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ABSTRACT. In this paper, we pursue the study of the holomorphic dy-
namics of mapping class groups on 2-dimensional characteeties,
also called trace-maps dynamics in the literature, asabeit in [44] (see
also [20]). We shall show that the dynamics of pseudo-Anasapping
classes resembles in many ways the dynamics of Hénon mapEing
then apply this idea to answer open questions concerninp¢lgeome-
try of discrete and faithful representations of free granpsSL(2,C), (2)

the dynamics of Painlevé sixth equations, and (3) the sp@otf certain
discrete Schrddinger operators.

FIGURE 1. Dynamics on character surfaces. Left: Dy-
namics of an automorphism on the real part of a cubic surface
(the surface i50,00,2), see below). Right: A slice of the set
of complex points with bounded orbit (this is a slice through
the origin for the Markov surfacgg g0,0))-
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1. INTRODUCTION

1.1. Character variety and dynamics. Let T4 be the once punctured torus.
Its fundamental group is isomorphic to the free grdup= (a,|0), the
commutator ofa and 3 corresponding to a simple loop around the punc-
ture. Since any representatipn F, — SL(2,C) is uniquely determined by
p(a) andp(B), the setRep(T1) of representations afy(T1) into SL(2,C)

is isomorphic tébL(2,C) x SL(2,C). The groupSL(2,C) acts on this set by
conjugation, preserving the three traces

x=tr(p(a)), y=tr(p(B)), z=tr(p(ap)).

It turns out that the map : Rep(T) — C2, defined byx(p) = (x,y,2), re-
alizes an isomorphism between the algebraic quotRep({T1)/SL(2,C),
whereSL(2,C) acts by conjugation, and the complex affine sp@éeThis
guotient will be referred to as theharacter variety of the once punctured
torus

The automorphism grouput(F,) acts by composition oRep(T;), and
induces an action of the mapping class group

MCG* (T1) = Out(F2) = GL(2,2)

on the character variet® by polynomial diffeomorphisms. Since the con-
jugacy class of the commutatgm, 3] is invariant undeiOut(F,), this ac-
tion preserves the level sets of the polynomial functigip|a, B]) = X% +

y? + 72 —xyz— 2. As a consequence, for each complex nunibewe get a
morphism fromMCG*(T1) to the groupAut(Sp) of polynomial diffeomor-
phisms of the surfacg&y, defined by

X2 +y?+ 22 = xyz+D.

The goal of this paper is to describe the dynamics of all mapgiasses
f € MCG*(T1) both on the complex surfac&s (C) and on the real surfaces
S(R) whenD is a real number. More generallye shall study the dynam-
ics of mapping classes on the character variety ofAtijpeinctured sphere
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but we restrict ourselves to the simpler case of the pundttoris in the
introduction.

1.2. Hénon type dynamics. Let us fix an element of the mapping class
groupMCG*(T1), that we view simultaneously as a matki in GL(2,Z) =
Out(R,) or as a polynomial automorphism, still denotieaf the affine space
X(T1) = C3 preserving the family of cubic surfac&y. Let A(f) be the
spectral radius of¢, so thatf is pseudo-Anosov if and only X(f) > 1.

In [44, 16, 20], it is proved that the topological entropy fof S5(C) —
S(C) is equal to logA(f)) for all choices ofD. The dynamics of mapping
classes with zero entropy is described in details in [36, 20]section 3,
we shall show that the dynamics of pseudo-Anosov classesntdss the
dynamics of Hénon automorphisms of the complex plane: Alhméques
from holomorphic dynamics that have been developed for Héndomor-
phisms can be applied to understand the dynamics of maplaisges on the
character surface$,(C) (a precise list of results is given in section 3.3).

This principle provides new tools to study the dynamics oppiag class
groups on charater varieties. As a consequence, we shall gmtitive an-
swer to three different questions : The first one concernsiguahsian
groups and the geometry of the quasi-fuchsian set, the demmnconcerns
the spectrum of certain discrete Schrédinger operatorte wie third ques-
tion is related to Painlevé sixth equation.

1.3. Quasi-Fuchsian spaces and a question of Goldman and Dumas.
First, we answer positively a question of Goldman and Dursas frob-
lem 3.5 in [38]), that we now describe.

When the parametd is equal to 2the trace op|[a, ] vanishes, so that
the representations with x(p) € $(C) send the commutatdo, ] to an
element of order 4 i8L(2,C). This means that the surfa& indeed corre-
sponds to representations of the group

G = (a,B[a,B]*).

Let DF be the subset d&(C) corresponding to discrete and faithful repre-
sentations o6. Some of these representations are fuchsian: They come from
the existence of hyperbolic metrics @a with an orbifold point of angletat
the puncture. The interior @F corresponds to quasi-fuchsian deformations
of those fuchsian representations (see for example [50]).

Let us now consider the set of conjugacy classes of repieasamsp :
G — SU(2). This set coincides with the unique compact connected compo-
nent ofS(R) and is homeomorphic to a sphef& Typical representations
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into SU(2) have a dense image and, in this respect, are quite diffen@mt f
discrete faithful representations iria(2,C).

The following theorem shows that orbits of the mapping ctassip may
contain both types of representations in their closure.

Theorem 1.1. Let G be the finitely presented grodg,B|[a,B]%. There
exists a representatiom: G — SL(2,C), such that the closure of the orbit of
its conjugacy clasg(p) under the action 0®ut(F,) contains both

¢ the conjugacy class of at least one discrete and faithfulesgnta-
tionp’ : G — SL(2,C),
e the whole set of conjugacy classes$uf(2)-representations of G

This result answers positively and precisely the quesa@sed by Dumas
and Goldman. It also sheds light on questions raised by Boiv@see [13],
corollary 5.6 and the discussion thereafter). The stratégyroof is quite
general and leads to many other examples; one of them is givéa.3.
The representatiors which we choose for the proof are very special: They
correspond to certain discrete representations provigddhbrston’s hyper-
bolization theorem for mapping tori with pseudo-Anosov mdmomy. The
same idea may be used to descrilfein dynamical terms (see section 4).
To sum up,holomorphic dynamics turns out to be useful to understaaed th
quasi-fuchsian locus and its Bers parameterization

1.4. Real dynamics, discrete Schrodinger operators, and Painké VI
equation. The fact that the dynamics of mapping classes is similar &o th
dynamics of Hénon automorphisms will prove useful to study iteal dy-
namics of mapping classes, i.e. the dynamics on the reaSpéR) when

D is a real number. The following theorem, which is the mainltesf sec-
tion 5, answers a conjecture popularized by Kadanoff twénéyyears ago
(see [46], p. 1872). We refer to papers of Casdagli and Reli@rta nice
mathematical introduction to the subject (see [21] and %] references
therein).

Theorem 1.2.Let D be areal number. If € MCG*(T;) is a pseudo-Anosov
mapping class, the topological entropy of $(R) — $(R) is bounded
from above byog(A(f)), and the five following properties are equivalent
e the topological entropy of fS(R) — S(R) is equal tolog(A(f));
e all periodic points of f: S5(C) — S(C) are contained in §(R);
e the topological entropy of fS(R) — S(R) is positive and the dy-
namics of f onthe set€,R) = {me SH(R) | (f"(M))nez is bounded
is uniformly hyperbolic;



BERS AND HENON, PAINLEVE AND SCHRODINGER 5

e the surface §(R) is connected,
e the real parameter D is greater than or equal4o

The main pointis the fact that the dynamics is uniformly mpadic when
D > 4. In particular, uniform hyperbolicity occurs simultanebuor all
pseudo-Anosov mapping classes. Casdagli had a similat feswne ex-
plicit mapping class (linked to Fibonacci substitutiong)emD > 260 and
Damanik and Gorodetski recently extended it to the casee\nDés close to
4 (see [21, 25)).

TAaBLE 1. Dynamics of pseudo-Anosov classesiiR)

| values of parameter  real part ofS | dynamics orK(f,R) |
D<O0 four disks K(f,R)=0
D=0 four disks and a point| K(f,R)={(0,0,0)}
O0<D«<4 four disks and a sphergnon uniformly hyperbolic
D=4 the Cayley cubic uniformly hyperbolic
D>4 a connected surface| uniformly hyperbolic

As we shall explain in section 6, this may be used to study pleetsum
of discrete Schrodinger operators, the potential of whichenerated by a
primitive substitution: We shall show that tii¢ausdorff dimension of the
spectrum of such operators is positive but strictly less thdsee 86 for
precise results).

This gives also examples of Painlevé VI equations with nieerech mon-
odromy (see 87), thereby answering a question of lwasakilgtthra in
[43].

1.5. Organization of the paper. As mentioned above, we shall study the
dynamics of the mapping class group of the four punctureergpbn its
character variety; this includes the case of the once puedttorus as a
particular case. Section 2 summarizes known useful redixés the nota-
tions, and describes the dynamics of mapping classes aitynf8ection 3
establishes a dictionary between the Hénon case and theotabkaracter
varieties, listing important consequences regarding §heawhics of map-
ping classes. This is applied in section 4 to study the giugsisian space.
Section 5 describes the dynamics of mapping classes on dhalgebraic
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surfacesy(R), for D € R. This is certainly the most involved part of this
paper. It requires a translation of most known facts for Hhéaatomor-
phisms to the case of character varieties, and a study of anaengter fam-
ilies of real polynomial automorphisms with maximal entyophe proof
of theorem 1.2, which is given in sections 5.2 and 5.3, coldd be used
in the study of families of HEnon mappings. We then apply teepl.2 to
Schrddinger operators and Painlevé VI equations (86 and 7).

1.6. Acknowledgement. This paper greatly benefited from discussions with
Frank Loray, with whom I collaborated on a closely relatecth (see [20]).

| also want to thank Eric Bedford, Cliff Earle, Bill Goldmaiatsunori
lwasaki, Robert MacKay, Yair Minsky, John Smillie, Takatehara and
Karen Vogtmann for illuminating talks and useful discussioMost of the
content of this paper has been written while | was visitingr@t University

in 2006/2007, and part of it was already described duringhéerence of the
ACI "Systemes Dynamiques Polynomiaux"in 2004: | thank biostitutions

for their support.

2. THE CHARACTER VARIETY OF THE FOUR PUNCTURED SPHERE

This section summarizes known results concerning the ctersariety
of a four punctured sphere and the action of its mapping ¢esgp on this
algebraic variety. Most of these results can be found in, [[4?]], and [20].

2.1. The sphere minus four points. Let Sﬁ be the four punctured sphere.
Its fundamental group is isomorphic to a free group of rank 3

T0(S5) = (a,B,y, 5| afyd = 1),

where the four homotopy classesf3, y, andd correspond to loops around
the puncture. LeRep(S3) be the set of representationsafS?) intoSL(2,C).
Let us associate the 7 following traces to any eIem:em[tRep(Sﬁ),

a=tr(p(a)) ; b=tr(p(B)) ; c=tr(p(y)) ; d=tr(p(9))
x=tr(p(aB)) ; y=tr(p(By)) ; z=tr(p(ya)).

The polynomial magx : Rep(S3) — C defined byx(p) = (a,b,c,d,x,y,2)

is invariant under conjugation, by which we mean thgt’) = x(p) if p’ is
conjugate t by an element ofL(2,C), and it turns out that the algebra
of polynomial functions orRep(Sﬁ) which are invariant under conjugation
is generated by the componentscoMoreover, the components gfsatisfy
the quartic equation

X2 + Y2 + 22 + xyz= Ax+ By+Cz+D, (2.1)
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in which the variable#\, B, C, andD are given by

A=ab+cd, B=ad+bc, C=ac+bd,

and D=4—a%—-b%?—c2—d?—abcd (2.2)

In other words, the algebraic quotieq(§3) := Rep(S2) /SL(2,C) of Rep(S?)
by the action o6L(2, C) by conjugation is isomorphic to the six-dimensional
quartic hypersurface @&’ defined by equation (2.1).

The affine algebraic variety(S?) is called thecharacter variety d¥3. For
each choice of four complex parametéisB, C, andD, Sagcp) (or Sif
there is no obvious possible confusion) will denote the cshirface ofC3
defined by the equation (2.1). The family of surfa&sgg c p), With A, B,

C, andD describingC, will be denoted byFam.

2.2. Automorphisms and the modular group I';. The (extended) map-
ping class group 08421 acts onx(Sﬁ) by polynomial automorphisms: This
defines a morphism

{out(nl(sﬁ>) — Aut(x(S3))
() — fo

such thatfe (X (p)) = Xx(po @1) for any representatiop.

The groupOut(nl(Sﬁ)) contains a copy oPGL(2,Z) which is obtained
as follows. LetT = R?/Z? be a torus and be the involution ofT' defined
by o(x,y) = (—x,—Y). The fixed point set ob is the 2-torsion subgroup of
T. The quotientT /o is homeomorphic to the sphet®?, and the quotient
mapT: T — T/o = S? has four ramification points, corresponding to the
four fixed points ofo. The groupGL(2,Z) acts linearly oril’ and commutes
with . This yields an action dPGL(2,Z) on the spher&2, which permutes
the ramification points oft Taking these four ramification points as the
punctures 083, we get a morphism

PGL(2,Z) — MCG*(S3),

that turns out to be injective, with finite index image (se#,[20]). As a
consequencdGL(2,Z) acts by polynomial transformations g(l(lsﬁ).

Let I'; be the subgroup dPGL(2,Z) whose elements coincide with the
identity modulo 2 This group coincides with the stabilizer of the fixed points
of 0, so that"™} acts orS and fixes its four punctures. Consequerftiyacts
polynomially onx(Sﬁ) and preserves the fibers of the projection

(a,b,c,d,x,y,z) — (a,b,c,d).
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From this we obtain, for any choice of four complex paransarB,C,D),
a morphism fronT™; to the groupAut(Sagc p)) of polynomial diffeomor-
phisms of the surfacga g c p)-

Theorem 2.1(EI'-Huti [31], see theorem 3.1 in [20]. )For any choice of
A, B, C, and D, the morphisnT3 — Aut(Sapc p)) is injective and the in-
dex of its image is bounded from abovedsy For a generic choice of the
parameters, this morphism is an isomorphism.

To sum up[ 3 is a finite index subgroup ofiCG*(S2), its action o (S3)
preserves the family of cubic surfadesn, and, for all choices of parameters
(A,B,C,D), I'; determines a finite index subgroup Atit(Sapgcp))- We
shall therefore restrict our study to the dynamic§ »bn those surfaces.

2.3. Areaform. The area fornf2, which is globally defined by the formulas

_dxady  dyAdz  dzAdx
- 2z+xy—-C  2x+yz—A 2y+zx—B

on S\ Sing(S), is almost invariant under the actioniof, by which we mean
that f*Q = £Q for any f in I'; (see [20]). In particular, the dynamics of
mapping classes on each surf&is conservative.

Remark 2.2. The cubic surfaceS, together with the action df’, are degen-
erate limits of K3 surfaces together with an (almost) ares@rving action
of I'. We refer to [18] for actions on K3 surfaces.

2.4. Compactification and automorphisms. Let S be any member of the
family Fam. The closureéSof Sin P3(C) is given by the cubic homogeneous
equationw(x? + y? + ) 4+ xyz= W?(Ax+ By+C2) + Dw®.

As a consequence, one easily proves that the tra@abfinfinity does
not depend on the parameters and coincides with the tridngieen by the
equations

xyz=0, w=0,

and, moreover, that the surfa&is smooth in a neighborhood df (all
singularities ofS, if there are such, are contained$h By definition, the
three sides of are the lineDy = {x=0,w=0}, Dy = {y=0,w=0} and
D, = {z=0,w = 0}; the vertices arex, =[1:0:0:0,w=[0:1:0:0
andv;, =[0:0:1:0; the “middle points” of the sides are respectively
m=[0:1:1:0,my=[1:0:1:0,andm,=[1:1:0:0.

Since the equation definirgis of degree 2 with respect to tlevariable,
each point(x,y,z) of S gives rise to a unique second poiix,y,z). This
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procedure determines a holomorphic involutiorBphamely
S((X7 Y, Z) = (A_ YZ—X,Y, Z)'

Geometrically, the involutios, corresponds to the following: this a point
of S, the projective line which joingn and the vertexy of the triangleA
intersectsSon a third point; this point is,(m). The same construction pro-
vides two more involutions, ands,, and therefore a subgroup

a4 =(5%5,%)

of the groupAut(S) of polynomial automorphisms of the surfaBeSection
2 of [20] (see also [44]) shows that the grogpcoincides with the image
of I'; into Aut(S), that is obtained by the action &f C MCG*(S2) on the
character variet)((Sﬁ). More preciselysy, Sy, ands, correspond respectively
to the automorphisms determined by the following elemehfs;o

(-1 -2\ __(-10) (1 0
Lo 1) Y Lo 1) "7\ -2 )

In particular, EI'-Huti’s theorem shows that there are na trvial relations
between the three involutiosg s, ands,, so thata is isomorphic to the free
product of three copies & /2Z.

Since the action of 5 and.a coincide, we shall focus on the dynamics of
5 = 4 on the surfaceS € Fam.

2.5. Notations and remarks. The conjugacy class of a representatmn
will be denotedp]. In general, this conjugacy class is uniquely determined
by itsimagex(p) in the character variel)j((Sﬁ), and we shall identify(p) to

[p] (note, however, that(p) does not determingp] when the representation
is reducible).

Automorphisms of surface§a g c p) Will be denoted by standard letters,
like f, g, h, ... ; the groupa will be identified to its various realizations
as subgroups okut(Sapcp)), where(A, B,C,D) describe<C?. If M is an
element ofl 5, the automorphism associatedNbis denotedfy; this pro-
vides an isomorphism betweé€ij and each realization of. If f is an auto-
morphism ofSa g c,p) Which is contained im, Mt will denote the unique
element of 5 which corresponds té. If ® ¢ MCG*(SE) is a mapping class,
the associated automorphism of the character variety witldnoted byfo.

The character surface®, that appeared in the introduction in the case
of the once punctured torus are isomorphicStgo o p) by a simultaneous
change of signs of the variablésy, z). As a consequence, the study of the
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dynamics on all character surfac8s Fam includes the case of the once
punctured torus.

2.6. Dynamics at infinity. The groupa also acts by birational transforma-
tions on the compactificatioB of Sin P3(C). In this section, we describe
the dynamics at infinity, i.e. on the triangle

If f is an element ofz, the birational transformation @& defined byf
is not everywhere defined. The set of its indeterminacy pasmtdenoted
by Ind(f); f is said to bealgebraically stabld, for all n > 0, f" does not
contract any curve onto Iridl) (see [56, 26] for this notion).

The groupl'; acts by isometries on the Poincaré half plahe_et jx, jy
and j, be the three points on the boundarylfwith coordinates 0—1,
and o respectively. The three generatogsry, andr, of I'; (see 2.4) are
the reflections of around the three geodesics which join respectiygly
Jz, jz 10 jx, and jx to jy. As a consequencé;; coincides with the group
of symmetries of the tesselation Hf by ideal triangles, one of which has
verticesjy, jy andjz. This picture will be useful to describe the actionaf
onA (see [20], section 3, and references therein for a detaitdrp).

First, one easily shows that the involutigpacts on the triangl& in the
following way: The image of the sidBy is the vertexy and the vertexy is
blown up onto the sidBy ; the sidedDy andD; are invariant andy, permutes
the vertices and fixes the middle pointg andm;, of each of these sides. An
analogous statement holds of coursedaainds,. In particular, the action of
4 at infinity does not depend on the set of parametars,C,D).

Beside the three involutiorsg, s, ands;, three new elements cf play a
particular role. These elements are

Ox =S0S, Oy=%0S, and g;=ss0s.

They correspond to Dehn twists in the mapping class groeipta.parabolic
elements of 5. Each of them preserves one of the coordinate variablgs
or zrespectively. The action @f onA is the following:gy contracts botiD
andD;\ {w} onv,, and preserveBy; its inverse contract®y andD; \ {v,}
onvy. In particular Indgy) = vy and Indg, 1) = v,. The action ofg, andg;,
are similar, up to a permutation of the coordinates.

Let f be any element of1 \ {Id} andM+ be the corresponding element
of I';. If My is elliptic, f is conjugate tcsy, s, or . If M is parabolic, f
is conjugate to an iterate gf, gy or g, (see [20], proposition 3.2). In both
cases, the action dfon A has just been described.
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If Mt is hyperbolic, the isometriyl; of H has two fixed points at infinity,
an attracting fixed poir( f) and a repulsive fixed poiwnt( f), and the action
of f onA can be described as follows: The three sidea afe blown down
on the vertexy (resp.vy resp.vy) if w(f) is contained in the intervajy, j|
(resp.[jz ixl, resp.[jx jy]); the unique indeterminacy point dfis vy (resp.
vy resp. V,) if a(f) is contained injy, j| (resp. [jz, jxJ, resp. [jx, jy)). In
particular Ind f) coincides with Indf 1) if and only if a(f) andw(f) are
in the same connected componentodt \ { jy, jy, jz}; Up to a conjugacy
in the groupl 3, we can always assume thatf) andw(f) are in different
components. As a consequence, we get the following reed{29], section
4).

Proposition 2.3. Let S be any member of the fanfthm. Let f be an element
of 2. Assume that the element; Mf I} that corresponds to f is hyperbolic.

e The birational transformation f S— S is algebraically stable if,
and only if f is a cyclically reduced composition of the thieeolu-
tions , Sy and s (in which each involution appears at least once).
In particular, any hyperbolic element f af is conjugate to an alge-
braically stable element of .

e If f is algebraically stable, T contracts the whole triangla\ Ind( f)
onto Ind f 1) as soon as n is a positive integer.

2.7. Topological entropy and types of automorphisms.An elementf of

4 will be termedelliptic, parabolic or hyperboliaccording to the type of
the isometryM¢ € I';. By theorem B of [20] (see also [44] for another for-
mula), thetopological entropynop(f) of f: Sapcp)(C) — Sapcp)(C)
does not depend on the parametgksB,C, D) and is equal to the logarithm
of the spectral radius( f) of M;:

hop(r) = 10g(A(T)). (2.3)

In particular, pseudo-Anosov mapping classes are exdmibetwith positive
entropy on the character surfa®ggc p)(C). As explained in the previous
section, up to conjugacy, Dehn twists correspond to powkegs,@y or g,
while finite order mapping classes correspongta, or s;.

Remark 2.4. This should be compared to the description of the group of
polynomial automorphisms &@2. If his an element oAut(C?), either the
topological entropy is equal to led(h)), whered(h) > 2 is an integer, or

a conjugatego hog~! preserves the pencil of lings= c>€ (see §3.2 for
references).
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2.8. The Cayley cubic. The surfaceSg o4y Will play a central role in this
paper. This surface is the unique elemenfafh with four singularities,
and is therefore the unique elementraf that is isomorphic to the Cayley
cubic (see [20]). We shall call it "the Cayley cubic" and denbby S. This
surface already appeared to be a crucial example in bothafid®]20].

This surface is isomorphic to the quotient©f x C* by the involution
n(xy) = (x 1,y 1). The map

B 1 1 1
c(u,v) = — (u+ m v+ v’ uv-+ m)
gives an explicit isomorphism betwe¢@* x C*)/n andX:: Fixed points
of n, as(—1,1), correspond to singular points 8. Multiplication of the
coordinates by-1 then gives an isomorphism on& (which will also be
refered to as "the" Cayley cubic).
The groupGL(2,Z) acts onC* x C* by monomial transformationslf
M = (mj) is an element 06L(2,Z), and if (u,V) is a point ofC* x C*, then

(u, V)M = (uMiyM2 yMeryMe2)

This action commutes with), so thatPGL (2, Z) acts on the quotierS:. The
induced action coincides with the actionlof C MCG(S3) on the character
surface corresponding to paramet@as, c,d) = (0,0,0,0) or (2,2,2,—2),

up to permutation o, b, c, andd and multiplication by—1 (see 82.1 for
the significance o&, b, c, andd, and [20] for details). Changing signs of
coordinates, we get the surfaBe that is one of the character surfaces for the
once punctured torus: It corresponds to reducible reptatens ofry (T1)
(with tr(p[a,B]) = 2). Of course, the monomial action BGL(2,Z) on &
coincides with the action of the mapping class grouffpbn the character
surfaces.

The productC* x C* retracts by deformation onto the 2-dimensional real
torusS? x St. The monomial action o6L(2,Z) preserves this torus: It acts
"linearly" on this torus if we use the parameterization: €™, v = ™,
After deleting the four singularities &, the real par&:(R) has five com-
ponents, and the closure of the unique bounded componerg isnage of
St x St by 1. The closure of the four unbounded components are images of
the four subsetR™ x R™, R™ x R, R~ x R™, andR™ x R~ of C* x C*.

2.9. Topology of the real part. Benedetto and Goldman studied the various
topologies that can occur f&R) (see [10]). Good examples to keep in
mind are small deformations of the Cayley cubics (one cawordefeach
singular point independently). There are two main restls e shall use
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repetitively in section 5. We state them in the case of smaatifaces ;
singular one are limits of smooth surfaces.

The first one characterizes connectedness. U&ng c,d) parameters
(see section 2.15(R) is connected if and onlyi) none of the parameters
a, b, ¢, andd is contained in the intervdl-2, 2) and(ii) the productabcd
is negative. In that case, the surf&&&) is homeomorphic to a sphere mi-
nus four punctures. These conditions(erb, c, d) define eight arcwise con-
nected subsets &, that contain respectively the 8 poini2e, 2¢,, 2¢3, 2¢4),
with g = +1 andllg; = —1. All these points correspond to the same surface
S0,0,04), I-€. to the Cayley cubi&. As a consequence, any connected sur-
faceS(R) can be smoothly deformed to the Cayley cu&idnsideFam.

The second result describes bounded componen&RIf has a bounded
connected component, then this component is unique, itnseloonorphic
to a sphere, an&R) has four unbounded components, each of which is
homeomorphic to an open disk.

Remark 2.5. The surfacé&is singular if and only if one of the two following
conditions occur (see [10], [42]}i) at least one of the parametexd, c, or
d equalst2 ; (ii) there is a reducible representatipof 1y (S3) with bound-
ary tracega,b,c,d). This latter case occurs exactly whafa, b, c,d) = 0,
whereA is the polynomial

(2(a® 4 b? + ¢ +d?) — abecd— 16)2 — (4— &%) (4 — b?) (4— ) (4—d?).
3. ELEMENTS WITH POSITIVE ENTROPY

In this section, we describe the dynamics of hyperbolic elets in the
groupa on any complex surfacga g c p)(C) of our family Fam.

Let f be a hyperbolic element ¢f. After conjugation by an elemehtof
4, we can assume thétis algebraically stable; in our context, this property
means that, for any elemefbf Fam, the indeterminacy set of the birational
transformationf : S--» Sand the indeterminacy set 6 " are two distinct
vertices of the triangle at infinitA (see 82.6). In what follows, we shall
assume that is algebraically stable and denote {rid!) by v, and Ind f)
byv_.

3.1. Attracting basin of Ind (f~1). The birational transformatiohis holo-
morphic in a neighborhood of. and contracta\ {v_} onv,. In particular,
f contracts the two sides df that containv, on the vertex, . Using the
terminology of [33],f determines a rigid, reducible, contracting germ near

Vi
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Theorem 3.1.1f f is an algebraically stable hyperbolic elementof there
exist an element Nof GL(2,Z) with non negative entries which is conju-
gate to M in PGL(2,Z), a neighborhood: of v, in S, and a holomorphic
diffeomorphism#{ : D x D — « such that¥7 (0,0) = v4 and

Wi ((uv)) = f(Wf(uv)
for all (u,v) in the bidiskD x D (see §2.8 for monomial transformations).

Proof. Let u be a small bidisk around, , in which the two sides oA corre-
spond to the two coordinate axis. The fundamental grougp A is isomor-
phic to (Z2,+), with generators winding exactly once along the first (resp.
the second) axis. The mdpinduces an endomorphisi of this group. To
prove thatNs is conjugate tatM; in GL(2,Z), one argues as follows. First,
in the case of the Cayley cubic,

Tc:C*xC* - &\ A
is a 2 to 1 coveringC* x C* retracts by deformation on the tor8% x S,
and the action of on the fundamental group ef \ A is therefore covered by
the action oMt on (S x S1) = Z x Z. This implies thalNs is conjugate
to M in PGL(2,2). Since the general case is obtained from the Cayley case
by a smooth deformation, this is true for any set of pararsé#eB,C,D).
Being conjugate ta-M;, the matrixN; is invertible.

Sincef is a rigid and reducible contracting germ near and sinceNs is
invertible, a theorem of Dloussky and Favre asserts thatlocally conju-
gate to the monomial transformation tht determines (see class 6 of the
classification, Table Il, and page 483 in [33]). In particulabeing a local
contraction,Ns has non negative entries, and the squarlljohas positive
entries.

The fact that the conjugacd¥/ s is defined on the whole bidisk will be part
of the next proposition. 0J

Let s(f) be the slope of the eigenline of the linear planar transftiona
N¢, which corresponds to the eigenvaly@\1f); s(f) is a negative real num-
ber. The basin of attraction of the origin for the monomiahsformatiorN;
is

O(Np) = {(uv) eC?| v <|u"}.
In particular, this basin contains the full bidisk. We shadghote byQ(Ns)
the intersection of2(N¢) with C* x C*. Similar notations will be used for the
basin of attractio(v, ) of the pointv, for f in S and for its intersection
Q(v4) with S
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Proposition 3.2. The conjugacy{ extends to a biholomorphism between
Q(N¢) andQ(vy).

Proof. Since the monomial transformatid is contracting and : S— S
is invertible, we can exten®{ to Q(N¢) N (C* x C*) by the functional
equation
_ NP
Wi (uv) = (Wi ((uv)™)),

wheren is large enough fo(u,v)N? to be in the initial domain of definition
of W{. The mapW; : Q(N¢) N (C* x C*) — Sis a local diffeomorphism,
the image of which coincides with the basin of attractiorvofin S. It re-
mains to prove that the ma@] is injective. Assume tha#{ (up,v1) =
W (Uz,V2). Then f(WF (ug,vi)) = F(WF (Uzv2)), and Wi ((ug,vi) V) =
LIJf+((u1,v1)N?), for any n. Since¥7 is injective in a neighborhood of the
origin, and since the monomial transformatignis also injective, one gets

(Ug,v1) = (Uz,V2). O
In what follows, || . | will denote the usual euclidean norm@s.

Corollary 3.3. Let f be an algebraically stable hyperbolic elementaof
If m is a point of S with an unbounded forward orbit, the¥n) goes to
Ind(f~1) when n goes tg-» and

log]| f"(m)[| ~ A(f)"

Proof. First we apply the previous results to the studyfof and its basin
of attraction neaw_. Let us fix a small balB aroundv_ in the surfaceS.
If B is small enough, theB is contained in the basin of attraction &f:
The orbit of a pointmg € B by f~1 stays inB and converges towards..
Since f contractsA\ {v_} onv,, there is a neighborhoot c Sof A\ B
which is contained in the basin of attraction\of. Let m be a point with
unbounded orbit. Since’ UB is a neighborhood a4, the sequencgéf"(m))
will visit 2 UB infinitely many times. Len; be the first positive time for
which f™(m) is contained im’ UB. Let ny be the first time aften; such
that f"2(m) escape®. Then f"(m) never comes back iB for n > ny. Pick
an > np such thatf"(m) is contained i’ UB. Then f"(m) is in # and
therefore in the basin of,.. This implies that the sequen¢&(m) converges
towardsv, . In order to study the growth diff "(m)|| in a neighborhood of , ,
we apply the conjugacy{: What we now need to control is the growth of

| (u,v)N?||*1, and the result is an easy exercise using exponential caia$in
(u,v) = (6%,é), in D* x D*. O
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Corollary 3.4 (see lemma 16 in [44)])If f is a hyperbolic element of and
A, B, C, and D are four complex numbers, f does not preserve any agebr

curvein $A7B,C7D) .

Proof (see also lemma 16 [A4]). Let us assume the existence of a set of
parameter¢A, B,C,D) and of anf-invariant algebraic curvE C Sagcp)-

Let E be the Zariski-closure dE in §(A7B7C7D)(C); f induces an automor-
phismT of the compact Riemann surfake SinceC? does not contain any
1-dimensional compact complex subvariely,contains points at infinity.
These points must coincide with. and/orv_. In particular, the restriction
of f to E has at least one superattracting (or superrepulsive) figid. ol his

is a contradiction with the fact thdt: E — E is an automorphism. OJ

3.2. Bounded orbits and Julia sets.Let us consider the case of a poly-
nomial diffeomorphismh of the affine planeC? with positive topological
entropy (an automorphism of Hénon type). After conjugabigran element
of Aut[C?], we may assume thétis algebraically stable ii#*(C). In that
case, the dynamics d&f at infinity also exhibits two attracting fixed points,
one forh, w,, and one foh™, w_, but there are three differences with the
dynamics of hyperbolic elements af. The exponential escape growth rate
is an integed(h) (while A(f) is an irrational quadratic integer), the model
to which h is conjugate neaw. is not invertible, and the conjugadyy, is

a covering map of infinite degree between the basins of &ttrad/\e refer
the reader to [41], [33] and [40] for an extensive study of ituation. Be-
side these differences, we shall see that the dynamics efbgfic elements
of 4 is similar to the dynamics of Hénon automorphisms. In analeigh
the Hénon case, let us introduce the following definitions:

e K*(f) is the set of bounded forward orbits. This is also the set oftpo
me S for which (f"(m)) does not converge to. whenn goes to+o.

K~ (f) isthe set of bounded backward orbits, &id ) = K~ (f)NK~(f).

e J7(f) is the boundary oK™ (f), J7(f) is the boundary oK~ (f), and
J(f) is the subset 0dK (f) defined byd(f) =J(f)NJI*(f). The setd(f)
will be calledthe Julia set of .

¢ J*(f) is the closure of the set of saddle periodic point$ ¢gee below).
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3.3. Green functions and dynamics.We define the Green functions 6f
by
1

Gim) = i ssslog” | 17(m)], @)
Gi(m) = lim_sosslog® |1 (m)]. @2

By proposition 3.2 and its corollary, both functions are lvdeffined and the
zero set ofG7 coincides withK*( ). Moreover, the convergence is uniform
on compact subsets 8f Since log || . || is a pluri-subharmonic functiolg;
(resp. Gy) is pluri-subharmonic and is pluri-harmonic on the compam
of KT(f) (resp.K~(f)) (see [6, 34, 56] for the details of the proof). These
functions satisfy the invariance properties

Giof =A(f)Gf and G;of=A(f)"'Gy (3.3)

The following results have been proved for Hénon mappingsjist them
with appropriate references, in which the reader can fincbafpwhich ap-
plies to our context (see also [18], [3], [30], [56] for siamilcontexts).

(1) Gf andG; are Holder continuous (see [27], sections 2.2, 2.3). The
currents

T =dd°G} and T, =dd°Gy (3.4)

are closed and positive, arictini =A(f )ini. By [6], section 3, the
support ofT;" is J*(f), the support off;” is J~(f) (see also [56]).
(2) Since the potential§] andG; are continuous, the product

w=THAT™ (3.5)

is a well defined positive measure, andfignvariant. Multiplying
G{ andG; by positive constants, we can, and we shall assume that
Uf is a probability measure. (see [6], section 3)

(3) The topological entropy of is log(A(f)) and the measurngs is the
unique f-invariant probability measure with maximal entropy. (see
[5], section 3, and [3, 28] for more general results)

(4) If mis a saddle periodic point df, its unstable (resp. stable) mani-
fold WY(m) (resp.W=(m)) is parameterized b. Let& : C — Sbe
such a parameterization WfY(m) with §(0) = m. Let D C C be the
unit disk, and lel be a smooth non negative function &{D), with
Xx(m) > 0 andx = 0 in a neighborhood o§(dD). Let [§(D)] be the
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current of integration 0g(ID). The sequence of currents

S B )

weakly converges toward a positive multipleTgf . Unstable (resp.
stable) manifolds are dense in the suppbrtf) (resp. J7(f)) of
T-(f) (resp.T*(f)) (see [7], sections 2 and 3, [34])

(5) By corollary 3.4, periodic points of are isolated. The number of
periodic points of periotN grows likeA(f)N. Most of them are hy-
perbolic saddle points: i (f,N) denotes either the set of periodic
points with periodN or the set of periodic saddle points of peridd
then

1 Om — K

‘T(f’N)‘ me® (f,N) K
where the convergence is a weak convergence in the spaceba-pr
bility measures on compact subsetsSofsee [5], [4], and [30])

(6) The support*(f) of ys simultaneously coincides with the Shilov
boundary ofK (f) and with the closure of periodic saddle points of
f. In particular, any periodic saddle point bfs in the support ofi; .

If pandq are periodic saddle points, thdi(f) coincides with the
closure oWY(p) "WS(q). (see [5] and [4])

(7) Sincef is area preserving (see §2.3), the interiok¢f ), K™ (f) and
K~ (f) coincide. In particular, the interior &£ (f) is a bounded
open subset d§(C). (see lemma 5.5 of [6])

4. THE QUASI-FUCHSIAN LOCUS AND ITS COMPLEMENT

In this section, we shall mostly restrict the study to theecathe once
punctured torus with a cusp, and provide hints for more gedrstatements.
We therefore consider the famify and use notations from section 1.1.

4.1. Quasi-fuchsian space and Bers’ parameterizationLet T1 be a once
punctured torus. Leteich(T1) be the Teichmiller space of complete hyper-
bolic metrics onT1 with finite area 2t or equivalently with a cusp at the
puncture:Teich(T1) is isomorphic, and will be identified, to the upper half
planeH ™. The dynamics oMCG(T;) on Teich(T1) is conjugate to the usual
action ofPSL(2,Z) onH .

Any point in the Teichmiiller space gives rise to a represema : F, —
PSL(2,R) that can be lifted to four distinct representations i6tq2, R).
The cusp condition gives rise to the same equatigoia, 3]) = —2 for any
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of these four representations. This provides four embegtdaf the Teich-
muller space into the surfa&(R): The four images are the four unbounded
components of5(R), each of which is diffeomorphic té1"; apart from
these four componentSy(R) contains an isolated singularity at the origin.
This singular point corresponds to the conjugacy classefépresentation
Pqg, defined by

Pg(a) = ( ? 6 )7 Pq(B) = ( 2 _Ol ) (4.1)

Its image coincides with the quaternionic group of ordehei@he mapping
class group of the torus acts 8§(R), preserves the origin and the connected
component

S (R) = S(R)N(R)3,
and permutes the remaining three components.

Let DF C $(C) be the set of conjugacy classes of discrete and faithful
representationp : F, — SL(2,C) with tr(p[a,B]) = —2. This set is com-
posed of four distinct connected components, one of tidm, containing
S (R). The componen®| (R) is made of conjugacy classes of fuchsian rep-
resentations, and the SQF of their quasi-fuchsian deformations coincides
with the interior ofDF ' (see [50], and references therein).

Let T/ be the once punctured torus with the opposite orientati®rs’s
parameterization of the space of quasi-fuchsian reprasens provides a
holomorphic bijection

Bers : Teich(Ty) x Teich(T7) — Int(DF ™).

We may identifyTeich(T1) with the upper half plan&l* andTeich(T}) with
the lower half planéll~. The groupPSL(2,Z) acts onP!(C), preserving
PY(R), H*, andH . In particular, MCG(T;) = SL(2,Z) acts diagonally on
Teich(Ty) x Teich(T7) =H" x H ™.
With these identifications, the mdgers conjugates the diagonal action of
MCG(T1) on Ht x H~ with its action on the character variety: df is a
mapping class anély is the automorphism d¥ which is determined byp,
then
Bers(®P(X), P(Y)) = fo(Bers(X,Y))
for any(X,Y) in H" x H~. It conjugates the action ®filCG(T1) on the set
{(21,22> ceH' x H_|Z]_ = 2_2}

with the corresponding action o (R). The Bers map extends up to the
boundary of Ht x H~ minus its diagonal (we shall call it the restricted
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boundary, and denote it B/ (H* x H™)). Minsky proved in [49] thaBers
induces a continuous bijection frodi(H™ x H~) to the boundary obF*.

4.2. Mapping torus and fixed points (se€[48]). Let ® € MCG(T1) be a
pseudo-Anosov mapping class. & be the mapping torus determined by
®: The threefoldXe is obtained by suspension @f over the circle, with
monodromy®. Thurston’s hyperbolization theorem tells us tiat can be
endowed with a complete hyperbolic metric of finite volumaisTprovides

a discrete and faithful representation

Po : T (Xs) — Isom(H3) = PSL(2,C)

If we restrictpe to the fundamental group of the torus fiberX, and if
we choose the appropriate lift &.(2,C), we get a poinfpg] in DF™ C
S(C) which is fixed by the automorphisifip. Let a(®) (resp.w(®P)) be the
repulsive (resp. attracting) fixed point & on the boundary ofreich(T1).
Since (a(®),w(P)) is in the restricted boundary, aftrs is a continuous
bijective conjugacy*(H™* x H~), we have

Bers(a(®),w(P)) = [P

The fixed point{w(®P),a(P)) provides a second fixed point on the boundary
of DF': This point may be obtained by the same construction it} in
place of®. In [48], McMullen proved thaipe] is a hyperbolic fixed point of
fo. The stable and unstable manifoldsfef at [pe] intersectDF " along its
boundary,

WH([po)) \DFT = Bers({a(®)} x E-\ {(a(®),a(®))}), (4.2)
W3([pe]) NDF* = Bers(E" x {0(®)}\ {(0(P),w(®))}). (4.3)

In particular, the union of stable manifol&¢S([pe]) N DFT, where® de-
scribes the set of pseudo-Anosov mapping classes, form sedribset of
aDF™.

Remark 4.1. Each pseudo-Anosov clasg determines an automorphism
fo, and therefore a subskt (fe) of $(C). The complemenf ™ (fe) of
K™ (fe) is open: It coincides with the bassin of attractionfef at infin-
ity. Since the dynamics ofs on QF is conjugate to the dynamics df on
Teich(T1) x Teich(T), the interior ofDF " is contained in the intersection

Q(MCG(T1)) =) Q*(fo)
(0
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where® describes the set of pseudo-Anosov classes in the mapgsg cl
groupMCG(Ty) = SL(2,Z). Since stable manifolds are dense in the bound-
ary of DF, one gets the following resulffhe quasi fuchsian locust(DF ')

is a connected component of the interiort®MCG(T1)). Since there are
four copies ofQF in $(C), this provides four connected components. The
guestion remains to decide whether there are other cortheotaponents
(see [13)).

4.3. Two examples. The action of the mapping class group on the com-
plement ofDF is not well understood yet. We refer to Goldman'’s list of
guestions [38] for interesting conjectures and to Bowdstelnticle [13] for
important advances and a discussion of this action. We nesept two
interesting orbits in the complementbf.

Theorem 4.2. Let ® be any pseudo-Anosov mapping class gungl be one
of the two fixed points ofyfon the boundary obF* ¢ $(C). There exists
a representatiomo : Ty (T1) — SL(2,C), with [pg] € S(C), such that
e the sequencéfe)"[po] converges toward the discrete and faithful
representationpe| when n goes te-o;
e the closure of the mapping-class group orbif@f] contains the ori-
gin (0,0,0), i.e. the conjugacy class of the finite representafign

Remark 4.3 (see [47]) The Kobayashi semi-distance on a complex man-
ifold M is defined as follows. Lem andm be two points ofM. Then,
distk (m, ) is the infimum of the sum of the Poincaré distandies: (X, Y;),
where the infimum is taken over all chains of holomorphic slisk D — M,
k>0,1<i<Kk suchthagi(x;) =m, &(yi) = &;+1(Xi+1) and&x(yk) = .
This semi-distance is invariant under the group of holorhmrpliffeomor-
phisms ofM. Schwarz lemma implies thaistk is indeed a distance when
M is a bounded, open, and connected subset of an affine variety.

Remark 4.4. According to a theorem of Bowditch (see theorem 5.5 of [13]),
there exists a neighborhott of the origin inS(C) with the property that
any mapping class group orbit startindJg contains the origin in its closure.

Proof. The fixed pointpe| is hyperbolic, with a stable manifolV/3([pe]).
The origin(0,0,0) is the unique singular point &(C). It corresponds to
the representatiojpg| which is defined by equation (4.1). This point is fixed
by fe, and a direct computation shows that the differentiaigét the origin
has finite order (order 1 or 2).

From section 3.3, the interior & (f) coincides with the interior of
K~ (fe) and is therefore atfip-invariant bounded open subset®fC). In
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particularnt(K™(fg)) is Kobayashi hyperbolic, and the Kobayashi distance
is fo invariant. Consequently, [pg] is in the interior of(K* (fo)), then fe

is locally linearizable around the origjpg]. Since(Dfo), has finite order,

fo would have finite order too. This contradiction shows tlpg} is not in

the interior ofK™ (fg).

We know thatW3([pe]) is dense in the boundary & (fp) (see §3.3).
Since[pg] is in K™ (fo), W3([po]) intersects the Bowditch’s neighborhood
Ug. The previous remark shows that any pdpy] in WS([pe]) NUg satisfies
the properties of the theorem. O

Proof of theorem 1.1Let us consider the surfa&(C), that corresponds to
representationp : G — SL(2,C), whereG = (a, B|[a,B]*) (see §1.3). lIts
equation is@ +y? + 72 = xyz+ 2. Let W be the mapping class

e-(31)
Its action onS,(C) is given by the polynomial transformation
fw(X,Y,2) = (2 yz—x,2(yz—X) —y).
The set of fixed points ofy on $(C) is made of four point$x, x/(x— 1), x),
wherex describes the solutions of the quartic equation
X' —3C+x°+4x—2=0.

This equation is the product 8{x) = x? +xx+x andQ(x) = X2+ (X — 3)x+
(3—X) wherex = (3+1/17)/2. The roots ofP give rise to two complex
conjugate fixed points, while the roots@fgive two real fixed points. Roots
of P are given in [48], section 3.7, and roots@fare equal to

3—V17 2+ 217
X= 7 + 7

i.e. to~ 0.52 and~ —1.1.

As explained for example in [48], section 3.7, the surf&g&C) contains
an fy-invariant open subset corresponding to quasi-fuchsitoraations of
the fuchsian groups obtained from the existence of hyperbwdtrics o'y
with an orbifold point of angletat the puncture. Thurston’s hyperbolization
theorem provides a hyperbolic fixed pojpty] of fy on the boundary of this
set: The representatigny : G — SL(2,C) is discrete and faithful and comes
from the existence of a hyperbolic structure on the compterotthe figure
eight knot, with an orbifold structure along the knot. Thiefl point is one
of the two complex conjugate fixed points (the second oneesponding to

Py-1).
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The subset 0%, (C) corresponding to conjugacy classe$0f 2)-representations

coincides with the unique bounded connected componerg @), and
is homeomorphic to a sphere (see [35], figure 4). This commoisefy-
invariant, and the two fixed points df corresponding to roots @p(x) are
located on this bounded component${R).

The differential off : C2 — C3 at a fixed point has tracex2/ (x— 1). One
of its eigenvalues is equal ta becausef preserves the rational function
X2 +y? + 72 — xyz This implies that the sum of the remaining eigenvalues
is 2¢%/(x— 1) — 1, while their product is 1becausef is area preserving.
As a consequence, the fixed point corresponding to thexreot-1.08... is
a saddle fixed point (the trace beirg—2). Let [psy] be this fixed point,
and letW3([psy]) andW"([py]) be the stable and unstable manifoldsfef
through(psy] and[py].

From property (6) in section 3.3, we know thE#([psy]) intersect®W"([py]).
Let [po] be one of these intersection points. Thgorbit of [pg] contains
both[py] and[psy].

Finite orbits ofMCG(T1) are listed in [29] and correspond to finite sub-
groups ofSU(2) ; the point[psy] does not appear in the list. From this we
deduce that the mapping class group orbif@f,] is infinite and dense in
the component oU(2)-representations (see [36], [37], or also [32, 17, 20]
for related ideas). This implies that the closure of thetarbjpsy] contains
both [py] and theSU(2)-component 05 (R). O

5. REAL DYNAMICS OF HYPERBOLIC ELEMENTS

In this section, we study the dynamics of hyperbolic elementthe real
surfacesSa g c,p)(R) when the parameters are real numbers. The main goal
of this section is to prove theorem 5.10 below, which extendd precises,
theorem 1.2.

5.1. Maximal entropy. Let us fix a hyperbolic elemerite 4. If the param-
eters(A,B,C,D) are real, we get two dynamical systems: The first one takes
place on the complex surfa&C) and its main stochastic properties have
been listed in section 3.3; the second one is induced by steatson of f to

the real par§(R). From time to time, we shall use the notatifto denote

the restriction off to S(R). For example, we shall say th&t has maximal
entropyif the entropy off : S(R) — S(R) is equal to the topological entropy

of f : §(C) — §(C), i.e.to log(A(f)).

Theorem 5.1.Let f be a hyperbolic element af. If A, B, C, and D are real
parameters, the following conditions are equivalent:
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(1) fr has maximal entropy;
(2) J*(f) is contained in §R);
(3) K(f) is contained in R).
In that case, J(f) = J(f) =K(f).

This theorem is an easy consequence of the results of s&8dree [5],
section 10 for a proof). Our first goal is to prove the follogiresult.

Theorem 5.2.Let f be a hyperbolic element af. If (A, B,C,D) are real pa-
rameters such that8g c p)(R) is connected, therrfhas maximal entropy.

Before giving a proof of theorem 5.2, let us review a resulBofven
concerning topological lower bounds for the entropy (sed)[1Let f be a
homeomorphism of a marked topological spésem), by which we mean
thatm s a fixed point off. Then, f determines an automorphisi of the
fundamental groupr (X, m). Let us assume that; (X, m) is finitely gener-
ated, and fix a finite sdfay, ..., ax} of generators. The growth rate f is
defined to be

A(F) = Iimsup(}diam(f”(B)))
n—+eo \N
where diam is the diameter with respect to the word metrim{uthe gen-
eratorsaj) andB is the ball of radius 1 with respect to this metric. Bowen’s
theorem asserts that
htop(f) > log(A(f.))
as soon ad is a continuous transformation of a compact manifold. Even
thoughS(R) is not compact, we can apply this theorem because unbounded
orbits are contained in the basins of attraction of(lindt) and Indf).

Proof of theorem 5.2L et us first study the case of the Cayley cu$ic This
surface is singular, anf:(R) \ Sing(&) contains a unique bounded com-
ponent. This componer:(R)° is a sphere with four punctures and the
dynamics ofa (i.e. I';) is covered by the monomial action 6%, on the
torusS? x St in C* x C*. As a consequence, for any hyperbolic elemkint
5, the entropy off on S (R)? is maximal; moreover, the expanding factor
A(f.) coincides with the dynamical degraéf), and Bowen'’s inequality is
an equality.

If we deform the Cayley cubic in such a way that the surf&dR) is
smooth and connected, th&R) is homeomorphic to a four punctured
sphere (the punctures are now at infinity - see §2.9), anddtieneof f on
the fundamental group &R) has not been changed along the deformation.
As a consequence, Bowen'’s inequality giviesy(fr) > log(A(f)) and the
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conclusion follows fromtop(fr) < htop(fc) = log(A(f)). This concludes
the proof for smooth and connected surfaBgR) (see section 2.9). BR)
is not smooth but is connected, th&R) is a limit of smooth connected
members of the familfFam. By semicontinuity of topological entropyr
has maximal entropy (see [51]). OJ

Corollary 5.3. Let a b, ¢, and d be four real parameters R\ [—2, 2], the
product of which is negative. Let: 1y(S4) — SL(2,C) be a representa-
tion with boundary traces &, ¢, and d Let® € Aut(Ty(S3)) be a pseudo-
Anosov automorphism. ffo ® is conjugate tg, thenp is conjugate to a
representation int6L(2,R).

Proof. Let Sbe the element of the familam that corresponds to the param-
eters(a, b, c,d). The assumption on the parametayb, c, andd implies that
S(R) is connected (see section 2.9), and that there iSUN@)-component
(this is obvious ifS(R) is smooth, sincéU(2) representations would form a
compact component, and this follows from [10] in the singokse).

If po®~Lis conjugate t@, thenx(p) is a fixed point of the automorphism
fo induced byd on the surfac&. SinceS(R) is connectedfg has maximal
entropy. By theorem 5.1, all periodic pointsbare contained ii3(R). This
implies thatp is conjugate to aSL (2, R)-valued representation. OJ

5.2. Maximal entropy and quasi-hyperbolicity. Bedford and Smillie re-
cently developped a nice theory for Hénon transformatiohkvextends
the notion of quasi-hyperbolicity, a notion that had beeevmusly intro-
duced for the dynamics of rational maps of one complex vigigdee [53]
for one variable). This theory can be applied to our contextrder to study
hyperbolic automorphisms with maximal entropy.

5.2.1. Quasi-hyperbolicity.Let Sadd f) be either the set of periodic saddle
points of f or the seW"(p) "W5(q) wherep andq are two periodic fixed
points of f (see [8] for for possible other choices concern8agid f)). With
such a choiceSadd f) is f-invariant and its closure coincides wifi( f)
(see 83.3, property (6)). Each poimtof Sadd f) has a stable manifold
W=(m) and an unstable manifol(m), and we can find two injective im-

mersionsY., £ : C — Ssuch tha€s°(0) = m, £ °(C) = WY/S(m), and
max{G™/~(E%%(t))| teD}=1,

whereD is the unit disk. The parameterizatigf, and&;, are uniquely de-
termined by this normalization up to a rotation tofSince Sadd f) is f-
invariant andf sends the unstable manifoldratto the unstable manifold at
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f(m), there is a non zero complex numkeém) such that

FEm(t)) = & (m) (A(M)L).
The numbel (m) depends on the choices made&{:hrandi‘]ﬂ(m) but its mod-
ulus |A(m)| only depends om. SinceG" o f = A(f)G", we obtain easily
the inequalityA(m)| > 1 for allm e Sadd f).

We shall also need the growth functigro,,(r) of Gt along the unstable
manifoldW"(m), which is defined bygrop(r) = max; <, {G" (& (t))}, and
the uniform growth function

Gro(r)= sup {grom(r)}.
me Saddf)

Bedford and Smillie proved in [8], section 1, that the follog properties
are equivalent:

(1) the family{&},|me Sadd f)} is a normal family;

(2) Gro(rg) < oo for some 1< rg < oo;

(3) there exist& > 1 such thatA(m)| > k for all min Sadd f);
(4) 3C,B < o such thagroy,(r) < CrP for all min Sandr > 1.

If these properties are satisfieidis said to beyuasi-expandingf f andf~—1
are quasi-expanding, thenis said to bequasi-hyperbolic

5.2.2. Maximal entropy.It turns out that real Hénon mappings with maxi-
mal entropy are necessarily quasi-hyperbolic (see [8hréma 4.8 and propo-
sition 4.9). The proof of this result can be applied word byrdvto our
context, and gives rise to the following theorem.

Theorem 5.4(Bedford Smillie, [8] and [9]) Let f be a hyperbolic element
of 2 and S be an element 6dm defined by real paramete(#\, B,C,D). If
fr has maximal entropy, then f is quasi-hyperbolic, and anygolie point
m of f is a saddle point, witt\ (m)| > A(f).

Corollary 5.5. Let f be a hyperbolic element af and S be an element of
Fam defined by real parametef#\,B,C,D). If S(R) is connected, thengf
has maximal entropy and is quasi-hyperbolic.

5.2.3. Uniform hyperbolicity and consequencda.a subsequent paper, Bed-
ford and Smillie also obtain a precise obstruction to umifdryperbolicity.
Let p € S(R) be a saddle periodic point df The unstable manifold gb in
S(R) is the intersection o§(R) with the complex unstable manifollY(p).
This real unstable manifold is diffeomorphic to the reaklR, and p dis-
connects it into two half lines. If one of these half unstatolenifolds is
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contained in the complement &' (f), one says thap is u-one-sidecbr
unstably one-sided; a point which is nebne-sided is said to be unstably
two-side. Stably (os-) one-sidegboints are defined in a similar way.

Theorem 5.6 (Bedford Smillie, [9]) Let f be a hyperbolic element of
and S be an element 6im defined by real paramete(®\,B,C,D). If fg
has maximal entropy but ) is not a hyperbolic set for,fthen

e there are periodic saddle points p and g (not necessarilirdi§ so
that WH(p) intersects W(q) tangentially with order 2 contact ;

e pis s-one-sided and q is u-one-sided ;

e the restriction of f to Kf) is not expansive.

Theorem 5.7.Let f be a hyperbolic element af Let S be a smooth surface
in the familyFam which is defined by real parametefa, B,C,D). If one
of the connected components ¢R$ is bounded, then the entropy of f
is not maximal and f has an infinite number of saddle periodim{s in

S(C)\SR).

Proof. Let us assume thdthas maximal entropy and th&R) has at least
one bounded connected compong(R)°. The existence of a bounded com-
ponentimplies tha®(R) this bounded compones(R)° is unique and home-
omorphic to a sphere (see §2.9). Beifgnvariant and compacg(R)° is
contained irK ( f). Sincefg has maximal entropK ( f) is contained ir§(R),
has empty interior (ir5(C)), and coincides with the support pf (see 83.3
and theorem 5.1); in particular (S(R)) is a positive number. The ergod-
icity of s and thef-invariance ofS(R)° now imply thatS(R)° has full
HUs-measure. As a consequenté,f) coincides withS(R)°. SinceS(R)? is
compact, there is no one-sided periodic point, and theorénmiplies that
K(f) is a hyperbolic set. This means that the dynamics$ oih S(R)? is
uniformly hyperbolic. In particular, the unstable directs of f determine a
continuous line field oi(R)°, and we get a contradiction becal&®)° is

a sphere. O

Remark 5.8. A similar argument shows that the Julia #gt) of a Hénon
automorphisnh : C2 — C? can not coincide with a smooth embedded 2-
dimensional surfac& c C2. Indeed, the restriction df to Swould be uni-
formly hyperbolic, and its entropy would be equal to(dyg whered € Z*

is the dynamical degree ¢f This implies that the Euler caracteristic 8f

is 0 and thah : S— Sis an Anosov diffeomorphism. But the topological
entropy of such a diffeomorphism is not the logarithm of aeger (it is the
logarithm of a quadratic integer). This provides a conttan.



BERS AND HENON, PAINLEVE AND SCHRODINGER 28

Corollary 5.9. Let D be a real number ands®e the element dfam defined
by the real parameterf),0,0,D). The following properties are equivalent:
(i) there exists a hyperbolic element fansuch that f: S(R) — $(R) has
maximal entropy(ii) any hyperbolic element f im has maximal entropy
on $(R), and(iii) D > 4.

Proof. If D > 4, thenS(R) is connected and smooth and the result follows
from theorem 5.2. 1D < 0, the result follows from the fact that the action
of the mapping class group @{R) is totally discontinuous (see [37]). If
0 < D < 4, thenS(R) has a compact connected compong(R)® and the
conclusion follows from the previous theorem. OJ

5.3. Uniform hyperbolicity. We now prove theorem 1.2 in the following
more general form.

Theorem 5.10.Let f be a hyperbolic element af. Let S be an element of
Fam defined by real parameters. If{B) is connected, then

e the entropy of § is maximal; its value isog(A(f));

e the set of bounded orbits of :fS(C) — S(C) is a compact subset
K(f) of SR);

e the automorphism f admits a unique invariant probabilityasiere
Ks of maximal entropy, and the support of poincides with Kf);
periodic saddle points equidistribute towarg;

e the dynamics of f on Kf) is uniformly hyperbolic.

The only property that has not been proven yet is the last émdact,
we shall prove more than uniform hyperbolicity: Our objeetincludes a
description of the complement & (f), in order to explain pictures like
the one provided in figure 2. This will be achieved in sectiof. 50Once
again, as in the proof of theorem 5.2, the main argument istierstand
perturbations of the Cayley cubice. perturbations ofr : &c(R) — S (R).
The following section contains a preliminary study of itsadhtonnected
real deformations.

5.3.1. Small deformations of the Cayley cubithe surfacex: has four con-
ical singularities. Ifsis one of these four points, then, localfs(R) is dif-
feomorphic to a quadratic cor@= 0 with Q(X,Y,Z) = X2 +Y?—Z? ; the
singularitys now coincides with the origin dR3.

Let M be an element of the orthogonal groOpQ) with an eigenvalue
A € R of absolute valugA| > 1. The other two eigenvalues & are then
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C-2

FIGURE 2. Examples of stable manifolds.

+1/A and+1. Let DT, D~ andD° be the three eigenlines corresponding to
the eigenvalues, +1/\ and+1.
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Let e be a non negative number. Define
e == {(X,Y,2) e R%Q(X,Y,2) = ¢};

whene = 0, #p is the quadratic cone, but when> 0, # is a connected
hyperboloid, which intersects the lifi# in two opposite points®(g), and
s (¢) = —s'(€). According to the sign of the eigenvaldel, M either fixes
or permutes these two points. In any casgg) ands (€) are saddle pe-
riodic points for the restrictioM : #; — 7. The stable manifold oM
throughst (¢) (resp.s™(€)) is the line througts™ (¢) (resp.s™ (¢€)) contained
in #He which is parallel td>~ (see picture 3).

Let R3 be the blow-up 0RA3 at the origin, le€ be the exceptional divisor
(E =P?(R) C R3), andm: R3 — R the contraction of. The linear map
M lifts to M : R® — R3. The strict transform of the quadratic cong is a
cylinder # that intersect& along the conic curv€ = 0. Both #j andE
are invariant byM, andM : Hy — 9y has two saddle periodic points along
the conic.

This conic disconnectk into a disk and a M6bius band. The strict
transform ofDY intersectsE in one points; which is contained iiN. When
£ > 0 goes to Othe pointsrt (s (g)) converge toward, "and the family
of surfacest1(s4¢) converges toward the union df and the cylinder,
approaching/; from one side antll from both sides. The poirsti$ a saddle
fixed point ofM : E — E. The strict transform oDY is a neutral invariant
manifold forM : R3 — R3 throughs; which intersects the surfacesg on the
saddle pointst1(s*(g)).

Let us now come back to the Cayley culdie. Let f be a hyperbolic el-
ement of the groupz. All four singularities are saddle fixed points of
Locally around each of those poings S(C) is a quotient ofC? by the
involution (u,v) — (—u,—V), and the mapf is covered by a linear map
(u,v) — (au,Bv) with |a| > 1 andpa = +1.

The transformatiorf extends to an automorphism of the affine space pre-
serving the family of cubic surfac& 0 op), D € R. Let us denote by this
automorphism and letbe a singularity ofc. The eigenvalues of the matrix

are equal to\ := a2, 1/A := B? and+1. By Morse lemma, the surfaces
So,0,0p) With D = 4+ ¢ behave locally as the family of hyperboloids.
Let us use the same notation as above. Tlidifts as an automorphisrf

of the blow-upl'—\;3 of R at the points. The transformatiorf coincides with
M along the exceptional divisd.
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The strict transform of the (real) Cayley cubic coincidesdlly) with the
cylinder #5. The fixed poinis corresponds on this cylinder to a pair of fixed
points and the conic curv@ = 0O realizes a heteroclinic connection between
this points. If we cut the cylinder along the unbounded uristananifold
of one of these two points, the cylinder becomes a strip: Ehshown on
picture 3B, where stable and unstable laminations of:(R) — S (R) are
represented.

Since f coincides withM alongE, f has a saddle fixed point at The
exceptional divisoE is smooth and the family of surfacesl(5<0707074+g))
determines a smooth locally trivial fibration negmwith E corresponding to
€ = 0). Saddle periodic points can be deform along smooth pgeations.
As a consequencs,can be deformed into a pair of saddle periodic points
(st(g),57(g)) on S44¢ for smalle > 0. The lineDP is tangent to the curve
»’" which is described by this family of points.

A similar study applies for all small real deformatioig g c py which are
connected, and we get the following lemma.

Lemmab5.11.Let f be a hyperbolic element of the graapLet s be a singu-
larity of the Cayley cubic& If Syt is @ small real and connected deforma-
tion of the Cayley cubic, then s deforms as a pair of pojstgt),s (t)) C
Su(t) Which are both saddle fixed points of Sy« — Sy)-

The stable manifold o§*(t) is uniquely parameterized by an injective
holomorphic magts : C — S(C) with £(0) = s*(t), |(&F)'(0)| = 1, and
&'(R) € S(R) (up to a possible composition éf(z) by z— —2). By a
coherent choice df, one gets a continous family of holomorphic mappings.

Remark 5.12. For 5 with D = 4 — € ande > 0, the surface locally looks
like a hyperboloid with two sheets that doesn’t inter€2¥t The intersection
is indeed made of two complex conjugate points. This explémat we

lose saddle points in the real locus, and shows that, lqdhltyentropy of
f:S(R) — S(R) is not maximal (for smalt > 0).

5.3.2. Notations and preliminariesWe now start the proof of theorem 5.10.
In what follows, we fix a hyperbolic elemefitof 2, and assume thdtpre-
serves orientation (repladeby f2 if f reverses orientation). We denote by
# the space of real parametéss B,C, D) such thatS(R) is connected. In
order to prove theorem 5.10, and theorem 5.22, we shall shedglynamics
of f on all surfaceS= Sapgcp) With (A,B,C,D) in # . For such surfaces,
maximal entropy implies the following properties:
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(1) K(f) coincides withJ(f) and is a subset &(R); moreover, periodic
points are hyperbolic, all of them are containediff ), and inter-
sections between stable and unstable manifolds are alsaiced in
K(f) (see theorem 5.4) ;

(2) the set of one-sided points is a finite sube& f) of J(f) (see [9],
sections 3and 4) ;

(3) if mis a point of tangency between stable and unstable manifédlds
f, thea andw-limit sets ofm are contained IO ) (see theorem
2.7 of [9]) ;

(4) inthe complement dDS f), stable and unstable manifoldsfform
two laminations ofl(f) (see proposition 5.3 of [8]) ;

(5) atangency between a stable and an unstable manifoldayalqua-
dratic (see section 2 and figure 4.1 in [9], and section 5 gf [8]

Remark 5.13. Note that the picture provided by Bedford and Smillie’s re-
sults include the fact that there is no heteroclinic connadbetween peri-
odic points. This simple fact is well known, and is not rethte maximal
entropy in the real locus. The proof is as follows. Assumé din@ half of a
(real) stable manifolV3(q) coincides with one half of an unstable manifold
WH!(p). Then the complex stable and unstable manifolds coincidausec
they intersect along an uncountable set. As a consequ@fitg) can be
compactified by adding the poimtto it, and determines a copy &f(C)
in S(C). SinceS(C) c C3 is an affine surface, and® does not contain any
1-dimensional compact subvariety, one gets a contradictio

Note that if we resolve the singularities of the Cayley cuiidlow-ups,
we create heteroclinic connections along the exceptiamat.

5.3.3. Deformation of periodic points and heteroclinic intergens. For
any point(A,B,C,D) in #, all periodic points off : S(C) — S(C) are real
saddle points (property (1) above). As a consequence, wintiaw all the
periodic points along any deformation of the paramet&®,C,D) in # :
If a(t),t €[0,1], is an arc of clasg’k in #r, and if pg is a periodic saddle
point of f : S0y — Sy(0) Of periodN, there exists an arp(t) of classck
such that

(1) forallt, p(t) is contained ir§, ) andp(0) = po;

(2) for allt, p(t) is a periodic saddle point df : ;) — Sy of period
N (here we also use the fact thapreserves orientation; otherwise,
the period could change wheatt) goes through a singular point of

St))
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FIGURE 3. Deformation of singularities.
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Remark 5.14. The pointp(t) is contained in the se{,(f) of points in
S ) With a boundedf -orbit. The family of compact setsy ) (f) depends
semi-continuously on ([6], lemma 3.1), so that the unioncg 1Kq(t)(f)
is contained in a fixed compact s&t. The pathsp(t), t € [0,1], wherep
describes the set of periodic pointsfof S o) — Sy (o) are contained irx .

We now explain how to follow intersection points along hetdinic in-
tersections. We choose two periodic poiptandq and follow them along
the deformatioroi(t), t € [0,1]. We can then parameteriz&>(p(t)) by a
continous family of holomorphic mappings

€pt) 1 C — S(C)
in such a way thaiz(t)(O) = p(t), |(E;(t))’(0)| =1, and E;(t)(R) C S(R).
We parameterizwq“(t) in a similar fashion bﬁg(t). We then choose one half
of the stable/unstable manifolds, and assume fhais mapped onto this
chosen half bﬁz(t) (resp. byég(t)).

Let /\; be the set of parametefs(t),u(t)) in RT x R™ corresponding to

parameters of intersections betw&ip,, andW..; more precisely,
t) q(t)

A ={(xy) € R" xRT; E;(t)(x) = Eﬁ(t)(y)}-

Lemma 5.15.The sef\; is a discrete subset &' x R*. Two distinct points
of /A\; have different first and second coordinates. For(ally) in A, and for
all € > 0, the number of points in the strip™ x [y —€,y+ €] is infinite.

Proof. Let(x,y) be an element of\;. Let m= E%(t)(x) be the intersection
point corresponding to these parameters.Uet Sy (C) be a small neigh-
borhood ofm. Let W3 _.(m) (resp.W4.(m)) be the connected component of
WS .(m) NU (resp. Wg.(m) NU) containingm. These local stable and un-
stable manifolds are analytic subsetdJofAs such, they intersect in a finite
number of points. Lely,ly C R* be the intervals which are mapped on the
local stable and unstable manifolds througby E;(t) andﬁg(t) respectively.
By contruction]y x ly is a neighborhood i, y) which contains only a finite
number of points of\;. This shows thaf\; is discrete.
Let us now fixx. Sinceéam is injective, the number of parametgrsuch
thatﬁg(t)(y) = E;(I)(x) is at most one. This proves the second statement.
Let now(Xx,y) be an element of;. The intersection poinn:= E%(t)(x) IS
an element oK (f). LetU be a small neighborhood afin which (i) the sta-
ble and unstable laminations bfare transversal (or have at most a quadratic
contact aim), and(ii) all local stable and unstable manifolds intersect. Fix
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€ > 0 and consider the piece of unstable maniiMtm) = Eg(t) y—&,y+Eg|.
What we have to show is th&¥(m) intersectsws(t) infinitely many times.

ShrinkingU, one may assume th&¥(m) coincides withWj}_(m). Choose
a periodic point of f in U: The unstable manifold aof intersectéNs(t) at
least once, and therefore infinitely many times in any nesghbdod ofr ;
all intersections points il generate intersection points betwé#(m) and
Ws(t). O

Let us nowassume thap is not one-sidedAccording to property (3) in
85.3.2, this implies that all intersection pointswg(t) anqu”(t) are trans-
verse. Let(x,y) be any point of\, a € [0, 1] and letm € §;) be the corre-
sponding intersection point of stable/unstable manifollsen there exists
a neighborhood of a in [0, 1] along whichm, and thereforgx,y), can be
smoothly deformed into paths(t) and(x(t),y(t)). In other words, all points
of A4 can be locally followed along the deformatiaft), with t neara. Note
that through such a deformation of two poiritg,y;) and(x2,y>), one al-
ways has (t) # x(t) (for t in the common interval of definition).

Lemma 5.16. For all intersection parametersgx,y) € Ao, the domain of
definition of the deformatiox(t),y(t)) coincides with the full interval of
deformation0, 1].

Proof. What we have to show is that there is no "explosion in finitestinin
other words, we have to rule out the situation whex¢), y(t)) is defined on
the intervall0, a, but goes to infinity asincreases ta. We therefore assume
thatx(t) goes to infinity as goes toa, and try to reach a contradiction.

Let y(a) be the infimum limit ofy(t) ast approaches. Let us first as-
sume thaty(a) <  and choose a poirixi(a),y1(a)) in Az such that (i)
yi(a) > y(a) and (ii) Ay contains an infinite number of points in the strip
R x [y(a),y1(a)] (such a point exists by the third property of the previous
lemma). Let now(x1(t),ys1(t)) be the local deformation dki(a),y1(a)) on
a small intervala—e¢,a+¢].

Sincex(t) goes to+, and since vertical lines through points/f never
coincide, we know thak(t) > x;(t) for all t in [a—¢€,a[. Similarly, y1(t) >
y(t) fort € [a—¢, a|. Let B; be the rectangle with upper left corn@g(t), ya(t))
and lower right cornefx(t), y(t)). This is a compact subsetBf* x R™, and,
since/\; is discrete, it contains a finite number of points/qf Since hori-
zontal and vertical lines through points &f never coincide, this number
of points is a constark, and the strilR™ x [y(a),y1(a)] contains at mosi
points. This contradicts the choice ©f(a),y1(a)).
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In the case where the infimum limit oft) is +co, the contradiction is
easier to get by considering the rectar@levith lower left corner(0,0) and
upper right cornefx(t),y(t)). As a consequence, we get a contradiction in
both cases, and the lemma is proved. O

This lemma shows that we can follow intersection points leetwstable
and unstable manifolds along any deformat®g, if a([0,1]) C # . Note
that this is true up to and including the case of the Cayleyoc{gee section
5.3.1).

Remark 5.17. When we follow an intersection poimt(t) of WS(p(t)) and
WH(q(t)) along a deformatio&, ), the pointm(t) never coincides witp(t)
or q(t) (this is a consequence of the previous lemma, or of the absainc
saddle connections, see remark 5.13).

5.3.4. One-sided pointsLet us assume the, ) is a deformation of the
Cayley cubicSy ) = &, with a(t) € # for all t € [0,1]. We shall say that
a periodic pointv of ;) comes from a singular poistof & if the defor-
mationw(t) of w(1) = walonga(t) lands ats whent = 0. This means that
w(t) coincides with one of the poirst (t) or s~ (t) whent approaches 0 (see
section 5.3.1).

Lemma 5.18.1f m(t) is a u-two-sided (resp. s-two-sided) point gfiSfor
some t then nit) is u-two-sided (resp. s-two-sided) for alkt[0,1]. One
sided points come from singular points ef &nd if m comes from a singular
point, then m is both stably and unstably one-sided.

With the notations from section 5.3.2, the previous lemnwshthat the
setOS f) is made of the eight points coming from the singularitie§of

Proof. Let m be au-two-sided point. Following intersection points of stable
and unstable manifolds, one sees that the set of paraméterahich m(t)
is u-two-sided is an open set.

Let us now assume that(t) is u-two sided fort €]a, b[, and lett decrease
to a. Changingf into one of its iterates, once can assume thj is a curve
of fixed points and that the multipligq(t) of f along the unstable manifold
is a positive number. Let. be the maximum of(t) on the closed interval
[a,b]. Let € > 0 be a fixed small real number. Singgt), t > a, is u-two-
sided, the selK ™" (f) intersects the local stable manifalgg.(m(t)) on both
sides. Sinc&™(f) N"WY(m(t)) is f-invariant,K™(f) intersectad\ji_(m) on
both sides inside the annulus of raglaind (14 X )€ aroundm(t). By semi-
continuity of K*(f), this implies thal*(f) intersectd\j2 .(m(a)) on both
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sides, at distance in betweerand (1+ X )€, proving thatm(a) is u-two-
sided.

This shows that the set of parametefer which m(t) is u-two-sided is
both open and closed. By connectedness, a pointtigo-sided for one
parameter if an only if it is-two-sided for all parameters.

Conversely, a pointnis u-one-sided for one parameter if and only if it is
u-one sided for all parameters. On the Cayley cubic, thosgpare exactly
the singular points. This proves the result. 0J

5.3.5. Deformation and stable manifold®ext steps aim at giving a de-
scription ofK(f) and are not absolutely necessary to prove the uniform hy-
perbolicity. We choose one of the singularitesf the Cayley cubic, and
call p(t) andq(t) the two periodic one-sided points which come from this
singularity after perturbation (these points where presipcalleds (t) and

s (t)). Fort = 0, we havep(0) = q(0) =s.

Remark 5.19. We shall make use of figuresB-to 3-E. They represent
the geometry of stable and unstable manifolds neandq after deforma-
tion of the Cayley cubic. PicturesB;C describe the geometry of the sta-
ble/unstable laminations df on the Cayley cubic aroursl This lamination
has a singularity at. Figure 3B is obtained after one blow-up and has been
described in 85.3.1. Figure@is a view of the bounded pa® (R). Locally
arounds, we get a disk with two singular laminations (it's a typicasgudo-
Anosov" with spines, see [1], page 243). The region this picture is
described below.

Let us study the topology of stable and unstable manifoldsai a con-
nected deformatio®R) of S(R). From lemma 5.18, we know tha@tand
g are bothu ands-one sided, half of their real stable/unstable manifolds go
ing to infinity (see picture 3 andB for the Cayley cubic, an® for the
deformation). We fix a periodic pointin & which is close to the stable
manifold of p: The local unstable manifold af intersects transversaly the
stable manifold of at u and its stable manifold intersects transversaly the
unstable manifold of atv, as in figure 3€. Changingf in one of its iterates,
we assume thatis a fixed point. We shall denote IRy the region bounded
by W3(s), WY(r), W3(r) andW"(s) (see figure ).

Thanks to section 5.3.3, we can follow this picture along alsdeforma-
tion Sty betweenS andS= §;(y). The pointr is deformed in a path(t)
of saddle fixed points, anslin a pair of saddle fixed points(t), q(t). The
intersection pointi can be deformed in two ways. As a point of intersection
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betweenVS(p(t)) andW!(r(t)), providing a pointu(t) € Sy, butalso as a
point of intersection betweas(q(t)) andW"(r(t)), and we denote by/(t)
this second deformation. The powtan also be deformed in two ways; by
convention,v(t) is the deformation contained WY(q(t)) "W3(r(t)) (see
figure 3D).

Let R(t) C S(t)(R) be the closed region which is bounded by the half
of WS(p(t)) \ {u(t)} that containsp(t), the segment oW"(r(t)) between
u(t) andr(t), the segment ofVs(r(t)) that joinsr(t) to v(t), and the half
of WY(q(t)) \ {v(t)} that containg(t), (see figure 32). Let W3 (q(t)) be
the connected componentWf(q(t)) \ {q(t) } which entersR(t): This half
stable manifold is parameterized By: R™ — S(R), with & (0) = q(t) and
&t(2) € Rfor small positive real numbews

The closure of the stable manifoldgft) covers the séf (). As a conse-
quence, we know that/?(q(t)) \ {q(t)} exits the regiorR(t). In particular,
there exists a smallest positizsuch thag;(z) is ondR(t). Since this point
coincides withu(t) on the Cayley cubic, we know that it coincides wittt)
all along the (small) deformatio, ;) (figure 3D).

Lemma 5.20. For all t € [0,1], the half stable manifold W(q(t)) exits R
through W/(r(t)), in between (t) and ut), at point r'(t).

Warning. In what follows, we keep the same notations, but the depearedan
with respect to the deformation parameté made implicit. All points and
stable/unstable manifolds are indeed points and curv&g(in; whent = 0,
Sis the Cayley cubicp(t) = q(t) = s, andR(t) degenerates tBy.

5.3.6. Stable manifolds, doubly one-sided points, and wandetiigss Let
| be the closed segmepmtu] C WY(r).

Lemma 5.21. The set K () does not intersect Wr) along | in between
the points u and’r

Proof. Let us assume that this is not the case. Sipégu-one-sided, we
know that there is no stable manifolds approachinigom the left. We can
therefore define” to be the unique point ihwhich is betweem andr’, is
contained irk(f), and is closest to’ with these properties. By assumption,
r'" is different fromu (see figure &E).

The stable manifold through’ entersR and cannot intersetV/s(q) and
W3(p). It must therefore exiR through the interval, in betweenr” and
u (see picture &E). Sincer is not coming from a singular point, is not
one-sided, and the stable and unstable manifoldk foifrm two transverse
laminations in its neighborhood. As a consequence, therpartodic points
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FIGURE 4. Tangency and complement of K*(f).

of f in Rwhich are arbitrarily close to Let w be such a point. The poimt
being arbitrarily close to, its local unstable manifold is arbitrarily close to
WH(r), and we can choos& in such a way that the local unstable manifold
of wintersectdVs(r’) in at least two points ifir, as in picture 3.

We now choose a second periodic poivitin R which is close ta”, in
such a way that the connected component/dfw’) N R which containsy/
intersectdM.(w) in two distinct pointd; andis .

The pointsw, W, and the heteroclinic intersectionsandi, can then be
followed up to the Cayley cubic along the deformatigyy, (lemma 5.16).
During this deformatiorw andw’ can not leave the regioR, because two
distinct periodic points can not be on the same stable/blestaanifold. As
a consequence,; (resp.iz) can not exitR, because otherwise, for some pa-
rametert in the deformationis (t) would be contained in two distinct stable
(resp. unstable) manifolds.

On the Cayley cubic, we then get two periodic poin{) and w (0)
such that the connected componenf{w') N R containingw’ intersects
the connected component\&f(w) N R containingw in two distinct points.
This is a contradiction. 0J

Let B be the region bounded By, u], WS(p), f([u,r']), andW=(q) (see
picture 3F). The segment$"[u,r’] join the endpointsf"(u), which con-
verge top alongWs(p), to the endpoint$"(r’), which converge ta along
W5(q). On the other end, the open segmghtu is entirely contained in the
complement oK™ (f), so that all its points go to infinity when one iterates
positively. This implies that points in the interior Bfare wandering points
which are pushed away to infinity bf. The same is true for the images
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f(B), n€ Z. As a consequence, the full strip

U fP(Int(B)U[r’,u]),

neZ
i.e. the strip located in between the halves\/S(p) andW'/5(q), is en-
tirely contained in the complement &f* (). (see picture 3, where this
strip is colored) .

5.3.7. Deformation and the geometry of(K). We can apply the same ar-
gument to understand the geometry of stable and unstabléatssmearp.
PartB of figure 4 summarizes our knowledge of the geometry of stabte
unstable manifolds near the poirgsandq after a small deformation of the
Cayley cubic:p andq are bothu ands-one-sided, and the colored region is
contained in the complement Kf* (f).

Let us now consider a large deformati€g., of the Cayley cubicx.
Following p, u, r, v, g, stable/unstable manifolds of these points, and their
intersections along the deformation, we can follow theae alonga(t).
Since there is no saddle connectionSy, for t > 0, the geometry oR
with respect to local stable and unstable manifoldRidoes not change.
The results obtained above for small deformations remaretbre valid for
arbitrarily large deformationg(t) C # .

5.3.8. Absence of tangency and hyperbolicibyet us now assume that there
is at least one set of parametéss B,C,D), for which S(R) is connected
and fr is not uniformly hyperbolic orK(f). Then, there is a tangency be-
tween the stable manifold of&one-sided periodic poirg and an unstable
manifold (see theorem 5.6 and section 5.3.2). Iterafinge can find such
tangencies in arbitrarily small neighborhoodsjof

SinceS(R) is connected, we can defor@in S, witha(t) € 7/, t €[0, 1],
S0 = &5 Sy(y) = S (see section 2.9). Sinagis u-one-sided, it comes
from one of the singularities d& (lemma 5.18). Sections 5.3.6 and 5.3.7
provide pointsp(t), q(t), r(t), ..., and a regiorR(t) in ), and describe
the geometry of the stable and unstable manifolds geaq(1). Figure 4A
represents such a possible tangency (see also [9], pictlend 83 and 4).

LetU C R(1) ¢ §(R) be a small neighborhood of the tangency pomt

If ais a point ofK(f)NU, we shall denote bW(S)/Cu(a) the connected com-
ponent ofW%Y(a)NU that containsa. Sincem is in K(f), one can find a
saddle periodic pointv in U such that\j (w) intersectsM3 (m) in two

pointsi; andi,. Then, we can find a second periodic saddle painsuch

thatWs (W) intersectd\ji (w) in two points (see figure 4).
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Thanks to section 5.3.3 and lemma 5.16, we can now follow énogic
saddle points(t), v(t), u(t), w(t), w(t), and the points of intersectian(t)
andiy(t) continuously along the deformation. All of them belong te th
regionR(t). From sections 5.3.6 and 5.3.7, the geometry of the stable and
unstable manifolds afit), v(t), q(t) andp(t) remains unchanged along the
deformation; in particular, since the periodic poimt&) andw/(t) cannot
cross the stable or unstable manifolds of other periodiatpaiuring the
deformation, they both stay in the interior of the regRim). We then get a
contradiction as in the proof of lemma 5.21, 85.3.6.

Since there is no tangency, theorem 5.6 implies that therdigsaof f is
uniformly hyperbolic orK (). This proves theorem 5.10.

5.4. Strips, bounded orbits, and Hausdorff dimension. Let (A,B,C,D)
be an element ofr . Let f be a hyperbolic element of. The surfaceS(R)
defined by this set of parameters is connected, fanf{R) — S(R) is uni-
formly hyperbolic onK(f), so that we can apply proposition 2.1.1 of [12]:
The set

WR(K(F)) =K™(f)NSR)
is laminated by stable manifolds of pointsk{f); if a pointmin K*(f)
is on the boundary of the complementwi§ (K(f)), thenmis on the stable
manifold of a periodiai-one-sided periodic point of. From section 5.3.3,
we know thatf has exactly eight periodic one-sided points, each of them
coming from a singularity of the Cayley cubic. From secti@n3.5 and
5.3.7, the stable manifolds of the two one-sided points ognfiom one
singularity bound a strip, as in pictureBl-This proves the following result,
which was first numerically observed by Catarino and MacKsse([22],
page 61 for example), and "explains" picture8 2ndC.

Theorem 5.22(MacKay observation)If S(R) is connected, f has exactly
eight one-sided fixed pointg pd:, p2, 02, P3, 03, P4, and q. All of them
come from singularities of the Cayley cubic by deformatiah;of them
are both u and s-one-sided. Moreover, the stable manifofdg @and q
(i=1,2,3,4) bound an open strip homeomorphickox (—1,1), and the
complement of K(f) N S(R) coincides with the union of these four strips.

We now study the Hausdorff dimension of the stable and utestani-
nationsK™ () andK~(f) on &), wherea(t) is an analytic path in the set
H .

Theorem 5.23.Let t — a(t) be an analytic map from0, 1] to the set of
parameterg A,B,C,D). Assume that &) is smooth and connected for all
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values of t Then, the Hausdorff dimension of the sef§ W) NK*(f) does
not depend on ne K~ (f), and defines an analytic function of t which is
strictly positive and strictly less thah

Remark 5.24. In particular, the complement & (f) NS(R), i.e. the union
of the four strips, has full Lebesgue measure ; almost alt®dw to infinity
under iteration off. The same is true for the complementof () in S(C).

Proof. By results of Hasselblatt [39], the stable and unstableidigions
of f are smooth, and the holonomy maps between two transvelistis o
stable (resp. unstable) laminations are Lipschitz cootisu In particular,
the Hausdorff dimension of the sets

Woe(m) NK(f)

does not depend on the choicemin K(f) (see also [57], theorem 1). We
shall denote this dimension b¥" (f).

The mapf is area-preserving: As in [58], corollary 4.7, this implibat
the Hausdorff dimension of the st .(m) NK~(f) coincides withH;" (f).

Using Bowen-Ruelle thermodynamic formalism, as it is dongs], the-
orem 2, we obtain that;" () is an analytic function df. Since the function
G]T‘S(E) is Holder continuous this Hausdorff dimension is stricthsjtive.

If H;"(f) is equal to 1then the same is true for the Hausdorff dimension
of W2 .(m)NK~(f) and theorem 22.1 of [52] shows that the Lebesgue mea-
sure of these sets is strictly positive. By Hasselblattsulte the Lebesgue
measure oK ( f) is positive, and by Bowen-Ruelle’s theorem ([15], theorem
5.6), the seK(f) must be an attractor df: S;) — Sy(t) This contradicts the
fact thatK (f) is compactf is area preserving, ari ) is not compact. [

6. SCHRODINGER OPERATORS ANOPAINLEVE EQUATIONS

6.1. Discrete Schrédinger operators.Let us now apply the previous re-
sults to the study of the spectrum of certain discrete Schgéa operators.
There is a huge literature on the subject, and we refer to 42d][24] for
background results and a short bibliography.

6.1.1. Discrete Schrodinger operators and substitutiohset W* be the set
of finite words in the lettera andb. Let1 : {a,b} — W*\ {0} be a substi-
tution. In what follows, we shall assume thais invertible, which means
that1 extends to an automorphis# of the free groug~ = (a, b|0), and

thati is primitive, which means thab, is hyperbolic ; in other words, the
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image of®, in Out(F) = GL(2,Z) is a hyperbolic matrix, with two distinct
eigenvalued (1) andA_(1) satisfying

AL ()] = [L/A_(1)] > 1.

Under these hypothesises, there is a unique infinite wolid the two letters
aandb such that (u;) = u,..

Example 6.1. The Fibonacci substitutia, defined byig (a) =bandig (b) =
ba, provides a good and famous example of such an invertiblefprarsub-
stitution. Its fixed word starts withabbababbabbababbababbabba

LetW be the set of bi-infinite words iaandb andT : W — W be the left
shift. Letu, be any completion afi, on the left. We then defin@ to be the
w-limit set of theT -orbit of U, :

Q={veW]| there exists a sequenng— +oo, such thaff " ({i;) — v} .

Sincel is primitive, the restriction of the left shift to the seQ is a minimal
and uniquely ergodic homeomorphisin Q — Q. The uniqueT -invariant
probability measure o will be denoted by.

Remark 6.2. The subshifflT : Q — Q encodes the dynamics of a rotation
Ry : R/Z — R/Z, wherea is a quadratic integer (see [2]).This provides a
measurable conjugation betwelgn andT which sends the Lebesgue mea-
suredxtov.

Let us now fix an element in Q, and define the potentisl, : Z — R by
Vw(n) = 1 if wy = aandVy(n) = 0 if wy = b. Let k be any complex number
(k is the so called "coupling parameter"). (§(n))ncz is a complex valued
sequence, we define

Hew(&)(n) = &(n+1) +&(n—1) +KV(n)&(n).

The discrete Schrodinger operatdg ,, induces a bounded linear operator
onIZ(Z), with norm at most 2- |k |. The adjoint ofHy w is Hx w, SO thatHy w
is self-adjoint if and only ik is a real number.

6.1.2. AlImost sure spectrum and Lyapunov expon&ihce T is ergodic
with respect tov, there exists a subsgf of C (of R if K is real) such that
the spectrum ol v : 12(Z) — 12(Z) coincides withz, for v-almost allw in
Q. This set is the "almost sure spectrum” of the fankily.

To understand the spectrum Hf \, one is led to solve the eigenvalue
equationHy w(&) = E& (E in R or C). For any initial condition§(0),&(1)),
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there is a unique solution, which is given by the recursiomida

( (En(n> >) _ ( K1 (n) : ) (E(n@l) ) nez.
Let My g : W* — SL(2,C) be defined by

mee@ = (5% ). mem- (5 ).

My £(U1...Un) = M= My g (Uni)
for any wordu = u;...up of lengthn. This defines &L (2, C)-valued cocyle
over the dynamical systerfQ2, T,v). Applying Osseledets’ theorem, each
choice of a coupling parameteand an energf gives rise to a non negative
Lyapunov exponenf(k, E), such that

and by

1
V(K,E) = nlrﬂwﬁ/QlogHMKE(Wle...Wn1)||dv(w)

1
= lim =log||Mkg(WiW>...Wp_
oim_—10g[Mi g (Wiwa...Wn—1)]l,
for v-almost allwin Q. The Lyapunov function(k, E) is linked to the almost
sure spectrunag by the following result.

Theorem 6.3(see [23]) Letk be a real number. The almost sure spectrum
>« coincides with the set of energies for which the Lyapunowereapt van-
ishes.

6.1.3. Trace map dynamics, Lyapunov exponent, and Hausdorff diiwren
Let us fix the coupling parameter Let S, . be the character surfagé +
y? + 2% — xyz= 4+ K. The Schrédinger curvef S, L2 Is the parameterized
rational curves : C — S, 2, which is defined by(E) = (X(E),y(E),z(E)),
with

(X(E),Y(E),Z(E)) = (tr(Mke(a)), tr(Mcg(b)), tr(Mke(ab)))
= (E—k,E,E(E—K)—2).
Remark 6.4. The intersection 0§, . with the planey = x+-K is areducible

cubic curve: It is the union of(C) with the line{z= 2,y = x+ K}, the
involutions;, permutes these two curves.

Let f, be the polynomial automorphism 8§ .. which is determined by
the automorphisni®,)~! : F, — F>. By definition of f,, we have

(tr(Mc e(1(a))), tr(Mk g(1(D))), tr(Mk e(1(ab)))) = fi(s(E)).



BERS AND HENON, PAINLEVE AND SCHRODINGER 45

In [23], Damanik proved thay(k,E) vanishes if and only is(E) has a
bounded forward,-orbit. In other words,

>« ={E€CJs(E)eKT(f)}. (6.1)

We can now apply MacKay observation, i.e. theorem 5.22, wtedls us

that the complement af(%) in the real Schrodinger curve is obtained by
intersectings(R) with the four strips associated to the one-sided points of
f,. This means thagaps in the complement of the spectrum are bounded by
intersection points betweeiR) and the eight curved/>(q;) andW3(p;),
i=1,2, 3, and4).

Theorem 6.5. The Hausdorff dimension d, K € R, is a real analytic
function ofk. Moreover,0 < Haug2y) < 1, VK € R, and Haugx) = 1 if
and only ifk = 0.

This statement confirms numerical observations that canuoed, for ex-
ample, in [46] and [45]; it is stronger than the fact thathas zero Lebesgue
measure wher # 0, a property which was proved by Kotani in the eighties
(see [24]). Here, it appears as a corollary of results in dyoal systems
which are due to Bowen, Pesin, and Ruelle.

Proof. The mapa (k) = (0,0,0,4+ k?) is analytic and all surfaceS(t)
are smooth and connected fot£ 0. We can therefore apply theorem 5.23,
which tells us that the Hausdorff dimension of the 3&t§ (m) NK™*(f,)
does not depend on the choicerofin K(f,), and defines a real analytic
functionH, (f,) of the variablex such that < H (f,) <1, Vk#O.

Let us apply this result to the spectruin. Lett be an element oEy.
Let m be the point(t) on the Schrddinger curve. By Damanik’s theorem
the image of the spectrum kycoincides withK*(f) Ns(C) (see (6.1)). In
particular,K*(f)Ns(C) is a compact set which contains The setkK ™ (f)
is a smooth lamination by analytic curves, a{€) is an algebraic curve
(see remark 6.4). This implies that the number of tangenaytpbetween
s(C) and the laminatiofK (f) is finite. In the complement of this finite set,
s(C) is transverse to the lamination, so that locally the Hau$danension
of K*(f)Ns(C) coincides withH,. (f,). Since the Hausdorff dimension is
locally equal toH," (f,) in the complement of a finite set, it is globally equal
toH (). O

Remark 6.6. It would be interesting to settle a complete dictionary lestw
dynamics of the trace map and properties of the spectrum.eXxample,
the Green function of, should coincide with the Lyapunov functigfk, E)
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along the Schrédinger curve ; together with Thouless foantilis would
identify the density of statedk with the measure obtained by slicirTqr
with the Schrédinger curvedk, = s*(Tfl+ ) (see [55] for related results and
definitions).

7. APPENDIX. MONODROMY OF PAINLEVE VI EQUATION

The sixth Painlevé equatid®/| = Ry|(6q, 6, 6y, 85) is the second order
non linear ordinary differential equation

d? 1(1, 1 1 dg) 2 1,1
P e @ )@
ag-Da-t (G Bt B 1 I =)
ey \2 2@t zae 7 @
the coefficients of which depend on complex parameiets 6, 63, 6y, 65).
As explained in [44], the monodromy of Painlevé equationvges a
representation of (P*\ {0, 1,0}, to) into the group of analytic diffeomor-
phisms of the space of initial conditioNg(to),q (to)) (see [44] for a precise
description of this space). Via Riemann-Hilbert corresjance,

R/

<N

¢ the space of initial conditions is analytically isomorptoqa desin-
gularization of)Sa g c p), With parameters

a=2cogmdy), b=2cogmBg), c=2cogmOy), d =2cogmd;), (7.1)

(see section 2.1 for the expressionfAfB,C, D) in terms of(a, b, c,d));
e the monodromy action on the space of initial conditions igjegate
to the action of ; on the surfac&a g c p).-

From this and sections 5.3 and 6, we deduce the followindtrebereby
answering a recent question raised by Iwasaki and Uehaoalgm 15 of
[43]).

Theorem 7.1.Let6q, Og, By, and 65 be parameters of Painleve sixth equa-
tion, the real parts of which are integers with an odd sum. mdie any
loop inP1\ {0,1,0}, and let f;: Sagcp) — Sapc,p) be the monodromy
transformation defined hy (through Riemann-Hilbert correspondence). Ei-
ther f, preserves a pencil of algebraic curves, or its topologiaatrepy is
positive, and then

e all periodic points of § are contained in the real part g c p)(R)
of the surface;
e the Hausdorff-dimension of the set of boundgarbits is < 2;
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e the unique invariant probability measure of maximal enyreg, is
supported by @ g c,p)(R) and is singular with respect to the Lebes-
gue measure on &g cp)(R).

Remark 7.2. This theorem should be compared to Goldman’s results re-
garding ergodic properties of the whdlg action with respect to the invari-
ant area fornf2 (see the definition of2 in section 2.3). As a particular case

of Goldman’s theorem, the action 6% on $(R) is ergodic with respect

to Q if, and only if 4 < D < 20 (see [37]). Another interesting example is
given by the Markoff surfac&. In this example, the quasifuchsian space
QF provides an open invariant subset®{C). This shows that the action

of 2 on $(C) is not ergodic. Theorem 7.1 and these results suggest that,
for most parameters, the dynamics of the monodromy of Raéréguation

is not correctly described by the invariant area fdem
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