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ABSTRACT. In this paper, we pursue the study of the holomorphic dynam-
ics of mapping class groups on 2-dimensional charactegtiasi also called
trace-maps dynamics in the literature, as initiated in [$é also [20]). We
shall show that the dynamics of pseudo-Anosov mappingetassembles

in many ways the dynamics of Hénon mappings, and then apjslydia to
answer open questions concerning (1) the geometry of désare faithful
representations of free groups ira(2,C), (2) the dynamics of Painlevé
sixth equations, and (3) the spectrum of certain discreltedsinger opera-
tors.

1. INTRODUCTION

1.1. Character variety and dynamics. Let T1 be the once punctured torus.
Its fundamental group is isomorphic to the free gréup= (a, 3| 0), the com-
mutator ofa andf3 corresponding to a simple loop around the puncture. Since
any representatiop: F, — SL(2,C) is uniquely determined by(a) andp(pB),

the setRep(T1) of representations afty(T1) into SL(2,C) is isomorphic to
SL(2,C) x SL(2,C). The groupSL(2,C) acts on this set by conjugation, pre-
serving the three traces

x=tr(p(a)), y=tr(p(B)), z=tr(p(ap)).

It turns out that the map : Rep(T1) — C2, defined byx(p) = (x,y,2), real-
izes an isomorphism between the algebraic quoRep{T;)/SL(2,C), where
SL(2,C) acts by conjugation, and the complex affine sp@eThis quotient
will be referred to as theharacter variety of the once punctured torus

The automorphism grouput(F,) acts by composition oRep(T1), and in-
duces an action of the mapping class group

MCG*(T1) = Out(F) = GL(2,Z)

on the character varietg3 by polynomial diffeomorphisms. Since the con-
jugacy class of the commutatgm, B] is invariant undelOut(F,), this action
preserves the level sets of the polynomial functidp(a, B]) = X% +y? + 22 —
Xyz— 2. As a consequence, for each complex nunibewe get a morphism
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from MCG*(T1) to the groupAut(Sp) of polynomial diffeomorphisms of the
surfaceSy, defined by

X2 +y? + 7 = xyz+D.
The goal of this paper is to describe the dynamics of all mapplassed <
MCG*(T1) both on the complex surfac&s(C) and on the real surfac&s (R)
whenD is a real number. More generallwe shall study the dynamics of
mapping classes on the character variety of4fminctured sphereébut we
restrict ourselves to the simpler case of the puncturedtorthe introduction.

1.2. Hénon type dynamics. Let us fix an elemenf of the mapping class
groupMCG*(T4), that we view simultaneously as a mathk in GL(2,Z) =
Out(F,) or as a polynomial automorphism, still denotidf the affine space
X(T1) = C3 preserving the family of cubic surfacgs. LetA(f) be the spectral
radius ofM¢, so thatf is pseudo-Anosov if and only X(f) > 1.

In[44, 16, 20], itis proved that the topological entropyfafSp (C) — SH(C)
is equal to logA(f)) for all choices ofD. The dynamics of mapping classes
with zero entropy is described in details in [36, 20]. In g&Tt3, we shall
show that the dynamics of pseudo-Anosov classes resenmadel/hamics of
Hénon automorphisms of the complex plane: All techniquasfnolomorphic
dynamics that have been developed for Hénon automorphiambe applied
to understand the dynamics of mapping classes on the chasactace$y (C)
(a precise list of results is given in section 3.3).

This principle provides new tools to study the dynamics oppiag class
groups on charater varieties. As a consequence, we shallgpitive answer
to three different questions : The first one concerns quadisian groups and
the geometry of the quasi-fuchsian set, the second one centlee spectrum
of certain discrete Schrédinger operators, while the thirdstion is related to
Painlevé sixth equation.

1.3. Quasi-Fuchsian spaces and a question of Goldman and Dumasirst,
we answer positively a question of Goldman and Dumas (sdaemo3.5 in
[38]), that we now describe.

When the parameté is equal to 2the trace op|a, ] vanishes, so that the
representationg with x(p) € $(C) send the commutatda, 3] to an element
of order 4 inSL(2,C). This means that the surfa& indeed corresponds to
representations of the group

G = (a,B| o, B).

Let DF be the subset d&(C) corresponding to discrete and faithful represen-
tations ofG. Some of these representations are fuchsian: They come frem t
existence of hyperbolic metrics @iy with an orbifold point of anglet at the
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puncture. The interior oDF corresponds to quasi-fuchsian deformations of
those fuchsian representations (see for example [50]).

Let us now consider the set of conjugacy classes of repasamgp : G —
SU(2). This set coincides with the uniqgue compact connected coergoof
S(R) and is homeomorphic to a sphé&fe Typical representations inf(2)
have a dense image and, in this respect, are quite diffemntdiscrete faithful
representations inteL (2,C).

The following theorem shows that orbits of the mapping clgggip may
contain both types of representations in their closure.

Theorem 1.1.Let G be the finitely presented gro(m, B | [a, B]*). There exists
a representatiorp : G — SL(2,C), such that the closure of the orbit of its
conjugacy clasg(p) under the action 0®ut(F,) contains both

¢ the conjugacy class of at least one discrete and faithfulesgntation
p':G—SL(2,C),
e the whole set of conjugacy classes$uf(2)-representations of G

This result answers positively and precisely the questased by Dumas
and Goldman. It also sheds light on questions raised by Botvdsee [13],
corollary 5.6 and the discussion thereafter). The stratégyoof is quite gen-
eral and leads to many other examples; one of them is giveh 8 §he repre-
sentation®’ which we choose for the proof are very special: They cormnedpo
to certain discrete representations provided by Thurstoyperbolization the-
orem for mapping tori with pseudo-Anosov monodromy. Theesahea may
be used to describ@F in dynamical terms (see section 4). To sum hplo-
morphic dynamics turns out to be useful to understand theiguahsian locus
and its Bers parameterization

1.4. Real dynamics, discrete Schrodinger operators, and Painké VI equa-
tion. The fact that the dynamics of mapping classes is similargaimamics
of Hénon automorphisms will prove useful to study the readaiyics of map-
ping classes, i.e. the dynamics on the real Ba(R) whenD is a real number.
The following theorem, which is the main result of sectiorabswers a con-
jecture popularized by Kadanoff twenty five years ago (ség gt 1872). We
refer to papers of Casdagli and Roberts for a nice matheabaticoduction to
the subject (see [21] and [54] and references therein).

Theorem 1.2. Let D be a real number. If € MCG*(T1) is a pseudo-Anosov
mapping class, the topological entropy of $(R) — S(R) is bounded from
above bylog(A(f)), and the five following properties are equivalent

e the topological entropy of fSH(R) — S(R) is equal tolog(A(f));

e all periodic points of f: 5(C) — S(C) are contained in §(R);
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e the topological entropy of f S5(R) — S(R) is positive and the dy-
namics of f onthe seti,R) = {me S(R) | (f"(m))nez is bounded
is uniformly hyperbolic;

e the surface §(R) is connected,

e the real parameter D is greater than or equal4o

The main point is the fact that the dynamics is uniformly mpodic when
D > 4. In particular, uniform hyperbolicity occurs simultanetysr all pseudo-
Anosov mapping classes. Casdagli had a similar result ferexplicit map-
ping class (linked to Fibonacci substitutions) wh2p- 260, and Damanik and
Gorodetski recently extended it to the case whizie close to 4 (see [21, 25]).

As we shall explain in section 6, this may be used to study pleetsum of
discrete Schrodinger operators, the potential of whiclersegated by a primi-
tive substitution: We shall show that titausdorff dimension of the spectrum
of such operators is positive but strictly less thajsee 86 for precise results).

This gives also examples of Painlevé VI equations with niwe ch mon-
odromy (see 87), thereby answering a question of Iwasaklaatra in [43].

1.5. Organization of the paper. As mentioned above, we shall study the dy-
namics of the mapping class group of the four punctured spbreits character
variety; this includes the case of the once punctured tasws@articular case.
Section 2 summarizes known useful results, fixes the neoigitend describes
the dynamics of mapping classes at infinity. Section 3 eistads a dictionary
between the Hénon case and the case of character variettesy Important
consequences regarding the dynamics of mapping classésisTdpplied in
section 4 to study the quasi-fuchsian space. Section 5idesdhe dynamics
of mapping classes on the real algebraic surf&&g®), for D € R. This is
certainly the most involved part of this paper. It requirdsaaslation of most
known facts for Hénon automorphisms to the case of charaat@ties, and a
study of one parameter families of real polynomial autorhaams with maxi-
mal entropy. The proof of theorem 1.2, which is given in sawi5.2 and 5.3,
could also be used in the study of families of HEnon mappiWgsthen apply
theorem 1.2 to Schrddinger operators and Painlevé VI espuga{g6 and 7).

1.6. Acknowledgement. This paper greatly benefited from discussions with
Frank Loray, with whom | collaborated on a closely relateithr (see [20]). |
also want to thank Eric Bedford, Cliff Earle, Bill Goldmanatsunori Iwasaki,
Robert MacKay, Yair Minsky, John Smillie, Takato Uehara #aten Vogt-
mann for illuminating talks and useful discussions. Mosthef content of this
paper has been written while | was visiting Cornell Univigran 2006/2007,
and part of it was already described during a conferenceeoA@I "Systemes
Dynamiques Polynomiaux™ in 2004: | thank both institutidostheir support.
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2. THE CHARACTER VARIETY OF THE FOUR PUNCTURED SPHERE

This section summarizes known results concerning the ctearsaariety of
a four punctured sphere and the action of its mapping clasggen this alge-
braic variety. Most of these results can be found in [10]],[44d [20].

2.1. The sphere minus four points. Let Sﬁ be the four punctured sphere. Its
fundamental group is isomorphic to a free group of rank 3

T[1<8421) = <(X, vava‘ apyd = 1>7
where the four homotopy classesp, y, andd correspond to loops around the

puncture. LetRep(S3) be the set of representations mf(S?) into SL(2,C).
Let us associate the 7 following traces to any eIemmftRep(Sﬁ),

a=tr(p(a)) ; b=tr(p(B)) : c=tr(p(y)) ; d=tr(p(d))
x=tr(p(aP)) ; y=tr(p(By)) ; z=tr(p(ya)).

The polynomial magy : Rep(S3) — C7 defined byx(p) = (a,b,c,d,x,y,2) is
invariant under conjugation, by which we mean thgt’) = x(p) if p’ is conju-
gate top by an element 0$L(2,C), and it turns out that the algebra of polyno-
mial functions orRep(Sﬁ) which are invariant under conjugation is generated
by the components of. Moreover, the components gf satisfy the quartic
equation

X2 + V2 + 22+ xyz= Ax+ By+Cz+D, (2.1)
in which the variable#, B, C, andD are given by

A=ab+cd, B=ad+bc, C=ac+hd,
and D=4—a?—b?—-c2—d?—abcd

In other words, the algebraic quotie(tS3) := Rep(S2) /SL(2,C) of Rep(S3)
by the action ofSL(2,C) by conjugation is isomorphic to the six-dimensional
quartic hypersurface @&’ defined by equation (2.1).

The affine algebraic varietx(Sﬁ) is called thecharacter variety ﬁﬁ. For
each choice of four complex paramet&rs3, C, andD, Sagc p) (or Sif there
is no obvious possible confusion) will denote the cubic atefofC3 defined
by the equation (2.1). The family of surfac8g gc p), with A, B, C, andD
describingC, will be denoted byFam.

(2.2)

2.2. Automorphisms and the modular group ;. The (extended) mapping
class group OSE1 acts onx(Sﬁ) by polynomial automorphisms: This defines a
morphism

O — fo
such thatfe(x(p)) = X(po ®~1) for any representatiop.

{out(m(Sg)) —  Aut(X(S3))
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The groupOut(my (S%)) contains a copy oPGL(2,Z) which is obtained as
follows. LetT = R?/Z? be a torus and be the involution ofT' defined by
o(x,y) = (—x,—y). The fixed point set ob is the 2-torsion subgroup G&F.
The quotientT /o is homeomorphic to the spher®?, and the quotient map
m: T — T/o = S? has four ramification points, corresponding to the four fixed
points ofa. The groupGL(2,Z) acts linearly orill' and commutes witls. This
yields an action oPGL(2,Z) on the spher§?, which permutes the ramification
points ofrt Taking these four ramification points as the puncturedgoive get
a morphism

PGL(2,Z) — MCG*(S3),
that turns out to be injective, with finite index image (se&,[20]). As a
consequencdGL(2,Z) acts by polynomial transformations g(l(lsﬁ).

Letl; be the subgroup d¥GL(2,Z) whose elements coincide with the iden-
tity modulo 2 This group coincides with the stabilizer of the fixed point&o
so thatl"; acts orﬁf1 and fixes its four punctures. Consequenilyacts poly-
nomially onx(Sﬁ) and preserves the fibers of the projection

(a,b,c,d,x,y,z) — (a,b,c.d).

From this we obtain, for any choice of four complex paranmsetarB,C,D), a
morphism fronT; to the groupAut(Sa g c b)) of polynomial diffeomorphisms
of the surfaceSap c p)-

Theorem 2.1(EI'-Huti [31], see theorem 3.1 in [20] JFor any choice of AB,

C, and D, the morphisnT3 — Aut(Sagc p)) is injective and the index of its
image is bounded from above Byl. For a generic choice of the parameters,
this morphism is an isomorphism.

To sum up,[} is a finite index subgroup d¥ICG*(S3%), its action onx(S3)
preserves the family of cubic surfacesm, and, for all choices of parameters
(A,B,C,D), I'; determines a finite index subgroupAdt(Sagcp))- We shall
therefore restrict our study to the dynamicd gfon those surfaces.

2.3. Area form. The area fornQQ, which is globally defined by the formulas
_dxAdy  dyAadz  dzAdx
© 224+xy—C  2x+yz—A 2y+zx—B
on S\ Sing(S), is almost invariant under the action B§, by which we mean
that f*Q = +Q for any f in I'; (see [20]). In particular, the dynamics of
mapping classes on each surf&ie conservative.

Remark 2.2. The cubic surfaceS, together with the action df%, are degen-
erate limits of K3 surfaces together with an (almost) ares@rving action of
5. We refer to [18] for actions on K3 surfaces.
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2.4. Compactification and automorphisms. Let S be any member of the
family Fam. The closureS of Sin P3(C) is given by the cubic homogeneous
equationw(x? +y? + 22) + xyz= W?(Ax+ By+Cz) + Dw®.

As a consequence, one easily proves that the traGabinfinity does not
depend on the parameters and coincides with the triglgieen by the equa-
tions

xyz=0, w=0,
and, moreover, that the surfaBés smooth in a neighborhood of (all singu-
larities ofS, if there are such, are contained3n By definition, the three sides
of A are the lineDy = {x=0,w=0}, Dy ={y=0,w=0} andD, = {z=
O,w = 0}; the vertices arex =[1:0:0:0,w=[0:1:0:0 andv, = [0:
0:1:(; the “middle points” of the sides are respectivety=[0:1:1:0,
my=[1:0:1:0,andm;=[1:1:0:Q.

Since the equation definingis of degree 2 with respect to thxevariable,
each poin{x,y, z) of Sgives rise to a unique second poirt y,z). This proce-
dure determines a holomorphic involution®fmamely

S((Xv Ys Z) = (A_ YZ—XY, Z) :
Geometrically, the involutios, corresponds to the following: this a point of
S, the projective line which joinmand the vertexy of the triangleA intersects

Son a third point; this point is,(m). The same construction provides two more
involutionss, ands;, and therefore a subgroup

a4 =(5S,%)

of the groupAut(S) of polynomial automorphisms of the surfaBeSection
2 of [20] (see also [44]) shows that the grodpcoincides with the image
of I'; into Aut(S), that is obtained by the action &% c MCG*(SZ) on the
character variety(Sﬁ). More preciselysy, sy, ands, correspond respectively
to the automorphisms determined by the following elemehfs;o

C_ (-1 -2 c_(-1o0y . _(1 0
xLo 1) "o 1) "\ -2 1)

In particular, EI'-Huti’s theorem shows that there are na mivial relations
between the three involutiosg, s, ands;, so that4 is isomorphic to the free
product of three copies &f/2Z.

Since the action of 5 anda coincide, we shall focus on the dynamics of
5 =4 on the surfaceS € Fam.

2.5. Notations and remarks. The conjugacy class of a representatgowill
be denotedp]. In general, this conjugacy class is uniquely determineddy i
imagex(p) in the character variety(S2), and we shall identify(p) to [p]
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(note, however, thag(p) does not determing] when the representation is
reducible).

Automorphisms of surfaceSagcp) Will be denoted by standard letters,
like f, g, h, ... ; the groupa will be identified to its various realizations as
subgroups ofut(Sagcp)), where(A B,C,D) describeC?. If M is an ele-
ment ofl"5, the automorphism associatedNbis denotedfy; this provides an
isomorphism betweeh? and each realization of. If f is an automorphism
of Sa.c,p) Which is contained im , Mt will denote the unique element 6%
which corresponds td. If ® € MCG*(SE) is a mapping class, the associated
automorphism of the character variety will be denotedby

The character surfac&p that appeared in the introduction in the case of the
once punctured torus are isomorphic3go o p) by a simultaneous change of
signs of the variablegx,y,z). As a consequence, the study of the dynamics on
all character surfaceSe Fam includes the case of the once punctured torus.

2.6. Dynamics at infinity. The groupa also acts by birational transforma-
tions on the compactificatio® of Sin P3(C). In this section, we describe the
dynamics at infinity, i.e. on the triangle

If fis anelement ofi, the birational transformation &defined byf is not
everywhere defined. The set of its indeterminacy points ot by Indf);
f is said to bealgebraically stablé, for all n > 0, f" does not contract any
curve onto Indf) (see [56, 26] for this notion).

The group™; acts by isometries on the Poincaré half pl&he et jy, jy and
jz be the three points on the boundarytbivith coordinates 0—1, ande re-
spectively. The three generatagsry, andr, of I'; (see 2.4) are the reflections
of H around the three geodesics which join respectiygt j;, j, to jx, and
jx to jy. As a consequencéj coincides with the group of symmetries of the
tesselation oHl by ideal triangles, one of which has vertiggs jy and j,. This
picture will be useful to describe the actionofon A (see [20], section 3, and
references therein for a detailed picture).

First, one easily shows that the involutispacts on the trianglé in the
following way: The image of the sidBy is the vertexv and the vertexy is
blown up onto the sid®y ; the sideDy andD; are invariant and, permutes
the vertices and fixes the middle poimbg andm, of each of these sides. An
analogous statement holds of coursedoands;. In particular, the action of
at infinity does not depend on the set of parametars,C,D).

Beside the three involutiors;, s, ands,, three new elements of play a
particular role. These elements are

Ox =08, Oy=5x0S, and g,=S/os.
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They correspond to Dehn twists in the mapping class groapto. parabolic
elements of 5. Each of them preserves one of the coordinate variablgsr

z respectively. The action afx on A is the following: gx contracts botDy,

andD;\ {w} onv,, and preserveBy; its inverse contract®y andD;\ {v,} on

vy. In particular Indgyx) = vy and Indgy!) = v,. The action ofg, andg; are
similar, up to a permutation of the coordinates.

Let f be any element of \ {Id} andM¢ be the corresponding element’cf
If M¢ is elliptic, f is conjugate t®, sy or s,. If M¢ is parabolic,f is conjugate
to an iterate o, gy or g, (see [20], proposition 3.2). In both cases, the action
of f onA has just been described.

If M5 is hyperbolic, the isometriyls of H has two fixed points at infinity,
an attracting fixed poini( f) and a repulsive fixed poirt(f), and the action
of f onA can be described as follows: The three sideA aire blown down
on the vertexyy (resp. vy resp. v;) if w(f) is contained in the intervaljy, j|
(resp.[jz jxJ, resp.[jx, jy]); the unique indeterminacy point éfis vy (resp.vy
resp.vy) if a(f) is contained irijy, j;| (resp.[jz, jx|, resp.|jx jy)). In particular
Ind(f) coincides with Indf 1) if and only if a(f) andw(f) are in the same
connected component 6H \ { jx, jy, j-}; Up to a conjugacy in the group;,
we can always assume thatf) andw(f) are in different components. As a
consequence, we get the following result (see [20], sedtjon

Proposition 2.3. Let S be any member of the fanmilym. Let f be an element
of 2. Assume that the elementMf "5 that corresponds to f is hyperbolic.

e The birational transformation fS— S is algebraically stable if, and
only if f is a cyclically reduced composition of the threedlutions s,
sy and s (in which each involution appears at least once). In parfacu
any hyperbolic element f of is conjugate to an algebraically stable
element ofz.

e If f is algebraically stable, * contracts the whole triangl& \ Ind( f)
onto Ind f 1) as soon as n is a positive integer.

2.7. Topological entropy and types of automorphisms.An elementf of 4
will be termedelliptic, parabolic or hyperbolicaccording to the type of the
isometryM; € I';. By theorem B of [20] (see also [44] for another formula),
the topological entropynop(f) of f: Sapcp)(C) — Sapcp)(C) does not
depend on the parametérs B,C, D) and is equal to the logarithm of the spec-
tral radiush(f) of Ms:

op(r) = l0G(A(T)). (2.3)
In particular, pseudo-Anosov mapping classes are exaublyet with positive
entropy on the character surfacgg gc p)(C). As explained in the previous
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section, up to conjugacy, Dehn twists correspond to poweigk,0gy or gz,
while finite order mapping classes corresponéd,{®, or s;.

Remark 2.4. This should be compared to the description of the group of-pol
nomial automorphisms @?. If his an element oAut(C?), either the topolog-
ical entropy is equal to Iq@l(h)), whered(h) > 2 is an integer, or a conjugate
gohog! preserves the pencil of lings= c5'® (see §3.2 for references).

2.8. The Cayley cubic. The surfaceSgg0.4) Will play a central role in this
paper. This surface is the unique elemenEah with four singularities, and
is therefore the unique elementfefm that is isomorphic to the Cayley cubic
(see [20]). We shall call it "the Cayley cubic" and denoteyitS. This surface
already appeared to be a crucial example in both [19] and [20]

This surface is isomorphic to the quotient ©6f x C* by the involution
nxy) = (x1,y1). The map

(u,v) = — u+} v-l—} uv+i
Telthv) = u v uv

gives an explicit isomorphism betweé@* x C*)/n and:: Fixed points of
n, as(—1,1), correspond to singular points &. Multiplication of the coor-
dinates by—1 then gives an isomorphism onf (which will also be refered
to as "the" Cayley cubic).

The groupGL(2,Z) acts onC* x C* by monomial transformationsf M =
(myj) is an element o6L(2,Z), and if (u,v) is a point ofC* x C*, then

(u V)M = (uMayMz yMeryMez),

This action commutes with, so thatPGL(2,Z) acts on the quotierc. The
induced action coincides with the action 6§ ¢ MCG(S3) on the character
surface corresponding to paramet@d, c,d) = (0,0,0,0) or (2,2,2,—2), up

to permutation ofa, b, ¢, andd and multiplication by—1 (see 82.1 for the
significance ofa, b, ¢, andd, and [20] for details). Changing signs of coordi-
nates, we get the surfa&, that is one of the character surfaces for the once
punctured torus: It corresponds to reducible represemsitdf iy (T1) (with
tr(p[a,B]) = 2). Of course, the monomial action BGL(2,Z) on S, coincides
with the action of the mapping class grouplif on the character surfa&a.

The productC* x C* retracts by deformation onto the 2-dimensional real
torus S x S. The monomial action 06L(2,2) preserves this torus: It acts
"linearly" on this torus if we use the parameterizatior €2™, v= 2™ After
deleting the four singularities &, the real pars:(R) has five components,
and the closure of the unique bounded component is the imfa§k>oS! by
Tc. The closure of the four unbounded components are imagesedfotir
subsetRT x RT, R" xR™,R™ xRT, andR™ x R~ of C* x C*.
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2.9. Topology of the real part. Benedetto and Goldman studied the various
topologies that can occur f&R) (see [10]). Good examples to keep in mind
are small deformations of the Cayley cubics (one can defaah eingular
point independently). There are two main results that wé sbka repetitively

in section 5. We state them in the case of smooth surfaceguylsinone are
limits of smooth surfaces.

The first one characterizes connectedness. Ugirty c,d) parameters (see
section 2.1) S(R) is connected if and onlyi) none of the parametess b, c,
andd is contained in the intervdl-2, 2) and(ii) the productibcdis negative.

In that case, the surfac¥R) is homeomorphic to a sphere minus four punc-
tures. These conditions di&,b,c,d) define eight arcwise connected subsets
of R4, that contain respectively the 8 poir(e, 25, 23, 2¢84), with g = +1
and[lg; = —1. All these points correspond to the same surf8eg o 4), i.€.

to the Cayley cubi&:. As a consequence, any connected surf€® can be
smoothly deformed to the Cayley culsg insideFam.

The second result describes bounded componentS(Rf has a bounded
connected component, then this component is unique, itnseleonorphic to
a sphere, an&R) has four unbounded components, each of which is homeo-
morphic to an open disk.

Remark 2.5. The surfaceSis singular if and only if one of the two following
conditions occur (see [10], [42]}i) at least one of the parameters, c, ord
equalst2 ; (ii) there is a reducible representatiof 1 (S3) with boundary
traces(a, b, c,d). This latter case occurs exactly whafa, b, c,d) = 0, where
A'is the polynomial

(2(a® 4 b? + 2 +d?) — abcd— 16)? — (4— &) (4 — b?) (4— ) (4— d?).
3. ELEMENTS WITH POSITIVE ENTROPY

In this section, we describe the dynamics of hyperbolic elesin the group
4 on any complex surfacga g cp)(C) of our family Fam.

Let f be a hyperbolic element of. After conjugation by an elemeit of
4, we can assume thdtis algebraically stable; in our context, this property
means that, for any elemeS8tof Fam, the indeterminacy set of the birational
transformationf : S--» Sand the indeterminacy set 6f - are two distinct
vertices of the triangle at infinitf (see §82.6). In what follows, we shall assume
that f is algebraically stable and denote {rid!) by v, and Ind f) by v_.

3.1. Attracting basin of Ind (f~1). The birational transformatiof is holo-
morphic in a neighborhood of, and contractd \ {v_} onv,. In particular,
f contracts the two sides @ that containv, on the vertexv,. Using the
terminology of [33],f determines a rigid, reducible, contracting germ near
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Theorem 3.1.If f is an algebraically stable hyperbolic element of there
exist an element Nof GL(2,Z) with non negative entries which is conjugate
to Mt in PGL(2,2), a neighborhood: of v, in S and a holomorphic diffeo-
morphism¥{ : D x D — « such that¥7 (0,0) = v, and

Wi ((uv)) = f(Wf(uv)
for all (u,v) in the bidiskD x D (see §2.8 for monomial transformations).

Proof. Let u be a small bidisk around, , in which the two sides of\ corre-
spond to the two coordinate axis. The fundamental group ®fA is isomor-
phic to (22, +), with generators winding exactly once along the first (rebp. t
second) axis. The mapinduces an endomorphisiy of this group. To prove
thatN¢ is conjugate tatMy in GL(2,Z), one argues as follows. First, in the
case of the Cayley cubic,

Tc:C"xC* - &\ A
is a 2 to 1 coveringC* x C* retracts by deformation on the tor8$x St, and
the action off on the fundamental group af \ A is therefore covered by the
action ofM¢ onT (St x S1) = Z x Z. This implies thalNs is conjugate tdv¢
in PGL(2,Z). Since the general case is obtained from the Cayley case by a
smooth deformation, this is true for any set of parametér8,C,D). Being
conjugate tat-Ms, the matrixNs is invertible.

Sincef is arigid and reducible contracting germ near and sinceNs is in-
vertible, a theorem of Dloussky and Favre assertsthaiocally conjugate to
the monomial transformation thik determines (see class 6 of the classifica-
tion, Table I, and page 483 in [33]). In particuldrbeing a local contraction,
Nt has non negative entries, and the squarsddfias positive entries.

The fact that the conjugady/; is defined on the whole bidisk will be part of
the next proposition. U

Lets(f) be the slope of the eigenline of the linear planar transftionas,
which corresponds to the eigenvalug\lf); s(f) is a negative real number.
The basin of attraction of the origin for the monomial tramefationN; is

Q(Nf) = {(uv) € C?| v < uP}.

In particular, this basin contains the full bidisk. We shddinote byQ(Ny)
the intersection o€ (N¢) with C* x C*. Similar notations will be used for the

basin of attractioQ(v, ) of the pointv, for f in S and for its intersection
Q(v4) with S

Proposition 3.2. The conjugacy¥{ extends to a biholomorphism between
Q(N¢) andQ(vy.).
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Proof. Since the monomial transformatid is contracting and : S— Sis
invertible, we can exten®{ to Q(N¢) N (C* x C*) by the functional equation

Wi (u,v) = F(WE((u ),

wheren is large enough fo(u,v)N? to be in the initial domain of definition
of W{. The map¥{ : Q(N;) N (C* x C*) — Sis a local diffeomorphism, the
image of which coincides with the basin of attractionvwgfin S It remains
to prove that the maf¥; is injective. Assume tha¥{ (ug,vi) = W7 (uz,v2).

Thenf(W{ (uy,v1)) = F(W] (Uz,v2)), andW{ ((ug, vi)™) = WF ((ug,v)™),
for anyn. Sincew;r is injective in a neighborhood of the origin, and since the
monomial transformatioNs is also injective, one getsiy,v1) = (up,v2). O

In what follows, || . | will denote the usual euclidean norm@s.

Corollary 3.3. Let f be an algebraically stable hyperbolic elementzofif m
is a point of S with an unbounded forward orbit, thel{rh) goes to Indf 1)
when n goes tg-c and

log]| f"(m)[| ~ A(f)"

Proof. First we apply the previous results to the studyfof and its basin of
attraction neav_. Let us fix a small balB aroundv_ in the surfaceS. If B is
small enough, theB is contained in the basin of attraction bf': The orbit of
a pointmy € B by f~1 stays inB and converges towards . Sincef contracts
A\ {v_} onv,, there is a neighborhood C Sof A\ B which is contained
in the basin of attraction of .. Let mbe a point with unbounded orbit. Since
7 UB s a neighborhood afk, the sequencéf™(m)) will visit 4 UB infinitely
many times. Leh; be the first positive time for whicki"™ (m) is contained in
7 UB. Let np be the first time aften; such thatf"2(m) escape8. Thenf"(m)
never comes back iB for n > ny. Pick an > ny such thatf"(m) is contained
in ¥ UB. Then f"(m) is in ¢ and therefore in the basin of.. This implies
that the sequencE'(m) converges towards, . In order to study the growth of
| f"(m)]|| in a neighborhood of.,, we apply the conjugacy;: What we now

need to control is the growth qi(u,v)N?H—l, and the result is an easy exercise
using exponential coordinatés, v) = (€%,€), in D* x D*. O
Corollary 3.4 (see lemma 16 in [44))If f is a hyperbolic element of and

A, B, C, and D are four complex numbers, f does not preserve any agebr
curvein $A7B,C7D)'

Proof (see also lemma 16 [A4]). Let us assume the existence of a set of pa-
rameterA,B,C, D) and of anf-invariant algebraic curv& C Sapgcp). Let

E be the Zariski-closure d in §(A7B7C7D)(C); f induces an automorphisiof
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the compact Riemann surfaBe SinceC? does not contain any 1-dimensional
compact complex subvarietl, contains points at infinity. These points must
coincide withv, and/orv_. In particular, the restriction of to E has at least
one superattracting (or superrepulsive) fixed point. Thescontradiction with
the fact thatf : E — E is an automorphism. O

3.2. Bounded orbits and Julia sets. Let us consider the case of a polynomial
diffeomorphismh of the affine planeC? with positive topological entropy (an
automorphism of Hénon type). After conjugation by an elenoéAut[C?], we
may assume thdt is algebraically stable i®??(C). In that case, the dynamics
of h at infinity also exhibits two attracting fixed points, one fomw, , and one
for h™1, w_, but there are three differences with the dynamics of hygirbo
elements ofa: The exponential escape growth rate is an intetjéy (while
A(f) is an irrational quadratic integer), the model to whircis conjugate near
w, is not invertible, and the conjuga&ly, is a covering map of infinite degree
between the basins of attraction. We refer the reader tq [82] and [40] for
an extensive study of this situation. Beside these diffe@enwe shall see that
the dynamics of hyperbolic elements.ofis similar to the dynamics of Hénon
automorphisms. In analogy with the Hénon case, let us inttedhe following
definitions:

e KT (f) is the set of bounded forward orbits. This is also the set aftpo
me S for which (f"(m)) does not converge to. whenn goes to+o.

K~ (f) is the set of bounded backward orbits, ad) = K= (f) nK~(f).

e J7(f) is the boundary oK™ (f), J7(f) is the boundary oK~ (f), and
J(f) is the subset 0K (f) defined byJ(f) =J~(f)NJIT(f). The setd(f)
will be calledthe Julia set of .

e J*(f) is the closure of the set of saddle periodic point$ ¢§ee below).

3.3. Green functions and dynamics.We define the Green functions 6ty

Gi(m) = lim s log” [17(m)]| 31)
Gi(m) = lim_sosslog® ()| @2

By proposition 3.2 and its corollary, both functions are Iveidfined and the
zero set ofo coincides withK*(f). Moreover, the convergence is uniform

on compact subsets & Since log ||. || is a pluri-subharmonic functiorG;
(resp. Gy) is pluri-subharmonic and is pluri-harmonic on the compieinof
K*(f) (resp. K~ (f)) (see [6, 34, 56] for the details of the proof). These
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functions satisfy the invariance properties
Giof=Af)Gf and G;of=A(f)"'Gf (3.3)

The following results have been proved for Hénon mappingdjstthem with
appropriate references, in which the reader can find a proafhwapplies to
our context (see also [18], [3], [30], [56] for similar corts).

(1) G}r andG; are Holder continuous (see [27], sections 2.2, 2.3). The
currents

are closed and positive, an‘dei = )\(f)ini. By [6], section 3, the
support ofT;" is J*(f), the support off;” is J~(f) (see also [56]).
(2) Since the potential§] andG; are continuous, the product

HV:T+AT_ (3.5)

is a well defined positive measure, and invariant. Multiplyinng+

andG; by positive constants, we can, and we shall assumeuthiata
probability measure. (see [6], section 3)

(3) The topological entropy of is log(A(f)) and the measurpgs is the
unique f-invariant probability measure with maximal entropy. (see
[5], section 3, and [3, 28] for more general results)

(4) If mis a saddle periodic point df, its unstable (resp. stable) manifold
WH(m) (resp.WS(m)) is parameterized bg. Let & : C — Sbe such a
parameterization aV!(m) with £(0) = m. Let D C C be the unit disk,
and letx be a smooth non negative function D), with x(m) > 0
andx = 0 in a neighborhood of(dD). Let [{(D)] be the current of
integration org (D). The sequence of currents

S B

weakly converges toward a positive multipl€lgf. Unstable (resp. sta-
ble) manifolds are dense in the suppdrt f) (resp.J™(f)) of T~ (f)
(resp.T*(f)) (see [7], sections 2 and 3, [34])

(5) By corollary 3.4, periodic points df are isolated. The number of peri-
odic points of periodN grows likeX(f)N. Most of them are hyperbolic
saddle points: Iz (f,N) denotes either the set of periodic points with
periodN or the set of periodic saddle points of periddthen

1

2(F.N)] Om = i

mee (f,N)
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where the convergence is a weak convergence in the spacetatipk
ity measures on compact subsetSofsee [5], [4], and [30])

(6) The suppord*(f) of us simultaneously coincides with the Shilov bound-
ary of K(f) and with the closure of periodic saddle pointsfofn par-
ticular, any periodic saddle point dfis in the support ofis. If p and
q are periodic saddle points, théh(f) coincides with the closure of
WH(p) N"W3(q). (see [5] and [4])

(7) Sincef is area preserving (see §2.3), the interiokdff ), K*(f) and
K~ (f) coincide. In particular, the interior & (f) is a bounded open
subset of5(C). (see lemma 5.5 of [6])

4. THE QUASI-FUCHSIAN LOCUS AND ITS COMPLEMENT

In this section, we shall mostly restrict the study to theecakthe once
punctured torus with a cusp, and provide hints for more gdrsgatements.
We therefore consider the famify and use notations from section 1.1.

4.1. Quasi-fuchsian space and Bers’ parameterizationLet T, be a once
punctured torus. LeTeich(T) be the Teichmiller space of complete hyper-
bolic metrics oril'; with finite area 2t, or equivalently with a cusp at the punc-
ture: Teich(T1) is isomorphic, and will be identified, to the upper half plane
H*. The dynamics oMCG(T1) on Teich(T1) is conjugate to the usual action
of PSL(2,Z) onH™.

Any point in the Teichmuller space gives rise to a represem® : F, —
PSL(2,R) that can be lifted to four distinct representations iBt¢2,R). The
cusp condition gives rise to the same equatidp[a, B]) = —2 for any of these
four representations. This provides four embeddings offiehmiiller space
into the surfac&y(R): The four images are the four unbounded components
of S(R), each of which is diffeomorphic td*; apart from these four compo-
nents,S(R) contains an isolated singularity at the origin. This siagyloint
corresponds to the conjugacy class of the representpgiarefined by

Pg(at) = ( (I) (I) ), Pq(B) = ( (1) _01 ) (4.1)

Its image coincides with the quaternionic group of ordeheig@he mapping
class group of the torus acts &\(R), preserves the origin and the connected
component

§ (R) = S(R)N (RS,
and permutes the remaining three components.

Let DF C S(C) be the set of conjugacy classes of discrete and faithful rep-

resentationg : F, — SL(2,C) with tr(p[a,B]) = —2. This set is composed
of four distinct connected components, one of th&f,, containings; (R).
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The componeng] (R) is made of conjugacy classes of fuchsian representa-
tions, and the seQF of their quasi-fuchsian deformations coincides with the
interior of DF ' (see [50], and references therein).

Let T/ be the once punctured torus with the opposite orientatiens’s pa-
rameterization of the space of quasi-fuchsian representprovides a holo-
morphic bijection

Bers : Teich(Ty) x Teich(T}) — Int(DF™).

We may identifyTeich(T) with the upper half plan&l* and Teich(T}) with
the lower half plan@[—. The groupPSL(2,Z) acts oriP!(C), preservind®*(R),
H*, andH ™. In particular, MCG(T) = SL(2,Z) acts diagonally on

Teich(T1) x Teich(T}) = H" x H ™.

With these identifications, the mapers conjugates the diagonal action of
MCG(T1) onH™ x H~ with its action on the character variety:df is a map-
ping class andg is the automorphism d¥ which is determined byp, then

Bers(P(X), d(Y)) = fo(Bers(X,Y))
for any(X,Y) in H™ x H™. It conjugates the action ®iCG(T1) on the set
{(21,22) cH' x H7|Zl = Z_z}

with the corresponding action o] (R). The Bers map extends up to the
boundary ofHl™ x H~ minus its diagonal (we shall call it the restricted bound-
ary, and denote it bg*(H™ x H™)). Minsky proved in [49] thaBers induces

a continuous bijection frord* (H™ x H™) to the boundary obF*.

4.2. Mapping torus and fixed points (see[48]). Let ® € MCG(T1) be a
pseudo-Anosov mapping class. L& be the mapping torus determined by
®: The threefoldXq is obtained by suspension @h over the circle, with
monodromy®. Thurston’s hyperbolization theorem tells us tKatcan be en-
dowed with a complete hyperbolic metric of finite volume. Flprovides a
discrete and faithful representation

Po : T (X¢) — Isom(H®) = PSL(2,C)

If we restrictpe to the fundamental group of the torus fiberX4f, and if we
choose the appropriate lift t6L.(2,C), we get a poinfpe] in DF™ € S(C)
which is fixed by the automorphistip. Let a(®) (resp. w(®P)) be the repul-
sive (resp. attracting) fixed point @ on the boundary offeich(T;). Since
(a(P),w(P)) is in the restricted boundary, afgtrs is a continuous bijective
conjugacyd*(H™* x H™), we have

Bers(a(®P),w(P)) = [Pa)]-
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The fixed pointw(®),a(P)) provides a second fixed point on the boundary of
DFT: This point may be obtained by the same construction @it in place
of ®. In [48], McMullen proved thaipe| is a hyperbolic fixed point ofe. The
stable and unstable manifolds ff at [pe) intersectDF* along its boundary,

WY([po]) NDFF = Bers({a(®)} x H-\ {(a(®),a(P))}), (4.2)

WS([po]) NDF" = Bers(H" x {w(®)} \ {(w(®),0(®))}). (4.3)
In particular, the union of stable manifold&*([pe]) NDF ', where® describes
the set of pseudo-Anosov mapping classes, form a denset silp&F .

Remark 4.1. Each pseudo-Anosov clagsdetermines an automorphisfg,
and therefore a subskt" () of S(C). The complemen® ™ (fe) of KT (fg)
is open: It coincides with the bassin of attractionfgfat infinity. Since the
dynamics offe on QF is conjugate to the dynamics @ on Teich(Tj) x
Teich(T}), the interior ofDF " is contained in the intersection

Q(MCG(Ty)) mm (fo)

where® describes the set of pseudo-Anosov classes in the mappisgygioup
MCG(T1) =SL(2,Z). Since stable manifolds are dense in the boundaBfof
one gets the following resulfthe quasi fuchsian loctist(DF ") is a connected
component of the interior d(MCG(T1)). Since there are four copies QfF
in $(C), this provides four connected components. The questioninsne
decide whether there are other connected components @ge [1

4.3. Two examples. The action of the mapping class group on the comple-
ment of DF is not well understood yet. We refer to Goldman’s list of qitess
[38] for interesting conjectures and to Bowditch’s artid8] for important ad-
vances and a discussion of this action. We now present twoeisting orbits

in the complement oDF.

Theorem 4.2. Let ® be any pseudo-Anosov mapping class gmgl be one
of the two fixed points ofsfon the boundary obF™ C S$(C). There exists a
representatiorpg : T4 (T1) — SL(2,C), with [pg] € S(C), such that
e the sequencéfe)"[po] converges toward the discrete and faithful rep-
resentationpse] when n goes tg-o;
e the closure of the mapping-class group orbif@f] contains the origin
(0,0,0), i.e. the conjugacy class of the finite representafign

Remark 4.3 (see [47]) The Kobayashi semi-distance on a complex manifold
M is defined as follows. Lanandm be two points oM. Then,distk (m,nY)

is the infimum of the sum of the Poincaré distand&sp(X;,Yi), where the
infimum is taken over all chains of holomorphic disgks D — M, k>0, 1 <



BERS AND HENON, PAINLEVE AND SCHRODINGER 19

i <k, such tha1(x1) =m, &(yi) = &+1(X+1) and&x(yk) = m. This semi-
distance is invariant under the group of holomorphic diff@ophisms ofM.
Schwarz lemma implies thdistk is indeed a distance whem is a bounded,
open, and connected subset of an affine variety.

Remark 4.4. According to a theorem of Bowditch (see theorem 5.5 of [13]),
there exists a neighborhoddk of the origin in §(C) with the property that
any mapping class group orbit startingdg contains the origin in its closure.

Proof. The fixed point[pg] is hyperbolic, with a stable manifod/5([pg)).
The origin(0,0,0) is the unique singular point &&(C). It corresponds to the
representatiofpg] which is defined by equation (4.1). This point is fixed by
fo, and a direct computation shows that the differentiafgft the origin has
finite order (order 1 or 2).

From section 3.3, the interior 8" ( ) coincides with the interior d ~(fo)
and is therefore arg-invariant bounded open subset®fC). In particular,
Int(K™(fg)) is Kobayashi hyperbolic, and the Kobayashi distandg isvari-
ant. Consequently, ifpg] is in the interior of(K*(fe)), then fo is locally
linearizable around the origiipg|. Since(Dfo)|p, has finite orderfe would
have finite order too. This contradiction shows tfpat is not in the interior of
Kt (fo).

We know thatVs([pg]) is dense in the boundary Kff (fe) (see §83.3). Since
[pg] is in K™ (fe), W3([po]) intersects the Bowditch’s neighborhodg. The
previous remark shows that any pojpg] in W3([pe]|) NUg satisfies the prop-
erties of the theorem. O

Proof of theorem 1.1Let us consider the surfac®(C), that corresponds to
representations: G — SL(2,C), whereG = (a, B|[a, B]*) (see §1.3). Its equa-
tion isx? +y? 4+ 72 = xyz+ 2. Let W be the mapping class

2 1
W= ( 21 ) .
Its action onS;(C) is given by the polynomial transformation

qu(X? Y, Z) = (27 yZ—X, Z(yZ— X) o y)
The set of fixed points ofy on $(C) is made of four point$x, x/(x—1),Xx),
wherex describes the solutions of the quartic equation
X' =3 ¥ +4x—2=0.

This equation is the product &(x) = x? + xx+ X andQ(x) = X%+ (X — 3)x+
(3—X) wherex = (3++/17)/2. The roots ofP give rise to two complex con-
jugate fixed points, while the roots §f give two real fixed points. Roots &f



BERS AND HENON, PAINLEVE AND SCHRODINGER 20

are given in [48], section 3.7, and roots@fare equal to

L 3-VIT V2+2V17
4 4

i.e. to~ 0.52 and~ —1.1.

As explained for example in [48], section 3.7, the surf&€C) contains
an fy-invariant open subset corresponding to quasi-fuchsiforehations of
the fuchsian groups obtained from the existence of hyperipeétrics onTy
with an orbifold point of anglat at the puncture. Thurston’s hyperbolization
theorem provides a hyperbolic fixed pojpty| of fy on the boundary of this
set: The representatigny : G — SL(2,C) is discrete and faithful and comes
from the existence of a hyperbolic structure on the compteroéthe figure
eight knot, with an orbifold structure along the knot. Thisefi point is one
of the two complex conjugate fixed points (the second oneesponding to
Py-1)-

The subset o%;(C) corresponding to conjugacy classe$0f 2)-representations
coincides with the unique bounded connected componet% @), and is
homeomorphic to a sphere (see [35], figure 4). This compasdatinvariant,
and the two fixed points of corresponding to roots @(x) are located on this
bounded component &(R).

The differential off : C3 — C3 at a fixed point has tracex2/ (x— 1). One of
its eigenvalues is equal to hecausd preserves the rational functio®+y? +
7% — xyz This implies that the sum of the remaining eigenvaluesxfs & —

1) — 1, while their product is 1becausd is area preserving. As a consequence,
the fixed point corresponding to the rootc —1.08... is a saddle fixed point
(the trace being< —2). Let [psy] be this fixed point, and l&vs([psy]) and
WY([py]) be the stable and unstable manifolds@fthrough[psy] and[py].

From property (6) in section 3.3, we know thE#([psy]) intersect®W"([py]).
Let [po] be one of these intersection points. Theorbit of [po] contains both
[pw] and[psu].

Finite orbits of MCG(T;) are listed in [29] and correspond to finite sub-
groups ofSU(2) ; the point[psy] does not appear in the list. From this we
deduce that the mapping class group orbitaf)] is infinite and dense in the
component ofSU(2)-representations (see [36], [37], or also [32, 17, 20] for
related ideas). This implies that the closure of the orbipef] contains both
[pw] and theSU(2)-component o5 (R). O

5. REAL DYNAMICS OF HYPERBOLIC ELEMENTS

In this section, we study the dynamics of hyperbolic elememt the real
surfacesSa g c,p)(R) when the parameters are real numbers. The main goal
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of this section is to prove theorem 5.10 below, which extermasl precises,
theorem 1.2.

5.1. Maximal entropy. Let us fix a hyperbolic elemerite 4. If the param-
eters(A,B,C,D) are real, we get two dynamical systems: The first one takes
place on the complex surfa&C) and its main stochastic properties have been
listed in section 3.3; the second one is induced by the o#istni of f to the

real partS(R). From time to time, we shall use the notatiég to denote the
restriction of f to S(R). For example, we shall say th&k has maximal en-
tropy if the entropy off : SR) — S(R) is equal to the topological entropy of

f:S(C)— SC), i.e.tologA(f)).

Theorem 5.1. Let f be a hyperbolic element af. If A, B, C, and D are real
parameters, the following conditions are equivalent:

(1) fr has maximal entropy;
(2) J*(f) is contained in §R);
(3) K(f) is contained in &R).

In that case, J(f) = J(f) = K(f).

This theorem is an easy consequence of the results of s&8adisee [5],
section 10 for a proof). Our first goal is to prove the follogiresult.

Theorem 5.2. Let f be a hyperbolic element gf. If (A,B,C,D) are real pa-
rameters such that®g c p)(R) is connected, therrfhas maximal entropy.

Before giving a proof of theorem 5.2, let us review a resulBofven con-
cerning topological lower bounds for the entropy (see [14$t f be a home-
omorphism of a marked topological spge€ m), by which we mean thanis
a fixed point off. Then, f determines an automorphisinof the fundamental
groupty (X, m). Let us assume that; (X, m) is finitely generated, and fix a
finite set{ay,...,0x} of generators. The growth rate &fis defined to be

Af,) = Iimsup(%dian‘(f”(B)))

n—-+oo

where diam is the diameter with respect to the word metrim{uthe gen-
eratorsa;) andB is the ball of radius 1 with respect to this metric. Bowen’s
theorem asserts that

htop(f) = log(A(f.))

as soon ad is a continuous transformation of a compact manifold. Even
thoughS(R) is not compact, we can apply this theorem because unbounded
orbits are contained in the basins of attraction of(fitdt) and Ind f).
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Proof of theorem 5.2Let us first study the case of the Cayley cuBic This
surface is singular, anf:(R) \ Sing(S) contains a unique bounded compo-
nent. This componer&(R)? is a sphere with four punctures and the dynamics
of 4 (i.e.T'}) is covered by the monomial action bf on the torusS® x St in

C* x C*. As a consequence, for any hyperbolic elemkint I3, the entropy of

f on S (R)? is maximal; moreover, the expanding facldif,) coincides with
the dynamical degre¥( f), and Bowen'’s inequality is an equality.

If we deform the Cayley cubic in such a way that the surfa@e) is smooth
and connected, the§R) is homeomorphic to a four punctured sphere (the
punctures are now at infinity - see 82.9), and the actiori oh the funda-
mental group ofS(R) has not been changed along the deformation. As a con-
sequence, Bowen’s inequality givhgp(fr) > log(A(f)) and the conclusion
follows from hyop(fr) < htop(fc) = log(A(f)). This concludes the proof for
smooth and connected surfac®®) (see section 2.9). IHR) is not smooth
but is connected, the8(R) is a limit of smooth connected members of the
family Fam. By semicontinuity of topological entropyr has maximal entropy
(see [51)). O

Corollary 5.3. Let a b, ¢, and d be four real parameters iR\ [—2,2], the
product of which is negative. Let: T4(S4) — SL(2,C) be a representation
with boundary traces @, ¢, and d Let® € Aut(my(S2)) be a pseudo-Anosov
automorphism. Ipo ® is conjugate t@, thenp is conjugate to a representa-
tion intoSL(2,R).

Proof. Let Sbe the element of the famillyam that corresponds to the param-
eters(a,b,c,d). The assumption on the parametard, c, andd implies that
S(R) is connected (see section 2.9), and that there i.1{@)-component (this
is obvious ifS(R) is smooth, sincé&U(2) representations would form a com-
pact component, and this follows from [10] in the singulaseja

If po®~1is conjugate t, thenx(p) is a fixed point of the automorphism
fo induced byd on the surfac& SinceS(R) is connectedfr has maximal
entropy. By theorem 5.1, all periodic points bfare contained its(R). This
implies thatp is conjugate to aSL (2, R)-valued representation. O

5.2. Maximal entropy and quasi-hyperbolicity. Bedford and Smillie recently
developped a nice theory for Hénon transformations whit¢brels the notion
of quasi-hyperbolicity, a notion that had been previoustyaduced for the dy-
namics of rational maps of one complex variable (see [53pfor variable).
This theory can be applied to our context in order to studyehlyplic automor-
phisms with maximal entropy.
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5.2.1. Quasi-hyperbolicity.Let Sadd f) be either the set of periodic saddle
points of f or the setW"(p) "W5(q) where p andq are two periodic fixed
points of f (see [8] for for possible other choices concern8eaypd f)). With
such a choiceSadd f) is f-invariant and its closure coincides wilh(f) (see
8§3.3, property (6)). Each point of Sadd f) has a stable manifoM/5(m) and
an unstable manifoltlV¥(m), and we can find two injective immersiogy,,

£ : C — Ssuch thagl >(0) = m, £2/5(C) = W¥/S(m), and
max{G*/~(E%3(t))| teD) =1,

whereD is the unit disk. The parameterizatigp, and&;, are uniquely deter-
mined by this normalization up to a rotationtofSinceSadd f) is f-invariant
andf sends the unstable manifoldratio the unstable manifold &t(m), there
is a non zero complex numb&(m) such that

FES() = 8 (A(M)Y).
The numbei (m) depends on the choices made iﬁ{andi‘]ﬁ(m) but its mod-
ulus|A(m)| only depends om. SinceG* o f = A(f)G*, we obtain easily the
inequality|A(m)| > 1 for allme Sadd f).

We shall also need the growth functigro,(r) of Gt along the unstable
manifold W"(m), which is defined bygroy(r) = max; <, {G*(&n(t))}, and
the uniform growth function

Gro(r)= sup {grom(r)}-.
me Sadd f)

Bedford and Smillie proved in [8], section 1, that the follag properties are
equivalent:

(1) the family{;,|me Sadd f)} is a normal family;

(2) Gro(rg) < oo for some 1< rg < ;

(3) there exist& > 1 such thatA\(m)| > k for all min Sadd f);
(4) 3C,B < o such thagroy,(r) < CrP for all min Sandr > 1.

If these properties are satisfielljs said to bequasi-expandinglf f and f 1
are quasi-expanding, thenis said to bequasi-hyperbolic

5.2.2. Maximal entropy.It turns out that real Hénon mappings with maximal
entropy are necessarily quasi-hyperbolic (see [8], theats8 and proposition
4.9). The proof of this result can be applied word by word to@antext, and
gives rise to the following theorem.

Theorem 5.4(Bedford Smillie, [8] and [9]) Let f be a hyperbolic element of
4 and S be an element 6&m defined by real parametef\,B,C,D). If fr
has maximal entropy, then f is quasi-hyperbolic, and anygar point m of

f is a saddle point, withA (m)| > A(f).
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Corollary 5.5. Let f be a hyperbolic element af and S be an element of
Fam defined by real paramete(#\ B,C,D). If S(R) is connected, thergfhas
maximal entropy and is quasi-hyperbolic.

5.2.3. Uniform hyperbolicity and consequencds.a subsequent paper, Bed-
ford and Smillie also obtain a precise obstruction to umiféryperbolicity. Let

p € S(R) be a saddle periodic point df The unstable manifold g in S(R)

is the intersection o§(R) with the complex unstable manifol¥"(p). This
real unstable manifold is diffeomorphic to the real IReand p disconnects it
into two half lines. If one of these half unstable manifolsd€ontained in the
complement oK™ (f), one says thap is u-one-sidedr unstably one-sided; a
point which is notu-one-sided is said to be unstably two-side. Stablys{pr
one-sidegboints are defined in a similar way.

Theorem 5.6(Bedford Smillie, [9]) Let f be a hyperbolic element afand S
be an element dfam defined by real paramete(#, B,C,D). If fgr has maximal
entropy but K f) is not a hyperbolic set for,fthen

e there are periodic saddle points p and g (not necessariljirdiy so
that WY (p) intersects W(q) tangentially with order 2 contact ;

e pis s-one-sided and q is u-one-sided ;

e the restriction of f to Kf) is not expansive.

Theorem 5.7. Let f be a hyperbolic element af. Let S be a smooth surface
in the familyFam which is defined by real parametef8, B,C,D). If one of
the connected components @RS is bounded, then the entropy aof s not
maximal and f has an infinite number of saddle periodic pdm&C) \ S(R).

Proof. Let us assume thdthas maximal entropy and th&tR) has at least one
bounded connected compon&iR)°. The existence of a bounded component
implies thatS(R) this bounded componestR)° is unique and homeomorphic
to a sphere (see §2.9). Beiriginvariant and compac8(R)? is contained in
K(f). Since fr has maximal entropy(f) is contained inS(R), has empty
interior (in S(C)), and coincides with the support pf (see §3.3 and theorem
5.1); in particularus (S(R)°) is a positive number. The ergodicity pf and
the f-invariance ofS(R)® now imply thatS(R)® has full us-measure. As a
consequence (f) coincides withS(R)°. SinceS(R)? is compact, there is no
one-sided periodic point, and theorem 5.6 implies Két) is a hyperbolic
set. This means that the dynamicsfobn S(R)? is uniformly hyperbolic. In
particular, the unstable directions dfdetermine a continuous line field on
S(R)?, and we get a contradiction becau&®)° is a sphere. O

Remark 5.8. A similar argument shows that the Julia K&h) of a Hénon auto-
morphismh: C? — C? can not coincide with a smooth embedded 2-dimensional
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surfaceSc C2. Indeed, the restriction dfto Swould be uniformly hyperbolic,
and its entropy would be equal to @), whered € Z* is the dynamical de-
gree ofh. This implies that the Euler caracteristic 8fs 0 and thah: S— S
is an Anosov diffeomorphism. But the topological entropysath a diffeo-
morphism is not the logarithm of an integer (it is the lodartof a quadratic
integer). This provides a contradiction.

Corollary 5.9. Let D be a real number andoSoe the element dfam defined

by the real parameter®,0,0,D). The following properties are equivalen()
there exists a hyperbolic element f insuch that f: SS(R) — S(R) has
maximal entropy(ii) any hyperbolic element f in has maximal entropy on
S(R), and(iii) D > 4.

Proof. If D > 4, thenS(R) is connected and smooth and the result follows from
theorem 5.2. IlD < 0, the result follows from the fact that the action of the
mapping class group o8 R) is totally discontinuous (see [37]). If@ D <

4, thenS(R) has a compact connected compong(R)° and the conclusion
follows from the previous theorem. O

5.3. Uniform hyperbolicity. We now prove theorem 1.2 in the following more
general form.

Theorem 5.10.Let f be a hyperbolic element af. Let S be an element of
Fam defined by real parameters. IfB) is connected, then
e the entropy of £ is maximal; its value isog(A(f));
e the set of bounded orbits of: 15(C) — S(C) is a compact subset()
of SR);
e the automorphism f admits a unique invariant probabilityasere |
of maximal entropy, and the support of poincides with Kf); peri-
odic saddle points equidistribute toward;u
e the dynamics of f on K) is uniformly hyperbolic.

The only property that has not been proven yet is the last bnéact, we
shall prove more than uniform hyperbolicity: Our objectimneludes a descrip-
tion of the complement oK™ (f), in order to explain pictures like the one
provided in figure 1. This will be achieved in section 5.4. ®again, as in the
proof of theorem 5.2, the main argument is to understandiEtions of the
Cayley cubicj.e. perturbations ofr : S£(R) — S (R). The following section
contains a preliminary study of its small connected reabdeétions.

5.3.1. Small deformations of the Cayley cubithe surfacé&: has four conical
singularities. Ifsis one of these four points, then, localf;(R) is diffeomor-
phic to a quadratic con® = 0 with Q(X,Y, Z) = X?+Y?—Z?; the singularity
s now coincides with the origin dR3.
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C-1 C-2

FIGURE 1. Examples of stable manifolds.

LetM be an element of the orthogonal graDfQ) with an eigenvalua € R
of absolute valuéA| > 1. The other two eigenvalues M are thent+1/A and
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+1. LetD*, D~ andD? be the three eigenlines corresponding to the eigenval-
uesA, £1/A and+1.
Let € be a non negative number. Define

e :={(X,Y,Z2) e R%Q(X,Y,Z) = ¢};

whene = 0, #y is the quadratic cone, but when> 0, #; is a connected
hyperboloid, which intersects the lifg° in two opposite points*(g), and
s (e) = —s'(€). According to the sign of the eigenvalu€l, M either fixes
or permutes these two points. In any casdg) ands (¢) are saddle periodic
points for the restrictioM : #z — #. The stable manifold dfl throughs™ ()
(resp.s (¢)) is the line througls™ (€) (resp.s™(€)) contained inv/; which is
parallel toD™ (see picture ).

Let R3 be the blow- up oR3 at the origin, letE be the exceptional divisor
(E=P3R) C R3) andr: R3 — R3 the contraction oE. The linear magM
lifts to M : R3 — R3. The strict transform of the guadratic congis a cylinder
H, that intersect& along the conic curv® = 0. Both #; andE are invariant
by M, andM : #Hy — Hy has two saddle periodic points along the conic.

This conic disconnects into a disk and a M6bius bard. The strict trans-
form of DO intersectsE in one points; which is contained ilN. Whene > 0
goes to Qthe pointsit (st (g)) converge toward, and the family of surfaces
0 1(£;) converges toward the union df and the cylinders;, approaching
4, from one side andN from both sides. The poirgi$ a saddle fixed point
of I\7IA: E — E. The strict transform oDV is a neutral invariant manifold for
M : R® — R3 throughs; which intersects the surfaceg on the saddle points
TH(s* ().

Let us now come back to the Cayley culie Let f be a hyperbolic element
of the groupa. All four singularities are saddle fixed points ¢f Locally
around each of those poinss S(C) is a quotient ofC? by the involution
(u,v) — (—u,—v), and the magf is covered by a linear maju,v) — (au,v)
with |o| > 1 andfa = £1.

The transformatiorf extends to an automorphism of the affine space pre-
serving the family of cubic surface® 00 p), D € R. Let us denote by this
automorphism and letbe a singularity ofc. The eigenvalues of the matrix

M = Dfs

are equal td := o2, 1/A := p? and=+1. By Morse lemma, the surfac& 0,0
with D = 4+ € behave locally as the family of hyperboloidg. Let us use
the same notation as above. Thérlifts as an automorphisnh of the blow-
up R3 of R3 at the points. The transformatiorf coincides withM along the
exceptional divisoE.
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The strict transform of the (real) Cayley cubic coincidex@lly) with the
cylinder #. The fixed points corresponds on this cylinder to a pair of fixed
points and the conic curv@ = 0 realizes a heteroclinic connection between this
points. If we cut the cylinder along the unbounded unstalaaifold of one of
these two points, the cylinder becomes a strip: This is shamvpicture 2B,
where stable and unstable laminationd ofS:(R) — Sc(R) are represented.

Sincef coincides withM alongE, f has a saddle fixed point atThe ex-
ceptional divisoE is smooth and the family of surfacasl(S(QQOAJrg)) deter-
mines a smooth locally trivial fibration neafwith E corresponding te = 0).
Saddle periodic points can be deform along smooth pertiorismtAs a conse-
quencestan be deformed into a pair of saddle periodic poisty€),s (¢))
on Sy, for smalle > 0. The lineDP is tangent to the curve’ which is de-
scribed by this family of points.

A similar study applies for all small real deformatio8g g c py which are
connected, and we get the following lemma.

Lemmab5.11.Let f be a hyperbolic element of the groapLet s be a singu-
larity of the Cayley cubic& If Sy ) is a small real and connected deformation
of the Cayley cubic, then s deforms as a pair of po{stgt),s™(t)) C Sy
which are both saddle fixed points of S, ) — Sy)-

The stable manifold of*(t) is uniquely parameterized by an injective holo-
morphic mapt? : C — $(C) with £3(0) = s™(t), (&)’ (0)| = 1, and&3(R) C
S (R) (up to a possible composition &f(z) by z— —2). By a coherent choice
of &, one gets a continous family of holomorphic mappings.

Remark 5.12. For & with D = 4—¢ and¢ > 0, the surface locally looks
like a hyperboloid with two sheets that doesn't intersBft The intersec-
tion is indeed made of two complex conjugate points. Thidarp that we
lose saddle points in the real locus, and shows that, lqctéy entropy of
f:S(R) — S(R) is not maximal (for smalt > 0).

5.3.2. Notations and preliminariesWe now start the proof of theorem 5.10.
In what follows, we fix a hyperbolic elemeritof 2, and assume thdt pre-
serves orientation (repladeby f2 if f reverses orientation). We denote &y
the space of real parametés B,C,D) such thatS(R) is connected. In order
to prove theorem 5.10, and theorem 5.22, we shall study thardics off on
all surfacesS= S g ¢ p) With (A,B,C,D) in # . For such surfaces, maximal
entropy implies the following properties:
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(1) K(f) coincides with](f) and is a subset &R); moreover, periodic
points are hyperbolic, all of them are containediff ), and intersec-
tions between stable and unstable manifolds are also ceat#iK (f)
(see theorem 5.4) ;

(2) the set of one-sided points is a finite sub&& f) of J(f) (see [9],
sections 3and 4) ;

(3) if mis a point of tangency between stable and unstable manibblfis
thea andw-limit sets ofm are contained 0 f) (see theorem 2.7 of
[9D) ;

(4) in the complement o0DSf), stable and unstable manifolds bform
two laminations ofl(f) (see proposition 5.3 of [8]) ;

(5) a tangency between a stable and an unstable manifold/&yslqua-
dratic (see section 2 and figure 4.1 in [9], and section 5 9f [8]

Remark 5.13. Note that the picture provided by Bedford and Smillie’s re-
sults include the fact that there is no heteroclinic conpadietween periodic
points. This simple fact is well known, and is not related taximal entropy
in the real locus. The proof is as follows. Assume that oné dfah (real)
stable manifoldV°(q) coincides with one half of an unstable manifo\tf (p).
Then the complex stable and unstable manifolds coincidausecthey inter-
sect along an uncountable set. As a consequé&lgg)) can be compactified
by adding the poinp to it, and determines a copy &(C) in S(C). Since
S(C) c C3is an affine surface, an@® does not contain any 1-dimensional
compact subvariety, one gets a contradiction.

Note that if we resolve the singularities of the Cayley cuiyidlow-ups, we
create heteroclinic connections along the exceptionaaliy

5.3.3. Deformation of periodic points and heteroclinic intersens. For any
point (A,B,C,D) in #, all periodic points off : S(C) — S(C) are real saddle
points (property (1) above). As a consequence, we can falbtine periodic
points along any deformation of the parametgsB,C,D) in # : If a(t),t €
[0,1], is an arc of clasgX in 7, and if pg is a periodic saddle point of :
Su(0) — Su(0) Of periodN, there exists an arp(t) of classcX such that

(1) forallt, p(t) is contained irf, ) andp(0) = po;

(2) forallt, p(t) is a periodic saddle point df: Sty — Sy(t) of periodN
(here we also use the fact thafpreserves orientation; otherwise, the
period could change whep(t) goes through a singular point §f)).
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FIGURE 2. Deformation of singularities.

Remark 5.14. The pointp(t) is contained in the sé¢, ) (f) of points inS; )
with a boundedf-orbit. The family of compact sets, ) (f) depends semi-
continuously ort ([6], lemma 3.1), so that the unian¢g 11Kqt)(f) is con-
tained in a fixed compact set. The pathsp(t), t € [0,1], wherep describes
the set of periodic points df : §;g) — S(0) are contained irx .
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We now explain how to follow intersection points along hetdinic inter-
sections. We choose two periodic poig@ndq and follow them along the
deformatiom(t), t € [0,1]. We can then parameteri¥¢>( p(t)) by a continous
family of holomorphic mappings

€p1) 1 C—S(C)

in such a way that%(t)(O) = p(t), \(Ez(t))’(O)\ =1, andE;(t)(R) C S(R). We
parameterizwq“(t) in a similar fashion bﬁg(t). We then choose one half of the
stable/unstable manifolds, and assume Rrats mapped onto this chosen half
by Esp(t) (resp. byig(t)).

Let A; be the set of parametefs(t),u(t)) in Rt x R™ corresponding to
parameters of intersections betww&t) anqu“(t); more precisely,

A= {(xY) ERT xR &5 (%) = &4 ().

Lemma 5.15. The set\; is a discrete subset 6" x R™. Two distinct points
of ¢ have different first and second coordinates. For(ally) in A;, and for
all € > 0, the number of points in the strip™ x [y —€,y+ €] is infinite.

Proof. Let(x,y) be an element of;. Letm= Ef)(t)(x) be the intersection point
corresponding to these parameters. Wet ;) (C) be a small neighborhood
of m. LetW.(m) (resp.W.(m)) be the connected component.(m) NU
(resp.W.(m)NU) containingm. These local stable and unstable manifolds are
analytic subsets dfi. As such, they intersect in a finite number of points. Let
Ix,ly C R™ be the intervals which are mapped on the local stable ancibiest
manifolds throughm by Ef)(t) andEg(t) respectively. By contructiory x ly is
a neighborhood ofx,y) which contains only a finite number of points &f.
This shows that\; is discrete.

Let us now fixx. Sinceéa(t) is injective, the number of parametersuch
thatﬁg(t)(y) = E;(I)(x) is at most one. This proves the second statement.

Let now (x,y) be an element of\;. The intersection pointn := Ef)(t)(x) is
an element oK(f). Let U be a small neighborhood af in which (i) the
stable and unstable laminationsfoére transversal (or have at most a quadratic
contact am), and(ii ) all local stable and unstable manifolds intersect. &ix
0 and consider the piece of unstable manifoitm) = &, ) [y —¢,y+&]. What
we have to show is that/(m) intersectswg(t) infinitely many times. Shrinking
U, one may assume thiat(m) coincides withAj (m). Choose a periodic point
r of f in U: The unstable manifold of intersectsxlvg(t) at least once, and
therefore infinitely many times in any neighborhoodrof all intersections
points inU generate intersection points betw&gmm) andW&t). O
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Let us nowassume thap is not one-sided According to property (3) in

85.3.2, this implies that all intersection pointswrf(t) anqu“(t) are transverse.

Let(x,y) be any point of\,, a € [0, 1] and letm € §;(5) be the corresponding in-
tersection point of stable/unstable manifolds. Then tegigts a neighborhood
| of aiin [0, 1] along whichm, and thereforéx,y), can be smoothly deformed
into pathsm(t) and(x(t),y(t)). In other words, all points of\; can be locally
followed along the deformatioa(t), with t neara. Note that through such a
deformation of two pointgxs,y1) and (X2,y2), one always hag;(t) # xo(t)
(for t in the common interval of definition).

Lemma 5.16. For all intersection parameter§x,y) € Ao, the domain of def-
inition of the deformatiorix(t),y(t)) coincides with the full interval of defor-
mation|0, 1].

Proof. What we have to show is that there is no "explosion in finiteetimn
other words, we have to rule out the situation whed),y(t)) is defined on
the intervall0, @], but goes to infinity as increases ta. We therefore assume
thatx(t) goes to infinity as goes toa, and try to reach a contradiction.

Let y(a) be the infimum limit ofy(t) ast approaches. Let us first assume
thaty(a) <  and choose a poiriki(a),y1(a)) in Aa such that (iy1(a) > y(a)
and (ii) A4 contains an infinite number of points in the stRp x [y(a),y1(a)]
(such a point exists by the third property of the previousneh Let now
(x1(t),y1(t)) be the local deformation dk;(a),y1(a)) on a small intervala —
g,a+gl.

Sincex(t) goes to+c, and since vertical lines through points A&f never
coincide, we know that(t) > x(t) for all t in [a—¢€,a[. Similarly, y1(t) > y(t)
fort € [a—¢,a[. Let B; be the rectangle with upper left cornea(t),ya(t))
and lower right cornefx(t),y(t)). This is a compact subset Bf* x R™, and,
since/\; is discrete, it contains a finite number of points'ef Since horizontal
and vertical lines through points 6§ never coincide, this number of points is
a constank, and the stripR™ x [y(a),y1(a)] contains at mosk points. This
contradicts the choice @ki(a),y1(a)).

In the case where the infimum limit gft) is 4+, the contradiction is easier
to get by considering the rectandle with lower left corner(0,0) and upper
right corner(x(t),y(t)). As a consequence, we get a contradiction in both cases,
and the lemma is proved. O

This lemma shows that we can follow intersection points leetwstable and
unstable manifolds along any deformatfgyy, if a([0,1]) C # . Note that this
is true up to and including the case of the Cayley cubic (setose5.3.1).
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Remark 5.17. When we follow an intersection poimi(t) of WS(p(t)) and
WHY(q(t)) along a deformatiorg,r), the pointm(t) never coincides witfp(t)
orq(t) (thisis a consequence of the previous lemma, or of the abs#rsaddle
connections, see remark 5.13).

5.3.4. One-sided pointsLet us assume th&, ) is a deformation of the Cay-
ley cubicS, ) = &, with a(t) € # for allt € [0, 1]. We shall say that a periodic
pointw of §;(1) comes from a singular poirstof & if the deformationw(t)
of w(1) = w alonga(t) lands ats whent = 0. This means that(t) coincides
with one of the poins*(t) or s~ (t) whent approaches 0 (see section 5.3.1).

Lemma 5.18. If m(t) is a u-two-sided (resp. s-two-sided) point gf;Sfor
some tthen nit) is u-two-sided (resp. s-two-sided) for akt[0, 1]. One sided
points come from singular points of Sand if m comes from a singular point,
then m is both stably and unstably one-sided.

With the notations from section 5.3.2, the previous lemnm&that the set
OSf) is made of the eight points coming from the singularitieSof

Proof. Let m be au-two-sided point. Following intersection points of stable
and unstable manifolds, one sees that the set of paramdterashich m(t) is
u-two-sided is an open set.

Let us now assume that(t) is u-two sided fort €]a,b[, and lett decrease
to a. Changingf into one of its iterates, once can assume th@j is a curve
of fixed points and that the multipligg(t) of f along the unstable manifold
is a positive number. Let; be the maximum of(t) on the closed interval
[a,b]. Lete > 0 be a fixed small real number. Sinegt), t > a, is u-two-sided,
the setkK™ (f) intersects the local stable manifdldl.(m(t)) on both sides.
SinceK™ (f)NWY(m(t)) is f-invariant,K* () intersect®\{2.(m) on both sides
inside the annulus of radéiand(1+ X )€ aroundm(t). By semi-continuity of
K*(f), this implies thak * () intersectd\3 (m(a)) on both sides, at distance
in betweere and(1+ X )€, proving thatm(a) is u-two-sided.

This shows that the set of parametefsr whichm(t) is u-two-sided is both
open and closed. By connectedness, a poioittiso-sided for one parameter
if an only if it is u-two-sided for all parameters.

Conversely, a poinin is u-one-sided for one parameter if and only if it is
u-one sided for all parameters. On the Cayley cubic, thosetpaire exactly
the singular points. This proves the result. O

5.3.5. Deformation and stable manifold®lext steps aim at giving a descrip-
tion of K(f) and are not absolutely necessary to prove the uniform hyppierb
ity. We choose one of the singularitiesf the Cayley cubic, and cafi(t) and
q(t) the two periodic one-sided points which come from this siagty after
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perturbation (these points where previously caiet) ands™(t)). Fort =0,
we havep(0) = q(0) =s.

Remark 5.19. We shall make use of figures-to 2-E. They represent the
geometry of stable and unstable manifolds ngeand q after deformation of
the Cayley cubic. Pictures B;C describe the geometry of the stable/unstable
laminations off on the Cayley cubic arounsl This lamination has a singu-
larity ats. Figure 2B is obtained after one blow-up and has been described in
85.3.1. Figure Z= is a view of the bounded pa® (R). Locally arounds, we

get a disk with two singular laminations (it’s a typical "ps®-Anosov" with
spines, see [1], page 243). The regi®on this picture is described below.

Let us study the topology of stable and unstable manifoldé oh a con-
nected deformatio®(R) of S(R). From lemma 5.18, we know thg@tandq
are bothu ands-one sided, half of their real stable/unstable manifoldsgo
to infinity (see picture 22 andB for the Cayley cubic, and for the deforma-
tion). We fix a periodic point in S which is close to the stable manifold pf
The local unstable manifold afintersects transversaly the stable manifold of
satu and its stable manifold intersects transversaly the utestabnifold ofs
atv, as in figure 2€. Changingf in one of its iterates, we assume thas a
fixed point. We shall denote By the region bounded By/3(s), W(r), W3(r)
andW!(s) (see figure 2=).

Thanks to section 5.3.3, we can follow this picture along alsdeformation
Sut) betweerte andS= §;(y). The pointr is deformed in a path(t) of saddle
fixed points, ands in a pair of saddle fixed pointp(t), g(t). The intersec-
tion pointu can be deformed in two ways. As a point of intersection betwee
WS(p(t)) andW"(r(t)), providing a pointi(t) € ), but also as a point of in-
tersection betweeW>(q(t)) andW"(r(t)), and we denote by (t) this second
deformation. The point can also be deformed in two ways; by convention,
v(t) is the deformation contained W"(q(t)) N"W>3(r(t)) (see figure D).

Let R(t) C St)(R) be the closed region which is bounded by the half of
W3(p(t))\ {u(t)} that containg(t), the segment afV"(r (t)) betweeru(t) and
r(t), the segment ofV3(r(t)) that joinsr(t) to v(t), and the half ofV!(q(t)) \
{v(t)} that contains(t), (see figure 22). LetW? (q(t)) be the connected com-
ponent ofWs3(q(t)) \ {q(t)} which entersR(t): This half stable manifold is
parameterized b¥; : RT — S(R), with & (0) = q(t) and&:(z) € R for small
positive real numbera

The closure of the stable manifold gft) covers the seK(f). As a con-
sequence, we know theé? (q(t)) \ {q(t)} exits the regiorR(t). In particular,
there exists a smallest positizesuch that;(z) is ondR(t). Since this point
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coincides withu(t) on the Cayley cubic, we know that it coincides witl(t)
all along the (small) deformatio, ;) (figure 2D).

Lemma 5.20. For all t € [0,1], the half stable manifold Wq(t)) exits R
through WH(r(t)), in between ft) and Ut), at point r'(t).

Warning. In what follows, we keep the same notations, but the depex@an
with respect to the deformation parametes made implicit. All points and
stable/unstable manifolds are indeed points and curvgg(in; whent =0, S

is the Cayley cubicp(t) = q(t) = s, andR(t) degenerates tBy.

5.3.6. Stable manifolds, doubly one-sided points, and wandettimgss Let |
be the closed segmepnfu] C WY(r).

Lemma 5.21. The set K (f) does not intersect Wr) along | in between the
points u and f.

Proof. Let us assume that this is not the case. Soisau-one-sided, we know
that there is no stable manifolds approachihiyjom the left. We can therefore
definer” to be the unique point inwhich is betweem andr’, is contained in
K(f), and is closest to’ with these properties. By assumptiofi,is different
from u (see figure Z).

The stable manifold through’ entersR and cannot interse&Vs(q) and
W3(p). It must therefore exiR through the interval,, in betweenr” andu (see
picture 2E). Sincer is not coming from a singular point,is not one-sided,
and the stable and unstable manifolds dorm two transverse laminations in
its neighborhood. As a consequence, there are perioditspaiiri in R which
are arbitrarily close te. Let w be such a point. The point being arbitrarily
close tor, its local unstable manifold is arbitrarily close\td’(r), and we can
choosew in such a way that the local unstable manifoldioiintersectdVs(r’)
in at least two points iR, as in picture 2&.

We now choose a second periodic paintn Rwhichis close ta”, in such a
way that the connected component¥éf(w') N R which containsy/ intersects
WJ:(W) in two distinct pointd; andiy .

The pointsw, W, and the heteroclinic intersectioms andi, can then be
followed up to the Cayley cubic along the deformati@y) (lemma 5.16).
During this deformationv andw' can not leave the regidR because two dis-
tinct periodic points can not be on the same stable/unstabl@fold. As a
consequencey (resp.i2) can not exitR, because otherwise, for some param-
etert in the deformationis (t) would be contained in two distinct stable (resp.
unstable) manifolds.
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FIGURE 3. Tangency and complement of K*(f).

On the Cayley cubic, we then get two periodic poiwt®) andw (0) such
that the connected componentWwf(w') N R containingw’ intersects the con-
nected component &/"(w) N R containingw in two distinct points. This is a
contradiction. O

Let B be the region bounded by’,u], W3(p), f([u,r']), andW>3(q) (see
picture 2F). The segment$"[u,r'] join the endpoints "(u), which converge
to palongWs(p), to the endpoint$"(r’), which converge tg alongW3(q). On
the other end, the open segmé@ntu is entirely contained in the complement
of KT (f), so that all its points go to infinity when one iterategpositively.
This implies that points in the interior @ are wandering points which are
pushed away to infinity by. The same is true for the imagé¥(B), ne Z. As
a consequence, the full strip

U f"(Int(B)U[r',u]),

nezZ

i.e. the strip located in between the halves\8¥S(p) andW'/5(q), is entirely
contained in the complement & (f). (see picture Z, where this strip is
colored) .

5.3.7. Deformation and the geometry of(K). We can apply the same argu-
ment to understand the geometry of stable and unstable oldsifiearp. Part

B of figure 3 summarizes our knowledge of the geometry of stabteunsta-
ble manifolds near the poinfsandq after a small deformation of the Cayley
cubic: p andq are bothu ands-one-sided, and the colored region is contained
in the complement oK™ (f).
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Let us now consider a large deformatif, of the Cayley cubic. Fol-
lowing p, u, r, v, g, stable/unstable manifolds of these points, and their-inter
sections along the deformation, we can follow the redRmlonga(t). Since
there is no saddle connection$y, for t > O, the geometry oR with respect
to local stable and unstable manifoldsRdoes not change. The results ob-
tained above for small deformations remain therefore \Vfalicérbitrarily large
deformationsu(t) C # .

5.3.8. Absence of tangency and hyperbolicityet us now assume that there
is at least one set of paramet¢fs B,C, D), for which S(R) is connected and
fr is not uniformly hyperbolic orK(f). Then, there is a tangency between
the stable manifold of a-one-sided periodic poirgand an unstable manifold
(see theorem 5.6 and section 5.3.2). Iterafingre can find such tangencies in
arbitrarily small neighborhoods of

SinceS(R) is connected, we can defor&in §,) with a(t) € #, t € [0,1],
S0 = Sy Sy(1) = S(see section 2.9). Sinagis u-one-sided, it comes from
one of the singularities d&: (lemma 5.18). Sections 5.3.6 and 5.3.7 provide
pointsp(t), q(t), r(t), ..., and a regiom(t) in S;), and describe the geometry
of the stable and unstable manifolds ngaf q(1). Figure 3A represents such
a possible tangency (see also [9], picture 4.1 and 83 and 4).

LetU C R(1) € S(R) be a small neighborhood of the tangency pomtf a

is a point ofK(f) U, we shall denote by\llf;/cu(a) the connected component of
W$/U(a) NU that containg. Sincemis in K (f), one can find a saddle periodic
pointwin U such that\ji (w) intersectd\2 (m) in two pointsi; andi,. Then,
we can find a second periodic saddle poitsuch thatwz (W) intersects
W2 (w) in two points (see figure 2).

Thanks to section 5.3.3 and lemma 5.16, we can now follow #regic
saddle points (t), v(t), u(t), w(t), w(t), and the points of intersectian(t)
andix(t) continuously along the deformation. All of them belong te thgion
R(t). From sections 5.3.6 and 5.3.7, the geometry of the stableiasthble
manifolds ofr (t), v(t), q(t) and p(t) remains unchanged along the deforma-
tion; in particular, since the periodic poimigt) andw/ (t) cannot cross the
stable or unstable manifolds of other periodic points dyitime deformation,
they both stay in the interior of the regi@tft). We then get a contradiction as

in the proof of lemma 5.21, 85.3.6.

Since there is no tangency, theorem 5.6 implies that therdigzaof f is
uniformly hyperbolic orK(f). This proves theorem 5.10.
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5.4. Strips, bounded orbits, and Hausdorff dimension. Let (A,B,C,D) be
an element of1 . Let f be a hyperbolic element of. The surfaceS(R) de-
fined by this set of parameters is connected, An&R) — S(R) is uniformly
hyperbolic onK(f), so that we can apply proposition 2.1.1 of [12]: The set
WR(K(f)) =K"(f)NSR)
is laminated by stable manifolds of pointsKr f); if a pointmin K*(f) is on
the boundary of the complement W& (K(f)), thenm s on the stable mani-
fold of a periodicu-one-sided periodic point df. From section 5.3.3, we know
that f has exactly eight periodic one-sided points, each of themirog from
a singularity of the Cayley cubic. From sections 5.3.5 argi75.the stable
manifolds of the two one-sided points coming from one siagty bound a
strip, as in picture 3B. This proves the following result, which was first nu-
merically observed by Catarino and MacKay (see [22], pagi6é&xample),
and "explains" pictures andC.

Theorem 5.22(MacKay observation)lif S(R) is connected, f has exactly eight
one-sided fixed points;pqg:, p2, 2, P3, 43, P4, and q. All of them come from
singularities of the Cayley cubic by deformation; all oftinare both u and s-
one-sided. Moreover, the stable manifolds papd q (i = 1, 2,3,4) bound an
open strip homeomorphic ® x (—1,1), and the complement of i f) "S(R)
coincides with the union of these four strips.

We now study the Hausdorff dimension of the stable and utestamina-
tionsK™ (f) andK~(f) onSyy), wherea(t) is an analytic path in the sef .

Theorem 5.23.Let t+— a(t) be an analytic map frorj0, 1] to the set of param-
eters(A,B,C,D). Assume that g is smooth and connected for all values of
t. Then, the Hausdorff dimension of the sef.\h) "K* () does not depend
on me K~ (f), and defines an analytic function of t which is strictly pagiti
and strictly less thand.

Remark 5.24. In particular, the complement & (f) N S(R), i.e. the union
of the four strips, has full Lebesgue measure ; almost ait®do to infinity
under iteration off. The same is true for the complementf () in S(C).

Proof. By results of Hasselblatt [39], the stable and unstableiligions of

f are smooth, and the holonomy maps between two transveifsiile stable
(resp. unstable) laminations are Lipschitz continuougdrticular, the Haus-
dorff dimension of the sets

Wioc(m) NK™(f)
does not depend on the choicerofin K(f) (see also [57], theorem 1). We
shall denote this dimension by " (f).
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The mapf is area-preserving: As in [58], corollary 4.7, this impltbat the
Hausdorff dimension of the setgS .(m) N K~ (f) coincides withH;" (f).
Using Bowen-Ruelle thermodynamic formalism, as it is damébi7], the-
orem 2, we obtain thatl,"(f) is an analytic function of. Since the function
G]T‘S(E) is Holder continuous this Hausdorff dimension is stricthsjtive.
If H;"(f) is equal to 1then the same is true for the Hausdorff dimension of
W (m)NK~(f) and theorem 22.1 of [52] shows that the Lebesgue measure
of these sets is strictly positive. By Hasselblatt’s reghk Lebesgue measure
of K(f) is positive, and by Bowen-Ruelle’s theorem ([15], theore®),5the
setK(f) must be an attractor df : S;1) — Sy) This contradicts the fact that

K(f)is compactf is area preserving, arf ;) is not compact. O

6. SCHRODINGER OPERATORS ANIPAINLEVE EQUATIONS

6.1. Discrete Schrodinger operators.Let us now apply the previous results
to the study of the spectrum of certain discrete Schrodiogerators. There is
a huge literature on the subject, and we refer to [23] and f@4background
results and a short bibliography.

6.1.1. Discrete Schrédinger operators and substitutionst W* be the set of
finite words in the lettera andb. Let1 : {a,b} —W*\ {0} be a substitution. In
what follows, we shall assume thais invertible, which means thatextends
to an automorphisn®, of the free groug~ = (a,b|0), and thatt is prim-
itive, which means tha®, is hyperbolic ; in other words, the image ®f in
Out(R2) = GL(2,Z) is a hyperbolic matrix, with two distinct eigenvalues(1)
andA_ (1) satisfying

A (0] = [1/A-()] > 1.
Under these hypothesises, there is a unique infinite worgh the two letters
aandb such that (u;) = u;..

Example 6.1. The Fibonacci substitutiar, defined byig (a) = b andig(b) =
ba, provides a good and famous example of such an invertibleifprarsub-
stitution. Its fixed word starts withabbababbabbababbababbabba

LetW be the set of bi-infinite words i andb andT : W — W be the left
shift. Letd, be any completion ofi, on the left. We then defin@ to be the
w-limit set of theT -orbit of U

Q={veW]| there exists a sequenne— +oo, such thaff " ({i;) — v} .

Sincel is primitive, the restriction of the left shiff to the setQ is a mini-
mal and uniquely ergodic homeomorphiSmQ — Q. The uniqueT -invariant
probability measure o will be denoted by.
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Remark 6.2. The subshiftT : Q — Q encodes the dynamics of a rotation
Ry : R/Z — R/Z, wherea is a quadratic integer (see [2]).This provides a
measurable conjugation betwelgpnandT which sends the Lebesgue measure
dxtov.

Let us now fix an element in Q, and define the potential, : Z — R by
Vw(n) = 1 if wy =a andVy(n) = 0 if w, = b. Let K be any complex number
(k is the so called "coupling parameter”). (§(n))ncz is a complex valued
sequence, we define

Hew(&)(n) = &(n+1) +&(n—1) +KViw(n)&(n).

The discrete Schrédinger operatég , induces a bounded linear operator on
12(Z), with norm at most 2- ||. The adjoint ofHy w is Hg w, SO thatHy \ is
self-adjoint if and only ik is a real number.

6.1.2. Almost sure spectrum and Lyapunov expon&ihceT is ergodic with
respect tov, there exists a subséi of C (of R if k is real) such that the
spectrum ofHy  : 12(Z) — 12(2) coincides withs, for v-almost allw in Q.
This set is the "almost sure spectrum” of the fankly,.

To understand the spectrumtdg ,y, one is led to solve the eigenvalue equa-
tion He w(§) = EE (E in R or C). For any initial condition(§(0),&(1)), there
is a unique solution, which is given by the recursion formula

13 1 E — KV -1 &
( (En(:) )) _ ( K1 (n) : ) (E(n@l) ) nez
Let My g : W* — SL(2,C) be defined by

mee(@ = (5% ) M= (55,

My £ (Uz...Un) = MIZ0-IMy g (un )

for any wordu = u;...up of lengthn. This defines 8L(2,C)-valued cocyle over
the dynamical systerfQQ, T,v). Applying Osseledets’ theorem, each choice of
a coupling parameter and an energ¥ gives rise to a non negative Lyapunov
exponent/(k, E), such that

and by

.1
YV(K,E) = nl_',rﬂooﬁ/QloQHMK’E(Wle“'W”—l)Hdv(w)

.1
= r]|_|}rnmﬁIog||M,<7E(W1W2...Wn,1)||,

for v-almost allw in Q. The Lyapunov functioty(k, E) is linked to the almost
sure spectrurzi by the following result.
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Theorem 6.3(see [23]) Letk be a real number. The almost sure spectiymn
coincides with the set of energies for which the Lyapunowereapt vanishes.

6.1.3. Trace map dynamics, Lyapunov exponent, and Hausdorff dimen
Let us fix the coupling parameter Let S, > be the character surfao@ +
y? 4 22 — xyz= 4+ k2. The Schrédinger curvef S, 1«2 IS the parameterized
rational curves : C — S, 2, which is defined by(E) = (X(E),y(E),z(E)),
with

(X(E),¥(E),Z[E)) = (tr(Mcg(a)), tr(Mcg(b)), tr(Mce(ab)))
= (E—k,E,E(E—K)—2).

Remark 6.4. The intersection 0§, , > with the planey = x+k is a reducible
cubic curve: It is the union of(C) with the line{z= 2, y = x+ K}, the invo-
lution s, permutes these two curves.

Let f, be the polynomial automorphism &f > which is determined by the
automorphisn{®,) 1 : F, — F». By definition of f,, we have

(tr(Mxe(1(2))), tr(Mc g(1 (b)), tr(Mk e(1(ab)))) = fi(s(E)).

In [23], Damanik proved that(k, E) vanishes if and only ¥(E) has a bounded
forward f,-orbit. In other words,

2k ={E€C|s(E)eK"(f)}. (6.1)

We can now apply MacKay observation, i.e. theorem 5.22, wtetls us that
the complement 0§(%) in the real Schrodinger curve is obtained by inter-
sectings(R) with the four strips associated to the one-sided point§.ofhis
means thagaps in the complement of the spectrum are bounded by icterse
tion points betwees(R) and the eight curved/>(q;) andW3(p;), i =1, 2, 3,
anda).

Theorem 6.5. The Hausdorff dimension @k, kK € R, is a real analytic func-
tion ofk. Moreover,0 < Haug2y) < 1, Vk € R, and Hau$Z,) = 1 if and only
ifk=0.

This statement confirms numerical observations that camiedf, for ex-
ample, in [46] and [45]; it is stronger than the fact thathas zero Lebesgue
measure wheRr # 0, a property which was proved by Kotani in the eighties
(see [24]). Here, it appears as a corollary of results in dyoal systems which
are due to Bowen, Pesin, and Ruelle.

Proof. The mapa (k) = (0,0,0,4+ k?) is analytic and all surface&,(t) are
smooth and connected far# 0. We can therefore apply theorem 5.23, which
tells us that the Hausdorff dimension of the séf$.(m) N K™ (f,) does not
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depend on the choice afin K(f,), and defines a real analytic functiety (f,)
of the variable< such that O< H (f,) <1, Vk #0.

Let us apply this result to the spectriip. Lett be an element ai. Letm
be the poins(t) on the Schrodinger curve. By Damanik’s theorem the image
of the spectrum by coincides withK(f) Ns(C) (see (6.1)). In particular,
K™ (f)Ns(C) is a compact set which contains The setK " (f) is a smooth
lamination by analytic curves, an¢C) is an algebraic curve (see remark 6.4).
This implies that the number of tangency points betw#€) and the lamina-
tion K(f) is finite. In the complement of this finite se{C) is transverse to the
lamination, so that locally the Hausdorff dimensiorkof( f) Ns(C) coincides
with H (f). Since the Hausdorff dimension is locally equaHg ( f,) in the
complement of a finite set, it is globally equall (f,). O

Remark 6.6. It would be interesting to settle a complete dictionary hkesw
dynamics of the trace map and properties of the spectrumeXxample, the
Green function off, should coincide with the Lyapunov functigfk, E) along
the Schrédinger curve ; together with Thouless formulas tould identify
the density of statedk; with the measure obtained by incirTgl+ with the

Schrédinger curvedk = s*(TfT) (see [55] for related results and definitions).

7. APPENDIX. MONODROMY OF PAINLEVE VI EQUATION

The sixth Painlevé equatid®y| = Ry (8q, 6, 8y, 85) is the second order non
linear ordinary differential equation

dg _ 1 1
@ T ( I 1+Tt d
82

a(a-1)(a—t) [ 62 ! 6 1(t—1)
ey <75 7?+7(q iz ZV(Q—t)Z)

R/

the coefficients of which depend on complex parameers 6, 83, 0y, 05).

As explained in [44], the monodromy of Painlevé equatiornvyates a repre-
sentation ofy (P\ {0, 1,0}, tg) into the group of analytic diffeomorphisms of
the space of initial condition&(to), d'(to)) (see [44] for a precise description
of this space). Via Riemann-Hilbert correspondence,

e the space of initial conditions is analytically isomorptogqa desingu-
larization of)Sa g c ), With parameters
a=2cogm0y), b= 2cogmdg), c=2coqmd,), d =2cogmd;), (7.1)

(see section 2.1 for the expressior{AfB,C,D) in terms of(a, b, c,d));
¢ the monodromy action on the space of initial conditions igjegate to
the action of"; on the surfac§a g c p)-
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From this and sections 5.3 and 6, we deduce the followindtrdbereby an-
swering a recent question raised by lwasaki and Ueharal@mob5 of [43]).

Theorem 7.1.Let6q, 63, 6y, andB5 be parameters of Painlevé sixth equation,
the real parts of which are integers with an odd sum. &k any loop P\
{0,1,0},and let f, : Sagc,p) — Sasc,p) be the monodromy transformation
defined byn (through Riemann-Hilbert correspondence). Eithgmpfeserves

a pencil of algebraic curves, or its topological entropy @sgive, and then

e all periodic points of § are contained in the real part8gc p)(R) of
the surface;

e the Hausdorff-dimension of the set of boundgarbits is < 2;

e the unique invariant probability measure of maximal enyrpp, is sup-
ported by $gc,p)(R) and is singular with respect to the Lebesgue
measure on @ g c p)(R).

Remark 7.2. This theorem should be compared to Goldman'’s results regard
ing ergodic properties of the wholg action with respect to the invariant area
form Q (see the definition of2 in section 2.3). As a particular case of Gold-
man’s theorem, the action 6f on $(R) is ergodic with respect tQ if, and
only if 4 < D < 20 (see [37]). Another interesting example is given by the
Markoff surfaceSy. In this example, the quasifuchsian sp&ye provides an
open invariant subset &(C). This shows that the action 65 on $(C) is not
ergodic. Theorem 7.1 and these results suggest that, fdrpacameters, the
dynamics of the monodromy of Painlevé equation is not ctyreescribed by
the invariant area form.
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