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ABSTRACT. In this paper, we pursue the study of the holomorphic dy-
namics of mapping class groups on 2-dimensional character varieties,
also called trace-maps dynamics in the literature, as initiated in [44] (see
also [20]). We shall show that the dynamics of pseudo-Anosovmapping
classes resembles in many ways the dynamics of Hénon mappings, and
then apply this idea to answer open questions concerning (1)the geome-
try of discrete and faithful representations of free groupsintoSL(2,C), (2)
the dynamics of Painlevé sixth equations, and (3) the spectrum of certain
discrete Schrödinger operators.

FIGURE 1. Dynamics on character surfaces. Left: Dy-
namics of an automorphism on the real part of a cubic surface
(the surface isS(0,0,0,2), see below). Right: A slice of the set
of complex points with bounded orbit (this is a slice through
the origin for the Markov surfaceS(0,0,0,0)).
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1. INTRODUCTION

1.1. Character variety and dynamics. Let T1 be the once punctured torus.
Its fundamental group is isomorphic to the free groupF2 = 〈α,β | /0〉, the
commutator ofα and β corresponding to a simple loop around the punc-
ture. Since any representationρ : F2 → SL(2,C) is uniquely determined by
ρ(α) andρ(β), the setRep(T1) of representations ofπ1(T1) into SL(2,C)

is isomorphic toSL(2,C)×SL(2,C). The groupSL(2,C) acts on this set by
conjugation, preserving the three traces

x = tr(ρ(α)), y = tr(ρ(β)), z= tr(ρ(αβ)).

It turns out that the mapχ : Rep(T1) → C3, defined byχ(ρ) = (x,y,z), re-
alizes an isomorphism between the algebraic quotientRep(T1)//SL(2,C),

whereSL(2,C) acts by conjugation, and the complex affine spaceC3. This
quotient will be referred to as thecharacter variety of the once punctured
torus.

The automorphism groupAut(F2) acts by composition onRep(T1), and
induces an action of the mapping class group

MCG∗(T1) = Out(F2) = GL(2,Z)

on the character varietyC3 by polynomial diffeomorphisms. Since the con-
jugacy class of the commutator[α,β] is invariant underOut(F2), this ac-
tion preserves the level sets of the polynomial functiontr(ρ[α,β]) = x2 +

y2 +z2−xyz−2. As a consequence, for each complex numberD, we get a
morphism fromMCG∗(T1) to the groupAut(SD) of polynomial diffeomor-
phisms of the surfaceSD, defined by

x2 +y2+z2 = xyz+D.

The goal of this paper is to describe the dynamics of all mapping classes
f ∈MCG∗(T1) both on the complex surfacesSD(C) and on the real surfaces
SD(R) whenD is a real number. More generally,we shall study the dynam-
ics of mapping classes on the character variety of the4-punctured sphere,
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but we restrict ourselves to the simpler case of the punctured torus in the
introduction.

1.2. Hénon type dynamics.Let us fix an elementf of the mapping class
groupMCG∗(T1), that we view simultaneously as a matrixM f in GL(2,Z) =

Out(F2) or as a polynomial automorphism, still denotedf , of the affine space
χ(T1) = C3 preserving the family of cubic surfacesSD. Let λ( f ) be the
spectral radius ofM f , so thatf is pseudo-Anosov if and only ifλ( f ) > 1.

In [44, 16, 20], it is proved that the topological entropy off : SD(C) →
SD(C) is equal to log(λ( f )) for all choices ofD. The dynamics of mapping
classes with zero entropy is described in details in [36, 20]. In section 3,
we shall show that the dynamics of pseudo-Anosov classes resembles the
dynamics of Hénon automorphisms of the complex plane: All techniques
from holomorphic dynamics that have been developed for Hénon automor-
phisms can be applied to understand the dynamics of mapping classes on the
character surfacesSD(C) (a precise list of results is given in section 3.3).

This principle provides new tools to study the dynamics of mapping class
groups on charater varieties. As a consequence, we shall geta positive an-
swer to three different questions : The first one concerns quasi-fuchsian
groups and the geometry of the quasi-fuchsian set, the second one concerns
the spectrum of certain discrete Schrödinger operators, while the third ques-
tion is related to Painlevé sixth equation.

1.3. Quasi-Fuchsian spaces and a question of Goldman and Dumas.
First, we answer positively a question of Goldman and Dumas (see prob-
lem 3.5 in [38]), that we now describe.

When the parameterD is equal to 2, the trace ofρ[α,β] vanishes, so that
the representationsρ with χ(ρ) ∈ S2(C) send the commutator[α,β] to an
element of order 4 inSL(2,C). This means that the surfaceS2 indeed corre-
sponds to representations of the group

G = 〈α,β | [α,β]4〉.
Let DF be the subset ofS2(C) corresponding to discrete and faithful repre-
sentations ofG. Some of these representations are fuchsian: They come from
the existence of hyperbolic metrics onT1 with an orbifold point of angleπ at
the puncture. The interior ofDF corresponds to quasi-fuchsian deformations
of those fuchsian representations (see for example [50]).

Let us now consider the set of conjugacy classes of representationsρ :
G→ SU(2). This set coincides with the unique compact connected compo-
nent ofS2(R) and is homeomorphic to a sphereS

2. Typical representations
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into SU(2) have a dense image and, in this respect, are quite different from
discrete faithful representations intoSL(2,C).

The following theorem shows that orbits of the mapping classgroup may
contain both types of representations in their closure.

Theorem 1.1. Let G be the finitely presented group〈α,β | [α,β]4〉. There
exists a representationρ : G→ SL(2,C), such that the closure of the orbit of
its conjugacy classχ(ρ) under the action ofOut(F2) contains both

• the conjugacy class of at least one discrete and faithful representa-
tion ρ′ : G→ SL(2,C),

• the whole set of conjugacy classes ofSU(2)-representations of G.

This result answers positively and precisely the question raised by Dumas
and Goldman. It also sheds light on questions raised by Bowditch (see [13],
corollary 5.6 and the discussion thereafter). The strategyof proof is quite
general and leads to many other examples; one of them is givenin §4.3.
The representationsρ′ which we choose for the proof are very special: They
correspond to certain discrete representations provided by Thurston’s hyper-
bolization theorem for mapping tori with pseudo-Anosov monodromy. The
same idea may be used to describeDF in dynamical terms (see section 4).
To sum up,holomorphic dynamics turns out to be useful to understand the
quasi-fuchsian locus and its Bers parameterization.

1.4. Real dynamics, discrete Schrödinger operators, and Painlevé VI
equation. The fact that the dynamics of mapping classes is similar to the
dynamics of Hénon automorphisms will prove useful to study the real dy-
namics of mapping classes, i.e. the dynamics on the real partSD(R) when
D is a real number. The following theorem, which is the main result of sec-
tion 5, answers a conjecture popularized by Kadanoff twentyfive years ago
(see [46], p. 1872). We refer to papers of Casdagli and Roberts for a nice
mathematical introduction to the subject (see [21] and [54]and references
therein).

Theorem 1.2.Let D be a real number. If f∈MCG∗(T1) is a pseudo-Anosov
mapping class, the topological entropy of f: SD(R) → SD(R) is bounded
from above bylog(λ( f )), and the five following properties are equivalent

• the topological entropy of f: SD(R)→ SD(R) is equal tolog(λ( f ));
• all periodic points of f: SD(C) → SD(C) are contained in SD(R);
• the topological entropy of f: SD(R)→ SD(R) is positive and the dy-

namics of f on the set K( f ,R) = {m∈SD(R) |( f n(m))n∈Z is bounded}
is uniformly hyperbolic;
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• the surface SD(R) is connected;
• the real parameter D is greater than or equal to4.

The main point is the fact that the dynamics is uniformly hyperbolic when
D ≥ 4. In particular, uniform hyperbolicity occurs simultaneously for all
pseudo-Anosov mapping classes. Casdagli had a similar result for one ex-
plicit mapping class (linked to Fibonacci substitutions) whenD > 260, and
Damanik and Gorodetski recently extended it to the case whereD is close to
4 (see [21, 25]).

TABLE 1. Dynamics of pseudo-Anosov classes onSD(R)

values of parameter real part ofSD dynamics onK( f ,R)

D < 0 four disks K( f ,R) = /0

D = 0 four disks and a point K( f ,R) = {(0,0,0)}

0 < D < 4 four disks and a spherenon uniformly hyperbolic

D = 4 the Cayley cubic uniformly hyperbolic

D > 4 a connected surface uniformly hyperbolic

As we shall explain in section 6, this may be used to study the spectrum
of discrete Schrödinger operators, the potential of which is generated by a
primitive substitution: We shall show that theHausdorff dimension of the
spectrum of such operators is positive but strictly less than 1 (see §6 for
precise results).

This gives also examples of Painlevé VI equations with nice and rich mon-
odromy (see §7), thereby answering a question of Iwasaki andUehara in
[43].

1.5. Organization of the paper. As mentioned above, we shall study the
dynamics of the mapping class group of the four punctured sphere on its
character variety; this includes the case of the once punctured torus as a
particular case. Section 2 summarizes known useful results, fixes the nota-
tions, and describes the dynamics of mapping classes at infinity. Section 3
establishes a dictionary between the Hénon case and the caseof character
varieties, listing important consequences regarding the dynamics of map-
ping classes. This is applied in section 4 to study the quasi-fuchsian space.
Section 5 describes the dynamics of mapping classes on the real algebraic
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surfacesSD(R), for D ∈ R. This is certainly the most involved part of this
paper. It requires a translation of most known facts for Hénon automor-
phisms to the case of character varieties, and a study of one parameter fam-
ilies of real polynomial automorphisms with maximal entropy. The proof
of theorem 1.2, which is given in sections 5.2 and 5.3, could also be used
in the study of families of Hénon mappings. We then apply theorem 1.2 to
Schrödinger operators and Painlevé VI equations (§6 and 7).

1.6. Acknowledgement. This paper greatly benefited from discussions with
Frank Loray, with whom I collaborated on a closely related article (see [20]).
I also want to thank Eric Bedford, Cliff Earle, Bill Goldman,Katsunori
Iwasaki, Robert MacKay, Yair Minsky, John Smillie, Takato Uehara and
Karen Vogtmann for illuminating talks and useful discussions. Most of the
content of this paper has been written while I was visiting Cornell University
in 2006/2007, and part of it was already described during a conference of the
ACI "Systèmes Dynamiques Polynomiaux" in 2004: I thank bothinstitutions
for their support.

2. THE CHARACTER VARIETY OF THE FOUR PUNCTURED SPHERE

This section summarizes known results concerning the character variety
of a four punctured sphere and the action of its mapping classgroup on this
algebraic variety. Most of these results can be found in [10], [44], and [20].

2.1. The sphere minus four points. Let S
2
4 be the four punctured sphere.

Its fundamental group is isomorphic to a free group of rank 3,

π1(S
2
4) = 〈α,β,γ,δ |αβγδ = 1〉,

where the four homotopy classesα, β, γ, andδ correspond to loops around
the puncture. LetRep(S2

4) be the set of representations ofπ1(S
2
4) intoSL(2,C).

Let us associate the 7 following traces to any elementρ of Rep(S2
4),

a = tr(ρ(α)) ; b = tr(ρ(β)) ; c = tr(ρ(γ)) ; d = tr(ρ(δ))
x = tr(ρ(αβ)) ; y = tr(ρ(βγ)) ; z= tr(ρ(γα)).

The polynomial mapχ : Rep(S2
4) → C7 defined byχ(ρ) = (a,b,c,d,x,y,z)

is invariant under conjugation, by which we mean thatχ(ρ′) = χ(ρ) if ρ′ is
conjugate toρ by an element ofSL(2,C), and it turns out that the algebra
of polynomial functions onRep(S2

4) which are invariant under conjugation
is generated by the components ofχ. Moreover, the components ofχ satisfy
the quartic equation

x2 +y2+z2 +xyz= Ax+By+Cz+D, (2.1)
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in which the variablesA, B, C, andD are given by

A = ab+cd, B = ad+bc, C = ac+bd,
and D = 4−a2−b2−c2−d2−abcd.

(2.2)

In other words, the algebraic quotientχ(S2
4) := Rep(S2

4)//SL(2,C) of Rep(S2
4)

by the action ofSL(2,C) by conjugation is isomorphic to the six-dimensional
quartic hypersurface ofC7 defined by equation (2.1).

The affine algebraic varietyχ(S2
4) is called thecharacter variety ofS2

4. For
each choice of four complex parametersA, B, C, andD, S(A,B,C,D) (or S if
there is no obvious possible confusion) will denote the cubic surface ofC3

defined by the equation (2.1). The family of surfacesS(A,B,C,D), with A, B,

C, andD describingC, will be denoted byFam.

2.2. Automorphisms and the modular group Γ∗
2. The (extended) map-

ping class group ofS2
4 acts onχ(S2

4) by polynomial automorphisms: This
defines a morphism

{

Out(π1(S
2
4)) → Aut(χ(S2

4))
Φ 7→ fΦ

such thatfΦ(χ(ρ)) = χ(ρ◦Φ−1) for any representationρ.

The groupOut(π1(S
2
4)) contains a copy ofPGL(2,Z) which is obtained

as follows. LetT = R2/Z2 be a torus andσ be the involution ofT defined
by σ(x,y) = (−x,−y). The fixed point set ofσ is the 2-torsion subgroup of
T. The quotientT/σ is homeomorphic to the sphere,S

2, and the quotient
mapπ : T → T/σ = S

2 has four ramification points, corresponding to the
four fixed points ofσ. The groupGL(2,Z) acts linearly onT and commutes
with σ. This yields an action ofPGL(2,Z) on the sphereS2, which permutes
the ramification points ofπ. Taking these four ramification points as the
punctures ofS2

4, we get a morphism

PGL(2,Z) → MCG∗(S2
4),

that turns out to be injective, with finite index image (see [11, 20]). As a
consequence,PGL(2,Z) acts by polynomial transformations onχ(S2

4).

Let Γ∗
2 be the subgroup ofPGL(2,Z) whose elements coincide with the

identity modulo 2. This group coincides with the stabilizer of the fixed points
of σ, so thatΓ∗

2 acts onS2
4 and fixes its four punctures. Consequently,Γ∗

2 acts
polynomially onχ(S2

4) and preserves the fibers of the projection

(a,b,c,d,x,y,z) 7→ (a,b,c,d).
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From this we obtain, for any choice of four complex parameters(A,B,C,D),

a morphism fromΓ∗
2 to the groupAut(S(A,B,C,D)) of polynomial diffeomor-

phisms of the surfaceS(A,B,C,D).

Theorem 2.1(Èl’-Huti [31], see theorem 3.1 in [20] ). For any choice of
A, B, C, and D, the morphismΓ∗

2 → Aut(S(A,B,C,D)) is injective and the in-
dex of its image is bounded from above by24. For a generic choice of the
parameters, this morphism is an isomorphism.

To sum up,Γ∗
2 is a finite index subgroup ofMCG∗(S2

4), its action onχ(S4
2)

preserves the family of cubic surfacesFam, and, for all choices of parameters
(A,B,C,D), Γ∗

2 determines a finite index subgroup ofAut(S(A,B,C,D)). We
shall therefore restrict our study to the dynamics ofΓ∗

2 on those surfaces.

2.3. Area form. The area formΩ, which is globally defined by the formulas

Ω =
dx∧dy

2z+xy−C
=

dy∧dz
2x+yz−A

=
dz∧dx

2y+zx−B

onS\Sing(S), is almost invariant under the action ofΓ∗
2, by which we mean

that f ∗Ω = ±Ω for any f in Γ∗
2 (see [20]). In particular, the dynamics of

mapping classes on each surfaceS is conservative.

Remark 2.2. The cubic surfacesS, together with the action ofΓ∗
2, are degen-

erate limits of K3 surfaces together with an (almost) area preserving action
of Γ∗

2. We refer to [18] for actions on K3 surfaces.

2.4. Compactification and automorphisms. Let S be any member of the
family Fam. The closureSof S in P

3(C) is given by the cubic homogeneous
equationw(x2 +y2 +z2)+xyz= w2(Ax+By+Cz)+Dw3.

As a consequence, one easily proves that the trace ofS at infinity does
not depend on the parameters and coincides with the triangle∆ given by the
equations

xyz= 0, w = 0,

and, moreover, that the surfaceS is smooth in a neighborhood of∆ (all
singularities ofS, if there are such, are contained inS). By definition, the
three sides of∆ are the linesDx = {x = 0,w = 0}, Dy = {y = 0,w = 0} and
Dz = {z= 0,w = 0}; the vertices arevx = [1 : 0 : 0 : 0], vy = [0 : 1 : 0 : 0]
and vz = [0 : 0 : 1 : 0]; the “middle points” of the sides are respectively
mx = [0 : 1 : 1 : 0], my = [1 : 0 : 1 : 0], andmz = [1 : 1 : 0 : 0].

Since the equation definingS is of degree 2 with respect to thex variable,
each point(x,y,z) of S gives rise to a unique second point(x′,y,z). This
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procedure determines a holomorphic involution ofS, namely

sx(x,y,z) = (A−yz−x,y,z).

Geometrically, the involutionsx corresponds to the following: Ifm is a point
of S, the projective line which joinsm and the vertexvx of the triangle∆
intersectsSon a third point; this point issx(m). The same construction pro-
vides two more involutionssy andsz, and therefore a subgroup

A = 〈sx,sy,sz〉
of the groupAut(S) of polynomial automorphisms of the surfaceS. Section
2 of [20] (see also [44]) shows that the groupA coincides with the image
of Γ∗

2 into Aut(S), that is obtained by the action ofΓ∗
2 ⊂ MCG∗(S2

4) on the
character varietyχ(S2

4). More precisely,sx, sy, andsz correspond respectively
to the automorphisms determined by the following elements of Γ∗

2

rx =

(

−1 −2
0 1

)

, ry =

(

−1 0
0 1

)

, rz =

(

1 0
−2 −1

)

.

In particular, Èl’-Huti’s theorem shows that there are no non trivial relations
between the three involutionssx, sy andsz, so thatA is isomorphic to the free
product of three copies ofZ/2Z.

Since the action ofΓ∗
2 andA coincide, we shall focus on the dynamics of

Γ∗
2 = A on the surfacesS∈ Fam.

2.5. Notations and remarks. The conjugacy class of a representationρ
will be denoted[ρ]. In general, this conjugacy class is uniquely determined
by its imageχ(ρ) in the character varietyχ(S2

4), and we shall identifyχ(ρ) to
[ρ] (note, however, thatχ(ρ) does not determine[ρ] when the representation
is reducible).

Automorphisms of surfacesS(A,B,C,D) will be denoted by standard letters,
like f , g, h, ... ; the groupA will be identified to its various realizations
as subgroups ofAut(S(A,B,C,D)), where(A,B,C,D) describesC4. If M is an
element ofΓ∗

2, the automorphism associated toM is denotedfM; this pro-
vides an isomorphism betweenΓ∗

2 and each realization ofA . If f is an auto-
morphism ofS(A,B,C,D) which is contained inA , M f will denote the unique
element ofΓ∗

2 which corresponds tof . If Φ ∈MCG∗(S2
4) is a mapping class,

the associated automorphism of the character variety will be denoted byfΦ.

The character surfacesSD that appeared in the introduction in the case
of the once punctured torus are isomorphic toS(0,0,0,D) by a simultaneous
change of signs of the variables(x,y,z). As a consequence, the study of the
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dynamics on all character surfacesS∈ Fam includes the case of the once
punctured torus.

2.6. Dynamics at infinity. The groupA also acts by birational transforma-
tions on the compactificationS of S in P

3(C). In this section, we describe
the dynamics at infinity, i.e. on the triangle∆.

If f is an element ofA , the birational transformation ofS defined byf
is not everywhere defined. The set of its indeterminacy points is denoted
by Ind( f ); f is said to bealgebraically stableif, for all n ≥ 0, f n does not
contract any curve onto Ind( f ) (see [56, 26] for this notion).

The groupΓ∗
2 acts by isometries on the Poincaré half planeH. Let jx, jy

and jz be the three points on the boundary ofH with coordinates 0, −1,

and∞ respectively. The three generatorsrx, ry, and rz of Γ∗
2 (see 2.4) are

the reflections ofH around the three geodesics which join respectivelyjy to
jz, jz to jx, and jx to jy. As a consequence,Γ∗

2 coincides with the group
of symmetries of the tesselation ofH by ideal triangles, one of which has
vertices jx, jy and jz. This picture will be useful to describe the action ofA
on∆ (see [20], section 3, and references therein for a detailed picture).

First, one easily shows that the involutionsx acts on the triangle∆ in the
following way: The image of the sideDx is the vertexvx and the vertexvx is
blown up onto the sideDx ; the sidesDy andDz are invariant andsx permutes
the vertices and fixes the middle pointsmy andmz of each of these sides. An
analogous statement holds of course forsy andsz. In particular, the action of
A at infinity does not depend on the set of parameters(A,B,C,D).

Beside the three involutionssx, sy andsz, three new elements ofA play a
particular role. These elements are

gx = sz◦sy, gy = sx◦sz, and gz = sy◦sx.

They correspond to Dehn twists in the mapping class group, i.e. to parabolic
elements ofΓ∗

2. Each of them preserves one of the coordinate variablesx, y
or z respectively. The action ofgx on∆ is the following:gx contracts bothDy

andDz\{vy} on vz, and preservesDx; its inverse contractsDy andDz\{vz}
on vy. In particular Ind(gx) = vy and Ind(g−1

x ) = vz. The action ofgy andgz

are similar, up to a permutation of the coordinates.

Let f be any element ofA \ {Id} andM f be the corresponding element
of Γ∗

2. If M f is elliptic, f is conjugate tosx, sy or sz. If M f is parabolic,f
is conjugate to an iterate ofgx, gy or gz (see [20], proposition 3.2). In both
cases, the action off on ∆ has just been described.
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If M f is hyperbolic, the isometryM f of H has two fixed points at infinity,
an attracting fixed pointω( f ) and a repulsive fixed pointα( f ), and the action
of f on ∆ can be described as follows: The three sides of∆ are blown down
on the vertexvx (resp.vy resp.vz) if ω( f ) is contained in the interval[ jy, jz]
(resp.[ jz, jx], resp.[ jx, jy]); the unique indeterminacy point off is vx (resp.
vy resp. vz) if α( f ) is contained in[ jy, jz] (resp. [ jz, jx], resp. [ jx, jy]). In
particular Ind( f ) coincides with Ind( f−1) if and only if α( f ) andω( f ) are
in the same connected component of∂H \ { jx, jy, jz}; Up to a conjugacy
in the groupΓ∗

2, we can always assume thatα( f ) andω( f ) are in different
components. As a consequence, we get the following result (see [20], section
4).

Proposition 2.3.Let S be any member of the familyFam. Let f be an element
of A . Assume that the element Mf of Γ∗

2 that corresponds to f is hyperbolic.

• The birational transformation f: S→ S is algebraically stable if,
and only if f is a cyclically reduced composition of the threeinvolu-
tions sx, sy and sz (in which each involution appears at least once).
In particular, any hyperbolic element f ofA is conjugate to an alge-
braically stable element ofA .

• If f is algebraically stable, fn contracts the whole triangle∆\ Ind( f )
onto Ind( f−1) as soon as n is a positive integer.

2.7. Topological entropy and types of automorphisms.An elementf of
A will be termedelliptic, parabolic or hyperbolic,according to the type of
the isometryM f ∈ Γ∗

2. By theorem B of [20] (see also [44] for another for-
mula), thetopological entropyhtop( f ) of f : S(A,B,C,D)(C) → S(A,B,C,D)(C)

does not depend on the parameters(A,B,C,D) and is equal to the logarithm
of the spectral radiusλ( f ) of M f :

htop( f ) = log(λ( f )). (2.3)

In particular, pseudo-Anosov mapping classes are exactly those with positive
entropy on the character surfacesS(A,B,C,D)(C). As explained in the previous
section, up to conjugacy, Dehn twists correspond to powers of gx, gy or gz,

while finite order mapping classes correspond tosx, sy or sz.

Remark 2.4. This should be compared to the description of the group of
polynomial automorphisms ofC2. If h is an element ofAut(C2), either the
topological entropy is equal to log(d(h)), whered(h) ≥ 2 is an integer, or
a conjugateg◦ h◦ g−1 preserves the pencil of linesy = cste (see §3.2 for
references).
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2.8. The Cayley cubic. The surfaceS(0,0,0,4) will play a central role in this
paper. This surface is the unique element ofFam with four singularities,
and is therefore the unique element ofFam that is isomorphic to the Cayley
cubic (see [20]). We shall call it "the Cayley cubic" and denote it bySC. This
surface already appeared to be a crucial example in both [19]and [20].

This surface is isomorphic to the quotient ofC∗×C∗ by the involution
η(x,y) = (x−1,y−1). The map

πC(u,v) = −
(

u+
1
u
, v+

1
v
, uv+

1
uv

)

gives an explicit isomorphism between(C∗×C∗)/η andSC: Fixed points
of η, as(−1,1), correspond to singular points ofSC. Multiplication of the
coordinates by−1 then gives an isomorphism ontoS4 (which will also be
refered to as "the" Cayley cubic).

The groupGL(2,Z) acts onC∗ ×C∗ by monomial transformations: If
M = (mi j ) is an element ofGL(2,Z), and if (u,v) is a point ofC∗×C∗, then

(u,v)M = (um11vm12,um21vm22).

This action commutes withη, so thatPGL(2,Z) acts on the quotientSC. The
induced action coincides with the action ofΓ∗

2 ⊂ MCG(S2
4) on the character

surface corresponding to parameters(a,b,c,d) = (0,0,0,0) or (2,2,2,−2),

up to permutation ofa, b, c, andd and multiplication by−1 (see §2.1 for
the significance ofa, b, c, andd, and [20] for details). Changing signs of
coordinates, we get the surfaceS4, that is one of the character surfaces for the
once punctured torus: It corresponds to reducible representations ofπ1(T1)

(with tr(ρ[α,β]) = 2). Of course, the monomial action ofPGL(2,Z) on S4

coincides with the action of the mapping class group ofT1 on the character
surfaceS4.

The productC∗×C∗ retracts by deformation onto the 2-dimensional real
torusS

1×S
1. The monomial action ofGL(2,Z) preserves this torus: It acts

"linearly" on this torus if we use the parameterizationu = e2iπs, v = e2iπt .

After deleting the four singularities ofSC, the real partSC(R) has five com-
ponents, and the closure of the unique bounded component is the image of
S

1×S
1 by πC. The closure of the four unbounded components are images of

the four subsetsR+×R+, R+×R−, R−×R+, andR−×R− of C∗×C∗.

2.9. Topology of the real part. Benedetto and Goldman studied the various
topologies that can occur forS(R) (see [10]). Good examples to keep in
mind are small deformations of the Cayley cubics (one can deform each
singular point independently). There are two main results that we shall use
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repetitively in section 5. We state them in the case of smoothsurfaces ;
singular one are limits of smooth surfaces.

The first one characterizes connectedness. Using(a,b,c,d) parameters
(see section 2.1),S(R) is connected if and only(i) none of the parameters
a, b, c, andd is contained in the interval(−2,2) and(ii) the productabcd
is negative. In that case, the surfaceS(R) is homeomorphic to a sphere mi-
nus four punctures. These conditions on(a,b,c,d) define eight arcwise con-
nected subsets ofR4, that contain respectively the 8 points(2ε1,2ε2,2ε3,2ε4),

with εi = ±1 andΠεi =−1. All these points correspond to the same surface
S(0,0,0,4), i.e. to the Cayley cubicSC. As a consequence, any connected sur-
faceS(R) can be smoothly deformed to the Cayley cubicSC insideFam.

The second result describes bounded components: IfS(R) has a bounded
connected component, then this component is unique, it is homeomorphic
to a sphere, andS(R) has four unbounded components, each of which is
homeomorphic to an open disk.

Remark 2.5. The surfaceSis singular if and only if one of the two following
conditions occur (see [10], [42]):(i) at least one of the parametersa, b, c, or
d equals±2 ; (ii) there is a reducible representationρ of π1(S

2
4) with bound-

ary traces(a,b,c,d). This latter case occurs exactly when∆(a,b,c,d) = 0,

where∆ is the polynomial

(2(a2+b2 +c2 +d2)−abcd−16)2− (4−a2)(4−b2)(4−c2)(4−d2).

3. ELEMENTS WITH POSITIVE ENTROPY

In this section, we describe the dynamics of hyperbolic elements in the
groupA on any complex surfaceS(A,B,C,D)(C) of our familyFam.

Let f be a hyperbolic element ofA . After conjugation by an elementh of
A , we can assume thatf is algebraically stable; in our context, this property
means that, for any elementSof Fam, the indeterminacy set of the birational
transformationf : S99K Sand the indeterminacy set off

−1
are two distinct

vertices of the triangle at infinity∆ (see §2.6). In what follows, we shall
assume thatf is algebraically stable and denote Ind( f−1) by v+ and Ind( f )
by v−.

3.1. Attracting basin of Ind ( f−1). The birational transformationf is holo-
morphic in a neighborhood ofv+ and contracts∆\{v−} onv+. In particular,
f contracts the two sides of∆ that containv+ on the vertexv+. Using the
terminology of [33], f determines a rigid, reducible, contracting germ near
v+.
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Theorem 3.1. If f is an algebraically stable hyperbolic element ofA , there
exist an element Nf of GL(2,Z) with non negative entries which is conju-
gate to Mf in PGL(2,Z), a neighborhoodU of v+ in S, and a holomorphic
diffeomorphismΨ+

f : D×D → U such thatΨ+
f (0,0) = v+ and

Ψ+
f ((u,v)Nf ) = f (Ψ+

f (u,v))

for all (u,v) in the bidiskD×D (see §2.8 for monomial transformations).

Proof. LetU be a small bidisk aroundv+, in which the two sides of∆ corre-
spond to the two coordinate axis. The fundamental group ofU \∆ is isomor-
phic to (Z2,+), with generators winding exactly once along the first (resp.
the second) axis. The mapf induces an endomorphismNf of this group. To
prove thatNf is conjugate to±M f in GL(2,Z), one argues as follows. First,
in the case of the Cayley cubic,

πC : C∗×C∗ → SC \∆

is a 2 to 1 covering,C∗×C∗ retracts by deformation on the torusS
1×S

1,

and the action off on the fundamental group ofU \∆ is therefore covered by
the action ofM f on π1(S

1×S
1) = Z ×Z. This implies thatNf is conjugate

to M f in PGL(2,Z). Since the general case is obtained from the Cayley case
by a smooth deformation, this is true for any set of parameters (A,B,C,D).

Being conjugate to±M f , the matrixNf is invertible.
Since f is a rigid and reducible contracting germ nearv+, and sinceNf is

invertible, a theorem of Dloussky and Favre asserts thatf is locally conju-
gate to the monomial transformation thatNf determines (see class 6 of the
classification, Table II, and page 483 in [33]). In particular, f being a local
contraction,Nf has non negative entries, and the square ofNf has positive
entries.

The fact that the conjugacyΨ f is defined on the whole bidisk will be part
of the next proposition. �

Let s( f ) be the slope of the eigenline of the linear planar transformation
Nf , which corresponds to the eigenvalue 1/λ( f ); s( f ) is a negative real num-
ber. The basin of attraction of the origin for the monomial transformationNf

is
Ω(Nf ) = {(u,v) ∈ C2 | |v| < |u|s( f )}.

In particular, this basin contains the full bidisk. We shalldenote byΩ(Nf )

the intersection ofΩ(Nf ) with C∗×C∗. Similar notations will be used for the
basin of attractionΩ(v+) of the pointv+ for f in S, and for its intersection
Ω(v+) with S.
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Proposition 3.2. The conjugacyΨ+
f extends to a biholomorphism between

Ω(Nf ) andΩ(v+).

Proof. Since the monomial transformationNf is contracting andf : S→ S
is invertible, we can extendΨ+

f to Ω(Nf )∩ (C∗ ×C∗) by the functional
equation

Ψ+
f (u,v) = f−n(Ψ+

f ((u,v)Nn
f )),

wheren is large enough for(u,v)Nn
f to be in the initial domain of definition

of Ψ+
f . The mapΨ+

f : Ω(Nf )∩ (C∗×C∗) → S is a local diffeomorphism,
the image of which coincides with the basin of attraction ofv+ in S. It re-
mains to prove that the mapΨ+

f is injective. Assume thatΨ+
f (u1,v1) =

Ψ+
f (u2,v2). Then f n(Ψ+

f (u1,v1)) = f n(Ψ+
f (u2,v2)), andΨ+

f ((u1,v1)
Nn

f ) =

Ψ+
f ((u1,v1)

Nn
f ), for any n. SinceΨ+

f is injective in a neighborhood of the
origin, and since the monomial transformationNf is also injective, one gets
(u1,v1) = (u2,v2). �

In what follows,‖ .‖ will denote the usual euclidean norm inC3.

Corollary 3.3. Let f be an algebraically stable hyperbolic element ofA .

If m is a point of S with an unbounded forward orbit, then fn(m) goes to
Ind( f−1) when n goes to+∞ and

log‖ f n(m)‖ ∼ λ( f )n.

Proof. First we apply the previous results to the study off−1 and its basin
of attraction nearv−. Let us fix a small ballB aroundv− in the surfaceS.

If B is small enough, thenB is contained in the basin of attraction off−1:
The orbit of a pointm0 ∈ B by f−1 stays inB and converges towardsv−.

Since f contracts∆ \ {v−} on v+, there is a neighborhoodV ⊂ S of ∆ \B
which is contained in the basin of attraction ofv+. Let m be a point with
unbounded orbit. SinceV ∪B is a neighborhood of∆, the sequence( f n(m))

will visit V ∪B infinitely many times. Letn1 be the first positive time for
which f n1(m) is contained inV ∪B. Let n2 be the first time aftern1 such
that f n2(m) escapesB. Then f n(m) never comes back inB for n > n2. Pick
a n > n2 such thatf n(m) is contained inV ∪B. Then f n(m) is in V and
therefore in the basin ofv+. This implies that the sequencef n(m) converges
towardsv+. In order to study the growth of‖ f n(m)‖ in a neighborhood ofv+,

we apply the conjugacyΨ+
f : What we now need to control is the growth of

‖(u,v)Nn
f ‖−1, and the result is an easy exercise using exponential coordinates

(u,v) = (es,et), in D
∗×D

∗. �
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Corollary 3.4 (see lemma 16 in [44]). If f is a hyperbolic element ofA and
A, B, C, and D are four complex numbers, f does not preserve any algebraic
curve in S(A,B,C,D).

Proof (see also lemma 16 in[44]). Let us assume the existence of a set of
parameters(A,B,C,D) and of anf -invariant algebraic curveE ⊂ S(A,B,C,D).

Let E be the Zariski-closure ofE in S(A,B,C,D)(C); f induces an automor-
phism f of the compact Riemann surfaceE. SinceC3 does not contain any
1-dimensional compact complex subvariety,E contains points at infinity.
These points must coincide withv+ and/orv−. In particular, the restriction
of f to E has at least one superattracting (or superrepulsive) fixed point. This
is a contradiction with the fact thatf : E → E is an automorphism. �

3.2. Bounded orbits and Julia sets.Let us consider the case of a poly-
nomial diffeomorphismh of the affine planeC2 with positive topological
entropy (an automorphism of Hénon type). After conjugationby an element
of Aut[C2], we may assume thath is algebraically stable inP2(C). In that
case, the dynamics ofh at infinity also exhibits two attracting fixed points,
one forh, w+, and one forh−1, w−, but there are three differences with the
dynamics of hyperbolic elements ofA : The exponential escape growth rate
is an integerd(h) (while λ( f ) is an irrational quadratic integer), the model
to which h is conjugate nearw+ is not invertible, and the conjugacyΨh is
a covering map of infinite degree between the basins of attraction. We refer
the reader to [41], [33] and [40] for an extensive study of this situation. Be-
side these differences, we shall see that the dynamics of hyperbolic elements
of A is similar to the dynamics of Hénon automorphisms. In analogy with
the Hénon case, let us introduce the following definitions:

• K+( f ) is the set of bounded forward orbits. This is also the set of points
m∈ S, for which ( f n(m)) does not converge tov+ whenn goes to+∞.

K−( f ) is the set of bounded backward orbits, andK( f ) = K−( f )∩K−( f ).

• J+( f ) is the boundary ofK+( f ), J−( f ) is the boundary ofK−( f ), and
J( f ) is the subset of∂K( f ) defined byJ( f ) = J−( f )∩J+( f ). The setJ( f )
will be calledthe Julia set off .

• J∗( f ) is the closure of the set of saddle periodic points off (see below).
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3.3. Green functions and dynamics.We define the Green functions off
by

G+
f (m) = lim

n→+∞

1
λ( f )n log+‖ f n(m)‖, (3.1)

G−
f (m) = lim

n→+∞

1
λ( f )n log+‖ f−n(m)‖. (3.2)

By proposition 3.2 and its corollary, both functions are well defined and the
zero set ofG±

f coincides withK±( f ). Moreover, the convergence is uniform

on compact subsets ofS. Since log+‖ .‖ is a pluri-subharmonic function,G+
f

(resp. G−
f ) is pluri-subharmonic and is pluri-harmonic on the complement

of K+( f ) (resp.K−( f )) (see [6, 34, 56] for the details of the proof). These
functions satisfy the invariance properties

G+
f ◦ f = λ( f )G+

f and G−
f ◦ f = λ( f )−1G−

f (3.3)

The following results have been proved for Hénon mappings; we list them
with appropriate references, in which the reader can find a proof which ap-
plies to our context (see also [18], [3], [30], [56] for similar contexts).

(1) G+
f andG−

f are Hölder continuous (see [27], sections 2.2, 2.3). The
currents

T+
f = ddcG+

f and T−
f = ddcG−

f (3.4)

are closed and positive, andf ∗T±
f = λ( f )±T±

f . By [6], section 3, the

support ofT+
f is J+( f ), the support ofT−

f is J−( f ) (see also [56]).

(2) Since the potentialsG+
f andG−

f are continuous, the product

µf = T+∧T− (3.5)

is a well defined positive measure, and isf -invariant. Multiplying
G+

f andG−
f by positive constants, we can, and we shall assume that

µf is a probability measure. (see [6], section 3)
(3) The topological entropy off is log(λ( f )) and the measureµf is the

unique f -invariant probability measure with maximal entropy. (see
[5], section 3, and [3, 28] for more general results)

(4) If m is a saddle periodic point off , its unstable (resp. stable) mani-
fold Wu(m) (resp.Ws(m)) is parameterized byC. Let ξ : C → Sbe
such a parameterization ofWu(m) with ξ(0) = m. Let D ⊂ C be the
unit disk, and letχ be a smooth non negative function onξ(D), with
χ(m) > 0 andχ = 0 in a neighborhood ofξ(∂D). Let [ξ(D)] be the
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current of integration onξ(D). The sequence of currents

1
λ( f )n f−n

∗ (χ.[ξ(D)])

weakly converges toward a positive multiple ofT−
f . Unstable (resp.

stable) manifolds are dense in the supportJ−( f ) (resp. J+( f )) of
T−( f ) (resp.T+( f )) (see [7], sections 2 and 3, [34])

(5) By corollary 3.4, periodic points off are isolated. The number of
periodic points of periodN grows likeλ( f )N. Most of them are hy-
perbolic saddle points: IfP ( f ,N) denotes either the set of periodic
points with periodN or the set of periodic saddle points of periodN,

then
1

|P ( f ,N)| ∑
m∈P ( f ,N)

δm → µf

where the convergence is a weak convergence in the space of proba-
bility measures on compact subsets ofS. (see [5], [4], and [30])

(6) The supportJ∗( f ) of µf simultaneously coincides with the Shilov
boundary ofK( f ) and with the closure of periodic saddle points of
f . In particular, any periodic saddle point off is in the support ofµf .

If p andq are periodic saddle points, thenJ∗( f ) coincides with the
closure ofWu(p)∩Ws(q). (see [5] and [4])

(7) Sincef is area preserving (see §2.3), the interior ofK( f ), K+( f ) and
K−( f ) coincide. In particular, the interior ofK+( f ) is a bounded
open subset ofS(C). (see lemma 5.5 of [6])

4. THE QUASI-FUCHSIAN LOCUS AND ITS COMPLEMENT

In this section, we shall mostly restrict the study to the case of the once
punctured torus with a cusp, and provide hints for more general statements.
We therefore consider the familySD and use notations from section 1.1.

4.1. Quasi-fuchsian space and Bers’ parameterization.Let T1 be a once
punctured torus. LetTeich(T1) be the Teichmüller space of complete hyper-
bolic metrics onT1 with finite area 2π, or equivalently with a cusp at the
puncture:Teich(T1) is isomorphic, and will be identified, to the upper half
planeH

+. The dynamics ofMCG(T1) onTeich(T1) is conjugate to the usual
action ofPSL(2,Z) onH

+.

Any point in the Teichmüller space gives rise to a representation ρ : F2 →
PSL(2,R) that can be lifted to four distinct representations intoSL(2,R).

The cusp condition gives rise to the same equationtr(ρ[α,β]) = −2 for any
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of these four representations. This provides four embeddings of the Teich-
müller space into the surfaceS0(R): The four images are the four unbounded
components ofS0(R), each of which is diffeomorphic toH+; apart from
these four components,S0(R) contains an isolated singularity at the origin.
This singular point corresponds to the conjugacy class of the representation
ρq, defined by

ρq(α) =

(

0 i
i 0

)

, ρq(β) =

(

0 −1
1 0

)

. (4.1)

Its image coincides with the quaternionic group of order eight. The mapping
class group of the torus acts onS0(R), preserves the origin and the connected
component

S+
0 (R) = S0(R)∩ (R+)3,

and permutes the remaining three components.
Let DF ⊂ S0(C) be the set of conjugacy classes of discrete and faithful

representationsρ : F2 → SL(2,C) with tr(ρ[α,β]) = −2. This set is com-
posed of four distinct connected components, one of them,DF+, containing
S+

0 (R). The componentS+
0 (R) is made of conjugacy classes of fuchsian rep-

resentations, and the setQF of their quasi-fuchsian deformations coincides
with the interior ofDF+ (see [50], and references therein).

Let T
′
1 be the once punctured torus with the opposite orientation. Bers’s

parameterization of the space of quasi-fuchsian representations provides a
holomorphic bijection

Bers : Teich(T1)×Teich(T′
1) → Int(DF+).

We may identifyTeich(T1) with the upper half planeH+ andTeich(T′
1) with

the lower half planeH−. The groupPSL(2,Z) acts onP
1(C), preserving

P
1(R), H

+, andH
−. In particular,MCG(T1) = SL(2,Z) acts diagonally on

Teich(T1)×Teich(T′
1) = H

+ ×H
−.

With these identifications, the mapBers conjugates the diagonal action of
MCG(T1) on H

+ ×H
− with its action on the character variety: IfΦ is a

mapping class andfΦ is the automorphism ofS0 which is determined byΦ,

then
Bers(Φ(X),Φ(Y)) = fΦ(Bers(X,Y))

for any(X,Y) in H
+×H

−. It conjugates the action ofMCG(T1) on the set

{(z1,z2) ∈ H
+ ×H

−|z1 = z2}
with the corresponding action onS+

0 (R). The Bers map extends up to the
boundary ofH+ × H

− minus its diagonal (we shall call it the restricted
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boundary, and denote it by∂∗(H+ ×H
−)). Minsky proved in [49] thatBers

induces a continuous bijection from∂∗(H+ ×H
−) to the boundary ofDF+.

4.2. Mapping torus and fixed points (see[48]). Let Φ ∈ MCG(T1) be a
pseudo-Anosov mapping class. LetXΦ be the mapping torus determined by
Φ: The threefoldXΦ is obtained by suspension ofT1 over the circle, with
monodromyΦ. Thurston’s hyperbolization theorem tells us thatXΦ can be
endowed with a complete hyperbolic metric of finite volume. This provides
a discrete and faithful representation

ρΦ : π1(Xf ) → Isom(H3) = PSL(2,C)

If we restrictρΦ to the fundamental group of the torus fiber ofXΦ, and if
we choose the appropriate lift toSL(2,C), we get a point[ρΦ] in DF+ ⊂
S0(C) which is fixed by the automorphismfΦ. Let α(Φ) (resp.ω(Φ)) be the
repulsive (resp. attracting) fixed point ofΦ on the boundary ofTeich(T1).

Since(α(Φ),ω(Φ)) is in the restricted boundary, andBers is a continuous
bijective conjugacy∂∗(H+×H

−), we have

Bers(α(Φ),ω(Φ)) = [ρΦ].

The fixed point(ω(Φ),α(Φ)) provides a second fixed point on the boundary
of DF+: This point may be obtained by the same construction withΦ−1 in
place ofΦ. In [48], McMullen proved that[ρΦ] is a hyperbolic fixed point of
fΦ. The stable and unstable manifolds offΦ at [ρΦ] intersectDF+ along its
boundary,

Wu([ρΦ])∩DF+ = Bers({α(Φ)}×H− \{(α(Φ),α(Φ))}), (4.2)

Ws([ρΦ])∩DF+ = Bers(H+×{ω(Φ)}\{(ω(Φ),ω(Φ))}). (4.3)

In particular, the union of stable manifoldsWs([ρΦ])∩DF+, whereΦ de-
scribes the set of pseudo-Anosov mapping classes, form a dense subset of
∂DF+.

Remark 4.1. Each pseudo-Anosov classΦ determines an automorphism
fΦ, and therefore a subsetK+( fΦ) of S0(C). The complementΩ+( fΦ) of
K+( fΦ) is open: It coïncides with the bassin of attraction offΦ at infin-
ity. Since the dynamics offΦ on QF is conjugate to the dynamics ofΦ on
Teich(T1)×Teich(T′

1), the interior ofDF+ is contained in the intersection

Ω(MCG(T1)) :=
\

Φ
Ω+( fΦ)
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whereΦ describes the set of pseudo-Anosov classes in the mapping class
groupMCG(T1) = SL(2,Z). Since stable manifolds are dense in the bound-
ary ofDF, one gets the following result:The quasi fuchsian locusInt(DF+)

is a connected component of the interior ofΩ(MCG(T1)). Since there are
four copies ofQF in S0(C), this provides four connected components. The
question remains to decide whether there are other connected components
(see [13]).

4.3. Two examples. The action of the mapping class group on the com-
plement ofDF is not well understood yet. We refer to Goldman’s list of
questions [38] for interesting conjectures and to Bowditch’s article [13] for
important advances and a discussion of this action. We now present two
interesting orbits in the complement ofDF.

Theorem 4.2. Let Φ be any pseudo-Anosov mapping class and[ρΦ] be one
of the two fixed points of fΦ on the boundary ofDF+ ⊂ S0(C). There exists
a representationρ0 : π1(T1) → SL(2,C), with [ρ0] ∈ S0(C), such that

• the sequence( fΦ)n[ρ0] converges toward the discrete and faithful
representation[ρΦ] when n goes to+∞;

• the closure of the mapping-class group orbit of[ρ0] contains the ori-
gin (0,0,0), i.e. the conjugacy class of the finite representationρq.

Remark 4.3 (see [47]). The Kobayashi semi-distance on a complex man-
ifold M is defined as follows. Letm and m′ be two points ofM. Then,
distK(m,m′) is the infimum of the sum of the Poincaré distancesdistP(xi ,yi),

where the infimum is taken over all chains of holomorphic disksξi : D → M,

k > 0, 1≤ i ≤ k, such thatξ1(x1) = m, ξi(yi) = ξi+1(xi+1) andξk(yk) = m′.
This semi-distance is invariant under the group of holomorphic diffeomor-
phisms ofM. Schwarz lemma implies thatdistK is indeed a distance when
M is a bounded, open, and connected subset of an affine variety.

Remark 4.4. According to a theorem of Bowditch (see theorem 5.5 of [13]),
there exists a neighborhoodUB of the origin inS0(C) with the property that
any mapping class group orbit starting inUB contains the origin in its closure.

Proof. The fixed point[ρΦ] is hyperbolic, with a stable manifoldWs([ρΦ]).

The origin(0,0,0) is the unique singular point ofS0(C). It corresponds to
the representation[ρq] which is defined by equation (4.1). This point is fixed
by fΦ, and a direct computation shows that the differential offΦ at the origin
has finite order (order 1 or 2).

From section 3.3, the interior ofK+( f ) coincides with the interior of
K−( fΦ) and is therefore anfΦ-invariant bounded open subset ofS0(C). In
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particular,Int(K+( fΦ)) is Kobayashi hyperbolic, and the Kobayashi distance
is fΦ invariant. Consequently, if[ρq] is in the interior of(K+( fΦ)), then fΦ
is locally linearizable around the origin[ρq]. Since(D fΦ)[ρq] has finite order,
fΦ would have finite order too. This contradiction shows that[ρq] is not in
the interior ofK+( fΦ).

We know thatWs([ρΦ]) is dense in the boundary ofK+( fΦ) (see §3.3).
Since[ρq] is in ∂K+( fΦ), Ws([ρΦ]) intersects the Bowditch’s neighborhood
UB. The previous remark shows that any point[ρ0] in Ws([ρΦ])∩UB satisfies
the properties of the theorem. �

Proof of theorem 1.1.Let us consider the surfaceS2(C), that corresponds to
representationsρ : G → SL(2,C), whereG = 〈α,β|[α,β]4〉 (see §1.3). Its
equation isx2 +y2 +z2 = xyz+2. Let Ψ be the mapping class

Ψ =

(

2 1
1 1

)

.

Its action onS2(C) is given by the polynomial transformation

fΨ(x,y,z) = (z,yz−x,z(yz−x)−y).

The set of fixed points offΨ onS2(C) is made of four points(x,x/(x−1),x),
wherex describes the solutions of the quartic equation

x4−3x3 +x2 +4x−2 = 0.

This equation is the product ofP(x) = x2+χx+χ andQ(x) = x2+(χ−3)x+

(3− χ) whereχ = (3+
√

17)/2. The roots ofP give rise to two complex
conjugate fixed points, while the roots ofQ give two real fixed points. Roots
of P are given in [48], section 3.7, and roots ofQ are equal to

x =
3−

√
17

4
±

√

2+2
√

17
4

i.e. to≈ 0.52 and≈−1.1.

As explained for example in [48], section 3.7, the surfaceS2(C) contains
an fΨ-invariant open subset corresponding to quasi-fuchsian deformations of
the fuchsian groups obtained from the existence of hyperbolic metrics onT1

with an orbifold point of angleπ at the puncture. Thurston’s hyperbolization
theorem provides a hyperbolic fixed point[ρΨ] of fΨ on the boundary of this
set: The representationρΨ : G→ SL(2,C) is discrete and faithful and comes
from the existence of a hyperbolic structure on the complement of the figure
eight knot, with an orbifold structure along the knot. This fixed point is one
of the two complex conjugate fixed points (the second one corresponding to
ρΨ−1).
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The subset ofS2(C) corresponding to conjugacy classes ofSU(2)-representations
coincides with the unique bounded connected component ofS2(R), and
is homeomorphic to a sphere (see [35], figure 4). This component is fΨ-
invariant, and the two fixed points off corresponding to roots ofQ(x) are
located on this bounded component ofS2(R).

The differential off : C3 → C3 at a fixed point has trace 2x2/(x−1). One
of its eigenvalues is equal to 1, becausef preserves the rational function
x2 + y2 + z2− xyz. This implies that the sum of the remaining eigenvalues
is 2x2/(x− 1)− 1, while their product is 1, becausef is area preserving.
As a consequence, the fixed point corresponding to the rootx≈ −1.08... is
a saddle fixed point (the trace being< −2). Let [ρSU] be this fixed point,
and letWs([ρSU]) andWu([ρΨ]) be the stable and unstable manifolds offΨ
through[ρSU] and[ρΨ].

From property (6) in section 3.3, we know thatWs([ρSU]) intersectsWu([ρΨ]).

Let [ρ0] be one of these intersection points. ThefΨ-orbit of [ρ0] contains
both[ρΨ] and[ρSU].

Finite orbits ofMCG(T1) are listed in [29] and correspond to finite sub-
groups ofSU(2) ; the point[ρSU] does not appear in the list. From this we
deduce that the mapping class group orbit of[ρSU] is infinite and dense in
the component ofSU(2)-representations (see [36], [37], or also [32, 17, 20]
for related ideas). This implies that the closure of the orbit of [ρSU] contains
both[ρΨ] and theSU(2)-component ofS2(R). �

5. REAL DYNAMICS OF HYPERBOLIC ELEMENTS

In this section, we study the dynamics of hyperbolic elements on the real
surfacesS(A,B,C,D)(R) when the parameters are real numbers. The main goal
of this section is to prove theorem 5.10 below, which extends, and precises,
theorem 1.2.

5.1. Maximal entropy. Let us fix a hyperbolic elementf ∈ A . If the param-
eters(A,B,C,D) are real, we get two dynamical systems: The first one takes
place on the complex surfaceS(C) and its main stochastic properties have
been listed in section 3.3; the second one is induced by the restriction of f to
the real partS(R). From time to time, we shall use the notationfR to denote
the restriction off to S(R). For example, we shall say thatfR has maximal
entropyif the entropy off : S(R)→ S(R) is equal to the topological entropy
of f : S(C) → S(C), i.e. to log(λ( f )).

Theorem 5.1.Let f be a hyperbolic element ofA . If A, B, C, and D are real
parameters, the following conditions are equivalent:



BERS AND HÉNON, PAINLEVÉ AND SCHRÖDINGER 24

(1) fR has maximal entropy;
(2) J∗( f ) is contained in S(R);
(3) K( f ) is contained in S(R).

In that case, J∗( f ) = J( f ) = K( f ).

This theorem is an easy consequence of the results of section3.3 (see [5],
section 10 for a proof). Our first goal is to prove the following result.

Theorem 5.2.Let f be a hyperbolic element ofA . If (A,B,C,D) are real pa-
rameters such that S(A,B,C,D)(R) is connected, then fR has maximal entropy.

Before giving a proof of theorem 5.2, let us review a result ofBowen
concerning topological lower bounds for the entropy (see [14]). Let f be a
homeomorphism of a marked topological space(X,m), by which we mean
thatm is a fixed point off . Then, f determines an automorphismf∗ of the
fundamental groupπ1(X,m). Let us assume thatπ1(X,m) is finitely gener-
ated, and fix a finite set{α1, ...,αk} of generators. The growth rate off∗ is
defined to be

λ( f∗) = limsup
n→+∞

(

1
n

diam( f n(B))

)

where diam is the diameter with respect to the word metric (using the gen-
eratorsαi) andB is the ball of radius 1 with respect to this metric. Bowen’s
theorem asserts that

htop( f ) ≥ log(λ( f∗))

as soon asf is a continuous transformation of a compact manifold. Even
thoughS(R) is not compact, we can apply this theorem because unbounded
orbits are contained in the basins of attraction of Ind( f−1) and Ind( f ).

Proof of theorem 5.2.Let us first study the case of the Cayley cubicSC. This
surface is singular, andSC(R) \ Sing(SC) contains a unique bounded com-
ponent. This componentSC(R)0 is a sphere with four punctures and the
dynamics ofA (i.e. Γ∗

2) is covered by the monomial action ofΓ∗
2 on the

torusS
1×S

1 in C∗×C∗. As a consequence, for any hyperbolic elementf in
Γ∗

2, the entropy off on SC(R)0 is maximal; moreover, the expanding factor
λ( f∗) coincides with the dynamical degreeλ( f ), and Bowen’s inequality is
an equality.

If we deform the Cayley cubic in such a way that the surfaceS(R) is
smooth and connected, thenS(R) is homeomorphic to a four punctured
sphere (the punctures are now at infinity - see §2.9), and the action of f on
the fundamental group ofS(R) has not been changed along the deformation.
As a consequence, Bowen’s inequality giveshtop( fR) ≥ log(λ( f )) and the



BERS AND HÉNON, PAINLEVÉ AND SCHRÖDINGER 25

conclusion follows fromhtop( fR) ≤ htop( fC) = log(λ( f )). This concludes
the proof for smooth and connected surfacesS(R) (see section 2.9). IfS(R)

is not smooth but is connected, thenS(R) is a limit of smooth connected
members of the familyFam. By semicontinuity of topological entropy,fR
has maximal entropy (see [51]). �

Corollary 5.3. Let a, b, c, and d be four real parameters inR\ [−2,2], the
product of which is negative. Letρ : π1(S4) → SL(2,C) be a representa-
tion with boundary traces a, b, c, and d. Let Φ ∈ Aut(π1(S

2
4)) be a pseudo-

Anosov automorphism. Ifρ ◦Φ is conjugate toρ, thenρ is conjugate to a
representation intoSL(2,R).

Proof. Let Sbe the element of the familyFam that corresponds to the param-
eters(a,b,c,d). The assumption on the parametersa, b, c, andd implies that
S(R) is connected (see section 2.9), and that there is noSU(2)-component
(this is obvious ifS(R) is smooth, sinceSU(2) representations would form a
compact component, and this follows from [10] in the singular case).

If ρ◦Φ−1 is conjugate toρ, thenχ(ρ) is a fixed point of the automorphism
fΦ induced byΦ on the surfaceS. SinceS(R) is connected,fR has maximal
entropy. By theorem 5.1, all periodic points off are contained inS(R). This
implies thatρ is conjugate to anSL(2,R)-valued representation. �

5.2. Maximal entropy and quasi-hyperbolicity. Bedford and Smillie re-
cently developped a nice theory for Hénon transformations which extends
the notion of quasi-hyperbolicity, a notion that had been previously intro-
duced for the dynamics of rational maps of one complex variable (see [53]
for one variable). This theory can be applied to our context in order to study
hyperbolic automorphisms with maximal entropy.

5.2.1. Quasi-hyperbolicity.Let Sadd( f ) be either the set of periodic saddle
points of f or the setWu(p)∩Ws(q) wherep andq are two periodic fixed
points of f (see [8] for for possible other choices concerningSadd( f )). With
such a choice,Sadd( f ) is f -invariant and its closure coincides withJ∗( f )
(see §3.3, property (6)). Each pointm of Sadd( f ) has a stable manifold
Ws(m) and an unstable manifoldWu(m), and we can find two injective im-

mersionsξu
m, ξs

m : C → Ssuch thatξu/s
m (0) = m, ξu/s

m (C) = Wu/s(m), and

max{G+/−(ξu/s
m (t)) | t ∈ D} = 1,

whereD is the unit disk. The parameterizationξu
m andξs

m are uniquely de-
termined by this normalization up to a rotation oft. SinceSadd( f ) is f -
invariant andf sends the unstable manifold atm to the unstable manifold at
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f (m), there is a non zero complex numberλ(m) such that

f (ξu
m(t)) = ξu

f (m)(λ(m)t).

The numberλ(m) depends on the choices made forξu
m andξu

f (m) but its mod-

ulus |λ(m)| only depends onm. SinceG+ ◦ f = λ( f )G+, we obtain easily
the inequality|λ(m)|> 1 for all m∈ Sadd( f ).

We shall also need the growth functiongrom(r) of G+ along the unstable
manifoldWu(m), which is defined bygrom(r) = max|t|≤r {G+(ξu

m(t))}, and
the uniform growth function

Gro(r) = sup
m∈Sadd( f )

{grom(r)} .

Bedford and Smillie proved in [8], section 1, that the following properties
are equivalent:

(1) the family{ξu
m|m∈ Sadd( f )} is a normal family;

(2) Gro(r0) < ∞ for some 1< r0 < ∞;
(3) there existsκ > 1 such that|λ(m)| ≥ κ for all m in Sadd( f );
(4) ∃C,β < ∞ such thatgrom(r) ≤Crβ for all m in Sandr ≥ 1.

If these properties are satisfied,f is said to bequasi-expanding. If f and f−1

are quasi-expanding, thenf is said to bequasi-hyperbolic.

5.2.2. Maximal entropy.It turns out that real Hénon mappings with maxi-
mal entropy are necessarily quasi-hyperbolic (see [8], theorem 4.8 and propo-
sition 4.9). The proof of this result can be applied word by word to our
context, and gives rise to the following theorem.

Theorem 5.4(Bedford Smillie, [8] and [9]). Let f be a hyperbolic element
of A and S be an element ofFam defined by real parameters(A,B,C,D). If
fR has maximal entropy, then f is quasi-hyperbolic, and any periodic point
m of f is a saddle point, with|λ(m)| ≥ λ( f ).

Corollary 5.5. Let f be a hyperbolic element ofA and S be an element of
Fam defined by real parameters(A,B,C,D). If S(R) is connected, then fR

has maximal entropy and is quasi-hyperbolic.

5.2.3. Uniform hyperbolicity and consequences.In a subsequent paper, Bed-
ford and Smillie also obtain a precise obstruction to uniform hyperbolicity.
Let p∈ S(R) be a saddle periodic point off . The unstable manifold ofp in
S(R) is the intersection ofS(R) with the complex unstable manifoldWu(p).

This real unstable manifold is diffeomorphic to the real line R, and p dis-
connects it into two half lines. If one of these half unstablemanifolds is
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contained in the complement ofK+( f ), one says thatp is u-one-sidedor
unstably one-sided; a point which is notu-one-sided is said to be unstably
two-side. Stably (ors-) one-sidedpoints are defined in a similar way.

Theorem 5.6(Bedford Smillie, [9]). Let f be a hyperbolic element ofA
and S be an element ofFam defined by real parameters(A,B,C,D). If fR

has maximal entropy but K( f ) is not a hyperbolic set for f, then

• there are periodic saddle points p and q (not necessarily distinct) so
that Wu(p) intersects Ws(q) tangentially with order 2 contact ;

• p is s-one-sided and q is u-one-sided ;
• the restriction of f to K( f ) is not expansive.

Theorem 5.7.Let f be a hyperbolic element ofA . Let S be a smooth surface
in the familyFam which is defined by real parameters(A,B,C,D). If one
of the connected components of S(R) is bounded, then the entropy of fR

is not maximal and f has an infinite number of saddle periodic points in
S(C)\S(R).

Proof. Let us assume thatf has maximal entropy and thatS(R) has at least
one bounded connected componentS(R)0. The existence of a bounded com-
ponent implies thatS(R) this bounded componentS(R)0 is unique and home-
omorphic to a sphere (see §2.9). Beingf -invariant and compact,S(R)0 is
contained inK( f ). SincefR has maximal entropy,K( f ) is contained inS(R),

has empty interior (inS(C)), and coincides with the support ofµf (see §3.3
and theorem 5.1); in particularµf (S(R)0) is a positive number. The ergod-
icity of µf and the f -invariance ofS(R)0 now imply thatS(R)0 has full
µf -measure. As a consequence,K( f ) coincides withS(R)0. SinceS(R)0 is
compact, there is no one-sided periodic point, and theorem 5.6 implies that
K( f ) is a hyperbolic set. This means that the dynamics off on S(R)0 is
uniformly hyperbolic. In particular, the unstable directions of f determine a
continuous line field onS(R)0, and we get a contradiction becauseS(R)0 is
a sphere. �

Remark 5.8. A similar argument shows that the Julia setK(h) of a Hénon
automorphismh : C2 → C2 can not coincide with a smooth embedded 2-
dimensional surfaceS⊂ C2. Indeed, the restriction ofh to Swould be uni-
formly hyperbolic, and its entropy would be equal to log(d), whered ∈ Z+

is the dynamical degree ofh. This implies that the Euler caracteristic ofS
is 0 and thath : S→ S is an Anosov diffeomorphism. But the topological
entropy of such a diffeomorphism is not the logarithm of an integer (it is the
logarithm of a quadratic integer). This provides a contradiction.
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Corollary 5.9. Let D be a real number and SD be the element ofFam defined
by the real parameters(0,0,0,D). The following properties are equivalent:
(i) there exists a hyperbolic element f inA such that f: SD(R)→SD(R) has
maximal entropy,(ii) any hyperbolic element f inA has maximal entropy
on SD(R), and(iii ) D ≥ 4.

Proof. If D > 4, thenS(R) is connected and smooth and the result follows
from theorem 5.2. IfD ≤ 0, the result follows from the fact that the action
of the mapping class group onS(R) is totally discontinuous (see [37]). If
0 < D < 4, thenS(R) has a compact connected componentS(R)0 and the
conclusion follows from the previous theorem. �

5.3. Uniform hyperbolicity. We now prove theorem 1.2 in the following
more general form.

Theorem 5.10.Let f be a hyperbolic element ofA . Let S be an element of
Fam defined by real parameters. If S(R) is connected, then

• the entropy of fR is maximal; its value islog(λ( f ));
• the set of bounded orbits of f: S(C) → S(C) is a compact subset

K( f ) of S(R);
• the automorphism f admits a unique invariant probability measure

µf of maximal entropy, and the support of µf coincides with K( f );
periodic saddle points equidistribute toward µf ;

• the dynamics of f on K( f ) is uniformly hyperbolic.

The only property that has not been proven yet is the last one.In fact,
we shall prove more than uniform hyperbolicity: Our objective includes a
description of the complement ofK+( f ), in order to explain pictures like
the one provided in figure 2. This will be achieved in section 5.4. Once
again, as in the proof of theorem 5.2, the main argument is to understand
perturbations of the Cayley cubic,i.e. perturbations offR : SC(R)→ SC(R).

The following section contains a preliminary study of its small connected
real deformations.

5.3.1. Small deformations of the Cayley cubic.The surfaceSC has four con-
ical singularities. Ifs is one of these four points, then, locally,SC(R) is dif-
feomorphic to a quadratic coneQ = 0 with Q(X,Y,Z) = X2 +Y2−Z2 ; the
singularitys now coincides with the origin ofR3.

Let M be an element of the orthogonal groupO(Q) with an eigenvalue
λ ∈ R of absolute value|λ| > 1. The other two eigenvalues ofM are then
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A-1 A-2

B-2B-1

C-1 C-2

FIGURE 2. Examples of stable manifolds.

±1/λ and±1. Let D+, D− andD0 be the three eigenlines corresponding to
the eigenvaluesλ, ±1/λ and±1.
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Let ε be a non negative number. Define

H ε := {(X,Y,Z) ∈ R3;Q(X,Y,Z) = ε};

whenε = 0, H 0 is the quadratic cone, but whenε > 0, H ε is a connected
hyperboloid, which intersects the lineD0 in two opposite pointss+(ε), and
s−(ε) = −s+(ε). According to the sign of the eigenvalue±1, M either fixes
or permutes these two points. In any case,s+(ε) ands−(ε) are saddle pe-
riodic points for the restrictionM : H ε → H ε. The stable manifold ofM
throughs+(ε) (resp.s−(ε)) is the line throughs+(ε) (resp.s−(ε)) contained
in H ε which is parallel toD− (see picture 3-A).

Let R̂3 be the blow-up ofR3 at the origin, letE be the exceptional divisor
(E = P

2(R) ⊂ R̂3), andπ : R̂3 → R3 the contraction ofE. The linear map
M lifts to M̂ : R̂3 → R̂3. The strict transform of the quadratic coneH 0 is a
cylinderH ′

0 that intersectsE along the conic curveQ = 0. Both H ′
0 andE

are invariant byM̂, andM̂ : H ′
0 → H ′

0 has two saddle periodic points along
the conic.

This conic disconnectsE into a disk and a Möbius bandN. The strict
transform ofD0 intersectsE in one point ˆs, which is contained inN. When
ε > 0 goes to 0, the pointsπ−1(s±(ε)) converge toward ˆs, and the family
of surfacesπ−1(H ε) converges toward the union ofN and the cylinderH ′

0,

approachingH ′
0 from one side andN from both sides. The point ˆs is a saddle

fixed point ofM̂ : E → E. The strict transform ofD0 is a neutral invariant
manifold forM̂ : R̂3 → R̂3 throughŝ, which intersects the surfacesH ε on the
saddle pointsπ−1(s±(ε)).

Let us now come back to the Cayley cubicSC. Let f be a hyperbolic el-
ement of the groupA . All four singularities are saddle fixed points off :
Locally around each of those pointss, SC(C) is a quotient ofC2 by the
involution (u,v) 7→ (−u,−v), and the mapf is covered by a linear map
(u,v) 7→ (αu,βv) with |α| > 1 andβα = ±1.

The transformationf extends to an automorphism of the affine space pre-
serving the family of cubic surfacesS(0,0,0,D), D ∈ R. Let us denote byf this
automorphism and letsbe a singularity ofSC. The eigenvalues of the matrix

M := D fs

are equal toλ := α2, 1/λ := β2 and±1. By Morse lemma, the surfaces
S(0,0,0,D) with D = 4+ ε behave locally as the family of hyperboloidsH ε.

Let us use the same notation as above. Then,f lifts as an automorphism̂f
of the blow-upR̂3 of R3 at the points. The transformation̂f coincides with
M̂ along the exceptional divisorE.
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The strict transform of the (real) Cayley cubic coincides (locally) with the
cylinderH ′

0. The fixed pointscorresponds on this cylinder to a pair of fixed
points and the conic curveQ = 0 realizes a heteroclinic connection between
this points. If we cut the cylinder along the unbounded unstable manifold
of one of these two points, the cylinder becomes a strip: Thisis shown on
picture 3-B, where stable and unstable laminations off : SC(R)→SC(R) are
represented.

Since f̂ coincides withM̂ alongE, f̂ has a saddle fixed point at ˆs. The
exceptional divisorE is smooth and the family of surfacesπ−1(S(0,0,0,4+ε))

determines a smooth locally trivial fibration near ˆs (with E corresponding to
ε = 0). Saddle periodic points can be deform along smooth perturbations.
As a consequence, ˆs can be deformed into a pair of saddle periodic points
(s+(ε),s−(ε)) on S4+ε for small ε > 0. The lineD0 is tangent to the curve
D ′ which is described by this family of points.

A similar study applies for all small real deformationsS(A,B,C,D) which are
connected, and we get the following lemma.

Lemma 5.11.Let f be a hyperbolic element of the groupA . Let s be a singu-
larity of the Cayley cubic SC. If Sα(t) is a small real and connected deforma-
tion of the Cayley cubic, then s deforms as a pair of points(s+(t),s−(t)) ⊂
Sα(t) which are both saddle fixed points of f2 : Sα(t) → Sα(t).

The stable manifold ofs±(t) is uniquely parameterized by an injective
holomorphic mapξs

t : C → SD(C) with ξs
t (0) = s+(t), |(ξs

t )
′(0)| = 1, and

ξs
t (R) ⊂ SD(R) (up to a possible composition ofξs

t (z) by z 7→ −z). By a
coherent choice ofξs

t , one gets a continous family of holomorphic mappings.

Remark 5.12. For SD with D = 4− ε andε > 0, the surface locally looks
like a hyperboloid with two sheets that doesn’t intersectD0: The intersection
is indeed made of two complex conjugate points. This explains that we
lose saddle points in the real locus, and shows that, locally, the entropy of
f : SD(R) → SD(R) is not maximal (for smallε > 0).

5.3.2. Notations and preliminaries.We now start the proof of theorem 5.10.
In what follows, we fix a hyperbolic elementf of A , and assume thatf pre-
serves orientation (replacef by f 2 if f reverses orientation). We denote by
H the space of real parameters(A,B,C,D) such thatS(R) is connected. In
order to prove theorem 5.10, and theorem 5.22, we shall studythe dynamics
of f on all surfacesS= S(A,B,C,D) with (A,B,C,D) in H . For such surfaces,
maximal entropy implies the following properties:
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(1) K( f ) coincides withJ( f ) and is a subset ofS(R); moreover, periodic
points are hyperbolic, all of them are contained inK( f ), and inter-
sections between stable and unstable manifolds are also contained in
K( f ) (see theorem 5.4) ;

(2) the set of one-sided points is a finite subsetOS( f ) of J( f ) (see [9],
sections 3 and 4) ;

(3) if m is a point of tangency between stable and unstable manifoldsof
f , theα andω-limit sets ofm are contained inOS( f ) (see theorem
2.7 of [9]) ;

(4) in the complement ofOS( f ), stable and unstable manifolds off form
two laminations ofJ( f ) (see proposition 5.3 of [8]) ;

(5) a tangency between a stable and an unstable manifold is always qua-
dratic (see section 2 and figure 4.1 in [9], and section 5 of [8]).

Remark 5.13. Note that the picture provided by Bedford and Smillie’s re-
sults include the fact that there is no heteroclinic connection between peri-
odic points. This simple fact is well known, and is not related to maximal
entropy in the real locus. The proof is as follows. Assume that one half of a
(real) stable manifoldWs(q) coincides with one half of an unstable manifold
Wu(p). Then the complex stable and unstable manifolds coincide because
they intersect along an uncountable set. As a consequence,Ws(q) can be
compactified by adding the pointp to it, and determines a copy ofP

1(C)

in S(C). SinceS(C) ⊂ C3 is an affine surface, andC3 does not contain any
1-dimensional compact subvariety, one gets a contradiction.

Note that if we resolve the singularities of the Cayley cubicby blow-ups,
we create heteroclinic connections along the exceptional divisor.

5.3.3. Deformation of periodic points and heteroclinic intersections. For
any point(A,B,C,D) in H , all periodic points off : S(C) → S(C) are real
saddle points (property (1) above). As a consequence, we canfollow all the
periodic points along any deformation of the parameters(A,B,C,D) in H :
If α(t), t ∈ [0,1], is an arc of classC k in H , and if p0 is a periodic saddle
point of f : Sα(0) → Sα(0) of periodN, there exists an arcp(t) of classC k

such that

(1) for all t, p(t) is contained inSα(t) andp(0) = p0;
(2) for all t, p(t) is a periodic saddle point off : Sα(t) → Sα(t) of period

N (here we also use the fact thatf preserves orientation; otherwise,
the period could change whenp(t) goes through a singular point of
Sα(t)).
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FIGURE 3. Deformation of singularities.
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Remark 5.14. The pointp(t) is contained in the setKα(t)( f ) of points in
Sα(t) with a boundedf -orbit. The family of compact setsKα(t)( f ) depends
semi-continuously ont ([6], lemma 3.1), so that the union∪t∈[0,1]Kα(t)( f )
is contained in a fixed compact setK . The pathsp(t), t ∈ [0,1], wherep
describes the set of periodic points off : Sα(0) → Sα(0) are contained inK .

We now explain how to follow intersection points along heteroclinic in-
tersections. We choose two periodic pointsp andq and follow them along
the deformationα(t), t ∈ [0,1]. We can then parameterizeWs(p(t)) by a
continous family of holomorphic mappings

ξs
p(t) : C → S(C)

in such a way thatξs
p(t)(0) = p(t), |(ξs

p(t))
′(0)| = 1, andξs

p(t)(R) ⊂ S(R).

We parameterizeWu
q(t) in a similar fashion byξu

q(t). We then choose one half

of the stable/unstable manifolds, and assume thatR+ is mapped onto this
chosen half byξs

p(t) (resp. byξu
q(t)).

Let Λt be the set of parameters(s(t),u(t)) in R+ ×R+ corresponding to
parameters of intersections betweenWs

p(t) andWu
q(t); more precisely,

Λt = {(x,y) ∈ R+×R+; ξs
p(t)(x) = ξu

q(t)(y)}.

Lemma 5.15.The setΛt is a discrete subset ofR+×R+. Two distinct points
of Λt have different first and second coordinates. For all(x,y) in Λt , and for
all ε > 0, the number of points in the stripR+× [y− ε,y+ ε] is infinite.

Proof. Let(x,y) be an element ofΛt . Let m = ξs
p(t)(x) be the intersection

point corresponding to these parameters. LetU ⊂ Sα(t)(C) be a small neigh-
borhood ofm. Let Ws

loc(m) (resp.Wu
loc(m)) be the connected component of

Ws
loc(m)∩U (resp. Wu

loc(m)∩U ) containingm. These local stable and un-
stable manifolds are analytic subsets ofU. As such, they intersect in a finite
number of points. LetIx, Iy ⊂ R+ be the intervals which are mapped on the
local stable and unstable manifolds throughmby ξs

p(t) andξu
q(t) respectively.

By contruction,Ix× Iy is a neighborhood of(x,y) which contains only a finite
number of points ofΛt . This shows thatΛt is discrete.

Let us now fixx. Sinceξs
q(t) is injective, the number of parametersy such

thatξu
q(t)(y) = ξs

p(t)(x) is at most one. This proves the second statement.

Let now(x,y) be an element ofΛt . The intersection pointm := ξs
p(t)(x) is

an element ofK( f ). LetU be a small neighborhood ofm in which(i) the sta-
ble and unstable laminations off are transversal (or have at most a quadratic
contact atm), and(ii) all local stable and unstable manifolds intersect. Fix
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ε > 0 and consider the piece of unstable manifoldW(m) = ξu
q(t)[y−ε,y+ε].

What we have to show is thatW(m) intersectsWs
p(t) infinitely many times.

ShrinkingU, one may assume thatW(m) coincides withWu
loc(m). Choose

a periodic pointr of f in U : The unstable manifold ofr intersectsWs
p(t) at

least once, and therefore infinitely many times in any neighborhood ofr ;
all intersections points inU generate intersection points betweenW(m) and
Ws

p(t). �

Let us nowassume thatp is not one-sided. According to property (3) in
§5.3.2, this implies that all intersection points ofWs

p(t) andWu
q(t) are trans-

verse. Let(x,y) be any point ofΛa, a∈ [0,1] and letm∈ Sα(a) be the corre-
sponding intersection point of stable/unstable manifolds. Then there exists
a neighborhoodI of a in [0,1] along whichm, and therefore(x,y), can be
smoothly deformed into pathsm(t) and(x(t),y(t)). In other words, all points
of Λa can be locally followed along the deformationα(t), with t neara. Note
that through such a deformation of two points(x1,y1) and(x2,y2), one al-
ways hasx1(t) 6= x2(t) (for t in the common interval of definition).

Lemma 5.16. For all intersection parameters(x,y) ∈ Λ0, the domain of
definition of the deformation(x(t),y(t)) coincides with the full interval of
deformation[0,1].

Proof. What we have to show is that there is no "explosion in finite time". In
other words, we have to rule out the situation where(x(t),y(t)) is defined on
the interval[0,a], but goes to infinity ast increases toa. We therefore assume
thatx(t) goes to infinity ast goes toa, and try to reach a contradiction.

Let y(a) be the infimum limit ofy(t) as t approachesa. Let us first as-
sume thaty(a) < ∞ and choose a point(x1(a),y1(a)) in Λa such that (i)
y1(a) > y(a) and (ii) Λa contains an infinite number of points in the strip
R+ × [y(a),y1(a)] (such a point exists by the third property of the previous
lemma). Let now(x1(t),y1(t)) be the local deformation of(x1(a),y1(a)) on
a small interval[a− ε,a+ ε].

Sincex(t) goes to+∞, and since vertical lines through points ofΛt never
coincide, we know thatx(t) > x1(t) for all t in [a− ε,a[. Similarly, y1(t) >

y(t) for t ∈ [a−ε,a[. LetBt be the rectangle with upper left corner(x1(t),y1(t))
and lower right corner(x(t),y(t)). This is a compact subset ofR+×R+, and,
sinceΛt is discrete, it contains a finite number of points ofΛt . Since hori-
zontal and vertical lines through points ofΛt never coincide, this number
of points is a constantk, and the stripR+ × [y(a),y1(a)] contains at mostk
points. This contradicts the choice of(x1(a),y1(a)).
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In the case where the infimum limit ofy(t) is +∞, the contradiction is
easier to get by considering the rectangleCt with lower left corner(0,0) and
upper right corner(x(t),y(t)). As a consequence, we get a contradiction in
both cases, and the lemma is proved. �

This lemma shows that we can follow intersection points between stable
and unstable manifolds along any deformationSα(t) if α([0,1]) ⊂ H . Note
that this is true up to and including the case of the Cayley cubic (see section
5.3.1).

Remark 5.17. When we follow an intersection pointm(t) of Ws(p(t)) and
Wu(q(t)) along a deformationSα(t), the pointm(t) never coincides withp(t)
or q(t) (this is a consequence of the previous lemma, or of the absence of
saddle connections, see remark 5.13).

5.3.4. One-sided points.Let us assume thatSα(t) is a deformation of the
Cayley cubicSα(0) = SC, with α(t) ∈ H for all t ∈ [0,1]. We shall say that
a periodic pointw of Sα(1) comes from a singular points of SC if the defor-
mationw(t) of w(1) = w alongα(t) lands ats whent = 0. This means that
w(t) coincides with one of the points+(t) or s−(t) whent approaches 0 (see
section 5.3.1).

Lemma 5.18. If m(t) is a u-two-sided (resp. s-two-sided) point of Sα(t) for
some t, then m(t) is u-two-sided (resp. s-two-sided) for all t∈ [0,1]. One
sided points come from singular points of SC, and if m comes from a singular
point, then m is both stably and unstably one-sided.

With the notations from section 5.3.2, the previous lemma shows that the
setOS( f ) is made of the eight points coming from the singularities ofSC.

Proof. Let m be au-two-sided point. Following intersection points of stable
and unstable manifolds, one sees that the set of parameterst for which m(t)
is u-two-sided is an open set.

Let us now assume thatm(t) is u-two sided fort ∈]a,b[, and lett decrease
to a. Changingf into one of its iterates, once can assume thatm(t) is a curve
of fixed points and that the multiplierχ(t) of f along the unstable manifold
is a positive number. Letχ+ be the maximum ofχ(t) on the closed interval
[a,b]. Let ε > 0 be a fixed small real number. Sincem(t), t > a, is u-two-
sided, the setK+( f ) intersects the local stable manifoldWu

loc(m(t)) on both
sides. SinceK+( f )∩Wu(m(t)) is f -invariant,K+( f ) intersectsWu

loc(m) on
both sides inside the annulus of radiiε and(1+χ+)ε aroundm(t). By semi-
continuity ofK+( f ), this implies thatK+( f ) intersectsWu

loc(m(a)) on both
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sides, at distance in betweenε and(1+ χ+)ε, proving thatm(a) is u-two-
sided.

This shows that the set of parameterst for which m(t) is u-two-sided is
both open and closed. By connectedness, a point isu-two-sided for one
parameter if an only if it isu-two-sided for all parameters.

Conversely, a pointm is u-one-sided for one parameter if and only if it is
u-one sided for all parameters. On the Cayley cubic, those points are exactly
the singular points. This proves the result. �

5.3.5. Deformation and stable manifolds.Next steps aim at giving a de-
scription ofK( f ) and are not absolutely necessary to prove the uniform hy-
perbolicity. We choose one of the singularitiess of the Cayley cubic, and
call p(t) andq(t) the two periodic one-sided points which come from this
singularity after perturbation (these points where previously calleds+(t) and
s−(t)). For t = 0, we havep(0) = q(0) = s.

Remark 5.19. We shall make use of figures 3-B, to 3-E. They represent
the geometry of stable and unstable manifolds nearp andq after deforma-
tion of the Cayley cubic. Pictures 3-B,C describe the geometry of the sta-
ble/unstable laminations off on the Cayley cubic arounds. This lamination
has a singularity ats. Figure 3-B is obtained after one blow-up and has been
described in §5.3.1. Figure 3-C is a view of the bounded partSC(R). Locally
arounds, we get a disk with two singular laminations (it’s a typical "pseudo-
Anosov" with spines, see [1], page 243). The regionR on this picture is
described below.

Let us study the topology of stable and unstable manifolds off on a con-
nected deformationS(R) of SC(R). From lemma 5.18, we know thatp and
q are bothu ands-one sided, half of their real stable/unstable manifolds go-
ing to infinity (see picture 3-A andB for the Cayley cubic, andD for the
deformation). We fix a periodic pointr in SC which is close to the stable
manifold of p: The local unstable manifold ofr intersects transversaly the
stable manifold ofs at u and its stable manifold intersects transversaly the
unstable manifold ofsatv, as in figure 3-C. Changingf in one of its iterates,
we assume thatr is a fixed point. We shall denote byR0 the region bounded
byWs(s), Wu(r), Ws(r) andWu(s) (see figure 3-C).

Thanks to section 5.3.3, we can follow this picture along a small deforma-
tion Sα(t) betweenSC andS= Sα(1). The pointr is deformed in a pathr(t)
of saddle fixed points, ands in a pair of saddle fixed pointsp(t), q(t). The
intersection pointu can be deformed in two ways. As a point of intersection



BERS AND HÉNON, PAINLEVÉ AND SCHRÖDINGER 38

betweenWs(p(t)) andWu(r(t)), providing a pointu(t)∈ Sα(t), but also as a
point of intersection betweenWs(q(t)) andWu(r(t)), and we denote byr ′(t)
this second deformation. The pointv can also be deformed in two ways; by
convention,v(t) is the deformation contained inWu(q(t))∩Ws(r(t)) (see
figure 3-D).

Let R(t) ⊂ Sα(t)(R) be the closed region which is bounded by the half
of Ws(p(t)) \ {u(t)} that containsp(t), the segment ofWu(r(t)) between
u(t) and r(t), the segment ofWs(r(t)) that joinsr(t) to v(t), and the half
of Wu(q(t)) \ {v(t)} that containsq(t), (see figure 3-C). Let Ws

+(q(t)) be
the connected component ofWs(q(t)) \ {q(t)} which entersR(t): This half
stable manifold is parameterized byξt : R+ → S(R), with ξt(0) = q(t) and
ξt(z) ∈ R for small positive real numbersz.

The closure of the stable manifold ofq(t) covers the setK( f ). As a conse-
quence, we know thatWs

+(q(t)) \ {q(t)} exits the regionR(t). In particular,
there exists a smallest positivez such thatξt(z) is on∂R(t). Since this point
coincides withu(t) on the Cayley cubic, we know that it coincides withr ′(t)
all along the (small) deformationSα(t) (figure 3-D).

Lemma 5.20. For all t ∈ [0,1], the half stable manifold Ws+(q(t)) exits R
through Wu(r(t)), in between r(t) and u(t), at point r′(t).

Warning. In what follows, we keep the same notations, but the dependance
with respect to the deformation parametert is made implicit. All points and
stable/unstable manifolds are indeed points and curves inSα(t); whent = 0,

S is the Cayley cubic,p(t) = q(t) = s, andR(t) degenerates toR0.

5.3.6. Stable manifolds, doubly one-sided points, and wandering strips. Let
I be the closed segment[r,u]⊂Wu(r).

Lemma 5.21. The set K+( f ) does not intersect Wu(r) along I in between
the points u and r′.

Proof. Let us assume that this is not the case. Sinceq is u-one-sided, we
know that there is no stable manifolds approachingr ′ from the left. We can
therefore definer ′′ to be the unique point inI which is betweenu andr ′, is
contained inK( f ), and is closest tor ′ with these properties. By assumption,
r ′′ is different fromu (see figure 3-E).

The stable manifold throughr ′′ entersR and cannot intersectWs(q) and
Ws(p). It must therefore exitR through the intervalI , in betweenr ′′ and
u (see picture 3-E). Sincer is not coming from a singular point,r is not
one-sided, and the stable and unstable manifolds off form two transverse
laminations in its neighborhood. As a consequence, there are periodic points
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FIGURE 4. Tangency and complement of K+( f ).

of f in R which are arbitrarily close tor. Let w be such a point. The pointw
being arbitrarily close tor, its local unstable manifold is arbitrarily close to
Wu(r), and we can choosew in such a way that the local unstable manifold
of w intersectsWs(r ′) in at least two points inR, as in picture 3-E.

We now choose a second periodic pointw′ in R which is close tor ′′, in
such a way that the connected component ofWs(w′)∩R which containsw′

intersectsWu
loc(w) in two distinct pointsi1 andi2 .

The pointsw, w′, and the heteroclinic intersectionsi1 and i2 can then be
followed up to the Cayley cubic along the deformationSα(t) (lemma 5.16).
During this deformationw andw′ can not leave the regionR, because two
distinct periodic points can not be on the same stable/unstable manifold. As
a consequence,i1 (resp. i2) can not exitR, because otherwise, for some pa-
rametert in the deformation,i1(t) would be contained in two distinct stable
(resp. unstable) manifolds.

On the Cayley cubic, we then get two periodic pointsw(0) and w′(0)

such that the connected component ofWs(w′)∩R containingw′ intersects
the connected component ofWu(w)∩R containingw in two distinct points.
This is a contradiction. �

Let B be the region bounded by[r ′,u], Ws(p), f ([u, r ′]), andWs(q) (see
picture 3-F). The segmentsf n[u, r ′] join the endpointsf n(u), which con-
verge top alongWs(p), to the endpointsf n(r ′), which converge toq along
Ws(q). On the other end, the open segment]r ′,u[ is entirely contained in the
complement ofK+( f ), so that all its points go to infinity when one iteratesf
positively. This implies that points in the interior ofB are wandering points
which are pushed away to infinity byf . The same is true for the images
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f n(B), n∈ Z. As a consequence, the full strip
[

n∈Z

f n(Int(B)∪ [r ′,u]),

i.e. the strip located in between the halves ofWu/s(p) andWu/s(q), is en-
tirely contained in the complement ofK+( f ). (see picture 3-F, where this
strip is colored) .

5.3.7. Deformation and the geometry of K( f ). We can apply the same ar-
gument to understand the geometry of stable and unstable manifolds nearp.

PartB of figure 4 summarizes our knowledge of the geometry of stableand
unstable manifolds near the pointsp andq after a small deformation of the
Cayley cubic:p andq are bothu ands-one-sided, and the colored region is
contained in the complement ofK+( f ).

Let us now consider a large deformationSα(t) of the Cayley cubicSC.

Following p, u, r, v, q, stable/unstable manifolds of these points, and their
intersections along the deformation, we can follow the region R alongα(t).
Since there is no saddle connection inSα(t) for t > 0, the geometry ofR
with respect to local stable and unstable manifolds inR does not change.
The results obtained above for small deformations remain therefore valid for
arbitrarily large deformationsα(t)⊂ H .

5.3.8. Absence of tangency and hyperbolicity.Let us now assume that there
is at least one set of parameters(A,B,C,D), for which S(R) is connected
and fR is not uniformly hyperbolic onK( f ). Then, there is a tangency be-
tween the stable manifold of au-one-sided periodic pointq and an unstable
manifold (see theorem 5.6 and section 5.3.2). Iteratingf , we can find such
tangencies in arbitrarily small neighborhoods ofq.

SinceS(R) is connected, we can deformSin Sα(t) with α(t)∈H , t ∈ [0,1],

Sα(0) = SC, Sα(1) = S (see section 2.9). Sinceq is u-one-sided, it comes
from one of the singularities ofSC (lemma 5.18). Sections 5.3.6 and 5.3.7
provide pointsp(t), q(t), r(t), ..., and a regionR(t) in Sα(t), and describe
the geometry of the stable and unstable manifolds nearq = q(1). Figure 4-A
represents such a possible tangency (see also [9], picture 4.1 and §3 and 4).

Let U ⊂ R(1) ⊂ S(R) be a small neighborhood of the tangency pointm.

If a is a point ofK( f )∩U, we shall denote byWs/u
loc (a) the connected com-

ponent ofWs/u(a)∩U that containsa. Sincem is in K( f ), one can find a
saddle periodic pointw in U such thatWu

loc(w) intersectsWs
loc(m) in two

points i1 and i2. Then, we can find a second periodic saddle pointw′ such
thatWs

loc(w
′) intersectsWu

loc(w) in two points (see figure 4-A).
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Thanks to section 5.3.3 and lemma 5.16, we can now follow the periodic
saddle pointsr(t), v(t), u(t), w(t), w′(t), and the points of intersectioni1(t)
and i2(t) continuously along the deformation. All of them belong to the
regionR(t). From sections 5.3.6 and 5.3.7, the geometry of the stable and
unstable manifolds ofr(t), v(t), q(t) andp(t) remains unchanged along the
deformation; in particular, since the periodic pointsw(t) andw′(t) cannot
cross the stable or unstable manifolds of other periodic points during the
deformation, they both stay in the interior of the regionR(t). We then get a
contradiction as in the proof of lemma 5.21, §5.3.6.

Since there is no tangency, theorem 5.6 implies that the dynamics of f is
uniformly hyperbolic onK( f ). This proves theorem 5.10.

5.4. Strips, bounded orbits, and Hausdorff dimension.Let (A,B,C,D)

be an element ofH . Let f be a hyperbolic element ofA . The surfaceS(R)

defined by this set of parameters is connected, andf : S(R) → S(R) is uni-
formly hyperbolic onK( f ), so that we can apply proposition 2.1.1 of [12]:
The set

Ws
R(K( f )) = K+( f )∩S(R)

is laminated by stable manifolds of points inK( f ); if a point m in K+( f )
is on the boundary of the complement ofWs

R(K( f )), thenm is on the stable
manifold of a periodicu-one-sided periodic point off . From section 5.3.3,
we know that f has exactly eight periodic one-sided points, each of them
coming from a singularity of the Cayley cubic. From sections5.3.5 and
5.3.7, the stable manifolds of the two one-sided points coming from one
singularity bound a strip, as in picture 4-B. This proves the following result,
which was first numerically observed by Catarino and MacKay (see [22],
page 61 for example), and "explains" pictures 2-A andC.

Theorem 5.22(MacKay observation). If S(R) is connected, f has exactly
eight one-sided fixed points p1, q1, p2, q2, p3, q3, p4, and q4. All of them
come from singularities of the Cayley cubic by deformation;all of them
are both u and s-one-sided. Moreover, the stable manifolds of pi and qi

(i = 1,2,3,4) bound an open strip homeomorphic toR× (−1,1), and the
complement of K+( f )∩S(R) coincides with the union of these four strips.

We now study the Hausdorff dimension of the stable and unstable lami-
nationsK+( f ) andK−( f ) on Sα(t), whereα(t) is an analytic path in the set
H .

Theorem 5.23. Let t 7→ α(t) be an analytic map from]0,1[ to the set of
parameters(A,B,C,D). Assume that Sα(t) is smooth and connected for all
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values of t. Then, the Hausdorff dimension of the sets Wu
loc(m)∩K+( f ) does

not depend on m∈ K−( f ), and defines an analytic function of t which is
strictly positive and strictly less than1.

Remark 5.24. In particular, the complement ofK+( f )∩S(R), i.e. the union
of the four strips, has full Lebesgue measure ; almost all orbits go to infinity
under iteration off . The same is true for the complement ofK+( f ) in S(C).

Proof. By results of Hasselblatt [39], the stable and unstable distributions
of f are smooth, and the holonomy maps between two transversals of the
stable (resp. unstable) laminations are Lipschitz continuous. In particular,
the Hausdorff dimension of the sets

Wu
loc(m)∩K+( f )

does not depend on the choice ofm in K( f ) (see also [57], theorem 1). We
shall denote this dimension byH+

t ( f ).
The mapf is area-preserving: As in [58], corollary 4.7, this impliesthat

the Hausdorff dimension of the setsWs
loc(m)∩K−( f ) coincides withH+

t ( f ).
Using Bowen-Ruelle thermodynamic formalism, as it is done in [57], the-

orem 2, we obtain thatH+
t ( f ) is an analytic function oft. Since the function

G+
f |s(E) is Hölder continuous this Hausdorff dimension is strictly positive.

If H+
t ( f ) is equal to 1, then the same is true for the Hausdorff dimension

of Ws
loc(m)∩K−( f ) and theorem 22.1 of [52] shows that the Lebesgue mea-

sure of these sets is strictly positive. By Hasselblatt’s result, the Lebesgue
measure ofK( f ) is positive, and by Bowen-Ruelle’s theorem ([15], theorem
5.6), the setK( f ) must be an attractor off : Sα(t) →Sα(t) This contradicts the
fact thatK( f ) is compact,f is area preserving, andSα(t) is not compact. �

6. SCHRÖDINGER OPERATORS ANDPAINLEVÉ EQUATIONS

6.1. Discrete Schrödinger operators.Let us now apply the previous re-
sults to the study of the spectrum of certain discrete Schrödinger operators.
There is a huge literature on the subject, and we refer to [23]and [24] for
background results and a short bibliography.

6.1.1. Discrete Schrödinger operators and substitutions.Let W∗ be the set
of finite words in the lettersa andb. Let ι : {a,b} → W∗ \ { /0} be a substi-
tution. In what follows, we shall assume thatι is invertible, which means
that ι extends to an automorphismΦι of the free groupF2 = 〈a, b| /0〉, and
that ι is primitive, which means thatΦι is hyperbolic ; in other words, the
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image ofΦι in Out(F2) = GL(2,Z) is a hyperbolic matrix, with two distinct
eigenvaluesλ+(ι) andλ−(ι) satisfying

|λ+(ι)| = |1/λ−(ι)| > 1.

Under these hypothesises, there is a unique infinite wordu+ in the two letters
a andb such thatι(u+) = u+.

Example 6.1.The Fibonacci substitutionιF , defined byιF(a) = bandιF(b) =

ba, provides a good and famous example of such an invertible primitive sub-
stitution. Its fixed word starts withbabbababbabbababbababbabba...

LetW be the set of bi-infinite words ina andb andT̃ : W →W be the left
shift. Let ũ+ be any completion ofu+ on the left. We then defineΩ to be the
ω-limit set of theT̃-orbit of ũ+:

Ω =
{

v∈W | there exists a sequenceni → +∞, such thatT̃ni(ũ+) → v
}

.

Sinceι is primitive, the restriction of the left shift̃T to the setΩ is a minimal
and uniquely ergodic homeomorphismT : Ω → Ω. The uniqueT-invariant
probability measure onΩ will be denoted byν.

Remark 6.2. The subshiftT : Ω → Ω encodes the dynamics of a rotation
Rα : R/Z → R/Z, whereα is a quadratic integer (see [2]).This provides a
measurable conjugation betweenRα andT which sends the Lebesgue mea-
suredx to ν.

Let us now fix an elementw in Ω, and define the potentialVw : Z → R by
Vw(n) = 1 if wn = a andVw(n) = 0 if wn = b. Let κ be any complex number
(κ is the so called "coupling parameter"). If(ξ(n))n∈Z is a complex valued
sequence, we define

Hκ,w(ξ)(n) = ξ(n+1)+ξ(n−1)+κVw(n)ξ(n).

The discrete Schrödinger operatorHκ,w induces a bounded linear operator
on l2(Z), with norm at most 2+ |κ|. The adjoint ofHκ,w is Hκ,w, so thatHκ,w

is self-adjoint if and only ifκ is a real number.

6.1.2. Almost sure spectrum and Lyapunov exponent.SinceT is ergodic
with respect toν, there exists a subsetΣκ of C (of R if κ is real) such that
the spectrum ofHκ,w : l2(Z)→ l2(Z) coincides withΣκ for ν-almost allw in
Ω. This set is the "almost sure spectrum" of the familyHκ,w.

To understand the spectrum ofHκ,w, one is led to solve the eigenvalue
equationHκ,w(ξ) = Eξ (E in R or C). For any initial condition(ξ(0),ξ(1)),



BERS AND HÉNON, PAINLEVÉ AND SCHRÖDINGER 44

there is a unique solution, which is given by the recursion formula
(

ξ(n+1)
ξ(n)

)

=

(

E−κVw(n) −1
1 0

)(

ξ(n)
ξ(n−1)

)

, n∈ Z.

Let Mκ,E : W∗ → SL(2,C) be defined by

Mκ,E(a) =

(

E−κ −1
1 0

)

, Mκ,E(b) =

(

E −1
1 0

)

,

and by
Mκ,E(u1...un) = Πi=n−1

i=0 Mκ,E(un−i)

for any wordu = u1...un of lengthn. This defines aSL(2,C)-valued cocyle
over the dynamical system(Ω,T,ν). Applying Osseledets’ theorem, each
choice of a coupling parameterκ and an energyE gives rise to a non negative
Lyapunov exponentγ(κ,E), such that

γ(κ,E) = lim
n→+∞

1
n

Z

Ω
log‖Mκ,E(w1w2...wn−1)‖dν(w)

= lim
n→+∞

1
n

log‖Mκ,E(w1w2...wn−1)‖,

for ν-almost allw in Ω. The Lyapunov functionγ(κ,E) is linked to the almost
sure spectrumΣκ by the following result.

Theorem 6.3(see [23]). Let κ be a real number. The almost sure spectrum
Σκ coincides with the set of energies for which the Lyapunov exponent van-
ishes.

6.1.3. Trace map dynamics, Lyapunov exponent, and Hausdorff dimension.
Let us fix the coupling parameterκ. Let S4+κ2 be the character surfacex2 +

y2 +z2−xyz= 4+κ2. TheSchrödinger curveof S4+κ2 is the parameterized
rational curves : C → S4+κ2, which is defined bys(E) = (x(E),y(E),z(E)),

with

(x(E),y(E),z(E)) = (tr(Mκ,E(a)), tr(Mκ,E(b)), tr(Mκ,E(ab)))

= (E−κ, E, E(E−κ)−2).

Remark 6.4. The intersection ofS4+κ2 with the planey= x+κ is a reducible
cubic curve: It is the union ofs(C) with the line{z = 2, y = x+ κ}; the
involutionsz permutes these two curves.

Let fι be the polynomial automorphism ofS4+κ2 which is determined by
the automorphism(Φι)

−1 : F2 → F2. By definition of fι, we have

(tr(Mκ,E(ι(a))), tr(Mκ,E(ι(b))), tr(Mκ,E(ι(ab)))) = fι(s(E)).
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In [23], Damanik proved thatγ(κ,E) vanishes if and only ifs(E) has a
bounded forwardfι-orbit. In other words,

Σκ =
{

E ∈ C | s(E) ∈ K+( fι)
}

. (6.1)

We can now apply MacKay observation, i.e. theorem 5.22, which tells us
that the complement ofs(Σκ) in the real Schrödinger curve is obtained by
intersectings(R) with the four strips associated to the one-sided points of
fι. This means thatgaps in the complement of the spectrum are bounded by
intersection points betweens(R) and the eight curvesWs(qi) andWs(pi),

i = 1, 2, 3, and4).

Theorem 6.5. The Hausdorff dimension ofΣκ, κ ∈ R, is a real analytic
function ofκ. Moreover,0 < Haus(Σκ) ≤ 1, ∀κ ∈ R, and Haus(Σκ) = 1 if
and only ifκ = 0.

This statement confirms numerical observations that can be found, for ex-
ample, in [46] and [45]; it is stronger than the fact thatΣκ has zero Lebesgue
measure whenκ 6= 0, a property which was proved by Kotani in the eighties
(see [24]). Here, it appears as a corollary of results in dynamical systems
which are due to Bowen, Pesin, and Ruelle.

Proof. The mapα(κ) = (0,0,0,4+ κ2) is analytic and all surfacesSα(t)
are smooth and connected forκ 6= 0. We can therefore apply theorem 5.23,
which tells us that the Hausdorff dimension of the setsWu

loc(m)∩K+( fι)
does not depend on the choice ofm in K( fι), and defines a real analytic
functionH+

κ ( fι) of the variableκ such that 0< H+
κ ( fι) < 1, ∀κ 6= 0.

Let us apply this result to the spectrumΣκ. Let t be an element ofΣκ.

Let m be the points(t) on the Schrödinger curve. By Damanik’s theorem
the image of the spectrum bys coincides withK+( f )∩s(C) (see (6.1)). In
particular,K+( f )∩ s(C) is a compact set which containsm. The setK+( f )
is a smooth lamination by analytic curves, ands(C) is an algebraic curve
(see remark 6.4). This implies that the number of tangency points between
s(C) and the laminationK( f ) is finite. In the complement of this finite set,
s(C) is transverse to the lamination, so that locally the Hausdorff dimension
of K+( f )∩ s(C) coincides withH+

κ ( fι). Since the Hausdorff dimension is
locally equal toH+

κ ( fι) in the complement of a finite set, it is globally equal
to H+

κ ( fι). �

Remark 6.6. It would be interesting to settle a complete dictionary between
dynamics of the trace map and properties of the spectrum. Forexample,
the Green function offι should coincide with the Lyapunov functionγ(κ,E)
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along the Schrödinger curve ; together with Thouless formula, this would
identify the density of statesdkκ with the measure obtained by slicingT+

fι
with the Schrödinger curve:dkκ = s∗(T+

fι
) (see [55] for related results and

definitions).

7. APPENDIX: MONODROMY OF PAINLEVÉ VI EQUATION

The sixth Painlevé equationPVI = PVI(θα,θβ,θγ,θδ) is the second order
non linear ordinary differential equation

PVI











d2q
dt2

= 1
2

(

1
q + 1

q−1 + 1
q−t

)(

dq
dt

)2
−

(

1
t + 1

t−1 + 1
q−t

)(

dq
dt

)

+q(q−1)(q−t)
t2(t−1)2

(

θ2
δ

2 − θ2
α
2

t
q2 +

θ2
β
2

t−1
(q−1)2 +

1−θ2
γ

2
t(t−1)
(q−t)2

)

.

the coefficients of which depend on complex parametersθ = (θα,θβ,θγ,θδ).
As explained in [44], the monodromy of Painlevé equation provides a

representation ofπ1(P
1\ {0,1,∞}, t0) into the group of analytic diffeomor-

phisms of the space of initial conditions(q(t0),q′(t0)) (see [44] for a precise
description of this space). Via Riemann-Hilbert correspondence,

• the space of initial conditions is analytically isomorphicto (a desin-
gularization of)S(A,B,C,D), with parameters

a = 2cos(πθα), b = 2cos(πθβ), c = 2cos(πθγ), d = 2cos(πθδ), (7.1)

(see section 2.1 for the expression of(A,B,C,D) in terms of(a,b,c,d));
• the monodromy action on the space of initial conditions is conjugate

to the action ofΓ2 on the surfaceS(A,B,C,D).

From this and sections 5.3 and 6, we deduce the following result, thereby
answering a recent question raised by Iwasaki and Uehara (problem 15 of
[43]).

Theorem 7.1. Let θα, θβ, θγ, andθδ be parameters of Painlevé sixth equa-
tion, the real parts of which are integers with an odd sum. Letη be any
loop in P

1\ {0,1,∞}, and let fη : S(A,B,C,D) → S(A,B,C,D) be the monodromy
transformation defined byη (through Riemann-Hilbert correspondence). Ei-
ther fη preserves a pencil of algebraic curves, or its topological entropy is
positive, and then

• all periodic points of fη are contained in the real part S(A,B,C,D)(R)

of the surface;
• the Hausdorff-dimension of the set of bounded fη-orbits is< 2;
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• the unique invariant probability measure of maximal entropy µfη is
supported by S(A,B,C,D)(R) and is singular with respect to the Lebes-
gue measure on S(A,B,C,D)(R).

Remark 7.2. This theorem should be compared to Goldman’s results re-
garding ergodic properties of the wholeΓ∗

2 action with respect to the invari-
ant area formΩ (see the definition ofΩ in section 2.3). As a particular case
of Goldman’s theorem, the action ofΓ∗

2 on SD(R) is ergodic with respect
to Ω if, and only if 4< D ≤ 20 (see [37]). Another interesting example is
given by the Markoff surfaceS0. In this example, the quasifuchsian space
QF provides an open invariant subset ofS0(C). This shows that the action
of Γ2 on S0(C) is not ergodic. Theorem 7.1 and these results suggest that,
for most parameters, the dynamics of the monodromy of Painlevé equation
is not correctly described by the invariant area formΩ.
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