BIRRATIONAL CONJUGACIES BETWEEN ENDMORPHISMS ON THE PROJECTIVE PLANE

SERGE CANTAT AND JUNYI XIE

1. The statement. – Let k be an algebraically closed field of characteristic 0. If f_1 and f_2 are two endomorphisms of a projective surface X over k and f_1 is conjugate to f_2 by a birational transformation of X, then f_1 and f_2 have the same topological degree. When X is the projective plane \mathbb{P}_k^2, f_1 (resp. f_2) is given by homogeneous formulas of the same degree d without common factor, and d is called the degree, or algebraic degree of f_1; in that case the topological degree is d^2, so, f_1 and f_2 have the same degree d if they are conjugate.

Theorem A. Let k be an algebraically closed field of characteristic 0. Let f_1 and f_2 be dominant endomorphisms of \mathbb{P}_k^2 over k. Let $h : \mathbb{P}_k^2 \to \mathbb{P}_k^2$ be a birational map such that $h \circ f_1 = f_2 \circ h$. If the degree d of f_1 is ≥ 2, there exists an isomorphism $h' : \mathbb{P}_k^2 \to \mathbb{P}_k^2$ such that $h' \circ f_1 = f_2 \circ h'$.

Moreover, h itself is in $\text{Aut}(\mathbb{P}_k^2)$, except may be if f_1 is conjugate by an element of $\text{Aut}(\mathbb{P}_k^2)$ to

1. the composition of $g_d : [x : y : z] \mapsto [x^d : y^d : z^d]$ and a permutation of the coordinates,
2. or the endomorphism $(x, y) \mapsto (x^d, y^d + \sum_{j=2}^d a_j y^{d-j})$ of the open subset $\mathbb{A}_k^2 \setminus \{0\} \times \mathbb{A}_k^2 \subset \mathbb{P}_k^2$, for some coefficients $a_j \in k$.

Theorem A is proved in Sections 2 to 6. A counter-example is given in Section 7 when $\text{char}(k) \neq 0$. The case $d = 1$ is covered by [1]; in particular, there are automorphisms $f_1, f_2 \in \text{Aut}(\mathbb{P}_k^2)$ which are conjugate by some birational transformation but not by an automorphism.

Example 1. When $f_1 = f_2$ is the composition of g_d and a permutation of the coordinates and h is the Cremona involution $[x : y : z] \mapsto [x^{-1} : y^{-1} : z^{-1}]$, we have $h \circ f_1 = f_2 \circ h$.

Example 2. When

\[f_1(x, y) = (x^d, y^d + \sum_{j=2}^d a_j y^{d-j}) \quad \text{and} \quad f_2(x, y) = (x^d, y^d + \sum_{j=2}^d a_j (B/A)^j x^j y^{d-j}) \]

Date: 2019.

The last-named author is partially supported by project “Fatou” ANR-17-CE40-0002-01, the first-named author by the french academy of sciences (fondation del Duca).
with \(a_j \in \mathbb{k} \) then \(h(x,y) = (Ax, Bxy) \) conjugates \(f_1 \) to \(f_2 \) if \(A \) and \(B \) are roots of unity of order dividing \(d - 1 \), and \(\deg(h) = 2 \). On the other hand, \(h'[x : y : z] = [Az/B : y : x] \) is an automorphism of \(\mathbb{P}^2 \) that conjugates \(f_1 \) to \(f_2 \).

Acknowledgement. – Theorem A answers a question of T. Gauthier and G. Vigny in dimension 2. We thank them for sharing their ideas. We also thank D.-Q. Zhang for answering our questions on the theorem of R. V. Gurjar and J. Moraga for pointing out a mistake in the first version of Section 7.

2. **The exceptional locus.** – If \(h : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2 \) is a birational map, we denote by \(\text{Ind}(h) \) its **indeterminacy locus** (a finite subset of \(\mathbb{P}^2(\mathbb{k}) \)), and by \(\text{Exc}(h) \) its **exceptional set**, i.e. the union of the curves contracted by \(h \) (a finite union of irreducible curves). Let \(U_h = \mathbb{P}^2 \setminus \text{Exc}(h) \) be the complement of \(\text{Exc}(h) \); it is a Zariski dense open subset of \(\mathbb{P}^2 \). If \(C \subseteq \mathbb{P}^2 \) is a curve, we denote by \(h_c(C) \) the **strict transform** of \(C \), i.e. the Zariski closure of \(h(C \setminus \text{Ind}(f)) \).

Proposition 3. If \(h \) is a birational transformation of the projective plane, then
1. \(\text{Ind}(h) \subseteq \text{Exc}(h) \),
2. \(h|_{U_h}(U_h) = U_h^{-1} \), and
3. \(h|_{U_h} : U_h \to U_h^{-1} \) is an isomorphism.

Proof. There is a smooth projective surface \(X \) and two birational morphisms \(\pi_1, \pi_2 : X \to \mathbb{P}^2 \) such that \(h = \pi_2 \circ \pi_1^{-1} \); we choose \(X \) minimal, in the sense that there is no \((-1)\)-curve \(C \) of \(X \) which is contracted by both \(\pi_1 \) and \(\pi_2 \) ([8]).

Pick a point \(p \in \text{Ind}(h) \). The divisor \(\pi_1^{-1}(p) \) is a tree of rational curves of negative self-intersections, with at least one \((-1)\)-curve. If \(p \notin \text{Exc}(h) \), any curve contracted by \(\pi_2 \) that intersects \(\pi_1^{-1}(p) \) is in fact contained in \(\pi_1^{-1}(p) \). But \(\pi_2 \) may be decomposed as a succession of contractions of \((-1)\)-curves; since it does not contract any \((-1)\)-curve in \(\pi_1^{-1}(p) \), we deduce that \(\pi_2 \) is a local isomorphism along \(\pi_1^{-1}(p) \). This contradicts the minimality of \(\mathbb{P}^2 \), hence \(\text{Ind}(h) \subseteq \text{Exc}(h) \). Thus \(h|_{U_h} : U_h \to \mathbb{P}^2 \) is regular. Since \(U_h \cap \text{Exc}(h) = \emptyset \), \(h|_{U_h} \) is an open immersion, \(h^{-1} \) is well defined on \(h|_{U_h}(U_h) \), and \(h^{-1} \) is an open immersion on \(h|_{U_h}(U_h) \). It follows that \(h|_{U_h}(U_h) \subseteq U_{h^{-1}} \). The same argument shows that \(h^{-1}|_{U_{h^{-1}}} : U_{h^{-1}} \to \mathbb{P}^2 \) is well defined and its image is in \(U_h \). Since \(h^{-1}|_{U_{h^{-1}}} \circ h|_{U_h} = \text{id} \) and \(h|_{U_h} \circ h^{-1}|_{U_{h^{-1}}} = \text{id} \), this concludes the proof.

Let \(f_1 \) and \(f_2 \) be dominant endomorphisms of \(\mathbb{P}^2 \). Let \(h : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2 \) be a birational map such that \(f_1 = h^{-1} \circ f_2 \circ h \). Let \(d \) be the common (algebraic) degree of \(f_1 \) and \(f_2 \). Recall that an algebraic subset \(D \) of \(\mathbb{P}^2 \) is **totally invariant** under the action of the endomorphism \(g \) if \(g^{-1}(C) = C \) (then \(g(C) = C \), and if \(\deg(g) \geq 2 \), \(g \) ramifies along \(C \)).

Lemma 4. The exceptional set of \(h \) is totally invariant under the action of \(f_1 \):
\[
f_1^{-1}(\text{Exc}(h)) = \text{Exc}(h).
\]
Proof. Since \(h \circ f_1 = f_2 \circ h \), the strict transform of \(f_1^{-1}(\text{Exc}(h)) \) by \(f_2 \circ h \) is a finite set, but every dominant endomorphism of \(\mathbb{P}^2_k \) is a finite map, so the strict transform of \(f_1^{-1}(\text{Exc}(h)) \) by \(h \) is already a finite set. This means that \(f_1^{-1}(\text{Exc}(h)) \) is contained in \(\text{Exc}(h) \); this implies \(f_1(\text{Exc}(E)) \subset E \) and then \(f_1^{-1}(\text{Exc}(h)) = \text{Exc}(h) = f_1(\text{Exc}(h)) \) because \(f_1 \) is onto. \(\square \)

Lemma 5. If \(d \geq 2 \) then \(\text{Exc}(h) \) and \(\text{Exc}(h^{-1}) \) are two isomorphic configurations of lines, and this configuration falls in the following list:

(P0) the empty set;
(P1) one line in \(\mathbb{P}^2 \);
(P2) two lines in \(\mathbb{P}^2 \);
(P3) three lines in \(\mathbb{P}^2 \) in general position.

Proof. Assume \(\text{Exc}(h) \) is not empty; then, by Lemma 4, the curve \(\text{Exc}(h) \) is totally invariant under \(f_1 \). According to [6, §4] and [4, Proposition 2], \(\text{Exc}(h) \) is one of the three curves listed in (P1) to (P3).

Changing \(h \) into \(h^{-1} \) and permuting the role of \(f_1 \) and \(f_2 \), we see that \(\text{Exc}(h^{-1}) \) is also a configuration of type (Pi) for some \(i \). Proposition 3 shows that \(U_h \simeq U_{h^{-1}} \). Since the four possibilities (Pi) correspond to pairwise non-isomorphic complements, we deduce that \(\text{Exc}(h) \) and \(\text{Exc}(h^{-1}) \) have the same type. \(\square \)

Remark 6. One can also refer to [7] to prove this lemma. Indeed, \(f_1 \) induces a map from the set of irreducible components of \(\text{Exc}(h) \) into itself, and since \(f_1 \) is onto, this map is a permutation; the same applies to \(f_2 \). Thus, replacing \(f_1 \) and \(f_2 \) by \(f_1^m \) and \(f_2^m \) for some suitable \(m \geq 1 \), we may assume that \(f_1(C) = C \) for every irreducible component \(C \) of \(\text{Exc}(h) \). Since \(f_1 \) is finite, \(\text{Exc}(h) \) has only finitely many irreducible components, and \(f_1(\text{Exc}(h)) = \text{Exc}(h) \), we obtain \(f_1^{-1}(C) = C \) for every component. Since \(f_1 \) acts by multiplication by \(d \) on \(\text{Pic}(\mathbb{P}^2_k) \), the ramification index of \(f_1 \) along \(C \) is \(d > 1 \), and the main theorem of [7] implies that \(C \) is a line.

Remark 7. Totally invariant hypersurfaces of endomorphisms of \(\mathbb{P}^3 \) are unions of hyperplanes, at most four of them (we refer to [9] for a proof and important additional references, notably the work of J.-M. Hwang, N. Nakayama and D.-Q. Zhang). So, an analog of Lemma 5 holds in dimension 3 too; but our proof in case (P1), see § 4 below, does not apply in dimension 3, at least not directly. (Note that [2] contains an important gap, since its main result is based on a wrong lemma from [3]).

3. Normal forms. – Two configurations of the same type (Pi) are equivalent under the action of \(\text{Aut}(\mathbb{P}^2_k) = \text{PGL}_3(k) \). If we change \(h \) into \(A \circ h \circ B \) for some well chosen pair of automorphisms \((A,B) \), or equivalently if we change \(f_1 \) into
Theorem A is proved. and that exactly one of the following situation occurs (see also [6]):

(P0).– Exc(h) = Exc(h⁻¹) = ∅.– Then h is an automorphism of \(\mathbb{P}^2_k \) and Theorem A is proved.

(P1).– Exc(h) = Exc(h⁻¹) = \{ z = 0 \}.– Then h induces an automorphism of \(A^2_k \) and \(f_1 \) and \(f_2 \) restrict to endomorphisms of \(A^2_k = \mathbb{P}^2_k \setminus \{ z = 0 \} \) (that extend to endomorphisms of \(\mathbb{P}^2_k \)).

(P2).– Exc(h) = Exc(h⁻¹) = \{ x = 0 \} \cup \{ z = 0 \}.– Then, \(U_h \) and \(U_{h⁻¹} \) are both equal to the open set \(U := \{(x,y) \in A^2 \mid x \neq 0 \} \). Moreover,

\[
h|_U(x,y) = (Ax, Bx^my + C(x))
\]

for some regular function \(C(x) \) on \(A^1_k \setminus \{ 0 \} \) and \(m \in \mathbb{Z} \), and

\[
f_i|_U(x,y) = (x^{±d}, F_i(x,y))
\]

for some rational functions \(F_i \in k(x)[y] \) which are regular on \((A^1_k \setminus \{ 0 \}) \times A^1 \) and have degree \(d \) (more precisely, \(f_i \) must define an endomorphism of \(\mathbb{P}^2 \) of degree \(d \)). Moreover, the signs of the exponent \(±d \) in Equation (2) are the same for \(f_1 \) and \(f_2 \).

(P3).– Exc(h) = Exc(h⁻¹) = \{ x = 0 \} \cup \{ y = 0 \} \cup \{ z = 0 \}.– In this case, each \(f_i \) is equal to \(a_i \circ g_d \) where \(g_d([x : y : z]) = [x^d : y^d : z^d] \) and each \(a_i \) is an automorphism of \(\mathbb{P}^2_k \) acting by permutation of the coordinates, while \(h \) is an automorphism of \((A^1 \setminus \{ 0 \}) \times (A^1 \setminus \{ 0 \}) \).

4. Endomorphisms of \(A^2_k \).– This section proves Theorem A in case (P1):

Proposition 8. Let \(f_1 \) and \(f_2 \) be endomorphisms of \(A^2 \) that extend to endomorphisms of \(\mathbb{P}^2 \) of degree \(d \geq 2 \). If \(h \) is an automorphism of \(A^2 \) that conjugates \(f_1 \) to \(f_2 \) then \(h \) is an affine automorphism i.e. \(\deg h = 1 \).

We follow the notation from [5] and denote by \(V_\infty \) the valuative tree of \(A^2 = \text{Spec}(k[x,y]) \) at infinity. If \(g \) is an endomorphism of \(A^2 \), we denote by \(g_\bullet \) its action on \(V_\infty \).

Set \(V_1 = \{ v \in V_\infty \mid \alpha(v) \geq 0, A(v) \leq 0 \} \), where \(\alpha \) and \(A \) are respectively the skewness and thinness function, as defined in page 216 of [5]; the set \(V_1 \) is a closed subtree of \(V_\infty \). For \(v \in V_1 \), \(v(F) \leq 0 \) for every \(F \in k[x,y] \setminus \{ 0 \} \). Then \(V_1 \) is invariant under each \((f_i)_\bullet \), and if we set

\[
T_i = \{ v \in V_1 : (f_i)_\bullet v = v \}
\]

then \(T_2 = h_\bullet T_1 \). Since each \(f_i \) extends to an endomorphism of \(\mathbb{P}^2_k \), the valuation \(\deg \) is an element of \(T_1 \cap T_2 \). Also, in the terminology of [5], \(\lambda_2(f_i) = \cdots \)
A valuation \(v \in V_\infty \) is **monomial** of weight \((s, t)\) for the pair of polynomial functions \((P, Q) \in k[x, y]^2\) if

1. \(P \) and \(Q \) generate \(k[x, y] \) as a \(k \)-algebra,
2. if \(F \) is any non-zero element of \(k[x, y] \) and \(F = \sum_{i,j \geq 0} a_{ij} P^i Q^j \) is its decomposition as a polynomial function of \(P \) and \(Q \) then
 \[
 v(F) = -\max\{si + tj : a_{ij} \neq 0\}.
 \]

We say that \(v \) is monomial for the basis \((P, Q)\) of \(k[x, y] \), if \(v \) is monomial for \((P, Q)\) and some weight \((s, t)\). In particular, \(-\deg \) is monomial for \((x, y)\), of weight \((1, 1)\).

Lemma 9. If \(v \in V_1 \) is monomial for \((P, Q)\) of weight \((s, t)\), then \(s, t \geq 0 \) and \(\min\{s, t\} = \min\{-v(F) : F \in k[x, y] \setminus k\} \).

Proof. First, assume that \((P, Q) = (x, y)\). For an element \(v \) of \(V_1 \), \(v(F) \leq 0 \) for every \(F \) in \(k[x, y] \), hence \(s = -v(x) \) and \(t = -v(y) \) are non-negative; and the formula for \(\min\{s, t\} \) follows from the inequality \(-v(F) \geq \min\{s, t\}\). To get the statement for any pair \((P, Q)\), change \(v \) into \(g^{-1} \cdot v \) where \(g \) is the automorphism defined by \(g(x, y) = (P(x, y), Q(x, y)) \).

Lemma 10. If \(-\deg \) is monomial for \((P, Q)\), of weight \((s, t)\), then \(s = t = 1 \) and \(P \) and \(Q \) are of degree one in \(k[x, y] \).

Proof. By Lemma 9, we may assume that \(1 = s \leq t \); thus, after an affine change of variables, we may assume that \(P = x \). Since \(k[x, y] \) is generated by \(x \) and \(Q \), \(Q \) takes form \(Q = ay + C(x) \) where \(a \in k^* \) and \(C \in k[x] \). If \(C \) is a constant, we conclude the proof. Now we assume \(\deg(C) \geq 1 \). Then \(t = \deg(Q) = \deg(C) \). Since \(y = a^{-1}(Q - C(x)) \) and \(-\deg \) is monomial for \((x, Q)\) of weight \((1, t)\), we get \(1 = \deg(y) = \max\{t, \deg(C)\} = t \). It follows that \(t = \deg Q = 1 \), which concludes the proof.

Proof of Proposition 8. By [5, Proposition 5.3 (b), (d)], there exists \(P \) and \(Q \in k[x, y] \) such that for every \(v \in T_1 \), \(v \) is monomial for \((P, Q)\). Moreover, \(-\deg \) is in \(T_1 \cap T_2 \). By Lemma 10, \(P = x \) and \(Q = y \) after an affine change of coordinates. Since \(T_2 = h_\bullet T_1 \), for every \(v \in T_2 \), \(v \) is monomial for \((h^*x, h^*y)\). Since \(-\deg \in T_2 \), Lemma 10 implies \(\deg h^*x = \deg h^*y = 1 \) and this concludes the proof.

5. **Endomorphisms of** \((\mathbb{A}^1_k \setminus \{0\}) \times \mathbb{A}^1_k\). – We now arrive at case (P2), namely \(\text{Exc}(h) = \text{Exc}(h^{-1}) = \{x = 0\} \cup \{z = 0\} \), and keep the notations from Section 4. Our first goal is to prove that,
Lemma 11. If h is not an affine automorphism of the affine plane, then after a conjugacy by an affine transformation of the plane,

- Either f_1 and f_2 are equal to (x^d, y^d) and $h(x, y) = (Ax, Bx^my)$ with A and B two roots of unity of order dividing $d - 1$ and $m \in \mathbb{Z} \setminus \{0\}$.
- Or, up to a permutation of f_1 and f_2,

$$f_1(x, y) = (x^d, y^d + \sum_{j=2}^{d} a_j y^{d-j}) \text{ and } f_2(x, y) = (x^d, y^d + \sum_{j=2}^{d} a_j(B/A)^j x^i y^{d-j})$$

with $a_j \in \mathbb{k}$, and $h(x, y) = (Ax, Bxy)$ with A and B two roots of unity of order dividing $d - 1$; then $h'[x : y : z] = [Az/B : y : x]$ is an automorphism of \mathbb{P}^2 that conjugates f_1 to f_2.

Proof. We split the proof in two steps.

Step 1.— We assume that $f_1|_U(x, y) = (x^d, F_1(x, y))$, with $d > 0$.

Since f_2 extends to a degree d endomorphism of \mathbb{P}^2_k, we can write $F_1(x, y) = a_0y^d + \sum_{j=1}^{d} a_j(x)y^{d-j}$ where $a_0 \in \mathbb{k}^*$ and the $a_j \in \mathbb{k}[x]$ satisfy $\text{deg}(a_j) \leq j$ for all j. Changing the coordinates to (x, by) with $b^d = a_0$, we assume $a_0 = 1$. We can also conjugate f_1 by the automorphism

$$(x, y) \mapsto \left(x, y + \frac{1}{d}a_1(x)\right)$$

and assume $a_1 = 0$. Altogether, the change of coordinates $(x, y) \mapsto (x, by + \frac{1}{d}a_1(x))$ is affine because $\text{deg}(a_1) \leq 1$, and conjugates f_1 to an endomorphism $(x^d, F_1(x, y))$ normalized by $F_1(x, y) = y^d + \sum_{j=2}^{d} a_j(x)y^{d-j}$ with $\text{deg}(a_j) \leq j$.

Similarly, we may assume that $F_2(x, y) = y^d + \sum_{j=2}^{d} b_j(x)y^{d-j}$ for some polynomial functions b_j with $\text{deg}(b_j) \leq j$ for all j.

Now, with the notation used in Equation (1), the two terms of the conjugacy relation $h \circ f_1 = f_2 \circ h$ are

$$h \circ f_1 = (Ax^d, Bx^m y^d + \sum_{j=2}^{d} a_j(x)y^{d-j} + C(x^d))$$

$$f_2 \circ h = (A^d x^d, (Bx^m y + C(x))^d + \sum_{j=2}^{d} b_j(Ax)(Bx^m y + C(x))^{d-j})$$

This gives $A^{d-1} = 1$, and comparing the terms of degree d in y we get $B^{d-1} = 1$. Then, looking at the term of degree $d - 1$ in y, we obtain $C(x) = 0$. Thus $h(x, y) = (Ax, Bx^m y)$ for some roots of unity A and B, the orders of which divide $d - 1$. Since h is not an automorphism, we have

$$m \neq 0.$$
In case (b), we set $m \geq 1$. Coming back to (6) and (7), we obtain the sequence of equalities

$$b_j(Ax) = a_j(x)(Bx^m)^j$$

for all indices j between 2 and d. On the other hand, a_j and b_j are elements of $k[x]$ of degree at most j. Since $m \geq 1$, there are only two possibilities.

(a) All a_j and b_j are equal to 0; then $f_1(x,y) = f_2(x,y) = (x^d,y^d)$, which concludes the proof.

(b) Some a_j is different from 0 and $m = 1$. Then all coefficients a_j are constant, and $b_j(x) = a_j(\frac{Bx}{A})^j$ for all indices $j = 2, \ldots, d$.

In case (b), we set $\alpha = B/A$ (a root of unity of order dividing $d - 1$), and use homogeneous coordinates to write

$$f_1[x : y : z] = [x^d : y^d + \sum_{j=2}^d a_j\alpha^j y^{d-j} : z^d]$$

$$f_2[x : y : z] = [x^d : y^d + \sum_{j=2}^d a_j\alpha^j y^{d-j} : z^d].$$

The conjugacy $h[x : y : z] = [Axz : Bxy : z^2]$ is not a linear projective automorphism of \mathbb{P}^2, but the automorphism defined by $[x : y : z] \mapsto [z/\alpha : y : x]$ conjugates f_1 to f_2.

Step 2. The only remaining case is when $f_i = (x^{-d}, F_i(x,y))$, for $i = 1, 2$, with

$$F_1(x,y) = \sum_{j=0}^d a_j(x)x^{-d}y^{d-j} \quad \text{and} \quad F_2(x,y) = \sum_{j=0}^d b_j(x)x^{-d}y^{d-j}$$

for some polynomial functions $a_j, b_j \in k[x]$ that satisfy $\deg(a_j), \deg(b_j) \leq j$ and $a_0b_0 \neq 0$. Writing the conjugacy equation $h \circ f_1 = f_2 \circ h$ and looking at the term of degree d in y, we get the relation

$$Bx^{-md}a_0x^{-d}y^d = b_0(Ax)^{-d}(Bx^my)^d.$$

Comparing the degree in x we get $-md - d = md - d$, hence $m = 0$. Moreover, h conjugates f_1^2 to f_2^2; thus, by the first step, h should be an affine automorphism since $m = 0$ (see Equation (8)).

6. Endomorphisms of $(\mathbb{A}^1_\mathbb{k} \setminus \{0\})^2$. Denote by $[x : y : z]$ the homogeneous coordinates of $\mathbb{P}^2_\mathbb{k}$ and by (x, y) the coordinates of the open subset $V := (\mathbb{A}^1_\mathbb{k} \setminus \{0\})^2$ defined by $xy \neq 0, z = 1$. We write $f_i = a_i \circ g_d$, as in case (P3) of Section 3. Since h is an automorphism of $(\mathbb{A}^1_\mathbb{k} \setminus \{0\})^2$, it is the composition $t_h \circ m_h$ of a
diagonal map \(t_h(x, y) = (ux, vy) \), for some pair \((u, v) \in (k^*)^2\), and a monomial map \(m_h(x, y) = (x^ay^b, x^cy^d) \), for some matrix

\[
M_h := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z}).
\] (14)

Also, note that the group \(G_3 \subset \text{Bir}(\mathbb{P}^2_k) \) of permutations of the coordinates \([x : y : z]\) corresponds to a finite subgroup \(S_3 \) of \(\text{GL}_2(\mathbb{Z}) \).

Since \(m_h \) commutes to \(g_d \) and \(g_d \circ t_h = t_h^d \circ g_d \), the conjugacy equation is equivalent to

\[
t_h \circ (m_h \circ a_1 \circ m_h^{-1}) \circ (g_d \circ m_h) = a_2 \circ t_h^d \circ (g_d \circ m_h).
\] (15)

The automorphisms \(a_1 \) and \(a_2 \) are monomial maps, induced by elements \(A_1 \) and \(A_2 \) of \(S_3 \), and Equation (15) implies that \(M_h \) conjugates \(A_1 \) to \(A_2 \) in \(\text{GL}_2(\mathbb{Z}) \); indeed, the matrices can be recovered by looking at the action on the set of units \(wx^my^p \) in \(k(V) \) (or on the fundamental group \(\pi_1(V(C)) \) if \(k = \mathbb{C} \)). There are two possibilities:

(a) either \(A_1 = A_2 = \text{Id} \), there is no constraint on \(m_h \);

(b) or \(A_1 \) and \(A_2 \) are non-trivial permutations, they are conjugate by an element \(P \in S_3 \), and \(M_h = \pm A_2^j \circ P \), for some \(j \in \mathbb{Z} \).

In both cases, \(u \) and \(v \) are roots of unity (there order is determined by \(d \) and the \(A_i \)). Let \(P \) be the monomial transformation associated to \(P \); it is a permutation of the coordinates, hence an element of \(\text{Aut}(\mathbb{P}^2_k) \). Then, \(h'(x, y) = t_h \circ p \) is an element of \(\text{Aut}(\mathbb{P}^2_k) \) that conjugates \(f_1 \) to \(f_2 \).

7. An example in positive characteristic. – Assume that \(q = p^s \) with \(s \geq 2 \). Set \(G := xy^p + (x - 1)y \). Then,

\[
f_1(x, y) = (x^q, y^q + G(x, y))
\]
defines an endomorphism of \(\mathbb{A}^2 \) that extends to an endomorphism of \(\mathbb{P}^2 \).

Consider a polynomial \(P(x) \in \mathbb{F}_q[x] \) such that \(2 \leq \deg(P) \leq \frac{q}{p} - 1 \). Observe that \(\deg(G) < \deg(G(x, y + P(x))) < q \). Then \(g(x, y) = (x, y + P(x)) \) is an automorphism of \(\mathbb{A}^2_k \) that conjugates \(f_1 \) to

\[
f_2(x, y) := g \circ f_1 \circ g^{-1}(x, y)
\]

\[
= (x^q, y^q + P(x)^q + G(x, y + P(x)) - P(x^q))
\]

\[
= (x^q, y^q + G(x, y + P(x))).
\] (16)

As \(f_1, f_2 \) is an endomorphism of \(\mathbb{A}^2 \) that extends to a regular endomorphism of \(\mathbb{P}^2 \) (here we use the inequality \(\deg(G(x, y + P(x))) < q \)).

Let us prove that \(f_1 \) and \(f_2 \) are not conjugate by any automorphism of \(\mathbb{P}^2 \). We assume that there exists \(h \in \text{PGL}_3(\mathbb{F}_q) \) such that \(h \circ f_1 = f_2 \circ h \) and seek a
Consider the pencils of lines through the point $[0 : 1 : 0]$ in \mathbb{P}^2; for $a \in \mathbb{F}_q$ we denote by L_a the line $\{x = az\}$, and by L_∞ the line $\{z = 0\}$. Then
\[
\{L_a : a \in \mathbb{F}_q \cup \{\infty\}\} = \{\text{lines } L \text{ such that } f_1^{-1}L = L\} \quad (17)
\]
\[
= \{\text{lines } L \text{ such that } f_2^{-1}L = L\}; \quad (18)
\]
in other words, the lines L_a for $a \in \mathbb{F}_q \cup \{\infty\}$ are exactly the lines which are totally invariant under the action of f_1 (resp. of f_2). Since h conjugates f_1 to f_2, it permutes these lines. In particular, h fixes the point $[0 : 1 : 0]$, and if we identify $L_a \cap \mathbb{A}^2$ to \mathbb{A}^1 with its coordinate y by the parametrization $y \mapsto (a, y)$ then h maps L_a to another line $L_{a'}$ in an affine way: $h(a, y) = (a', \alpha y + \beta)$.

Since g conjugates f_1 to f_2 and g fixes each of the lines L_a, we know that $f_1|_{L_a}$ is conjugated to $f_2|_{L_a}$ for every $a \in \mathbb{F}_q$; for $a = \infty$, both $f_1|_{L_\infty}$ and $f_2|_{L_\infty}$ are conjugate to $y \mapsto y^q$. Moreover
\begin{itemize}
 \item $a = \infty$ is the unique parameter such that $f_1|_{L_a}$ is conjugate to $y \mapsto y^q$ by an affine map $y \mapsto \alpha y + \beta$;
 \item $a = 0$ is the unique parameter such that $f_1|_{L_a}$ is conjugate to $y \mapsto y^q - y$ by an affine map;
 \item $a = 1$ is the unique parameter such that $f_1|_{L_a}$ is conjugate to $y \mapsto y^q + y^p$ by an affine map.
\end{itemize}

And the same properties hold for f_2. As a consequence, we obtain $h(L_\infty) = L_\infty$, $h(L_0) = L_0$ and $h(L_1) = L_1$; this means that there are coefficients $\alpha \in \mathbb{F}_q^*$ and $\beta, \gamma \in \mathbb{F}_q$ such that $h(x, y) = (x, \alpha y + \beta x + \gamma)$. Writing down the relation $h \circ f_1 = f_2 \circ h$ we obtain the relation
\[
\alpha y^q + \alpha G(x, y) + \beta x^q + \gamma = \alpha' y^q + \beta' x^q + \gamma'
\]
\[
+ G(x, \alpha y + \beta x + \gamma + P(x)). \quad (19)
\]
We note that $1 < \deg G(x, y) < \deg G(x, \alpha y + \beta x + \gamma + P(x)) < q$. Compare the terms of degree q, we get $\alpha y^q + \beta x^q = \alpha' y^q + \beta' x^q$. It follows that
\[
\alpha G(x, y) + \gamma = \gamma' + G(x, \alpha y + \beta x + \gamma + P(x)). \quad (20)
\]
Then $\deg G(x, y) = \deg G(x, \alpha y + \beta x + \gamma + P(x))$, which is a contradiction.

REFERENCES

SERGE CANTAT, IRMAR, CAMPUS DE BEAULIEU, BÂTIMENTS 22-23 263 AVENUE DU GÉNÉRAL LECLERC, CS 74205 35042 RENNES CÉDEX

E-mail address: serge.cantat@univ-rennes1.fr

JUNYI XIE, IRMAR, CAMPUS DE BEAULIEU, BÂTIMENTS 22-23 263 AVENUE DU GÉNÉRAL LECLERC, CS 74205 35042 RENNES CÉDEX

E-mail address: junyi.xie@univ-rennes1.fr