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Abstract. In this note, we prove, for instance, that the automorphism group

of a rational manifold X which is obtained from Pk(C) by a finite sequence

of blow-ups along smooth centers of dimension at most r with k > 2r + 2 has
finite image in GL(H∗(X,Z)). In particular, every holomorphic automorphism

f : X → X has zero topological entropy.

1. Introduction

1.1. Dimensions of indeterminacy loci. Recall that a rational map admitting
a rational inverse is called birational. Birational transformations are, in general,
not defined everywhere. The domain of definition of a birational map f : M → N
is the largest Zariski-open subset on which f is locally a well defined morphism. Its
complement is the indeterminacy set Ind(f); its codimension is always larger than,
or equal to, 2. The following statement shows that the dimension of Ind(f) and
Ind(f−1) can not be too small simultaneously unless f is an automorphism. The
proof of this result follows a nice argument of Nessim Sibony concerning the degrees
of regular automorphisms of the complex space Ck (see [Sib99]) ; this idea was
explained to us by an anonymous referee (compare [BC12]). It may be considered
as an extension of a theorem due to Matsusaka and Mumford (see [MaMu64], and
[KSC04], Exercise 5.6).

Theorem 1.1. Let k be a field. Let M be a smooth connected projective variety de-
fined over k. Let f be a birational transformation of M . Assume that the following
two properties are satisfied.

(i) the Picard number of M is equal to 1;
(ii) the indeterminacy sets of f and its inverse satisfy

dim(Ind(f)) + dim(Ind(f−1)) < dim(M)− 2.

Then f is an automorphism of M .

Moreover, Aut(M) is an algebraic group because the Picard number of M is equal
to 1. As explained below, this statement provides a direct proof of the following
corollary, which was our initial motivation.

Corollary 1.2. Let M0 be a smooth, connected, projective variety with Picard
number 1. Let m be a positive integer, and πi : Mi+1 →Mi, i = 0, . . . ,m− 1, be a
sequence of blow-ups of smooth irreducible subvarieties of dimension at most r. If
dim(M0) > 2r + 2 then the number of connected components of Aut(Mm) is finite;
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moreover, the projection π : Mm → M0 conjugates Aut(Mm) to a subgroup of the
algebraic group Aut(M0).

For instance, if M0 is the projective space (respectively a cubic hypersurface of
P4

k) and if one modifies M0 by a finite sequence of blow-ups of points, then Aut(M0)
is isomorphic to a linear algebraic subgroup of PGL4(k) (respectively is finite). This
provides a sharp (and strong) answer to a question of Eric Bedford. In Section 3,
we provide a second, simpler proof of this last statement.

Remark 1.3. The initial question of E. Bedford concerned the existence of auto-
morphisms of compact Kähler manifolds with positive topological entropy in dimen-
sion > 2. This link with dynamical systems is described, for instance, in [Can11]. If
a compact complex surface S admits an automorphism with positive entropy, then
S is Kähler and is obtained from the projective plane P2(C), a torus, a K3 surface
or an Enriques surface, by a finite sequence of blow-ups (see [Can01, Can99] and
[Nag61]). Examples of automorphisms with positive entropy are easily constructed
on tori, K3 surfaces, or Enriques surfaces. Examples of automorphisms with positive
entropy on rational surfaces are given in [BK06, BK10, McM07]; these examples
are obtained from birational transformations f of the plane by a finite sequence
of blow-ups that resolves all indeterminacies of f and its iterates simultaneously.
These results suggest to look for birational transformations of Pn

C, n ≥ 3, that can
be lifted to automorphisms with a nice dynamical behavior after a finite sequence
of blow-ups; the above result shows that at least one center of the blow-ups must
have dimension ≥ n/2− 1.

Remark 1.4. Recently, Tuyen Truong obtained results which are similar to Corol-
lary 1.2, but with hypothesis on the Hodge structure and nef classes of M0 that
replace our strong hypothesis on the Picard number (see [Tru12, Tru13]).
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2. Dimensions of Indeterminacy loci

In this section, we prove Theorem 1.1 under a slightly more general assumption.
Indeed, we replace assumption (i) with the following assumption

(i’) There exists an ample line bundle L such that f∗(L) ∼= L⊗d for some d > 1.
This property is implied by (i). Indeed, if M has Picard number 1, the torsion-free
part of the Néron-Severi group of M is isomorphic to Z, and is generated by the
class [H] of an ample divisor H. Thus, [f∗H] must be a multiple of [H].

In what follows, we assume that f satisfies property (i’) and property (ii). Re-
placing H by a large enough multiple, we may and do assume that H is very ample.
Thus, the complete linear system |H| provides an embedding of M into some pro-
jective space Pn

k, and we identify M with its image in Pn
k. With such a convention,

members of |H| correspond to hyperplane sections of M .
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2.1. Degrees. Denote by k the dimension of M , and by deg(M) its degree, i.e.
the number of intersections of M with a generic subspace of dimension n− k.

If H1, ..., Hk are hyperplane sections of M , and if f∗(H1) denotes the total
transform of H1 under the action of f , one defines the degree of f by the following
intersection of divisors of M

deg(f) =
1

deg(M)
f∗(H1) ·H2 · · ·Hk.

Since M has Picard number 1, we know that divisor class [f∗(H1)] is proportional to
[H]. Our definition of deg(f) implies that f∗[H1] = deg(f)[H1]. As a consequence,

f∗(H1) · f∗(H2) · · · f∗(Hj) ·Hj+1 · · ·Hk = deg(f)j deg(M)

for all 0 ≤ j ≤ k.

2.2. Degree bounds. Assume that the sum of the dimension of Ind(f) and of
Ind(f−1) is at most k − 3. Then there exist at least two integers l ≥ 1 such that

dim(Ind(f)) ≤ k − l − 1;
dim(Ind(f−1)) ≤ l − 1.

Let H1, ..., Hl and H ′1, ..., H ′k−l be generic hyperplane sections of M ; by Bertini’s
theorem,

(a) H1, ..., Hl intersect transversally the algebraic variety Ind(f−1) (in partic-
ular, H1∩ . . .∩Hl does not intersect Ind(f−1) because dim(Ind(f−1)) < l);

(b) H ′1, ..., H ′k−l intersect transversally the algebraic variety Ind(f) (in partic-
ular, H ′1∩. . .∩H ′k−l does not intersect Ind(f) because dim(Ind(f)) < k−l).

For j ≤ l, consider the variety Vj = f∗(H1∩ . . .∩Hj): In the complement of Ind(f),
Vj is smooth, of dimension k− j; since j ≤ l and dim(Ind(f)) < k− l, Vj extends in
a unique way as a subvariety of dimension k− j in M . The varieties Vj are reduced
and irreducible.

Since each Hi, 1 ≤ i ≤ l, intersects Ind(f−1) transversally, f∗(Hi) is an irre-
ducible hypersurface (it does not contain any component of the exceptional locus
of f). Thus

Vj = f∗(H1 ∩ . . . ∩Hj)
= f∗(H1) ∩ . . . ∩ f∗(Hj)

is the intersection of j hypersurfaces of the same degree; for j = l one gets

deg(f)l deg(M) = f∗(H1 ∩ . . . ∩Hl) · (H ′1 ∩ · · · ∩H ′k−l).

More precisely, since the H ′i are generic, this intersection is transversal and Vj ·
(H ′1 ∩ . . . ∩H ′k−l) is made of deg(f)l deg(M) points, all of them with multiplicity
1, all of them in the complement of Ind(f) (see property (b) above).

Similarly, one defines the subvarieties V ′j = f∗(H ′1 ∩ . . . H ′j) with j ≤ k − l; as
above, these subvarieties have dimension k − j, are smooth in the complement of
Ind(f−1), and uniquely extend to varieties of dimension k − j through Ind(f−1).
Each of them is equal to the intersection of the j irreducible divisors f∗(Hi), 1 ≤
i ≤ j. Hence,

(H1 ∩ . . . ∩Hl) · V ′k−l = deg(f−1)k−l deg(M).
If one applies the transformation f : M \ Ind(f) → M to Vl and to (H ′1 ∩ · · · ∩

H ′k−l), one deduces that deg(f)l deg(M) ≤ deg(f−1)k−l deg(M), because all points
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of intersection of Vl with (H ′1∩. . .∩H ′k−l) are contained in the complement of Ind(f).
Applied to f−1, the same argument provides the opposite inequality. Thus,

deg(f)l = deg(f−1)k−l

Since there are at least two distinct values of l for which this equation is satisfied,
one concludes that

deg(f) = deg(f−1) = 1.
As a consequence, f has degree 1 if it satisfies assumptions (i’) and (ii), .

2.3. From birational transformations to automorphisms. To conclude the
proof of Theorem 1.1, one applies the following lemma.

Lemma 2.1. Let M be a smooth projective variety and f a birational transfor-
mation of M . If there exists an ample divisor H such that f∗H and f∗(H) are
numerically equivalent to H, then f is an automorphism.

Proof. Taking multiples, we assume that H is very ample. Consider the graph Z
of f in M ×M , together with its two natural projections π1 and π2 onto M .

The complete linear system |H| is mapped by f∗ to a linear system |H ′| with
the same numerical class, and vice versa if one applies f−1 to |H ′|. Thus, |H ′| is
also a complete linear system, of the same dimension. Both of them are very ample
(but they may differ if the dimension of Pic0(M) is positive).

Assume that π2 contracts a curve C to a point q. Take a generic member H0

of |H|: It does not intersect q, and π∗2(H0) does not intersect C. The projection
(π1)∗(π∗2(H0)) is equal to f∗(H0); since f∗ maps the complete linear system |H|
to the complete linear system |H ′| and H0 is generic, we may assume that f∗(H0)
is a generic member of |H ′|. As such, it does not intersect the finite set π1(C) ∩
Ind(f). Thus, there is no fiber of π1 that intersects simultaneously C and (π2)∗(H0),
and (π1)∗(π∗2(H0)) does not intersect C. This contradicts the fact that f∗(H0) is
ample. �

2.4. Conclusion, and Kähler manifolds. Under the assumptions of Theorem 1.1,
Section 2.2 shows that f∗H is numerically equivalent to H. Lemma 2.1 implies that
f is an automorphism. This concludes the proof of Theorem 1.1.

This proof is inspired by an argument of Sibony in [Sib99] (see Proposition 2.3.2
and Remark 2.3.3); which makes use of complex analysis: the theory of closed pos-
itive current, and intersection theory. With this viewpoint, one gets the following
statement.

Theorem 2.2. Let M be a compact Kähler manifold and f a bi-meromorphic
transformation of M . Assume that

(i) there exists a Kähler form ω such that the cohomology class of f∗ω is pro-
portional to the cohomology class of ω;

(ii) the indeterminacy locus of f and its inverse satisfy

dim(Ind(f)) + dim(Ind(f−1)) < dim(M)− 2.

Then f is an automorphism of M that fixes the cohomology class of ω.

Moreover, Lieberman’s theorem (see [Lie78]) implies that a positive iterate fm

of f is contained in the connected component of the identity of the complex Lie
group Aut(M).
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2.5. Proof of Corollary 1.2. Since Mm is obtained from M0 by a sequence of
blow-ups of centers of dimension < dim(Mm)/2−1, all automorphisms f of Mm are
conjugate, through the obvious birational morphism π : Mm → M0, to birational
transformations of M0 that satisfy

dim(Ind(f)) < dim(M0)/2− 1 and dim(Ind(f−1)) < dim(M0)/2− 1.

Thus, by Theorem 1.1 π conjugates Aut(M) to a subgroup of Aut(M0). Moreover,
given any polarization of M0 by a very ample class, all elements of Aut(M0) have
degree 1 with respect to this polarization. Hence, Aut(M0) is an algebraic group,
and the kernel of the action of Aut(M0) on Pic0(M0) is a linear algebraic group; if
Pic0(M0) is trivial, there is a projective embedding of Θ: M0 → Pn

k that conjugates
Aut(M0) to the group of linear projective transformations G ⊂ PGLn+1(k) that
preserve Θ(M).

3. Constraints on automorphisms from the structure of the
intersection form

Let X be a smooth projective variety of dimension k over a field k. Denote by
NS(X) the Néron-Severi group of X, i.e. the group of classes of divisors for the
numerical equivalence relation. We consider the multi-linear forms

Qd : NS(X)d → Z

which are defined by

Qd(u1, u2, . . . , ud) = u1 · u2 · · ·ud ·Kk−d
X .

These forms are invariant under Aut(X)∗ and we shall derive new constraints on
the size of Aut(X)∗ from this invariance.

Theorem 3.1. Let X be a smooth projective variety of dimension k ≥ 3, defined
over a field k. Let d be an integer that satisfies 3 ≤ d ≤ k. If the projective variety

Wd(X) := {u ∈ P(NS(X)⊗Z C)| Qd(u,u, . . . ,u) = 0}

is smooth, then Aut(X)∗ is finite.

Proof. The group Aut(X)∗ acts by linear projective transformations on the projec-
tive space P(NS(X)⊗Z C) and preserves the smooth hypersurface Wd. Since d ≥ 3
it follows from [MaMo64] that the group of linear projective transformations pre-
serving a smooth hypersurface of degree d is finite. Hence, there is a finite index
subgroup A of Aut(X)∗ which is contained in the center of GL(NS(X)); since the
later is a finite group of homotheties, this finishes the proof. �

As a corollary, let us state the following one, already obtained in the previous
sections:

Corollary 3.2. Let X be a smooth projective variety of dimension k ≥ 3. Assume
that there exists a birational morphism π : X → V such that

• the Picard number of V is equal to 1
• π−1 is the blow-up of l distinct points of V.

Then Aut(X)∗ is a finite group.
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Proof. We identify NS(V) with Ze0 where e0 is the class of an ample divisor. Let
a := ek

0 . Since X is obtained from V by blowing up l distinct points p1, . . . , pl we
have

NS(X) = Ze0 +
⊕

1≤i≤l

Zei

where ei is the class of the exceptional divisor Ei := π−1(pi). Then the form Qk is
given by

Qk(u) = a(X0)k + (−1)k+1
l∑

i=1

(Xi)k

where u = X0e0 +
∑

iXiei and [X0 : . . . Xl] denotes the homogeneous coordinates
on P(NS(X)⊗Z C). Hence, the projective variety defined by Qk in P(NS(X)⊗Z C)
is smooth and Aut(X)∗ is finite. �
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