.2. Closed subgroups. As in Section 2.2, we endow $\text{Aut}(X)$ with the structure of an ind-group, given by a filtration by algebraic varieties Aut_j for $j \geq 1$.

Lemma 5.2. The groups $\varphi(\text{Tr})$, $\varphi(\text{Tr}_1)$, $\varphi(\text{D})$ and $\varphi(\text{D}_i)$ are closed subgroups of $\text{Aut}(X)$ for all $i = 1, \ldots, n$.

Proof. Since $\text{Tr} \subset \text{Aut}(\mathbb{A}^n)$ coincides with its centralizer, $\varphi(\text{Tr}) \subset \text{Aut}(X)$ coincides with its centralizer too and, as such, is a closed subgroup of $\text{Aut}(X)$. The same argument applies to $\varphi(\text{D}) \subset \text{Aut}(X)$. To prove that $\varphi(\text{Tr}_i) \subset \text{Aut}(X)$ is closed we note that $\varphi(\text{Tr}_i)$ is the subset of elements $f \in \varphi(\text{Tr})$ that commute to every element $g \in \varphi(\text{D}_j)$ for every index $j \neq i$ in $\{1, \ldots, n\}$. Analogously, $\varphi(\text{D}_i) \subset \text{Aut}(X)$ is a closed subgroup because an element f of D is in D_i if and only if it commutes to all elements g of Tr_j for $j \neq i$. □

5.3. Proof of Theorem A.

5.3.1. Abelian groups (see [13]). Before starting the proof, let us recall a few important facts on abelian, affine algebraic groups. Let G be an algebraic group over the field k, such that G is abelian, affine, and connected.

1. If $\text{char}(k) = 0$, then G is isomorphic to $\mathbb{G}_a^r \times \mathbb{G}_m^s$ for some pair of integers (r, s); if G is unipotent, then $s = 0$. (see [13], §VII.2, p.172)

When the characteristic p of k is positive, there are other types of of abelian groups, but criteria on the p-torsion may rigidify their structure:

2. If $\text{char}(k) = p$, G is unipotent, and all elements of G have order p, then G is isomorphic to \mathbb{G}_a^r for some $r \geq 0$. (see [13], §VII.2, Prop. 11, p.178)

3. If $\text{char}(k) = p$, and there is no non-trivial element in G of order p^ℓ, for any $\ell \geq 0$, then G is isomorphic to \mathbb{G}_m^s for some $s \geq 0$. (see [10], Theorem 16.13 and Corollary 16.15, and [13], §VII.2, p.176)

To keep examples in mind, note that all elements of $\text{Tr}_1(k)$ have order p and $\text{D}_1(k)$ does not contain any non-trivial element of order p^ℓ when $\text{char}(k) = p$.

5.3.2. Proof of Theorem A. Let us now prove Theorem A.

By Lemma 5.2, $\varphi(\text{Tr}_1) \subset \text{Aut}(X)$ is a closed subgroup; in particular, $\varphi(\text{Tr}_1)$ is an ind-subgroup of $\text{Aut}(X)$. Let $\varphi(\text{Tr}_1)^\circ$ be the connected component of the identity of $\varphi(\text{Tr}_1)$; from Section 2.2, we know that the index of $\varphi(\text{Tr}_1)^\circ$ in $\varphi(\text{Tr}_1)$ is at
most countable. The ind-group \(\varphi(\Tr_1)^{\circ} \) is an increasing union \(\bigcup_i V_i \) of irreducible algebraic varieties \(V_i \), each \(V_i \) containing the identity. Theorem B implies that each \(\langle V_i \rangle \) is an irreducible algebraic subgroup of \(\Aut(X) \). Since \(\varphi(\Tr_1) \) does not contain any element of order \(k < \infty \) with \(k \cap \text{char}(k) = 1 \), \(\langle V_i \rangle \) is unipotent. And, by Properties (1) and (2) of Section 5.3.1, \(\langle V_i \rangle \) is isomorphic to \(G_{i}^{\rho} \) for some \(r_i \). Thus

\[
(5.3) \quad \varphi(\Tr_1)^{\circ} = \bigcup_{i \geq 0} F_i
\]

where the \(F_i \) form an increasing family of unipotent algebraic subgroups of \(\Aut(X) \), each of them isomorphic to some \(G_{i}^{\rho} \). We may assume that \(\dim F_0 \geq 1 \).

Similarly, \(\varphi(D_1)^{\circ} \subset \varphi(D_1) \) is a subgroup of countable index and

\[
(5.4) \quad \varphi(D_1)^{\circ} = \bigcup_{i \geq 0} G_i,
\]

where the \(G_i \) are increasing irreducible commutative algebraic subgroups of \(\Aut(X) \) (we do not assert that \(G_i \) is of type \(\mathbb{G}_{m}^{\nu} \) yet). We may assume that \(\dim G_0 \geq 1 \).

The group \(D_i \) acts by conjugation on \(\Tr_i \); for every \(i \leq n \), this action has exactly two orbits \(\{ \text{id} \} \) and \(\Tr_i \setminus \{ \text{id} \} \), and the action on \(\Tr_i \setminus \{ \text{id} \} \) is free; hence, the same properties hold for the action of \(\varphi(D_i) \) on \(\varphi(\Tr_i) \) by conjugation.

Let \(H_i \) be the subgroup of \(\varphi(\Tr_1) \) generated by all \(g \circ f \circ g^{-1} \) with \(f \in F_i \) and \(g \in G_i \). Theorem B shows that \(H_i \) is an irreducible algebraic subgroup of \(\varphi(\Tr_1) \). We have \(H_i \subseteq H_{i+1} \) and \(g \circ H_i \circ g^{-1} = H_i \) for every \(g \in G_i \).

Write \(H_i = G_{i}^{\rho} \) for some \(l \geq 1 \). We claim that \(G_i \simeq \mathbb{G}_{u}^{\nu} \times \mathbb{G}_{m}^{\nu} \) for a pair of integers \(r, s \geq 0 \) with \(r + s \geq 1 \). This follows from Properties (1) and (2) of Section 5.3.1 because, when \(\text{char}(k) = p > 1 \), the only element in \(\varphi(D_1) \) of order \(p^f \), \(f \geq 0 \), is the identity element. Since the action of \(\varphi(D_1) \) on \(\varphi(\Tr_1 \setminus \{ 0 \}) \) is free, the action of \(G_i \) on \(F_i \setminus \{ 0 \} \) is free, and this implies \(r = 0 \) (see Lemma 4.2(2)). Let \(q \) be a prime number with \(q \cap \text{char}(k) = 1 \). Then \(\mathbb{G}_{m}^{\nu} \) contains a copy of \((\mathbb{Z}/q\mathbb{Z})^{\nu} \), and \(D_1 \) does not contain such a subgroup if \(s > 1 \); so, \(s = 1 \), \(G_i \simeq \mathbb{G}_{m} \) and \(G_i = G_{i+1} \) for all \(i \geq 0 \). It follows that \(\varphi(D_1)^{\circ} \simeq \mathbb{G}_{m} \). Since the index of \(\varphi(D_1)^{\circ} \) in \(\varphi(D_1) \) is countable, there exists a countable subset \(J \subseteq \varphi(D_1) \) such that \(\varphi(D_1) = \bigcup_{h \in J} \varphi(D_1)^{\circ} \circ h \). Let \(f \in F_i \) be a nontrivial element. Since the action of \(\varphi(D_1) \) on \(\varphi(\Tr_1 \setminus \{ 0 \}) \) is transitive,

\[
(5.5) \quad F_i \setminus \{ 0 \} = \bigcup_{h \in J} \left(\bigcup_{g \in \varphi(D_1)^{\circ}} (g \circ h) \circ f \circ (g \circ h)^{-1} \right) \cap F_i.
\]

The right hand side is a countable union of subvarieties of \(F_i \setminus \{ 0 \} \) of dimension at most one. It follows that \(\dim F_i = 1 \), \(F_i \simeq \mathbb{G}_{u} \), and \(\varphi(\Tr_1)^{\circ} \simeq \mathbb{G}_{u} \). Thus, we have

\[
(5.6) \quad \varphi(\Tr_1)^{\circ} \simeq \mathbb{G}_{u}, \quad \text{and} \quad \varphi(D_1)^{\circ} \simeq \mathbb{G}_{m}.
\]

Since each \(\varphi(\Tr_1)^{\circ} \) is isomorphic to \(\mathbb{G}_{u} \), \(\varphi(\Tr)^{\circ} \) is an \(n \)-dimensional commutative unipotent group and its index in \(\varphi(\Tr) \) is at most countable. By Lemma 5.1, the centralizer of \(\varphi^{-1}(\varphi(\Tr)^{\circ}) \) in \(\Aut(\mathbb{A}_{k}^{\nu}) \) is \(\Tr \). It follows that the centralizer of \(\varphi(\Tr)^{\circ} \) in \(\varphi(\Tr) \) is \(\varphi(\Tr) \). Then Theorem 4.1 implies that \(X \) is isomorphic to \(\mathbb{A}_{k}^{\nu} \).
REFERENCES

UNIVERSITÉS, CNRS, IRMAR - UMR 6625, F-35000 RENNES, FRANCE
E-mail address: serge.cantat@univ-rennes1.fr, junyi.xie@univ-rennes1.fr

INSTITUT FÜR MATHEMATIK, FRIEDRICH-SCHILLER-UNIVERSITÄT JENA,
JENA 07737, GERMANY
E-mail address: andriyregeta@gmail.com