CONSTRAINTS ON AUTOMORPHISM GROUPS OF HIGHER DIMENSIONAL MANIFOLDS

TURGAY BAYRAKTAR AND SERGE CANTAT

Abstract. In this note, we prove, for instance, that the automorphism group of a rational manifold \(X \) which is obtained from \(\mathbb{P}^k(\mathbb{C}) \) by a finite sequence of blow-ups along smooth centers of dimension at most \(r \) with \(k > 2r + 2 \) has finite image in \(GL(H^*(X, \mathbb{Z})) \). In particular, every holomorphic automorphism \(f : X \to X \) has zero topological entropy.

1. Introduction

1.1. Dimensions of indeterminacy loci. Recall that a rational map admitting a rational inverse is called birational. Birational transformations are, in general, not defined everywhere. The domain of definition of a birational map \(f : M \to N \) is the largest Zariski-open subset on which \(f \) is locally a well defined morphism. Its complement is the indeterminacy set \(\text{Ind}(f) \); its codimension is always larger than, or equal to, 2. The following statement shows that the dimension of \(\text{Ind}(f) \) and \(\text{Ind}(f^{-1}) \) can not be too small simultaneously unless \(f \) is an automorphism. The proof of this result follows a nice argument of Nessim Sibony concerning the degrees of regular automorphisms of the complex space \(\mathbb{C}^k \) (see [Sib99]); this idea was explained to us by an anonymous referee (compare [BC12]). It may be considered as an extension of a theorem due to Matsusaka and Mumford (see [MaMu64], and [KSC04], Exercise 5.6).

Theorem 1.1. Let \(k \) be a field. Let \(M \) be a smooth connected projective variety defined over \(\mathbb{k} \). Let \(f \) be a birational transformation of \(M \). Assume that the following two properties are satisfied.

(i) the Picard number of \(M \) is equal to 1;
(ii) the indeterminacy sets of \(f \) and its inverse satisfy
\[
\dim(\text{Ind}(f)) + \dim(\text{Ind}(f^{-1})) < \dim(M) - 2.
\]

Then \(f \) is an automorphism of \(M \).

Moreover, \(\text{Aut}(M) \) is an algebraic group because the Picard number of \(M \) is equal to 1. As explained below, this statement provides a direct proof of the following corollary, which was our initial motivation.

Corollary 1.2. Let \(M_0 \) be a smooth, connected, projective variety with Picard number 1. Let \(m \) be a positive integer, and \(\pi_i : M_{i+1} \to M_i, \ i = 0, \ldots, m - 1 \), be a sequence of blow-ups of smooth irreducible subvarieties of dimension at most \(r \). If \(\dim(M_0) > 2r + 2 \) then the number of connected components of \(\text{Aut}(M_m) \) is finite;
moreover, the projection π : M_m → M_0 conjugates Aut(M_m) to a subgroup of the algebraic group Aut(M_0).

For instance, if M_0 is the projective space (respectively a cubic hypersurface of \(\mathbb{P}^4 \)) and if one modifies M_0 by a finite sequence of blow-ups of points, then Aut(M_0) is isomorphic to a linear algebraic subgroup of PGL_4(k) (respectively is finite). This provides a sharp (and strong) answer to a question of Eric Bedford. In Section 3, we provide a second, simpler proof of this last statement.

Remark 1.3. The initial question of E. Bedford concerned the existence of automorphisms of compact Kähler manifolds with positive topological entropy in dimension \(> 2 \). This link with dynamical systems is described, for instance, in [Can11]. If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from the projective plane \(\mathbb{P}^2(C) \), a torus, a K3 surface or an Enriques surface, by a finite sequence of blow-ups (see [Can01, Can99] and [Nag61]). Examples of automorphisms with positive entropy are easily constructed on tori, K3 surfaces, or Enriques surfaces. Examples of automorphisms with positive entropy on rational surfaces are given in [BK06, BK10, McM07]; these examples are obtained from birational transformations \(f \) of the plane by a finite sequence of blow-ups that resolves all indeterminacies of \(f \) and its iterates simultaneously. These results suggest to look for birational transformations of \(\mathbb{P}^n(C) \), \(n \geq 3 \), that can be lifted to automorphisms with a nice dynamical behavior after a finite sequence of blow-ups; the above result shows that at least one center of the blow-ups must have dimension \(\geq n/2 - 1 \).

Remark 1.4. Recently, Tuyen Truong obtained results which are similar to Corollary 1.2, but with hypothesis on the Hodge structure and nef classes of \(M_0 \) that replace our strong hypothesis on the Picard number (see [Tru12, Tru13]).

Acknowledgement

We received many interesting comments after we had posted a first version of this work on the web (see [BC12]). In particular, we thank Igor Dolgachev, Mattias Jonsson, Tuyen Truong for their valuable comments, and Brian Lehmann for stimulating correspondence. An anonymous referee explained to us how the main ideas of [Sib99], Prop. 2.3.2 and Rem. 2.3.3, could be applied in our setting to obtain Theorem 1.1 for \(M = \mathbb{P}^k(C) \), and then recover the first results of [BC12]. We would like to express our gratitude to him/her.

2. Dimensions of Indeterminacy Loci

In this section, we prove Theorem 1.1 under a slightly more general assumption. Indeed, we replace assumption (i) with the following assumption

(i') There exists an ample line bundle \(L \) such that \(f^*(L) \cong L^{\otimes d} \) for some \(d > 1 \).

This property is implied by (i). Indeed, if \(M \) has Picard number 1, the torsion-free part of the Néron-Severi group of \(M \) is isomorphic to \(\mathbb{Z} \), and is generated by the class \([H] \) of an ample divisor \(H \). Thus, \([f^*H] \) must be a multiple of \([H] \).

In what follows, we assume that \(f \) satisfies property (i’) and property (ii). Replacing \(H \) by a large enough multiple, we may and do assume that \(H \) is very ample. Thus, the complete linear system \(|H| \) provides an embedding of \(M \) into some projective space \(\mathbb{P}_k^n \), and we identify \(M \) with its image in \(\mathbb{P}_k^n \). With such a convention, members of \(|H| \) correspond to hyperplane sections of \(M \).
2.1. Degrees. Denote by k the dimension of M, and by $\deg(M)$ its degree, i.e. the number of intersections of M with a generic subspace of dimension $n - k$.

If H_1, \ldots, H_k are hyperplane sections of M, and if $f^*(H_1)$ denotes the total transform of H_1 under the action of f, one defines the degree of f by the following intersection of divisors of M:

$$\deg(f) = \frac{1}{\deg(M)} f^*(H_1) \cdot H_2 \cdots H_k.$$

Since M has Picard number 1, we know that divisor class $[f^*(H_1)]$ is proportional to $[H]$. Our definition of $\deg(f)$ implies that $f^*[H_1] = \deg(f)[H_1]$. As a consequence,

$$f^*(H_1) \cdot f^*(H_2) \cdots f^*(H_j) \cdot H_{j+1} \cdots H_k = \deg(f)^j \deg(M)$$

for all $0 \leq j \leq k$.

2.2. Degree bounds. Assume that the sum of the dimension of $\text{Ind}(f)$ and of $\text{Ind}(f^{-1})$ is at most $k - 3$. Then there exist at least two integers $l \geq 1$ such that

$$\dim(\text{Ind}(f)) \leq k - l - 1;$$

$$\dim(\text{Ind}(f^{-1})) \leq l - 1.$$

Let H_1, \ldots, H_l and H'_1, \ldots, H'_{k-l} be generic hyperplane sections of M; by Bertini’s theorem,

(a) H_1, \ldots, H_l intersect transversally the algebraic variety $\text{Ind}(f^{-1})$ (in particular, $H_1 \cap \ldots \cap H_l$ does not intersect $\text{Ind}(f^{-1})$ because $\dim(\text{Ind}(f^{-1})) < l$);

(b) H'_1, \ldots, H'_{k-l} intersect transversally the algebraic variety $\text{Ind}(f)$ (in particular, $H'_1 \cap \ldots \cap H'_{k-l}$ does not intersect $\text{Ind}(f)$ because $\dim(\text{Ind}(f)) < k - l$).

For $j \leq l$, consider the variety $V_j = f^*(H_1 \cap \ldots \cap H_j)$: In the complement of $\text{Ind}(f)$, V_j is smooth, of dimension $k - j$; since $j \leq l$ and $\dim(\text{Ind}(f)) < k - l$, V_j extends in a unique way as a subvariety of dimension $k - j$ in M. The varieties V_j are reduced and irreducible.

Since each H_i, $1 \leq i \leq l$, intersects $\text{Ind}(f^{-1})$ transversally, $f^*(H_i)$ is an irreducible hypersurface (it does not contain any component of the exceptional locus of f). Thus

$$V_j = f^*(H_1 \cap \ldots \cap H_j) = f^*(H_1) \cap \ldots \cap f^*(H_j)$$

is the intersection of j hypersurfaces of the same degree; for $j = l$ one gets

$$\deg(f)^l \deg(M) = f^*(H_1 \cap \ldots \cap H_l) \cdot (H'_1 \cap \ldots \cap H'_{k-l}).$$

More precisely, since the H'_i are generic, this intersection is transversal and $V_j \cdot (H'_1 \cap \ldots \cap H'_{k-l})$ is made of $\deg(f)^l \deg(M)$ points, all of them with multiplicity 1, all of them in the complement of $\text{Ind}(f)$ (see property (b) above).

Similarly, one defines the subvarieties $V'_j = f_*(H'_1 \cap \ldots \cap H'_j)$ with $j \leq k - l$; as above, these subvarieties have dimension $k - j$, are smooth in the complement of $\text{Ind}(f^{-1})$, and uniquely extend to varieties of dimension $k - j$ through $\text{Ind}(f^{-1})$. Each of them is equal to the intersection of the j irreducible divisors $f_*(H_i), 1 \leq i \leq j$. Hence,

$$(H_1 \cap \ldots \cap H_l) \cdot V'_{k-l} = \deg(f^{-1})^{k-l} \deg(M).$$

If one applies the transformation $f: M \setminus \text{Ind}(f) \to M$ to V_l and to $(H'_1 \cap \ldots \cap H'_{k-l})$, one deduces that $\deg(f)^l \deg(M) \leq \deg(f^{-1})^{k-l} \deg(M)$, because all points
of intersection of V_i with $(H_1' \cap \ldots \cap H_{k-l}'_{k-1})$ are contained in the complement of $\text{Ind}(f)$. Applied to f^{-1}, the same argument provides the opposite inequality. Thus,
\[
\deg(f)^l = \deg(f^{-1})^{k-l}
\]
Since there are at least two distinct values of l for which this equation is satisfied, one concludes that
\[
\deg(f) = \deg(f^{-1}) = 1.
\]
As a consequence, f has degree 1 if it satisfies assumptions (i') and (ii).

2.3. From birational transformations to automorphisms. To conclude the proof of Theorem 1.1, one applies the following lemma.

Lemma 2.1. Let M be a smooth projective variety and f a birational transformation of M. If there exists an ample divisor H such that f^*H and $f_*^*(H)$ are numerically equivalent to H, then f is an automorphism.

Proof. Taking multiples, we assume that H is very ample. Consider the graph Z of f in $M \times M$, together with its two natural projections π_1 and π_2 onto M.

The complete linear system $|H|$ is mapped by f^* to a linear system $|H'|$ with the same numerical class, and vice versa if one applies f^{-1} to $|H'|$. Thus, $|H'|$ is also a complete linear system, of the same dimension. Both of them are very ample (but they may differ if the dimension of $\text{Pic}^0(M)$ is positive).

Assume that π_2 contracts a curve C to a point q. Take a generic member H_0 of $|H|$: It does not intersect q, and $\pi_2^*(H_0)$ does not intersect C. The projection $(\pi_1)_*(\pi_2^*(H_0))$ is equal to $f^*(H_0)$; since f^* maps the complete linear system $|H|$ to the complete linear system $|H'|$ and H_0 is generic, we may assume that $f^*(H_0)$ is a generic member of $|H'|$. As such, it does not intersect the finite set $\pi_1(C) \cap \text{Ind}(f)$. Thus, there is no fiber of π_1 that intersects simultaneously C and $(\pi_2)_*(\pi_2^*(H_0))$, and $(\pi_1)_*(\pi_2^*(H_0))$ does not intersect C. This contradicts the fact that $f^*(H_0)$ is ample.

2.4. Conclusion, and Kähler manifolds. Under the assumptions of Theorem 1.1, Section 2.2 shows that f^*H is numerically equivalent to H. Lemma 2.1 implies that f is an automorphism. This concludes the proof of Theorem 1.1.

This proof is inspired by an argument of Sibony in [Sib99] (see Proposition 2.3.2 and Remark 2.3.3); which makes use of complex analysis: the theory of closed positive current, and intersection theory. With this viewpoint, one gets the following statement.

Theorem 2.2. Let M be a compact Kähler manifold and f a bi-meromorphic transformation of M. Assume that

(i) there exists a Kähler form ω such that the cohomology class of $f^*\omega$ is proportional to the cohomology class of ω;

(ii) the indeterminacy locus of f and its inverse satisfy
\[
\dim(\text{Ind}(f)) + \dim(\text{Ind}(f^{-1})) < \dim(M) - 2.
\]

Then f is an automorphism of M that fixes the cohomology class of ω.

Moreover, Lieberman’s theorem (see [Lie78]) implies that a positive iterate f^m of f is contained in the connected component of the identity of the complex Lie group $\text{Aut}(M)$.
2.5. Proof of Corollary 1.2. Since M_m is obtained from M_0 by a sequence of
blow-ups of centers of dimension $< \dim(M_m)/2 - 1$, all automorphisms f of M_m are
conjugate, through the obvious birational morphism $\pi: M_m \to M_0$, to birational
transformations of M_0 that satisfy
\[
\dim(\text{Ind}(f)) < \dim(M_0)/2 - 1 \quad \text{and} \quad \dim(\text{Ind}(f^{-1})) < \dim(M_0)/2 - 1.
\]
Thus, by Theorem 1.1 π conjugates $\text{Aut}(M)$ to a subgroup of $\text{Aut}(M_0)$. Moreover,
given any polarization of M_0 by a very ample class, all elements of $\text{Aut}(M_0)$ have
degree 1 with respect to this polarization. Hence, $\text{Aut}(M_0)$ is an algebraic group,
and the kernel of the action of $\text{Aut}(M_0)$ on $\text{Pic}_0^0(M_0)$ is a linear algebraic group; if
$\text{Pic}^0(M_0)$ is trivial, there is a projective embedding of $\Theta: M_0 \to \mathbb{P}^n_k$ that conjugates
$\text{Aut}(M_0)$ to the group of linear projective transformations $G \subset \text{PGL}_{n+1}(k)$ that
preserve $\Theta(M)$.

3. Constraints on automorphisms from the structure of the
intersection form

Let X be a smooth projective variety of dimension k over a field k. Denote by
$\text{NS}(X)$ the Néron-Severi group of X, i.e. the group of classes of divisors for the
numerical equivalence relation. We consider the multi-linear forms
\[
Q_d: \text{NS}(X)^d \to \mathbb{Z}
\]
which are defined by
\[
Q_d(u_1, u_2, \ldots, u_d) = u_1 \cdot u_2 \cdots u_d \cdot K_X^{k-d}.
\]
These forms are invariant under $\text{Aut}(X)^*$ and we shall derive new constraints on
the size of $\text{Aut}(X)^*$ from this invariance.

Theorem 3.1. Let X be a smooth projective variety of dimension $k \geq 3$, defined
over a field k. Let d be an integer that satisfies $3 \leq d \leq k$. If the projective variety
\[
W_d(X) := \{ u \in \mathbb{P}(\text{NS}(X) \otimes \mathbb{C}) | Q_d(u, u, \ldots, u) = 0 \}
\]
is smooth, then $\text{Aut}(X)^*$ is finite.

Proof. The group $\text{Aut}(X)^*$ acts by linear projective transformations on the projective
space $\mathbb{P}(\text{NS}(X) \otimes \mathbb{C})$ and preserves the smooth hypersurface W_d. Since $d \geq 3$
it follows from [MaMo64] that the group of linear projective transformations pre-
serving a smooth hypersurface of degree d is finite. Hence, there is a finite index
subgroup A of $\text{Aut}(X)^*$ which is contained in the center of $\text{GL}(\text{NS}(X))$; since the
later is a finite group of homotheties, this finishes the proof. \[\square\]

As a corollary, let us state the following one, already obtained in the previous
sections:

Corollary 3.2. Let X be a smooth projective variety of dimension $k \geq 3$. Assume
that there exists a birational morphism $\pi: X \to V$ such that
\[\begin{itemize}
 \item the Picard number of V is equal to 1
 \item π^{-1} is the blow-up of l distinct points of V.
\end{itemize}\]
Then $\text{Aut}(X)^*$ is a finite group.
Proof. We identify $\text{NS}(V)$ with $\mathbb{Z}e_0$ where e_0 is the class of an ample divisor. Let $a := e_k$. Since X is obtained from V by blowing up l distinct points p_1, \ldots, p_l we have

$$\text{NS}(X) = \mathbb{Z}e_0 + \bigoplus_{1 \leq i \leq l} \mathbb{Z}e_i$$

where e_i is the class of the exceptional divisor $E_i := \pi^{-1}(p_i)$. Then the form Q_k is given by

$$Q_k(u) = a(X_0)^k + (-1)^{k+1} \sum_{i=1}^l (X_i)^k$$

where $u = X_0 e_0 + \sum_i X_i e_i$ and $[X_0 : \ldots : X_l]$ denotes the homogeneous coordinates on $\mathbb{P}^{\text{NS}(X) \otimes \mathbb{Z} \mathbb{C}}$. Hence, the projective variety defined by Q_k in $\mathbb{P}^{\text{NS}(X) \otimes \mathbb{Z} \mathbb{C}}$ is smooth and $\text{Aut}(X)^*$ is finite. □

References

Mathematics Department, Johns Hopkins University 21218 Maryland, USA
Département de Mathématiques et Applications UMR 8553 du CNRS Ecole Normale Supérieure, 45 rue d’Ulm, Paris, France

E-mail address: bayraktar@jhu.edu and serge.cantat@univ-rennes1.fr