CONSTRAINTS ON AUTOMORPHISM GROUPS OF HIGHER
DIMENSIONAL MANIFOLDS

TURGAY BAYRAKTAR AND SERGE CANTAT

ABSTRACT. In this note, we prove, for instance, that the automorphism group
of a rational manifold X which is obtained from P¥(C) by a finite sequence
of blow-ups along smooth centers of dimension at most » with £ > 2r + 2 has
finite image in GL(H*(X, Z)). In particular, every holomorphic automorphism
f + X — X has zero topological entropy.

1. INTRODUCTION

1.1. Dimensions of indeterminacy loci. Recall that a rational map admitting
a rational inverse is called birational. Birational transformations are, in general,
not defined everywhere. The domain of definition of a birational map f: M — N
is the largest Zariski-open subset on which f is locally a well defined morphism. Its
complement is the indeterminacy set Ind(f); its codimension is always larger than,
or equal to, 2. The following statement shows that the dimension of Ind(f) and
Ind(f~1) can not be too small simultaneously unless f is an automorphism. The
proof of this result follows a nice argument of Nessim Sibony concerning the degrees
of regular automorphisms of the complex space C* (see [Sib99]) ; this idea was
explained to us by an anonymous referee (compare [BC12]). It may be considered
as an extension of a theorem due to Matsusaka and Mumford (see [MaMu64], and
[KSC04], Exercise 5.6).

Theorem 1.1. Let k be a field. Let M be a smooth connected projective variety de-
fined over k. Let f be a birational transformation of M. Assume that the following
two properties are satisfied.

(i) the Picard number of M is equal to 1;
(ii) the indeterminacy sets of f and its inverse satisfy

dim(Ind(f)) + dim(Ind(f ™)) < dim(M) — 2.
Then f is an automorphism of M.

Moreover, Aut(M) is an algebraic group because the Picard number of M is equal
to 1. As explained below, this statement provides a direct proof of the following
corollary, which was our initial motivation.

Corollary 1.2. Let My be a smooth, connected, projective variety with Picard
number 1. Let m be a positive integer, and m;: M;11 — M;, i =0,...,m—1, be a
sequence of blow-ups of smooth irreducible subvarieties of dimension at most r. If
dim(My) > 2r + 2 then the number of connected components of Aut(M,,) is finite;
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moreover, the projection w: M, — My conjugates Aut(M,,) to a subgroup of the
algebraic group Aut(Mp).

For instance, if Mj is the projective space (respectively a cubic hypersurface of
) and if one modifies My by a finite sequence of blow-ups of points, then Aut(My)
is isomorphic to a linear algebraic subgroup of PGL4 (k) (respectively is finite). This
provides a sharp (and strong) answer to a question of Eric Bedford. In Section 3,
we provide a second, simpler proof of this last statement.

Remark 1.3. The initial question of E. Bedford concerned the existence of auto-
morphisms of compact Kéhler manifolds with positive topological entropy in dimen-
sion > 2. This link with dynamical systems is described, for instance, in [Can11]. If
a compact complex surface S admits an automorphism with positive entropy, then
S is Kihler and is obtained from the projective plane P?(C), a torus, a K3 surface
or an Enriques surface, by a finite sequence of blow-ups (see [Can01, Can99] and
[Nag61]). Examples of automorphisms with positive entropy are easily constructed
on tori, K3 surfaces, or Enriques surfaces. Examples of automorphisms with positive
entropy on rational surfaces are given in [BK06, BK10, McMO07]; these examples
are obtained from birational transformations f of the plane by a finite sequence
of blow-ups that resolves all indeterminacies of f and its iterates simultaneously.
These results suggest to look for birational transformations of P&, n > 3, that can
be lifted to automorphisms with a nice dynamical behavior after a finite sequence
of blow-ups; the above result shows that at least one center of the blow-ups must
have dimension > n/2 — 1.

Remark 1.4. Recently, Tuyen Truong obtained results which are similar to Corol-
lary 1.2, but with hypothesis on the Hodge structure and nef classes of M, that
replace our strong hypothesis on the Picard number (see [Trul2, Trul3]).
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2. DIMENSIONS OF INDETERMINACY LOCI

In this section, we prove Theorem 1.1 under a slightly more general assumption.

Indeed, we replace assumption (i) with the following assumption

(i") There exists an ample line bundle L such that f*(L) = L®9 for some d > 1.
This property is implied by (i). Indeed, if M has Picard number 1, the torsion-free
part of the Néron-Severi group of M is isomorphic to Z, and is generated by the
class [H] of an ample divisor H. Thus, [f*H] must be a multiple of [H].

In what follows, we assume that f satisfies property (i’) and property (ii). Re-
placing H by a large enough multiple, we may and do assume that H is very ample.
Thus, the complete linear system |H| provides an embedding of M into some pro-
jective space P, and we identify M with its image in Py. With such a convention,
members of |H| correspond to hyperplane sections of M.
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2.1. Degrees. Denote by k the dimension of M, and by deg(M) its degree, i.e.
the number of intersections of M with a generic subspace of dimension n — k.

If Hy, ..., Hy, are hyperplane sections of M, and if f*(H;) denotes the total
transform of H; under the action of f, one defines the degree of f by the following
intersection of divisors of M

deg(f) f*(Hy) - Hy - Hy.

~ deg(M)

Since M has Picard number 1, we know that divisor class [f*(H1)] is proportional to
[H]. Our definition of deg(f) implies that f*[H;] = deg(f)[H1]. As a consequence,

fH(Hy) - f*(Hy) -+ f*(Hj) - Hjyy -+ Hy = deg(f)’ deg(M)
forall 0 <j <k.

2.2. Degree bounds. Assume that the sum of the dimension of Ind(f) and of
Ind(f~1) is at most k — 3. Then there exist at least two integers [ > 1 such that

dim(Ind(f)) < k—-1-1
dim(Ind(f~") < I-1

Let Hy, ..., H; and Hi, ..., Hj,_, be generic hyperplane sections of M; by Bertini’s
theorem,

(a) Hy, ..., H; intersect transversally the algebraic variety Ind(f~!) (in partic-

ular, H; N...N H; does not intersect Ind(f 1) because dim(Ind(f~1)) < 1);

(b) Hi, ..., Hj,_, intersect transversally the algebraic variety Ind(f) (in partic-

ular, H{N...NHj,_,; does not intersect Ind(f) because dim(Ind(f)) < k—1).

For j <, consider the variety V; = f*(H1N...NH;): In the complement of Ind(f),
Vj is smooth, of dimension k — j; since j < [ and dim(Ind(f)) < k—1, V; extends in
a unique way as a subvariety of dimension k — j in M. The varieties V; are reduced
and irreducible.

Since each H;, 1 < i < [, intersects Ind(f~!) transversally, f*(H;) is an irre-
ducible hypersurface (it does not contain any component of the exceptional locus
of f). Thus

V; = ff(Hin...NHj)
= f"(Hy)N...Nnf*(Hy)
is the intersection of j hypersurfaces of the same degree; for j = [ one gets
deg(f)! deg(M) = f*(H,N...N H)) - (H; N---NHj_,).
More precisely, since the H] are generic, this intersection is transversal and V; -
(HiN...N H]_,) is made of deg(f)'deg(M) points, all of them with multiplicity
1, all of them in the complement of Ind(f) (see property (b) above).

Similarly, one defines the subvarieties V/ = f.(Hj N ... H}) with j < k —; as
above, these subvarieties have dimension k£ — j, are smooth in the complement of
Ind(f~1), and uniquely extend to varieties of dimension k — j through Ind(f~1!).
Each of them is equal to the intersection of the j irreducible divisors f.(H;), 1 <
1 < j. Hence,

(HyN...nHy) - Vi_, =deg(f~1)* " deg(M).

If one applies the transformation f: M \ Ind(f) — M to V; and to (Hy N ---N

Hj_,), one deduces that deg(f)' deg(M) < deg(f~')*~! deg(M), because all points
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of intersection of V; with (H{N...NHj,_,) are contained in the complement of Ind( f).
Applied to f~!, the same argument provides the opposite inequality. Thus,

deg(f)! = deg(f~ )"

Since there are at least two distinct values of [ for which this equation is satisfied,
one concludes that

deg(f) = deg(f™") =1.
As a consequence, f has degree 1 if it satisfies assumptions (i’) and (ii), .

2.3. From birational transformations to automorphisms. To conclude the
proof of Theorem 1.1, one applies the following lemma.

Lemma 2.1. Let M be a smooth projective variety and f a birational transfor-
mation of M. If there exists an ample divisor H such that f*H and f.(H) are
numerically equivalent to H, then f is an automorphism.

Proof. Taking multiples, we assume that H is very ample. Consider the graph Z
of fin M x M, together with its two natural projections m; and 7 onto M.

The complete linear system |H| is mapped by f* to a linear system |H'| with
the same numerical class, and vice versa if one applies f~* to |H’|. Thus, |H’| is
also a complete linear system, of the same dimension. Both of them are very ample
(but they may differ if the dimension of Pic’(M) is positive).

Assume that w9 contracts a curve C to a point q. Take a generic member H)
of |H|: Tt does not intersect ¢, and 75 (Hp) does not intersect C. The projection
(m1)«(m3(Hp)) is equal to f*(Hp); since f* maps the complete linear system |H|
to the complete linear system |H'| and Hy is generic, we may assume that f*(Hp)
is a generic member of |H’|. As such, it does not intersect the finite set m (C) N
Ind(f). Thus, there is no fiber of 71 that intersects simultaneously C and (m2)*(Hy),
and (71 )«(75 (Hp)) does not intersect C. This contradicts the fact that f*(Hp) is
ample. (I

2.4. Conclusion, and Kahler manifolds. Under the assumptions of Theorem 1.1,
Section 2.2 shows that f*H is numerically equivalent to H. Lemma 2.1 implies that
f is an automorphism. This concludes the proof of Theorem 1.1.

This proof is inspired by an argument of Sibony in [Sib99] (see Proposition 2.3.2
and Remark 2.3.3); which makes use of complex analysis: the theory of closed pos-
itive current, and intersection theory. With this viewpoint, one gets the following
statement.

Theorem 2.2. Let M be a compact Kdhler manifold and f a bi-meromorphic
transformation of M. Assume that
(i) there exists a Kdhler form w such that the cohomology class of f*w is pro-
portional to the cohomology class of w;
(ii) the indeterminacy locus of f and its inverse satisfy

dim(Ind(f)) + dim(Ind(f ")) < dim(M) — 2.
Then f is an automorphism of M that fixes the cohomology class of w.

Moreover, Lieberman’s theorem (see [Lie78]) implies that a positive iterate f™
of f is contained in the connected component of the identity of the complex Lie
group Aut(M).
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2.5. Proof of Corollary 1.2. Since M, is obtained from M, by a sequence of
blow-ups of centers of dimension < dim(M,,)/2—1, all automorphisms f of M, are
conjugate, through the obvious birational morphism 7: M,, — My, to birational
transformations of My that satisfy

dim(Ind(f)) < dim(Mp)/2 — 1 and dim(Ind(f~ 1)) < dim(Mp)/2 — 1.

Thus, by Theorem 1.1 7 conjugates Aut(M) to a subgroup of Aut(My). Moreover,
given any polarization of My by a very ample class, all elements of Aut(Mj) have
degree 1 with respect to this polarization. Hence, Aut(Mp) is an algebraic group,
and the kernel of the action of Aut(My) on Pic’(Mp) is a linear algebraic group; if
PicO(Mo) is trivial, there is a projective embedding of ©: My — P} that conjugates
Aut(My) to the group of linear projective transformations G C PGL, (k) that
preserve O(M).

3. CONSTRAINTS ON AUTOMORPHISMS FROM THE STRUCTURE OF THE
INTERSECTION FORM

Let X be a smooth projective variety of dimension k over a field k. Denote by
NS(X) the Néron-Severi group of X, i.e. the group of classes of divisors for the
numerical equivalence relation. We consider the multi-linear forms

Qa: NS(X)* — Z
which are defined by
Qa(ur,ug, ..., ug) =uy U~ Ug - K?{d.
These forms are invariant under Aut(X)* and we shall derive new constraints on

the size of Aut(X)* from this invariance.

Theorem 3.1. Let X be a smooth projective variety of dimension k > 3, defined
over a field k. Let d be an integer that satisfies 3 < d < k. If the projective variety

Wa(X) = {u € P(NS(X) €7 C)| Qa(u,1u, .., u) = 0}
is smooth, then Aut(X)* is finite.

Proof. The group Aut(X)* acts by linear projective transformations on the projec-
tive space P(NS(X) ®z C) and preserves the smooth hypersurface Wy. Since d > 3
it follows from [MaMo64] that the group of linear projective transformations pre-
serving a smooth hypersurface of degree d is finite. Hence, there is a finite index
subgroup A of Aut(X)* which is contained in the center of GL(NS(X)); since the
later is a finite group of homotheties, this finishes the proof. O

As a corollary, let us state the following one, already obtained in the previous
sections:

Corollary 3.2. Let X be a smooth projective variety of dimension k > 3. Assume
that there exists a birational morphism m: X — V such that

e the Picard number of V is equal to 1
o 1! is the blow-up of | distinct points of V.

Then Aut(X)* is a finite group.
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Proof. We identify NS(V) with Zey where eq is the class of an ample divisor. Let
a = ek. Since X is obtained from V by blowing up [ distinct points p1,...,p; we
have

NS(X) = Zeo + €P) Ze;

1<i<l

where e; is the class of the exceptional divisor E; := 7~!(p;). Then the form Qy, is
given by

I
Qr(u) = a(Xo)* + (—1)*** Z(Xi)k

where u = Xoeg + >, Xie; and [Xo : ... X;] denotes the homogeneous coordinates
on P(NS(X) ®z C). Hence, the projective variety defined by @ in P(NS(X) ®z C)
is smooth and Aut(X)* is finite. O
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