
BIRATIONAL PERMUTATIONS

SERGE CANTAT

ABSTRACT. We prove that every permutation of Pn(K), where K is a fi-
nite field with odd characteristic, is induced by a birational transformation
with no rational indeterminacy point.
RÉSUMÉ. Nous montrons que toute bijection de Pn(K), pour K un corps
fini de caractéristique impaire, est induite par une transformation bira-
tionnelle sans point d’indétermination rationnel.

1. VERSION FRANÇAISE ABRÉGÉE

Soit p un nombre premier. Soit K un corps fini de caractéristique p, et m
l’entier positif tel que le cardinal q de K soit égal à pm. Le groupe de Cre-
mona Crn(K) est le groupe des K-automorphismes du corps K(x1, ...,xn).
Ce groupe coïncide avec le groupe des transformations birationnelles de
l’espace projectif Pn

K. Si f : Pn
K 99K Pn

K est une transformation birationnelle,
il existe alors n+1 polynômes homogènes Pi(x0, ...,xn) de même degré d et
sans facteur commun tels que f [x0, ...,xn] = [P0 : ... : Pn]. Le lieu d’indéter-
mination Ind( f ) de f est l’ensemble fini des points satisfaisant le système
d’équations Pi(x0, ...,xn) = 0 pour tout i = 0, ...,n. Si Ind( f ) et Ind( f−1) ne
contiennent pas de point à coordonnées dans K, alors f induit une bijection
de l’ensemble fini Pn(K). Notons

BCrn(K) = { f ∈ Crn(K)| Ind( f )(K) = Ind( f−1)(K) = /0}

le groupe formé de ces transformations rationnelles. Le but de cette note est
de montrer le théorème suivant.

Theorem 1.1. Soit K un corps fini de caractéristique impaire. Toute bijec-
tion de l’ensemble fini Pn(K) est réalisée par un élément de BCrn(K).

Lorsque la caractéristique de K est égale à 2, nous montrerons que toute
bijection alternée est réalisée par un élément de BCrn(K). Si le cardinal de
K vaut 2, toute bijection est en fait réalisable, mais lorsqu’il vaut 2m avec
m > 1, je ne sais pas si l’on peut réaliser les transpositions.

Date: 2009.
1



BIRATIONAL PERMUTATIONS 2

Remark 1.2. 1) Ce résultat et la preuve qui en est donnée sont analogues à
plusieurs énoncés obtenus par Biswas, Huisman, Kollár, Lukackiı̄ et Man-
golte à propos des transformations birationnelles de P2(R) qui n’ont pas de
point d’indétermination réel (voir [2], [4], [5] et [7]).

2) Il doit également être comparé à l’énoncé de Maubach affirmant que
les automorphismes polynomiaux du plan affine induisent toutes les permu-
tations de K2 si la caractéristique de K est impaire, et les permutations paires
si |K|= 2m avec m > 1 (voir [8]).

3) La proportion d’entiers n ≤ N qui sont cardinal d’un espace projectif
Pk(K) avec K corps fini et k entier≥ 1 tend vers 0 comme 1/ log(N) lorsque
N tend vers l’infini. In fine, peu de bijections sont donc réalisées par des
transformations birationnelles.

2. INTRODUCTION

Let p be a prime number. Let K be a finite field of characteristic p, let q be
the cardinal of K and m the positive integer such that q = pm. The Cremona
group Crn(K) is the group of K-automorphisms of the field K(x1, ...,xn).
It coincides with the group of birational transformations of the projective
space Pn

K.
Let f : Pn

K 99K Pn
K be a birational transformation. There exists n+ 1 ho-

mogeneous polynomials Pi ∈ K[x0, ...,xn], 0≤ i≤ n, with the same degree d
and without common factor, such that

f ([x0 : ... : xn]) = [P0 : ... : Pn].

The system of equations Pi(x0, ...,xn) = 0, 0 ≤ i ≤ n, determines a (finite)
algebraic subvariety of the projective space Pn

K. This algebraic variety is
the indeterminacy locus Ind( f ) of f . When Ind( f ) and Ind( f−1) contain
no rational point (i.e. no point in Pn(K)), the birational transformation f
induces a bijection f of the finite set Pn(K). We shall denote by

BCrn(K) = { f ∈ Crn(K)| Ind( f )(K) = Ind( f−1)(K) = /0}

the group made of these birational transformations. Restriction to Pn(K)
defines a morphism

f 7→ f

from the group BCrn(K) to the group Bij(Pn(K)) of all permutations of the fi-
nite projective plane Pn(K). Since this plane contains qn+ ...+q2+q+1 ele-
ments, we get a subgroup of the finite permutation group Bij({1,2, ...,(qn+1−
1)/(q−1)}).
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Theorem 2.1. If the characteristic of K is different from 2, the morphism
f 7→ f from BCrn(K) to Bij(Pn(K)) is onto.

In other words, every permutation of Pn(K) is induced by a birational
transformation without rational indeterminacy point (if the characteristic of
K is odd). If the characteristic of K is equal to 2, we shall prove that the
image of f 7→ f contains all even permutations. If K has two elements, then
every permutation is indeed realizable as a birational permutation, but I don’t
know whether transpositions of the finite set Pn(K) are in the image of f 7→ f
when |K|= 2m, with m > 1.

Remark 2.2. This result and its proof are analogous to several statements
due to Biswas, Huisman, Kollár, Lukackiı̄, and Mangolte. They proved that
the group of birational transformations of the real projective plane P2(R)
without real indeterminacy points embeds as a dense subgroup into the group
of diffeomorphisms of the plane, and acts n-transitively on P2(R) for all
n≥ 0. The interested reader may consult [2], [4], [5], and [7].

Remark 2.3. This result should also be compared to a similar statement due
to Maubach for automorphisms of the affine plane (see [8]). In Maubach’s
case, a set of generators for Aut(K2) is known and may be used to prove that
odd permutations are not realized by automorphisms when |K|= 2r, r > 1.

Remark 2.4. The proportion of positive integers n ≤ N that are equal to
|Pk(K)| for at least one pair (k,K) where k is an integer and K is a finite field
goes to 0 when N goes to +∞. This proportion is 43/100 for N = 100.

The proof follows easily from the prime number theorem. If n ≤ N is
an integer of type n = |P1(K)|, where K is a finite field, then n is equal to
pm+1 for some pair (m, p) with m≥ 1 and p a prime such that pm < N. The
number of primes p≤ N is approximately N/ log(N). If pm < N and m≥ 2,
then p≤

√
N and m≤ log(N)/ log(2) because p≥ 2. In particular, for each

prime p, the sequence pk +1, k = 1, ..., counts at most log(N)/ log(2) terms
before it reaches N. This implies that the number of integers n ≤ N of type
|P1(K)| is bounded from above by

N
log(N)

+
log(N)

log(2)

√
N.

For integers n≤N of type |Pk(K)|with |K|= pm and k≥ 2 we have p≤
√

N,
m≤ log(N)/ log(2) and k ≤ log(N)/ log(2). This gives at most(

log(N)

log(2)

)2√
N
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terms. Hence, the proportion of integers n ≤ N of type |Pk(K)| for some
finite field K and integer k≥ 1 goes to 0 as 1/ log(N) when N goes to infinity.

3. FROM PROJECTIVE TRANSFORMATIONS TO ARBITRARY

PERMUTATIONS

The group of automorphisms of the projective space Pn(K) coincides
with the group of projective transformations PGLn(K). This group is a strict
subgroup of Bij(Pn(K)). The group of permutations of Pn(K) preserving
collinearity is an intermediate subgroup, that is usually denoted PΓLn(K):

PGLn(K)⊂ PΓLn(K)⊂ Bij(Pn(K)).

The group PΓLn(K) is generated by PGLn(K) and automorphisms of the
field K. Depending on K, PΓLn(K) may be contained, or not, in the group
Alt(Pn(K)) of alternating permutations (i.e. with signature +1).

Theorem 3.1 (List [6] ; Bhattacharya [1]). Let K be a finite field and n > 1
be an integer. Let G be a subgroup of Bij(Pn(K)) which contains the auto-
morphism group PGLn(K). Either G is contained in PΓLn(K), or G contains
the alternating subgroup Alt(Pn(K)).

The group BCrn(K) contains the group of automorphisms of Pn
K. Hence,

all what we have to do in order to prove theorem 2.1, is to construct a bira-
tional transformation f of Pn(K) such that

(1) f and its inverse f−1 do not have any rational indeterminacy point;
(2) f does not preserve collinearity;
(3) the signature of the permutation f : Pn(K)→ Pn(K) is −1.

In what follows, we focus on the first non trivial case, namely n = 2. The
general case is obtained along similar lines.

In order to construct the desired trnasformation f : P2
K 99K P2

K, we shall
first construct a birational transformation g of a smooth quadric Q, and then
transport the construction onto the plane by stereographic projection.

4. A SMOOTH QUADRIC

Lemma 4.1. There exists a field extension K′ of K of degree 2, a smooth
quadric Q⊂ P3

K, a line L ⊂ P3
K, and a rational point N ∈ Q(K) (all defined

over K) such that:
• the line L does not intersect Q(K);
• the tangent plane TNQ intersects Q(K′) in two conjugate lines D and

D′, but does not intersect Q(K)\{N};
• the plane TNQ contains the line L;
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• there is a rational point M ∈Q(K) such that the plane H spanned by
L and M cuts Q on a smooth conic.

Proof. Let K′ be an extension of K of degree 2, and let a be an element of
K′ \K. Since the extension has degree 2, there are elements u, and v in K
such that a and its conjugate a′ are the two roots of X2 +uX + v = 0. Let us
first assume that the characteristic of K is different from 2. In this case, we
can choose u to be 0 ; we then choose Q⊂ P3

K to be the quadric

x2 + vy2 + z2 = t2,

where [x : y : z : t] are homogeneous coordinates for the projective space P3
K.

The point N = [0 : 0 : 1 : 1] is on the conic Q, and the tangent plane to Q at
N intersects Q on the pair of lines (x−ay)(x−a′y) = 0.

The line L defined by z = t = 0 does not intersect Q(K). For M, we choose
the point [1 : 0 : 0 : 1]. The plane H which contains L and M is the plane z= 0.
It intersects Q along the conic x2 + vy2 = t2. This conic is smooth because
the equation X2 +uX + v does not have any rational root.

When the characteristic of K is equal to 2, the previous formula does not
define a smooth quadric, but one can choose Q to be given by the following
equation x2 +uxy+ vy2 + z2 + x(z+ t)+ y(z+ t)+ zt = 0. �

Let us now use this lemma. By a projective change of coordinates, we can
and shall assume that N is the point [0 : 0 : 1 : 1], M is the point [1 : 0 : 0 : 1],
L is the line z = t = 0, and H is the plane z = 0, where [x : y : z : t] are the
(new) chosen homogeneous coordinates of P3

K. The plane H is isomorphic
to P2

K, with projective coordinates [x : y : t].
Let ΦN be the stereographic projection from the pole N to the plane H.

By definition, ΦN : Q→ H = P2
K is a birational map which blows down the

two lines of Q through N on two distinct points of P2(K′), namely [a : 1 : 0]
and [a′ : 1 : 0], and blows up N into the line through these two points, i.e. to
the line L.

Let g be a birational transformation of Q, which is defined over K. Let us
assume that g does not have any indeterminacy point on Q(K), and that g
fixes both lines tangent to Q through N pointwise (in particular, the differen-
tial of g at N is the identity). Then ΦN ◦ g ◦Φ

−1
N does not have any rational

indeterminacy point either. We shall use this fact to construct our desired
birational transformation.
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5. CONSTRUCTION AND CONCLUSION

Let π : P3
K 99K P1

K be the projection from P3
K to the pencil of planes con-

taining the line L. In coordinates,

π([x : y : z : t]) = [z : t].

This rational map has indeterminacies along the line L ( i.e. along z = t = 0).
This line does not contain any rational point of the quadric Q. If [x : y : z : t]
is a point of Q, we shall denote by H[z:t] the fiber of π : P3

K 99K P1
K through

[x : y : z : t]; this is a plane which intersects Q on a conic containing [x : y :
z : t]. For example, starting with the point M = [1 : 0 : 0 : 1], the plane H[0:1]
coincides with the plane H in lemma 4.1, and intersects Q along a smooth
conic.

Let G be the group of birational transformations of P3
K which preserve

Q and the fibers of π, acting in each fiber H[z:t] of π by a projective auto-
morphism which lets H[z:t]∩Q invariant. In affine coordinates (x,y,z), with
t = 1, elements of G are of the form

g(x,y,z) = (Az(x,y),z)

where A : z 7→ Az takes its values in the group Aut(P2
K) = PGL3(K) (1). Let

us now construct an element g of G without indeterminacy point in Q(K).
Being a smooth conic with a rational point, H[0:1] ∩Q is isomorphic to

P1
K (the stereographic projection from a rational point is defined over K).

Moreover, if h is a homographic transformation of P1(K) there is a projective
transformation h′ of the plane H[0:1] such that h′ preserves the conic and the
restriction of h to the conic is conjugate to h by the stereographic projection.
We call h′ a lift of h.

Let c be a generator of the cyclic group K∗. Multiplication by c determines
a linear transformation of K, and therefore a homographic transformation hc
of P1(K), namely hc([a : b]) = [ca : b]. The multiplicative group K∗ has q−1
elements, and multiplication by c is a cyclic transitive permutation of this set.
As a consequence, the signature of the permutation hc is equal to −1 if the
characteristic of K is odd, and +1 if the characteristic is 2. Let h′c be a lift of
hc to H[0:1].

Remark 5.1. If we replace hc by the translation gc([a : b]) = [a+ cb : b],
where c is an element of K, then gc fixes [1 : 0], and the cardinal of all other
orbits is equal to the order of c in the abelian group (K,+). In particular,

1More precisely, one wants Aw to be a linear projective transformation that preserves the
intersection of Q with the horizontal plane z = w.
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gc is a transposition if K is the field with 2 elements and c = 1. In all other
cases, the signature of the permutation gc : P1(K)→ P1(K) is equal to +1.

Interpolation in finite fields shows that there is a rational map A : z 7→ Az,
with values in PGL3(K), such that A0 coincides with h′c and Az is the identity
for all other values of z, z = ∞ included (see [9], chapter I.6 for interpolation
in finite fields) (2). The rational transformation g ∈ G which is defined by
such a choice for A

(1) is an element of the group G;
(2) does not have any indeterminacy point in Q(K);
(3) is the identity at the north pole N (fixing the two lines contained in

Q(K′) through N pointwise).
As a consequence, the stereographic projection ΦN conjugates g to an ele-
ment f of BCr2(K), such that

(1) f fixes the whole line L pointwise (the "image" of N by ΦN);
(2) f preserves the image C of the conic Q∩H[0:1]: this conic C is smooth

(isomorphic to P1(K)) and does not intersect the line L;
(3) f fixes two points on C, and permutes the q−1 remaining points of

C cyclically;

2Here is a general way to define such an interpolation. Recall Q is given by the equation
x2 + vy2 + z2 = t2. For each w, consider the horizontal plane Hw given by the equation
z = w in affine coordinates, or z = wt in projective coordinates. Inside Hw we have the conic
Cw = Q∩Hw, given by the equation x2 + vy2 = t2(1−w2), and the line L, given by the
equation t = z = 0. Let Aut(Hw;Cw) be the group of linear projective transformations of Hw
preserving Cw. Our constraint is that Az is in Aut(Hz;Qz) for all z.

If m = (a,b,0,0) is a non-zero vector, the orthogonal symetry of K4 (with respect
to the quadratic form x2 + vy2 + z2− t2) that fixes pointwise the orthogonal complement
(a,b,0,0)⊥ and maps (a,b,0,0) to its opposite determines an involutive linear projective
transformation Jm of P3(K) that preserves Q, the point [m] ∈ L, and each Hw. Its action on
Cw fixes the two points given by the tangent lines to Cw that contain [m]. In that way, we get
q+ 1 involutions. We also have a one parameter subgroup U ⊂ Aut(Hw;Cw) given by the
orthogonal group of the binary quadratic form x2 + vy2; more precisely by linear transfor-
mations of type (x,y,z) 7→ (ax−vby,bx+ay,z) where a2+vb2 = 1 (i.e. (a,b) on the rational
conic given by this equation). Since the involutions Jm have no common fixed points, one
verifies that every linear projective transformation of Hw that preserves Cw is contained in
the group generated by U and the Jm: there is an integer `, and points mi such that the map
Θ : (g0, . . . ,g`) ∈U `+1 7→ g0 ◦ Jm1 ◦ · · · ◦ ◦Jm`

◦g` surjects onto Aut(Hw;Cw).
Thus, one can find such gi’s (resp. ĝi’s) to get A0 (resp. the identity). Now, we only need

to find rational functions z 7→Gi(z)∈U such that Gi(0) = gi and Gi(z) = ĝi for z 6= 0. Since
U is isomorphic to P1, we end up with the classical interpolation for rational functions in one
variable (over a finite field). The map z 7→ Az can then be defined as Θ(G0(z), . . . ,G`(z)).
This method applies to more general groups, generated by one parameter subgroups.
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(4) all other points of P2(K) are fixed by f ;
(5) if the characteristic of K is different from 2, the permutation f of

P2(K) has signature −1, as for hc.

Let m be one of the fixed points of f along C. Let m′ be a point of C which
is not fixed by f (such a point exist as soon as |K| 6= 2). The line containing
m and m′ intersects L on a third point m′′. Both m and m′′ are fixed points of
f , m′ is not fixed, and m′ is the unique point of C \ {m} on the line (mm′′).
This shows that

(6) if K has more than 2 elements, f does not preserve collinearity.
Hence, if |K|> 2, f is an element of BCr2(K) that does not preserve collinear-
ity. The existence of f and theorem 3.1 show that the image of the morphism{

BCr2(K) → Bij(P2(K))
f 7→ f

contains the alternating group. Property (5) concludes the proof of the theo-
rem.

Remark 5.2. With the help of remark 5.1, one can change hc into the trans-
lation g1[a : b] = [a+ b : b]. Doing that, the bijection f of P2(K) becomes
a transposition. Since PGL3(K) is 2-transitive, all transpositions are in the
image of the morphism f 7→ f , and the image coincides with Bij(P2(K)).

6. COMPLEMENT

Higher dimension. The proof is the same in higher dimension. In order
to construct the required element f : Pn

K 99K Pn
K, we start with a smooth

quadric Q in Pn+1
K and a line L which does not intersect Q(K). The family

of planes of dimension 2 that contain L cuts Q along a family of conics. We
may assume that one of this planes H intersects Q along a smooth conic.
The birational transformation g of Q is defined as in the previous section: It
preserves the family of planes, coincides with h′c along H, and is the identity
for the remaining planes. We choose a point N in Q(K) such that the plane
through N containing L is tangent to Q at N. We then conjugate g to an
element f of BCrn(K) by a stereographic projection ΦN from the pole N.
The map f does not preserve collinearity, and its signature is −1 if p is odd
or |K|= 2.

Question. Let us fix the dimension n and the field K. Let BCrn,d(K) be
the finite set of elements f ∈ BCrn(K) which are defined by homogeneous
polynomials of degree at most d. Let σ be an element of Bij(Pn(K)), and
N(d,σ) be the number of elements f in BCrn,d(K) such that f = σ. What
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is the asymptotic behaviour of N(d,σ)/|BCrn,d(K)| ? If σ is an element of
Bij(Pn(K)), let L(σ) be the length of its longest orbit. What is the expecta-
tion of L( f ) for f in BCrn,d(K) ? Similar questions have been studied for
projective transformations instead of birational transformations (see [3]).
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