DEGRÉS DYNAMIQUES par Serge Cantat

1. INTRODUCTION

Soit $f \colon \mathbf{C}^d \to \mathbf{C}^d$ une transformation qui, en coordonnées cartésiennes, est définie par des formules polynomiales : $f(x_1, \ldots, x_d) = (f_1, \ldots, f_d)$ avec $f_i \in \mathbf{C}[x_1, \ldots, x_d]$ pour tout i. Définissons le degré $\deg(f)$ comme le maximum des degrés des monômes qui apparaissent dans les f_i . Un problème naturel, lorsqu'on s'intéresse au système dynamique engendré par f, est de décrire le comportement asymptotique de la suite $n \mapsto \deg(f^n)$, où f^n désigne le n-ème itéré de f pour la composition : $f^0 = \mathrm{id}$, $f^{n+1} = f^n \circ f$. Ce problème est essentiellement ouvert. Par exemple, on ne sait pas s'il existe des transformations polynomiales de \mathbf{C}^3 pour lesquelles $\deg(f^n)$ se comporte comme $n \log(n)$, comme $n^{3/2}$, comme n^a avec $a \geq 3$, ou comme $\exp(\sqrt{n})$. La croissance des degrés étant au plus exponentielle, on introduit le $premier\ degré\ dynamique$

(1)
$$\lambda_1(f) = \limsup_{n \to +\infty} \deg(f^n)^{1/n}.$$

Par exemple, si $f(x_1, x_2) = (x_2, x_1x_2)$, $\deg(f^n)$ coïncide avec le (n+2)-ème nombre de Fibonacci et $\lambda_1(f)$ est le nombre d'or. De nombreux résultats portant sur ces degrés dynamiques ont été obtenus récemment et le but de cet exposé est justement de présenter les plus importants d'entre eux dans leur degré de généralité naturel.

Pour cela, un point de vue géométrique s'avère pertinent. Supposons f dominante, c'est-à-dire que son image contient un ouvert non-vide. Étendons f en une transformation rationnelle de l'espace projectif complexe $\mathbb{P}^d(\mathbf{C})$, notons H^i un sous-espace projectif de codimension i dans $\mathbb{P}^d(\mathbf{C})$ – que l'on prendra en position générale – et considérons le nombre d'intersections

(2)
$$\deg_i(f) := \left((f^* H^i) \cdot H^{d-i} \right);$$

c'est le degré de la sous-variété obtenue en prenant l'image réciproque de H^i par f. Pour relier cette notion à la précédente, écrivons f en coordonnées homogènes sous la forme $f[x_0 : \cdots : x_d] = [F_0 : \cdots : F_d]$ où les F_i sont les polynômes homogènes de degré $k = \deg(f)$ définis par $F_0 = x_0^k$ et $F_i = x_0^k f_i(x_1/x_0, \dots, x_d/x_0)$ pour $i \ge 1$. Si $\sum_i \alpha_i x_i = 0$ est l'équation de H^1 , alors $\sum_i \alpha_i F_i = 0$ est l'équation de f^*H , et elle est de degré k; ainsi, $\deg_1(f)$ coïncide avec $\deg(f)$. Suivant Russakovskii et Shiffman (1997), nous définissons alors les degrés dynamiques $\lambda_i(f)$ par la formule

(3)
$$\lambda_i(f) = \limsup_{n \to +\infty} \deg_i(f^n)^{1/n}.$$

Cette définition sera étendue aux transformations rationnelles de variétés projectives $X \subset \mathbb{P}^N$ en prenant $d = \dim(X)$, en remplaçant H^i par l'intersection de X avec un sous-espace projectif de \mathbb{P}^N de codimension i, et en calculant les intersections dans X.

Il est également possible de définir $\lambda_i(f)$ lorsque $f: X \dashrightarrow X$ est une transformation méromorphe d'une variété kählérienne compacte : les H^i sont remplacés par les produits extérieurs d'une forme de Kähler κ , et les produits d'intersections par $\int_X f^* \kappa^i \wedge \kappa^{\dim(X)-i}$ (l'intégrale étant calculée là où f est holomorphe). Dans ce cadre, les degrés dynamiques sont reliés à la dynamique de f par l'inégalité (Gromov, 2003; Dinh et Sibony, 2004; Favre, Truong et Xie, 2022)

$$h_{top}(f) \leq \max_{i=0}^{d} \log \lambda_i(f)$$

où $h_{top}(f)$ est l'entropie topologique : c'est le taux de croissance exponentielle du nombre d'orbites de f qui peuvent être distinguées en observant la dynamique durant un temps navec une précision $\varepsilon > 0$ suffisamment petite (voir Katok et Hasselblatt, 1995). Lorsque $f: X \to X$ est holomorphe, ce qui est le cas initialement traité par Gromov, $\lambda_i(f)$ coïncide avec le rayon spectral de f sur le groupe de cohomologie de Dolbeault $H^{i,i}(X; \mathbf{R})$. En couplant l'inégalité (4) à la minoration de Yomdin (1987), nous obtenons alors

$$h_{top}(f) = \max_{i=0}^{d} \log \lambda_i(f)$$

dès que f est une transformation holomorphe d'une variété compacte kählérienne. Ainsi, $h_{top}(f)$ est le logarithme d'une des valeurs propres de f^* , donc d'un nombre algébrique.

Dans une autre direction, si $f: X \dashrightarrow X$ est une transformation rationnelle d'une variété projective, X et f étant définies sur $\overline{\mathbf{Q}}$, une conjecture de Kawaguchi et Silverman prévoit que la hauteur additive de $f^n(x)$ se comporte comme $\lambda_1(f)^n$ dès que l'orbite de $x \in X(\overline{\mathbf{Q}})$ est Zariski dense. Conjecturalement, $\lambda_1(f)$ décrit donc aussi la complexité arithmétique de toute orbite Zariski dense.

Les degrés dynamiques λ_i jouent donc un rôle central dans l'étude des transformations algébriques ou méromorphes, du moins pour celles dont la dynamique présente des phénomènes de croissance exponentielle. Nous présenterons les propriétés de base des λ_i (définition, log-concavité, semi-continuité) en traitant de concert les cas projectifs et kählériens, puis discuterons des propriétés arithmétiques des λ_i et de quelques résultats plus fins qui, pour l'instant, n'ont été établis que pour des endomorphismes réguliers.

Remerciements.— Je remercie Charles Favre pour ses exposés sur les degrés dynamiques, qui m'ont servi de base de travail. Je remercie Junyi Xie d'avoir répondu à toutes mes questions. Ce travail a été financé par l'European Research Council (ERC GOAT 101053021).

2. INTERSECTIONS ET DEGRÉS DYNAMIQUES

2.1. Diviseurs de Cartier

Nous allons employer la théorie de l'intersection pour les diviseurs de Cartier sur des variétés projectives. Le chapitre 1.1 du livre de Lazarsfeld (2004), suivi du chapitre VI.2 de celui de Kollár (1996), offrent une présentation concise des résultats nécessaires.

Nous ne ferons pas d'hypothèse sur la caractéristique du corps de définition, noté \mathbf{k} , mais comme on peut toujours se ramener à ce cas, nous supposerons \mathbf{k} algébriquement clos. Les variétés seront supposées irréductibles et réduites; elles peuvent être singulières.

Soit X une telle variété. Les diviseurs de Cartier sont définis localement par des fonctions rationnelles. Plus précisément, si D est un diviseur de Cartier il existe un recouvrement ouvert U_i de X et des fonctions rationnelles $u_i \colon U_i \dashrightarrow \mathbf{k}$ tels que $D \cap U_i$ coïncide avec $\mathrm{Div}_0(u_i) - \mathrm{Div}_\infty(u_i)$ (le lieu des zéros moins le lieu des pôles, comptés avec multiplicité). Les u_i vérifient des relations $u_i = g_{ij}u_j$ sur $U_i \cap U_j$ où les g_{ij} sont régulières et ne s'annulent pas; ceci définit un cocycle $\{g_{ij}\} \in H^1(X; \mathcal{O}_X^{\times})$ qui, à son tour, détermine un fibré en droites L(D). Réciproquement, tout fibré en droites est associé à un diviseur. Nous jonglerons avec ces deux points de vue.

Un diviseur est effectif si l'on peut choisir des équations locales u_i qui sont régulières (sans pôles). Deux diviseurs sont linéairement équivalents s'il existe une fonction rationnelle $\xi \colon X \dashrightarrow \mathbf{k}$ telle que $D - D' = \mathrm{Div}_0(\xi) - \mathrm{Div}_\infty(\xi)$; cela revient à dire qu'ils déterminent des fibrés L(D) et L(D') isomorphes.

On note $\mathrm{Div}(X)$ le groupe abélien des diviseurs de Cartier à coefficients entiers, l'addition de deux diviseurs D et D' étant notée D+D'. Le groupe des classes d'isomorphismes de fibrés en droites sera noté $\mathrm{Pic}(X)$. Le produit tensoriel $L\otimes L'$ de deux fibrés en droites sera aussi noté L+L'; en particulier, nL et $L^{\otimes n}$ sont deux notations pour le même fibré. L'application $D\in\mathrm{Div}(X)\mapsto L(D)\in\mathrm{Pic}(X)$ est surjective et son noyau est le groupe des diviseurs linéairement équivalents à 0.

2.2. Produits d'intersection et équivalence numérique

Soit d la dimension de X. Le produit d'intersection est une application multilinéaire et symétrique de $\mathrm{Div}(X)^d$ vers \mathbf{Z} , notée $(D_1, D_2, \dots, D_d) \mapsto (D_1 \cdot D_2 \cdots D_d)$, qui vérifie les propriétés suivantes

- 1. si les D_i sont effectifs et s'intersectent transversalement en des points lisses de X, alors $(D_1 \cdot D_2 \cdots D_d)$ est égal au nombre d'intersections $\operatorname{card}(D_1 \cap \cdots \cap D_d)$;
- 2. $(D_1 \cdot D_2 \cdots D_d)$ ne dépend que des classes d'équivalence linéaire des D_i ;
- 3. si $f \colon Y \to X$ est un morphisme surjectif de degré fini entre variétés projectives de dimension d, alors

(6)
$$(f^*D_1 \cdot f^*D_2 \cdots f^*D_d) = \deg_{top}(f) (D_1 \cdot D_2 \cdots D_d)$$

pour tout d-uplet de diviseurs $D_i \in \text{Div}(X)$ (les f^*D_i étant obtenus en composant les équations locales de D_i avec f).

Dans cette dernière propriété, $\deg_{top}(f)$ est le degré de l'extension de corps de fonctions $\deg_{top}(f) = [\mathbf{k}(Y): f^*\mathbf{k}(X)]$; nous l'appelons degré topologique car, lorsque $\mathbf{k} = \mathbf{C}$, c'est aussi le nombre de préimages d'un point générique de X.

D'après la propriété (2.), les produits d'intersection peuvent aussi être définis pour des fibrés en droites L_i . Si $V \subset X$ est une sous-variété irréductible de dimension k,

 $(L_1 \cdots L_k \cdot V)$ désignera l'intersection des $L_{i|V}$ dans V, et nous emploierons la même notation pour des diviseurs. La propriété (3.) fournit alors la relation

(7)
$$(f^*D_1 \cdot f^*D_2 \cdots f^*D_k \cdot V) = (D_1 \cdot D_2 \cdots D_k \cdot f_*V),$$

où $f_*V = \deg_{top}(f_{|V})f(V)$ si $\dim(f(V)) = \dim(V)$ et $f_*V = 0$ si $\dim(f(V)) < \dim(V)$. On étend ces définitions aux sous-variétés réductibles de X par linéarité. Nous ferons indistinctement référence aux égalités (6) et (7) comme aux « formules de projection ».

Deux diviseurs $D, D' \in \text{Div}(X)$ sont numériquement équivalents si $(D \cdot C) = (D' \cdot C)$ pour toute courbe $C \subset X$. Ceci définit une relation d'équivalence $D =_{num} D'$ sur Div(X) et le quotient est le groupe de Néron-Severi $NS(X; \mathbf{Z})$. C'est un groupe abélien libre de rang fini, donc isomorphe à $\mathbf{Z}^{\rho(X)}$ pour un entier $\rho(X) \geq 1$ appelé nombre de Picard de X. On montre alors (voir Lazarsfeld, 2004, p. 19 et Corollary 1.4.38) que

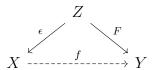
4.
$$(D_1 \cdot D_2 \cdots D_d) = (D'_1 \cdot D'_2 \cdots D'_d)$$
 si $D_i =_{num} D'_i$ pour tout i .

Nous noterons $N^i(X; \mathbf{Z})$ l'espace des cycles de codimension i modulo équivalence numérique. C'est aussi groupe abélien libre de rang fini, et $NS(X; \mathbf{Z}) = N^1(X; \mathbf{Z})$. Nous noterons $N^i(X; A) = N^i(X; \mathbf{Z}) \otimes_{\mathbf{Z}} A$ pour tout anneau A.

Dans la suite, les notations employées (D ou L) ne font pas de distinction entre un diviseur (resp. un fibré) et sa classe numérique.

2.3. Transformations rationnelles et degrés dynamiques

2.3.1. Le cas projectif. — Soit $f: X \dashrightarrow Y$ une application rationnelle dominante entre des variétés projectives de dimension d. Soit Z une variété projective, $\epsilon: Z \to X$ un morphisme birationnel et $F: Z \to Y$ un morphisme génériquement fini tels que $f = F \circ \epsilon^{-1}$. Un tel triplet est fourni, par exemple, en choisissant Z égal au graphe $\Gamma_f \subset X \times Y$ et en considérant les projections $\epsilon = (\pi_X)_{|\Gamma_f}$ et $F = (\pi_Y)_{|\Gamma_f}$.



Supposons X et Y plongées dans des espaces projectifs \mathbb{P}^N et \mathbb{P}^M et fixons des intersections hyperplanes H_X et H_Y de X et Y. Pour $0 \le i \le d$, définissons

$$\begin{split} \left(f^*H_Y^i \cdot H_X^{d-i}\right) &:= \left((F^*H_Y)^i \cdot (\epsilon^*H_X)^{d-i}\right) \\ &= \left(\underbrace{F^*H_Y \cdots F^*H_Y}_{i \text{ fois}} \cdot \underbrace{H_X \cdots H_X}_{d-i \text{ fois}}\right) \end{split}$$

le produit d'intersection étant calculé dans Z. Ces nombres d'intersections ne dépendent pas de la factorisation $f = F \circ \epsilon^{-1}$ choisie. Si, en effet, (Z', ϵ', F') est une autre factorisation de f, l'application birationnelle $(\epsilon')^{-1} \circ \epsilon \colon Z \dashrightarrow Z'$ peut-être factorisée en

 $(\epsilon')^{-1} \circ \epsilon = \eta' \circ \eta^{-1}$ où $\eta \colon W \to Z$ et $\eta' \colon W \to Z'$ sont des morphismes birationnels. Alors, η et η' étant de degrés 1, la formule de projection montre bien que

$$\begin{split} \left((F^*H_Y)^i \cdot (\epsilon^*H_X)^{d-i} \right) &= \left((\eta^*F^*H_Y)^i \cdot (\eta^*\epsilon^*H_X)^{d-i} \right) \\ &= \left((\eta'^*F'^*H_Y)^i \cdot (\eta'^*\epsilon^*H_X)^{d-i} \right) \\ &= \left((F'^*H_Y)^i \cdot (\epsilon'^*H_X)^{d-i} \right). \end{split}$$

Les quantités $(f^*H_Y^i \cdot H_X^{d-i})$ sont les degrés de f en codimension i (pour les polarisations H_X et H_Y). Nous les emploierons presqu'exclusivement lorsque X = Y et $H_X = H_Y$, en notant simplement H au lieu de H_X ; comme dans l'introduction, nous noterons alors $\deg_{H,i}(f)$ ou $\deg_i(f)$ ces degrés; ainsi, $\deg_i(f) = (f^*H^i \cdot H^{d-i})$.

Si $f: X \dashrightarrow X$ est dominante, les compositions $f^n = f \circ \cdots \circ f$ sont bien définies; ceci permet d'introduire les degrés dynamiques

$$\lambda_i(f) := \limsup_{n \to +\infty} \deg_i(f^n)^{1/n}.$$

Nous verrons que le choix de H ne change pas l'asymptotique de $n \mapsto \deg_i(f^n)$, si bien que $\lambda_i(f)$ ne dépend pas de H (ce que suggère la notation).

Remarque 2.1. — Ce point de vue sur les λ_i permet des analogies fructueuses avec la notion de facteur de dilatation pour le groupe modulaire d'une surface (Farb et Margalit, 2012) et avec la complexité dynamique d'intersection d'Arnol'd (1990).

Exemple 2.2. — Considérons le cas où X est l'espace projectif \mathbb{P}^d , muni de coordonnées homogènes $[x_0:\ldots:x_d]$. Soit $H\simeq \mathbb{P}^{d-1}$ un hyperplan de \mathbb{P}^d . Soit $f\colon \mathbb{P}^d \dashrightarrow \mathbb{P}^d$ une transformation rationnelle. Il existe alors d+1 polynômes homogènes $F_i\in \mathbf{k}[x_0,\ldots,x_d]$, de même degré et sans facteur commun, tels que $f[x_0:\ldots:x_d]=[F_0:\ldots:F_d]$. Le lieu d'indétermination $\mathrm{Ind}(f)$ coïncide avec le lieu des zéros communs des F_i . Par définition, le degré des F_i est le degré algébrique de f, noté $\mathrm{deg}_{alg}(f)$.

Si $g = [G_0 : \ldots : G_d]$ est une autre transformation dominante, alors $f \circ g = [H_0 : \ldots : H_d]$ où $H_i = F_i(G_0, \ldots, G_d)$, mais il se peut que ces polynômes H_i aient un facteur commun de degré ≥ 1 . Si Q est un plus grand facteur commun, alors $f \circ g$ est déterminée par les fonctions H_i/Q , et $\deg_{alg}(f \circ g) = \deg_{alg}(f) \deg_{alg}(g) - \deg(Q)$. Les degrés sont donc sous-multiplicatifs. Par exemple, $f[x_0 : x_1 : x_2] = [x_0^2 x_1^3 : x_1^2 x_2^3 : x_2^2 x_0^3]$ est de degré algébrique 5 mais f^2 est de degré algébrique 13 (après factorisation par $(x_0 x_1 x_2)^4$).

Exemple 2.3. — Supposons que $f: \mathbb{P}^d \longrightarrow \mathbb{P}^d$ est monomiale, c'est-à-dire que les F_i sont des monômes $x_0^{a_{i,0}} \cdots x_d^{a_{i,d}}$, les $a_{i,j}$ formant les coefficients d'une matrice $A \in \mathsf{Mat}_{d+1}(\mathbf{Z})$ à coefficients ≥ 0 . Dans la carte affine $x_0 = 1$, avec les coordonnées affines (x_1, \ldots, x_d) , f est encore définie par des monômes $x_1^{b_{i,1}} \ldots x_d^{b_{i,d}}$ associés à une matrice $B \in \mathsf{Mat}_d(\mathbf{Z})$. Comme montré par Favre et Wulcan (2012) et Lin (2012), le i-ème degré dynamique $\lambda_i(f)$ coïncide avec le rayon spectral de l'action de B sur le produit extérieur $\wedge^i \mathbf{R}^d$.

2.3.2. Le cas kählérien. — Supposons ici que X est une variété complexe, compacte, connexe et kählérienne de dimension d. Soit f une transformation méromorphe dominante de X; ceci signifie que le graphe Γ_f de f est un sous-ensemble analytique irréductible de $X \times X$ tel que (a) les projections π_1 et $\pi_2 \colon \Gamma_f \to X$ sur le premier et le second facteur sont surjectives et (b) π_1 est de degré topologique égal à 1 (l'image réciproque d'un point général de X est réduite à un point). L'application π_1 est donc biméromorphe, et $f = \pi_2 \circ \pi_1^{-1}$. L'ensemble des $x \in X$ tels que $\pi_2(\pi_1^{-1}\{x\})$ est de dimension ≥ 1 est le lieu d'indétermination $\operatorname{Ind}(f)$.

Munissons X d'une forme de Kähler κ et définissons

$$\deg_{\kappa,i}(f) = \int_{X^{\circ}} (f^* \kappa^i) \wedge \kappa^{d-i},$$

où $X^{\circ} = X \setminus \operatorname{Ind}(f)$ et $\kappa^{i} = \kappa \wedge \cdots \wedge \kappa$ (*i* termes). On montre que ces intégrales convergent, sont des réels positifs, et satisfont

$$\deg_{\kappa,i}(f) = \int_{\Gamma_{\epsilon}^{reg}} \pi_2^* \kappa^i \wedge \pi_1^* \kappa^{d-i},$$

l'intégrale étant calculée sur la partie régulière de Γ_f . Le degré dynamique $\lambda_i(f)$ peut alors être défini comme la limite supérieure des $\deg_{\kappa,i}(f^n)^{1/n}$; il ne dépend pas du choix de κ car si κ' est une autre forme de Kähler, $a^{-1}\kappa \leq \kappa' \leq a\kappa$ pour une constante a > 1.

Si $X \subset \mathbb{P}^N(\mathbf{C})$ est projective, H est une intersection hyperplane et κ est la restriction de la forme de Fubini-Study à X, alors $\deg_{H,i}(f) = \deg_{\kappa,i}(f)$.

2.4. Les opérateurs f^* et les transformations régulières

Supposons X kählérienne compacte et f méromorphe, et conservons les notations du paragraphe 2.3.2. Si α est une forme fermée de type (i,i) sur X, l'image réciproque $\pi_2^*\alpha$ peut être projetée par π_1 comme courant de type (i,i) sur X: ce courant est fermé et sa classe de cohomologie ne dépend que de celle de α . Ceci définit un endomorphisme linéaire $f^* \colon H^{i,i}(X;\mathbf{R}) \to H^{i,i}(X;\mathbf{R})$. Une construction analogue fournit des endomorphismes $f^* \colon N^i(X;\mathbf{Z}) \to N^i(X;\mathbf{Z})$ lorsque f est une transformation rationnelle d'une variété projective définie sur un corps \mathbf{k} quelconque (voir Fulton, 1998). Mais attention, en général $(f^n)^* \neq (f^*)^n$ (voir l'exemple 2.2 : les degrés ne sont que sous-multiplicatifs).

1. Si f est rationnelle (resp. méromorphe), alors $\lambda_i(f)$ est la limite de la suite $\|(f^n)_{N^i(X;\mathbf{R})}^*\|^{1/n}$ (resp. $de \|(f^n)_{H^{i,i}(X;\mathbf{R})}^*\|^{1/n}$).

Esquissons la preuve lorsque f est holomorphe et i=1. Pour cela, notons $\operatorname{Kah}(X)$ le cône des classes des formes de Kähler. Puisque $\operatorname{Kah}(X)$ est ouvert, nous pouvons fixer des formes de Kähler γ_j qui induisent une base de $H^{1,1}(X;\mathbf{R})$. Soient c_j des constantes telles que $\gamma_j \leq c_j \kappa$. La forme linéaire $\ell_{\kappa} \colon \gamma \mapsto \int_X \gamma \wedge \kappa^{d-1}$ étant strictement positive sur $\operatorname{Kah}(X)$, il existe une constante a>0 telle que $\|\gamma\| \leq a\ell_{\kappa}(\gamma)$ sur $\operatorname{Kah}(X)$. Comme $\operatorname{Kah}(X)$ est f^* -invariant, ceci montre que $\|(f^n)^*\gamma_j\| \leq ac_j\ell_{\kappa}((f^n)^*\kappa) = ac_j\operatorname{deg}_1(f^n)$, puis que $\|(f^n)^*\| \leq c^{ste}\operatorname{deg}_1(f^n)$ car les γ_j fournissent une base de $H^{1,1}(X;\mathbf{R})$.

2. Soit $f: X \to X$ un endomorphisme d'une variété projective (resp. compacte kählérienne). Pour tout $i, \lambda_i(f)$ est le rayon spectral de la transformation linéaire $f^*: N^i(X; \mathbf{R}) \to N^i(X; \mathbf{R})$ (resp. de $f^*: H^{i,i}(X; \mathbf{R}) \to H^{i,i}(X; \mathbf{R})$).

En effet, dans ce cas, $(f^n)^* = (f^*)^n$, si bien qu'il s'agit d'itérer un seul opérateur linéaire. Supposons maintenant X kählérienne compacte et notons $\lambda_{p,q}(f)$ la limite de $\|(f^n)^*_{H^{p,q}(X;\mathbf{R})}\|^{1/n}$ (si bien que $\lambda_{p,p}(f) = \lambda_p(f)$). Dinh (2005) montre que

3. $\lambda_{p,q}(f) \leq \sqrt{\lambda_p(f)\lambda_q(f)}$ pour toute transformation méromorphe dominante. Ainsi, les degrés dynamiques contrôlent la suite $(f^n)^*$ sur toute la cohomologie de X.

L'idée clé est de considérer l'action diagonale de f sur X^2 et de remarquer que, si α est une (p,q)-forme sur X, alors $\pi_1^*\alpha \wedge \pi_2^*\overline{\alpha}$ est une (p+q,p+q)-forme sur X^2 , π_1 et π_2 désignant les deux projections naturelles. Il suffit donc de contrôler l'action de (f,f) sur $H^{p+q,p+q}(X^2;\mathbf{R})$ pour contrôler celle de f sur la classe de α . Mais l'action de (f,f) sur $H^{p+q,p+q}(X^2;\mathbf{R})$ est contrôlée par celle sur $(\pi_1^*\kappa + \pi_2^*\kappa)^{p+q}$, donc par celle de f sur les puissances de κ . Ceci donne directement une majoration du type $\lambda_{p,q} \leq \max\{\lambda_i(f); i \leq p+q\}$. Pour obtenir (3.), Dinh remarque que $\pi_1^*\alpha \wedge \pi_2^*\overline{\alpha}$ est majorée, à une constante multiplicative près, par $\pi_1^*\kappa^p \wedge \pi_2^*\kappa^q + \pi_1^*\kappa^q \wedge \pi_2^*\kappa^p$.

L'analogue de (3.) pour la cohomologie ℓ -adique d'une variété projective n'est connu que lorsque f est régulière (Esnault et Srinivas, 2013; Truong, 2020; Xie, 2024b).

3. LE GROUPE DE NÉRON-SEVERI

3.1. Diviseurs amples, nef ou gros

Un fibré en droites L est très ample s'il existe un plongement $X \subset \mathbb{P}^N$ tel que L soit isomorphe à la restriction du fibré $\mathcal{O}_{\mathbb{P}^N}(1)$ à X; il est ample si $L^{\otimes m}$ est très ample pour un $m \geq 1$. De même, un diviseur D est (très) ample si $\mathcal{O}_X(D)$ l'est. Le critère de Nakai-Moishezon montre que D est ample si $\left(D^{\dim(V)} \cdot V\right) > 0$ pour toute sous-variété irréductible $V \subset X$. Ceci montre que l'amplitude est une condition numérique et permet d'introduire l'ensemble $\mathrm{Amp}(X) \subset \mathrm{NS}(X;\mathbf{R})$ formé des combinaisons convexes de classes de diviseurs entiers amples. L'adhérence de $\mathrm{Amp}(X)$ est le cône $\mathrm{Nef}(X)$; d'après un théorème de Kleiman, $D \in \mathrm{Nef}(X)$ si et seulement si $(D \cdot C)$ pour toute courbe $C \subset X$; un diviseur D dont la classe appartient à $\mathrm{Nef}(X)$ est dit nef. Les cônes $\mathrm{Amp}(X)$ et $\mathrm{Nef}(X)$ sont convexes et saillants, dans le sens précis suivant : si H est une intersection hyperplane de X, alors

(8)
$$\left\{ E \in \operatorname{Nef}(X); \; \left(H^{d-1} \cdot E \right) \le 1 \right\} \quad \text{est compact}$$

(nous avons employé l'analogue kählérien de cette compacité en montrant l'assertion (1.) du paragraphe 2.4). Le cône ample est l'intérieur du cône nef.

Si L est un fibré en droites, $H^0(X;L)$ désigne l'espace de ses sections globales, $h^0(X;L)$ la dimension de $H^0(X;L)$ et $\mathbf{N}(X;L) \subset \mathbf{N}$ le semi-groupe des entiers m tels que $h^0(X;L)^{\otimes m} \geq 1$. La dimension de Kodaira-Iitaka de L est définie par $\kappa(X;L) =$

 $\limsup_m \log(h^0(X; L^{\otimes m}))/\log(m)$. C'est un entier $\leq \dim(X)$, et L est dit gros précisément lorsque $\kappa(X; L) = \dim(X)$; dans ce cas, $\mathbf{N}(X; L)$ contient tout entier suffisamment grand. À nouveau, un diviseur D est gros si $\mathcal{O}_X(D)$ l'est. Ainsi, D est gros s'il existe une constante c > 0 telle que

$$h^0(X; \ell D) > c\ell^{dim(X)}$$

pour tout entier ℓ suffisamment grand. Les classes de diviseurs gros engendrent un cône convexe ouvert $\operatorname{Big}(X) \subset \operatorname{NS}(X;\mathbf{R})$.

Le cône effectif est constitué des classes de \mathbf{R} -diviseurs effectifs et son adhérence est le cône pseudo-effectif $\mathrm{Psef}(X)$. Le lemme de Kodaira (Lazarsfeld, 2004, Proposition 2.2.6) permet d'établir que le cône gros est l'intérieur de $\mathrm{Psef}(X)$ et que $\mathrm{Psef}(X)$ en est l'adhérence.

Dans le cas où X est une variété complexe, compacte, kählérienne, on emploiera les définitions suivantes (Demailly et Paun, 2004): à la place du cône ample, le cône de Kähler Kah(X); pour le cône nef, l'adhérence de Kah(X); pour le cône pseudo-effectif, celui des classes de courants positifs fermés de bidegré (1,1); pour le cône gros, l'intérieur du cône pseudo-effectif. Les éléments du cône gros sont alors représentés par des courants "kählériens" (voir Demailly et Paun, 2004, Definition 1.6).

3.2. Formule de Riemann-Roch asymptotique

Soit X une variété projective (irréductible) de dimension d et D un diviseur. Notons $H^i(X; \mathcal{O}_X(D))$ (ou simplement $H^i(X; D)$) les groupes de cohomologie de Čech du faisceau $\mathcal{O}_X(D)$. La caractéristique d'Euler $\chi(X; D)$ est, par définition, la somme alternée des dimensions de ces groupes : $\chi(X; D) = h^0(X; D) - h^1(X; D) + \cdots + (-1)^d h^d(X; D)$. La formule de Riemann-Roch, dans sa version asymptotique, stipule que $m \mapsto \chi(X; mD)$ est un polynôme de degré $\leq d$ vérifiant

$$\chi(X; mD) = \frac{1}{d!} (D^d) m^d + O(m^{d-1}).$$

Cette estimation permet de montrer que D est gros si l'on sait contrôler les groupes $H^i(X; mD)$ pour $i \geq 1$. Par exemple, ces groupes de cohomologie supérieurs sont nuls dès que D est ample et m est suffisamment grand (théorème d'annulation de Serre).

3.3. Critère de Siu

Théorème 3.1 (Critère de Siu). — Soit X une variété projective de dimension d. Soient D et E des \mathbf{Q} -diviseurs nef (resp. des classes nef dans $\mathrm{NS}(X;\mathbf{R})$). Si

$$(D^d) > d(D^{d-1} \cdot E),$$

alors D - E est gros (resp. est une classe grosse).

Par exemple, $D \in \text{Nef}(X)$ est gros si et seulement si $(D^d) > 0$. Lorsque X est une variété compacte kählérienne, l'analogue du théorème 3.1 est établi par Chiose (2016), Xiao (2018) et Popovici (2016).

Démonstration. — Nous pouvons remplacer simultanément D par $D + \varepsilon H$ et E par $E + \varepsilon H$ avec $\varepsilon \in \mathbb{Q}_{>0}$ petit et H ample, car ceci ne change pas la différence D - E. Par homogénéité, nous pouvons donc supposer que D et E sont tous les deux très amples et entiers (appliquer le théorème de Kleiman).

Fixons des membres généraux E_1, \ldots, E_m du système linéaire |E|. Alors

$$H^{0}(X, \mathcal{O}_{X}(m(D-E))) = H^{0}(X, \mathcal{O}_{X}(mD - \sum_{i=1}^{m} E_{i})))$$

où le membre de droite est l'espace des sections globales de $\mathcal{O}_X(mD)$ s'annulant le long des E_i (à l'ordre 1 au moins). La suite exacte de faisceaux $0 \to \mathcal{O}_X(m(D-E)) \to \mathcal{O}_X(mD) \to \bigoplus_{i=1}^m \mathcal{O}_{E_i}(mD) \to 0$ fournit la suite exacte longue

$$0 \to H^0(X, \mathcal{O}_X(m(D-E))) \to H^0(X, \mathcal{O}_X(mD)) \to \bigoplus_{i=1}^m H^0(E_i, \mathcal{O}_{E_i}(mD)) \to \cdots$$

On en tire $h^0(X, \mathcal{O}_X(m(D-E))) \ge h^0(X, \mathcal{O}_X(mD)) - \sum_{i=1}^m h^0(E_i, \mathcal{O}_{E_i}(mD))$ puis, en appliquant la formule de Riemann-Roch asymptotique,

$$h^{0}(X, \mathcal{O}_{X}(m(D-E))) \geq \frac{\left(D^{d}\right)}{d!}m^{d} - \sum_{i=1}^{m} \left\{ \frac{\left(D^{d-1} \cdot E_{i}\right)}{(d-1)!}m^{d-1} + O(m^{d-2}) \right\} + O(m^{d-1}).$$

Dans cette dernière inégalité, les constantes qui sont implicites dans la notation $O(\cdot)$ ne dépendent pas du choix des E_i (elles ne dépendent que de |E|). Ainsi, $h^0(X, \mathcal{O}_X(m(D-E)))$ est minoré par $\frac{1}{d!}\{(D^d) - d(D^{d-1} \cdot E)\}m^d + O(m^{d-1})$ et ceci montre que D - E est gros car $(D^d) - d(D^{d-1} \cdot E) > 0$.

Le cas de $NS(X; \mathbf{R})$ résulte du cas des **Q**-diviseurs par approximation.

3.4. Inégalités de Siu

3.4.1. Premières inégalités. — L'argument fourni pour obtenir le théorème 3.1 permet également de démontrer le résultat suivant, de nature légèrement différente.

Théorème 3.2 (Inégalité de Siu). — Soient $D, E \in NS(X; \mathbf{R})$ des classes réelles nef vérifiant $(D^d) > 0$. Alors

$$E \leq_{psef} d \frac{\left(E \cdot D^{d-1}\right)}{(D^d)} D,$$

au sens où la différence est pseudo-effective. En particulier, si $C_1, \ldots, C_{d-1} \in \text{Nef}(X)$, alors $(D^d)(E \cdot C_1 \cdots C_{d-1}) \leq d(E \cdot D^{d-1})(D \cdot C_1 \cdots C_{d-1})$.

Il s'agit en effet d'établir la première assertion, la seconde résultant du fait que $\operatorname{Nef}(X)$ est l'adhérence du cône ample. Pour cela, on peut approximer D et E par les classes de diviseurs rationnels amples puis, par homogénéité, supposer D et E entiers et très amples. Il suffit alors d'appliquer l'inégalité de Riemann-Roch asymptotique, ici pour rD - E en choisissant $r > d\left(E \cdot D^{d-1}\right) / \left(D^d\right)$.

3.4.2. Inégalités supérieures. — Montrons comment ce type d'inégalité admet des généralisations pour des produits d'intersection supérieurs. Soient D et E deux classes nef. Approximons les par des classes rationnelles amples, encore notées D et E. Si l'on restreint l'une de ces classes à une hypersurface $V \subset X$, l'inégalité de Siu donne

$$E_{|V|} \leq_{psef} (d-1) \frac{(E_{|V|} \cdot D_{|V|}^{d-2})}{(D_{|V|}^{d-1})} D_{|V|}$$

En choisissant V dans le système linéaire |E|, nous obtenons

$$E^{2} \le (d-1)\frac{(E^{2} \cdot D^{d-2})}{(E \cdot D^{d-1})}D \cdot E,$$

l'inégalité signifiant maintenant que $(E^2 \cdot C_1 \cdots C_{d-2}) \leq (d-1) \frac{(E^2 \cdot D^{d-2})}{(E \cdot D^{d-1})} (D \cdot E \cdot C_1 \cdots C_{d-2})$, pour toutes classes nef C_i . En prenant $C_1 = \cdots = C_{k-2} = E$ et $C_{k-1} = \cdots = C_{d-2} = D$ nous obtenons

$$(E^k \cdot D^\ell) \le (d-1) \frac{(E^2 \cdot D^{d-2})}{(E \cdot D^{d-1})} (E^{k-1} \cdot D^{\ell+1})$$

pour toute paire d'entiers positifs telle que $k+\ell=n$. Ce type d'inégalités a été généralisé par Dang (2020) puis par Jiang et Li (2023) avec des constantes optimales, et l'analogue kählérien est décrit par Lehmann et Xiao (2017) :

Théorème 3.3 (Inégalités de Siu). — Soit X une variété projective (resp. kählérienne compacte) de dimension d. Si E_1, \dots, E_j et D sont des classes nef, alors

$$(D^d) E_1 \cdots E_j \le \begin{pmatrix} d \\ j \end{pmatrix} (E_1 \cdots E_j \cdot D^{d-j}) D^j$$

au sens où $(D^d)(E_1 \cdots E_j \cdot C_1 \cdots C_{d-j}) \leq {d \choose j}(E_1 \cdots E_j \cdot D^{d-j})(D^j \cdot C_1 \cdots C_{d-j})$ pour tout choix de classes nef C_i .

3.5. Inégalités de Khovanskii et Teissier

Supposons $\dim(X)=2$. Le produit d'intersection définit alors une forme bilinéaire symétrique sur $\mathrm{NS}(X;\mathbf{R})$ et le théorème de l'indice de Hodge affirme que cette forme d'intersection est non-dégénérée et de signature $(1,\rho(X)-1)$. De même, dans le cas kählérien, le groupe de cohomologie $H^{1,1}(X;\mathbf{R})$ est muni d'une forme d'intersection $(\alpha,\beta)\mapsto \int_X \alpha\wedge\beta$ non-dégénérée de signature $(1,h^{1,1}(X;\mathbf{R})-1)$.

Les classes amples vérifient $(D^2) > 0$ et les classes nef $(D^2) \ge 0$. Si D et E sont deux classes nefs linéairement indépendantes, la signature de la forme d'intersection sur $\operatorname{Vect}_{\mathbf{R}}(D,E)$ est égale à (1,1); son déterminant est donc négatif; donc $(D \cdot E)^2 \ge (D^2)(E^2)$ pour toute paire de classes nef (y compris si D et E sont proportionnelles). Cette inégalité s'étend de la façon suivante à toute variété projective.

THÉORÈME 3.4. — Soit X une variété projective de dimension d. Si D_1, \ldots, D_k et E_1, \ldots, E_{d-k} sont des classes nef de $NS(X; \mathbf{R})$, alors

$$(D_1 \cdots D_k \cdot E_1 \cdots E_{d-k})^k \ge \prod_{i=1}^k \left(D_i^k \cdot E_1 \cdots E_{d-k} \right).$$

En particulier, si D et E sont des classes nef, alors

$$\left(D^k \cdot E^{d-k}\right)^{\ell} \ge \left(D^{\ell} \cdot E^{d-\ell}\right)^k \left(E^d\right)^{\ell-k}$$

pour toute paire d'entiers $0 \le k \le \ell \le d$.

Nous renvoyons au paragraphe 1.6.1 du livre de Lazarsfeld (2004) pour une preuve (par récurrence à partir du cas des surfaces). En corollaire, on montre facilement que $((D+E)^d)^{1/d} \geq (E^d)^{1/d} + (E^d)^{1/d}$ pour toute paire de classes nef, et que la suite $k \mapsto \log \left(D^k \cdot E^{d-k}\right)$ est concave. Ces propriétés sont similaires à celles vérifiées par les volumes mixtes de corps convexes et la géométrie torique permet d'expliquer cette analogie : voir Gromov (1990), Teissier (1979) et le livre de Burago et Zalgaller (1988).

De même, dans le cas kählérien,

(9)
$$(u_1 \cdots u_k \cdot v_1 \cdots v_{d-k})^k \ge \prod_{j=1}^d \left(u_j^k \cdot v_1 \cdots v_{d-k} \right)$$

dès que les u_i et v_j sont des classes nef de $H^{1,1}(X; \mathbf{R})$. Ceci se déduit du cas projectif en appliquant la méthode de Monge-Ampère, comme décrite par Demailly (1993).

Remarque 3.5. — Les inégalités de Siu sont appelées inégalités de Khovanskii et Teissier inverses par certains auteurs. La raison est la suivante. Si A est une classe ample et D et E sont des classes nef, les inégalités de Siu et de Khovanskii et Teissier correspondent respectivement à la majoration et la minoration de $(D^k \cdot E^{d-k})$ dans

$$\left(D^d\right)^{k/d} \left(E^d\right)^{(d-k)/d} \le \left(D^k \cdot E^{d-k}\right) \le \binom{d}{k} \frac{1}{(A^d)} \left(D^k \cdot A^{d-k}\right) \left(E^{d-k} \cdot A^k\right).$$

4. PREMIÈRES PROPRIÉTÉS DES DEGRÉS DYNAMIQUES

Le but principal de cette section est d'établir le théorème suivant ainsi que son compagnon : le théorème de sous-multiplicativité des degrés.

Théorème 4.1. — Soit X une variété projective, définie sur un corps algébriquement clos. Soit d la dimension de X. Soit $f: X \dashrightarrow X$ une transformation rationnelle dominante. Si $L \in NS(X; \mathbf{R})$ est une classe nef et grosse sur X, les limites

$$\lambda_k(f) = \lim_{n \to +\infty} \left((f^n)^* L^k \cdot L^{d-k} \right)^{1/n}$$

existent pour tout $0 \le k \le d$. De plus,

1. $\lambda_0(f) = 1$, $\lambda_d(f)$ est le degré topologique de f, et $\lambda_k(f) \geq 1$ pour tout k;

- 2. la définition de $\lambda_k(f)$ ne dépend pas de L;
- 3. les λ_k sont des invariants de conjugaison : si $g: Y \dashrightarrow X$ est une application birationnelle, alors $\lambda_k(g^{-1} \circ f \circ g) = \lambda_k(f)$ pour tout $0 \le k \le d$;
- 4. la suite $(\lambda_0(f), \lambda_1(f), \dots, \lambda_d(f))$ est log-concave.

Le même énoncé est valable pour les applications méromorphes dominantes des variétés compactes kählériennes en remplaçant L par une classe de Kähler (Dinh et Sibony, 2004). La démonstration que nous donnerons s'applique directement à ce cadre.

Les ingrédients clé sont (a) définir correctement les produits $((f^n)^*L^k \cdot L^{n-k})$ (voir le paragraphe 2.3) et (b) la propriété de sous-multiplicativité démontrée au paragraphe 4.1.

4.1. Sous-multiplicativité

Théorème 4.2. — Soient X_1 , X_2 et X_3 des variétés projectives de dimension d munies de classes nef et grosses L_1 , L_2 et L_3 . Il existe une constante C > 0 telle que

$$\left((g\circ f)^*L_3^k\cdot L_1^{d-k}\right)\leq C\left(g^*L_3^k\cdot L_2^{d-k}\right)\left(f^*L_2^k\cdot L_1^{d-k}\right)$$

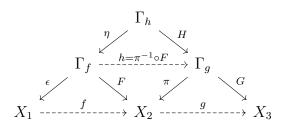
pour toute paire d'applications rationnelles dominantes $f: X_1 \to X_2, g: X_2 \to X_3$.

Remarque 4.3. — Lorsque $X_1 = X_2 = X_3$ sont une seule et même variété, munies du même fibré L, la démonstration montrera que la constante $c_k = (L^d)^{-1} \binom{d}{k}$ convient.

Remarque 4.4. — Soit $h: Y \to X$ un morphisme dominant et génériquement fini. Si $D \in NS(X; \mathbf{R})$ est une classe nef, grosse, ou pseudo-effective, alors h^*D aussi.

En effet, la formule de projection permet d'écrire $h_*(h^*D \cdot C) = (D \cdot h_*(C))$ pour toute courbe $C \subset Y$ (voir le paragraphe 2.2). Si D est nef, on en déduit que $(h^*D \cdot C) \geq 0$ pour toute courbe, donc que h^*D est nef. Pour le reste, il suffit de remarquer que si L est gros alors h^*L aussi car l'on peut prendre les images réciproques des sections de L (dans le cas kählérien, on peut prendre l'image réciproque d'un courant de Kähler).

Démonstration du théorème 4.2. — Notons Γ_f la normalisation du graphe de f, et $\epsilon \colon \Gamma_f \to X_1$ et $F \colon \Gamma_f \to X_2$ les projections sur X_1 et X_2 respectivement. Le morphisme ϵ est birationnel, et $f = F \circ \epsilon^{-1}$. Notons Γ_g la normalisation du graphe de g et $\pi \colon \Gamma_g \to X_2$ et $G \colon \Gamma_g \to X_3$ les projections. Enfin, notons $h \colon \Gamma_f \dashrightarrow \Gamma_g$ l'application définie par $h = \pi^{-1} \circ F$. Lui correspond de même un graphe Γ_h et deux projections $\eta \colon \Gamma_h \to \Gamma_f$, $H \colon \Gamma_h \to \Gamma_g$. Voici le diagramme commutatif correspondant.



Nous voulons calculer $((g \circ f)^* L_3^k \cdot L_1^{d-k})$ qui, par définition, est le produit d'intersection entre $(G \circ H)^* L_3^k$ et $(\epsilon \circ \eta)^* L_1^{d-k}$. En notant $b_k := \binom{d}{k}$, les inégalités de Siu donnent

$$(\pi^* L_2^d) G^* L_3^k \le b_k (G^* L_3^k \cdot \pi^* L_2^{d-k}) \pi^* L_2^k$$

car la remarque 4.4 montre que toutes les classes en présence sont nef et grosses. D'après la formule de projection, $((\pi^*L_2)^d) = (L_2^d)$. Par définition, $(g^*L_3^k \cdot L_2^{d-k}) = (G^*L_3^k \cdot \pi^*L_2^{d-k})$. Ainsi, l'inégalité précédente peut être réécrite $(L_2^d)G^*L_3^k \leq b_k(g^*L_3^k \cdot L_2^{d-k})\pi^*L_2^k$. En appliquant H^* , nous obtenons finalement

$$(L_2^d)H^*G^*L_3^k \le b_k(g^*L_3^k \cdot L_2^{d-k})H^*\pi^*L_2^k.$$

car H est un morphisme dominant et génériquement fini. Intersectons avec $(\epsilon \circ \eta)^* L_1^{d-k}$. La classe $(\epsilon \circ \eta)^* L_1$ étant nef, elle intersecte positivement toute classe nef, donc

$$(H^*G^*L_3^k \cdot (\epsilon \circ \eta)^*L_1^{d-k}) \le b_k \frac{(g^*L_3^k \cdot L_2^{d-k})}{(L_2^d)} (H^*\pi^*L_2^k \cdot (\epsilon \circ \eta)^*L_1^{d-k}).$$

Par ailleurs, le diagramme commutatif ci-dessus montre que

$$\begin{split} (H^*\pi^*L_2^k \cdot (\epsilon \circ \eta)^*L_1^{d-k}) &= (\eta^*F^*L_2^k \cdot \eta^*\epsilon^*L_1^{d-k}) \\ &= (F^*L_2^k \cdot \epsilon^*L_1^{d-k}) \\ &= (f^*L_2^k \cdot L_1^{d-k}) \end{split}$$

car η est un morphisme birationnel. Finalement,

$$((g \circ f)^* L_3^k \cdot L_1^{d-k}) \le \frac{b_k}{(L_2^d)} (g^* L_3^k \cdot L_2^{d-k}) (f^* L_2^k \cdot L_1^{d-k}),$$

ce qu'il fallait démontrer.

4.2. Démonstration du théorème 4.1

4.2.1. Existence. — Définissons c_k comme à la remarque 4.3. Le théorème de sous-multiplicativité montre que $n \mapsto u(n) = c_k((f^n)^*L^k \cdot L^{d-k})$ est une suite sous-multiplicative : $u(n+m) \leq u(n)u(m)$. Le lemme de Fekete montre alors que $u(n)^{1/n}$ converge vers son infimum, et l'on conclut en remarquant que $c_k^{1/n}$ tend vers 1.

Les produits d'intersection utilisés pour définir les $\lambda_k(f)$ sont des entiers strictement positifs (f étant dominante) donc $\lambda_k(f) \geq 1$ pour tout k. Pour k = 0, $\lambda_0(f) = \lim_n (L^d)^{1/n} = 1$. Pour k = d, $((f^n)^*L^d) = \deg_{top}(f^n)(L^d) = (\deg_{top}(f))^n(L^d)$ donc $\lambda_d(f) = \deg_{top}(f)$. Ceci montre la première propriété énoncée.

4.2.2. Invariances. — Montrons, dans cet ordre, les propriétés d'invariance (3) et (2) du théorème 4.1. Soit $g: Y \dashrightarrow X$ une application birationnelle. Munissons X et Y de classes nef et grosses L_X et L_Y . Le théorème de sous-multiplicativité fournit une constante C telle que $\left((g^{-1} \circ f^n \circ g)^* L_Y^k \cdot L_Y^{d-k}\right) \le C\left((f^n)^* L_X^k \cdot L_X^{d-k}\right)$ pour tout $n \ge 1$. Donc $\lambda_k(f) \ge \lambda_k(g^{-1} \circ f^n \circ g)$, les degrés dynamiques étant respectivement calculés avec L_X et L_Y . Par symétrie, $\lambda_k(f) = \lambda_k(g^{-1} \circ f^n \circ g)$.

Supposons maintenant que L et L' sont des classes nef et grosses de $NS(X; \mathbf{R})$. Le même argument, appliqué à $g = id_X \colon X \to X$, démontre l'assertion (2).

4.2.3. Log-concavité. — D'après les inégalités de Khovanskii et Teissier, si D et E sont des classes nef, alors $k \in \{0, 1, ..., d\} \mapsto (D^k \cdot E^{d-k})$ est une suite log-concave. En appliquant cette inégalité à $\alpha = (f^n)^*L$ et $\beta = L$, ou plus précisément à leurs images réciproques sur le graphe Γ_{f^n} , nous obtenons

$$\left((f^n)^* L^k \cdot L^{d-k} \right)^2 \ge \left((f^n)^* L^{k-1} \cdot L^{d-k+1} \right) \left((f^n)^* L^{k+1} \cdot L^{d-k-1} \right);$$

pour conclure il suffit de passer à la limite après avoir extrait des racines n-èmes.

4.3. Fibrations invariantes

Supposons qu'il existe une fibration $\pi\colon X\to Y$ qui est équivariante sous l'action de $f\colon X\dashrightarrow X$: ceci signifie qu'il existe une transformation rationnelle $f_Y\colon Y\dashrightarrow Y$ telle que $\pi\circ f=f_Y\circ\pi$. Il est alors possible de définir des degrés dynamiques relatifs à la fibration π , notés $\lambda_i(f;\pi)$, pour $0\leq i\leq \dim(X)-\dim(Y)$. On montre alors que

$$\lambda_i(f) = \max_j \lambda_j(f_Y) \lambda_{i-j}(f; \pi)$$

où j décrit l'ensemble des entiers positifs tels que $j \leq \dim(Y)$ et $0 \leq i - j \leq \dim(X) - \dim(Y)$. Nous renvoyons le lecteur à Dinh et Nguyên, 2011 et Dang, 2020; Truong, 2020 pour cette formule et la définition des degrés relatifs.

4.4. Exemples

4.4.1. Croissance sous-exponentielle. — Si $\lambda_i(f) = 1$ pour une codimension $i \neq 0, d$, alors $\log(\lambda_0(f)) = 0 = \log(\lambda_i(f))$ et la log-concavité montre que $\lambda_j(f) = 1$ pour tout j; en particulier, $\lambda_d(f) = 1$ et f est birationnelle. Ceci montre le corollaire suivant.

COROLLAIRE 4.5. — Soit f une transformation rationnelle dominante d'une variété projective (resp. compacte kählérienne). L'un des $\lambda_i(f)$ avec $1 \leq i \leq \dim(X) - 1$ est égal à 1 si et seulement si $\lambda_i(f) = 1$ pour tout i. Dans ce cas, f est birationnelle.

Un problème important est de déterminer les comportements possibles des suites $n \mapsto \deg_i(f^n)$ lorsque les $\lambda_i(f)$ valent 1. Tous les exemples connus aujourd'hui ont une croissance polynomiale : il existe un entier $a(i) \ge 0$ tel que $n^{-a(i)} \deg_i(f^n)$ converge vers une constante strictement positive (voir les paragraphes 7.2 et 8.2).

Exemple 4.6. — Soit f un endomorphisme (régulier) de l'espace affine \mathbb{A}^d . Si $\deg(f^n) = o(n^{1/d})$ et n est suffisamment grand, les endomorphismes id, f, ..., f^n vérifient une relation linéaire dans l'espace vectoriel $\operatorname{End}(\mathbb{A}^d)$, que l'on peut écrire $f^k = \sum_{j=0}^{k-1} \alpha_j f^j$. On en déduit que $(\deg(f^n))$ est bornée (Urech, 2018; Cantat et Xie, 2020).

Exemple 4.7. — Soient E une courbe elliptique et f l'automorphisme de $E \times E$ défini par f(x,y)=(x,y+x). Munissons $E \times E$ de la polarisation H donnée par la somme des courbes $E \times \{0\}$ et $\{0\} \times E$. Comme $f^n(x,y)=(x,y+nx)$ et comme l'endomorphisme de E donné par $x \mapsto nx$ est de degré n^2 , on trouve $\deg_1(f^n)=2+n^2 \simeq n^2$.

4.4.2. Minoration de λ_1 en dimension 2. — Le théorème suivant est dû à Xie (2015, 2024a).

THÉORÈME 4.8. — Soient X une surface projective et $f: X \dashrightarrow X$ une transformation rationnelle dominante. Soit L un fibré en droites gros et nef sur X. Notons $\deg_1(f^n) = ((f^n)^*L \cdot L)$. Alors

$$\lambda_1(f) \ge \frac{1}{4} \frac{\deg_1(f^2)}{\deg_1(f)}.$$

Remarque 4.9. — La constante 1/4 est optimale. D'après l'exemple 4.7, il existe en effet des exemples pour lesquels $\deg_1(f^n) \simeq cn^2$ avec c > 0. Pour une telle transformation, $\lambda_1(f^m) = 1$ tandis que $\deg_1((f^m)^2)/\deg_1(f^m)$ tend vers 4; donc si une inégalité du type $\lambda_1(f) \geq r \deg_1(f^2)/\deg_1(f)$ est satisfaite par toute transformation rationnelle, $r \leq 1/4$.

Démonstration du théorème 4.8. — Notons $L_n = (f^n)^*L$, $a_n = \deg_1(f^n)$, $q = a_2/a_1$ et $\lambda_k = \lambda_k(f)$. Par log-concavité, $\lambda_1 \geq \sqrt{\lambda_2}$; nous pouvons donc supposer que $q/4 > \sqrt{\lambda_2}$. Supposons trouvés des paramètres réels α et β strictement positifs tels que

(10)
$$L_2 + \alpha \beta L - (\alpha + \beta) L_1 > 0, \text{ et}$$

$$(11) 0 < \beta < q/2.$$

Appliquons l'inégalité de Siu à L et $L_1 = f^*L$ pour obtenir

$$(12) (L2) deg1(f2) \le 2(deg1(f))2$$

i.e. $a_0 a_2 \le 2a_1^2$, ou encore $(q/2)a_0 \le a_1$. Comme $\beta < q/2$, nous obtenons $a_1 - \beta a_0 > 0$. En appliquant $(f^n)^*$ à l'inégalité (10) et en intersectant avec L, nous obtenons

$$(13) a_{n+2} + \alpha \beta a_n - (\alpha + \beta) a_{n+1} > 0.$$

Ce type de relation réapparaîtra au paragraphe 6.3.2 (voir Wang, 2024, Lemma 3.1). Une récurrence sur n donne alors $a_{n+2} - \beta a_{n+1} > \alpha(a_{n+1} - \beta a_n) \ge \alpha^{n+1}(a_1 - \beta a_0)$. Ainsi, $a_{n+2} > \beta a_{n+1}$ pour tout n, et $\lambda_1(f) = \lim_n (a_n)^{1/n} \ge \alpha$.

Il suffit donc maintenant de montrer que les inégalités (10) et (11) sont satisfaites si l'on choisit $\alpha = \beta = q/4$. L'inégalité (11) est immédiate. Pour (10), remarquons que $M := L_2 + \alpha \beta L = L_2 + (q^2/16)L$ et $N := (\alpha + \beta)L_1 = (q/2)L_1$ vérifient

$$(14) (M2) > 2\alpha\beta(L_2 \cdot L) = 2\alpha\beta a_2;$$

et, en utilisant $(L_2 \cdot L_1) = (f^*(f^*L) \cdot f^*L) = \lambda_2(L_1 \cdot L)$ puis $\lambda_2 \leq q^2/16$, nous obtenons

(15)
$$2(M \cdot N) = 2(\alpha + \beta) \left((L_2 \cdot L_1) + \alpha \beta (L \cdot L_1) \right)$$

$$(16) = 4\alpha(\lambda_2 + \alpha\beta)(L \cdot L_1)$$

$$(17) \leq 4\alpha (q^2/16 + q^2/16)a_1$$

$$(18) \leq \frac{1}{2}\alpha q^2 a_1.$$

Ainsi, $2(M \cdot N) \leq (q/8)q^2a_1 \leq 2(q^2/16)a_2$, par définition de q. Le critère de Siu énoncé au théorème 3.1 montre alors que l'inégalité (10) est satisfaite.

5. SEMI-CONTINUITÉ

5.1. Deux exemples

5.1.1. — Soit $(C_t)_{t\in\mathbb{P}^1}$ un pinceau général de cubiques planes complexes : le pinceau a alors 9 points base p_ℓ distincts, il contient 12 courbes singulières C_{s_j} , et l'unique singularité q_j de C_{s_j} est nodale. Soit I l'union des p_ℓ et q_j . Si x n'appartient pas à I, il appartient alors à une unique cubique C_t et la tangente à C_t en x intersecte C_t en x (avec multiplicité 2) et un unique autre point x' (égal à x si x est un point d'inflexion de C_t); ceci définit une transformation rationnelle $f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, $x \mapsto f(x) := x'$ dont le lieu d'intermination est $\mathrm{Ind}(f) = I$. Si C_t est lisse, il existe un isomorphisme de C_t vers une courbe elliptique \mathbb{C}/Λ_t qui conjugue $f_{|C_t}$ à la multiplication par -2; en particulier, $\mathrm{deg}(f_{|C_t}) = 4 = \lambda_1(f_{|C_t})$. Par contre, les courbes C_{s_j} sont isomorphes à \mathbb{P}^1 avec deux points (disons 0 et ∞) identifiés à q_{s_j} : on peut choisir cet isomorphisme pour conjuguer $f_{|C_{s_j}\backslash q_{s_j}}$ à $z\mapsto z^{-2}$. Ainsi, f induit un endomorphisme de C_{s_j} de degré 2.

On observe donc une variation semi-continue de $t \mapsto \lambda_1(f_{|C_t})$, la valeur de $\lambda_1(f_{|C_t})$ chutant de 4 à 2 lorsqu'on spécialise en $t = s_j$. L'explication est la suivante : q_{s_j} appartient à $\operatorname{Ind}(f)$ et l'éclatement de q_{s_j} fait apparaître un diviseur exceptionnel E qui est « envoyé sur C_{s_j} par f avec degré 2 » (et 2 + 2 = 4).

5.1.2. — Cet exemple est tiré de Xie, 2015. Notons $\sigma \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ l'involution quadratique standard, définie par $\sigma[x:y:z]=[yz:zx:xy]$. À un élément A de $\mathsf{PGL}_3(\mathbf{Q})$, considéré comme automorphisme de \mathbb{P}^2 , nous associerons l'application birationnelle $f_A = A \circ \sigma$. Elle vérifie les propriétés suivantes :

```
- Ind(f_A) = \{p, q, r\} avec p = [1:0:0], q = [0:1:0], r = [0:0:1];
```

- $\operatorname{Exc}(f_A)$ est l'union des trois droites $\ell_x = \{x = 0\}, \ \ell_y = \{y = 0\}, \ \ell_z = \{z = 0\};$
- $\operatorname{Ind}(f_A^{-1}) = \operatorname{Ind}(\sigma \circ A^{-1}) = \{p_1, q_1, r_1\} \text{ où } p_1 = A(p), q_1 = A(q), r_1 = A(r);$
- $\operatorname{Exc}(f_A^{-1})$ est l'union des trois droites $A(\ell_x)$, $A(\ell_y)$, $A(\ell_z)$.

Ici, $\operatorname{Ind}(f)$ est le lieu d'indétermination de f et $\operatorname{Exc}(f)$ est l'ensemble exceptionnel, formé des courbes C telles que f contracte $C \setminus \operatorname{Ind}(f)$. Par exemple, f_A contracte ℓ_x sur p_1 . Définissons l'orbite de p_1 récursivement en posant $p_{n+1} = f_A(p_n)$, ce qui est possible tant que p_n n'appartient pas à $\operatorname{Ind}(f_A)$. L'orbite de p_1 est (globalement) bien définie si cette construction peut être effectuée pour tout $n \geq 1$, c'est-à-dire que $p_1 \notin \operatorname{Ind}(f_1)$, $p_2 = f_A(p_1) \notin \operatorname{Ind}(f_A)$, etc. Nous emploierons le même vocabulaire pour q_1 et r_1 . Lorsque les orbites de p_1 , q_1 et r_1 sont toutes les trois bien définies, on a $\deg_{alg}(f_A^n) = 2^n$ pour tout n (voir l'exemple 2.2 et le paragraphe 2.4); en particulier, $\lambda_1(f_A) = 2$. Sinon, il existe un entier $m \geq 1$ tel que f_A^m contracte une droite $\ell \in \{\ell_x, \ell_y, \ell_z\}$ sur un point d'indétermination de f_A ; choisissons m le plus petit possible. Alors

$$\deg_{alg}(f_A^{m+1}) < \deg_{alg}(f_A^m) \times \deg_{alg}(f_A),$$

l'équation de ℓ apparaissant comme un facteur commun des polynômes homogènes définissant f_A^{m+1} ; ceci entraı̂ne $\lambda_1(f_A) < 2$, car $\lambda_1(f_A) = \lambda_1(f_A^m)^{1/m} \leq \deg_{alq}(f_A^m)^{1/m}$.

Supposons maintenant que les orbites de p_1 , q_1 , r_1 sont bien définies. Si p est un nombre premier suffisamment grand la réduction de A modulo p détermine un élément $A_p \in \mathsf{PGL}_3(\mathbf{F}_p)$, si bien que f_A induit une application birationnelle $f_{A,p} = A_p \circ \sigma$ de \mathbb{P}^2 définie sur le corps \mathbf{F}_p (donc sur $\overline{\mathbf{F}_p}$). Puisque $\mathbb{P}^2(\mathbf{F}_p)$ est un ensemble fini, l'orbite de p_1 modulo p n'est pas bien définie : sinon, elle serait périodique, disons de période $m \geq 1$, et on aurait $f_{A,p}^m(p_1) = p_1$; mais alors $f_{A,p}^{m-1}(p_1)$ appartiendrait à $\mathrm{Exc}(f_{A,p})$ et $f_{A,p}^{m-2}(p_1)$ serait un point d'indétermination de $f_{A,p}$. Donc, $\lambda_1(f_{A,p}) < 2 = \lambda_1(f_A)$ pour tout p. Par ailleurs, on voit facilement que $\lambda_1(f_{A,p})$ tend vers $\lambda_1(f_A)$ lorsque p tend vers $+\infty$.

5.2. Familles, semi-continuité, points périodiques

5.2.1. Semi-continuité. — Soit S un espace topologique. Une fonction $\xi \colon S \to \mathbf{R}$ est semi-continue inférieurement si les sous-niveaux $S_{\xi}(\beta) = \{s \in S : \xi(s) \leq \beta\}$ sont fermés. Étudions cette notion lorsque S est un schéma, muni de la topologie de Zariski.

Exemple 5.1. — Soit S une courbe irréductible définie sur $\overline{\mathbf{Q}}$. Puisque $\overline{\mathbf{Q}}$ est dénombrable, il existe une bijection $\xi_0 \colon S(\overline{\mathbf{Q}}) \to \mathbf{N}$; si l'on munit $S(\overline{\mathbf{Q}})$ de la topologie de Zariski, ξ_0 est semi-continue inférieurement. Considérons maintenant S comme un schéma dont le point générique est noté η . Alors toute fonction semi-continue inférieurement $\xi \colon S \to \mathbf{R}$ est bornée par $\xi(\eta)$ car $S_{\xi}(\xi(\eta))$ contient η et η est dense dans S. En fait, ξ est semi-continue inférieurement si, et seulement si (i) $\xi \le \xi(\eta)$ et (ii) $S_{\xi}(\beta)$ est fini pour tout $\beta < \xi(\eta)$.

Cet exemple illustre le lemme suivant; pour une démonstration, voir Xie (2024a).

LEMME 5.2. — Soit S un schéma noethérien intègre. Une fonction $\xi \colon S \to \mathbf{R}$ est semicontinue inférieurement si et seulement si les deux propriétés suivantes sont satisfaites.

- (i) Pour tous $x, y \in S$, si $y \in \overline{\{x\}}$ alors $\xi(y) \le \xi(x)$.
- (ii) Pour tout $x \in S$, pour tout $\beta < \xi(x)$, il existe un ouvert dense $V \subset \overline{\{x\}}$ contenant x tel que $\xi_{|V} > \beta$.
- **5.2.2.** Familles. Soit $\pi: \mathcal{X} \to S$ une famille de variétés projectives de dimension d, c'est-à-dire un morphisme de schémas qui est projectif, plat et de dimension relative d. Pour $t \in S$, on notera X_t la fibre « au-dessus de t »; on demande qu'elles soient toutes réduites et irréductibles. Soit $f: \mathcal{X} \dashrightarrow \mathcal{X}$ une application rationnelle telle que
 - (i) $\pi \circ f = \pi$,
 - (ii) pour tout $t \in S$, l'application induite $f_t \colon X_t \dashrightarrow X_t$ est dominante, et
- (iii) aucune des fibres X_t n'est contenue dans $\operatorname{Ind}(f_t)$.

On dit alors que (f,π) détermine une famille de transformations rationnelles dominantes $(f_t)_{t\in S}$ en dimension d paramétrée par S.

5.2.3. Semi-continuité des degrés dynamiques et conséquences. — Le théorème suivant montre que la semi-continuité observée au paragraphe 5.1 est une propriété générale.

THÉORÈME 5.3 (de semi-continuité de Xie). — Soit S un schéma noethérien intègre. Si $\pi: \mathcal{X} \to S$ et $f: \mathcal{X} \dashrightarrow \mathcal{X}$ déterminent une famille de transformations rationnelles dominantes en dimension d, les fonctions $s \in S \mapsto \lambda_i(f_s) \in \mathbf{R}_+$ sont semi-continues inférieurement (vis-à-vis de la topologie de Zariski de S).

Le même énoncé reste valable pour des familles de transformations méromorphes de variétés kählériennes compactes (S étant munie de la topologie de Zariski analytique).

Il est important que S puisse être considéré comme un schéma. Ainsi, lorsque $\pi \colon \mathcal{X} \to S$ et $f \colon \mathcal{X} \dashrightarrow \mathcal{X}$ sont définies sur $\overline{\mathbf{Q}}$ et le degré de transcendance de $s_0 \in S(\mathbf{C})$ est égal à $\dim(S)$, alors $\lambda_i(f_{s_0}) = \max_{s \in S} \lambda_i(f_s)$. Ou encore, si $f \colon \mathbb{P}^d \dashrightarrow \mathbb{P}^d$ est dominante et définie par des formules à coefficients dans \mathbf{Z} , alors $\lim_{p \to +\infty} (\lambda_i(f_p)) = \lambda_i(f)$, où f_p désigne la réduction de f modulo f (prendre f = Spec(\mathbf{Z}) privé des f en lesquels f n'est pas dominante).

Une troisième conséquence, concernant à la fois l'existence d'orbites Zariski dense et la conjecture de Kawaguchi et Silverman mentionnée dans l'introduction, est décrite dans (Matsuzawa et Xie, 2025).

En voici une quatrième. Disons que $y \in X$ est périodique si son orbite $y_0 = y$, $y_{n+1} = f(y_n)$, ne visite pas $\operatorname{Ind}(f)$ et repasse par y en un temps fini. La période est le plus petit $r \geq 1$ tel que $f^r(y) = y$; si la sous-variété $\{f^r(x) = x\}$ ne contient pas de composante de dimension ≥ 1 passant par y, on dit que le point périodique y est isolé.

Théorème 5.4. — Soit $f: X \dashrightarrow X$ une application rationnelle dominante d'une variété projective X définie sur un corps algébriquement clos \mathbf{k} . Supposons qu'il existe un indice i tel que $\lambda_i(f) > \lambda_j(f)$ pour tout $j \neq i$. Alors, pour tout ouvert dense $V \subset X$, les orbites périodiques de f entièrement contenues dans V forment un sous-ensemble Zariski dense de V, et donc aussi de X.

La démonstration, décrite par Xie (2024a), repose sur deux ingrédients clé. Tout d'abord, si \mathbf{k} est la clôture algébrique d'un corps fini, le théorème résulte des estimées de Lang-Weil tordues obtenues par Hrushovski (voir le Théorème 4.2 de Rideau-Kikuchi, 2022). Pour se ramener à cette situation, notons A l'anneau de type fini engendré par les coefficients des équations et des formules définissant X et f. Après réduction modulo un idéal maximal $I_0 \subset A$ convenablement choisi, f induit encore une transformation dominante f_0 qui, par semi-continuité, vérifie toujours $\lambda_i(f_0) > \lambda_j(f_0)$ si $j \neq i$. Dans cette situation, Xie construit un ouvert dense dans lequel les points périodiques de f_0 sont tous isolés; ils peuvent alors être relevés en des points périodiques de f dans $X(\mathbf{k})$, ce qui permet de conclure en utilisant les points périodiques produits par Hrushovski.

5.3. Semi-continuité des degrés

Si $\pi \colon \mathcal{X} \to S$ est une famille de variétés projectives $(X_s)_{s \in S}$ et \mathcal{L} est un fibré en droites sur \mathcal{X} , on note L_s la restriction de \mathcal{L} à X_s .

PROPOSITION 5.5. — Soit (\mathcal{X}, f, S) une famille d'applications rationnelles dominantes en dimension d. Soit \mathcal{L} un fibré en droites ample sur \mathcal{X} . Soient m_1, m_2, \ldots, m_d des entiers positifs et $i \in \{0, \ldots, d\}$. Les fonctions de S vers \mathbb{N} définies par

$$s \mapsto ((f_s^{m_1})^* L_s \cdots (f_s^{m_d})^* L_s) \quad et \quad s \mapsto \deg_{i,L_s}(f_s) = \left(f_s^* L_s^i \cdot L_s^{d-i}\right)$$

sont semi-continues inférieurement.

Ainsi, $\deg_{i,L_s}(f_s)$ atteint une valeur maximale d_0 au point générique. Puis il existe un entier $d_1 < d_0$ tel que $\deg_{i,L_s}(f_s)$ atteint la valeur d_1 sans prendre aucune des valeurs entre $d_1 + 1$ et $d_0 - 1$. L'ensemble $S(d_1) = \{s \in S; \deg_{i,L_s}(f_s) \leq d_1\}$ est un fermé de Zariski. Puis $\deg_{i,L_s}(f_s)$ atteint une valeur $d_2 < d_1$, et ainsi de suite jusqu'à la plus petite valeur atteinte par $\deg_{i,L_s}(f_s)$, elle-même obtenue sur un fermé de Zariski.

Exemple 5.6. — Décrivons le point (2.) lorsque $X = \mathbb{P}^d$ et i = 1. Dans ce cas, $f[x_0 : \dots : x_d] = [P_0 : \dots : P_d]$ pour des polynômes homogènes $P_i \in \mathbf{k}(S)[x_0, \dots, x_d]$ d'un certain degré δ , sans facteur commun de degré ≥ 1 . Ici, δ est le degré algébrique de f, vue comme transformation rationnelle de \mathbb{P}^d définie sur le corps de fonctions $\mathbf{k}(S)$; de manière équivalente, $\delta = \deg_1(f_\eta)$ où η est le point générique de S. Si $s \in S$, f_s est obtenue en évaluant les coefficients des P_j en s ce qui donne des polynômes $P_{j,s} \in \mathbf{k}[x_0, \dots, x_d]$. Alors $\deg_1(f_s) \leq \delta - m$ si et seulement si les $P_{j,s}$ ont un facteur commun de degré $\geq m$; ceci définit des fermés de Zariski emboîtés.

Esquisse de démonstration de la proposition 5.5. — Le point crucial est d'établir

$$((f_s^{m_1})^*L_s\cdots(f_s^{m_d})^*L_s) \le ((f_{\eta}^{m_1})^*L_{\eta}\cdots(f_{\eta}^{m_d})^*L_{\eta}),$$

où η est le point générique de S. Pour cela, notons $\Gamma_{\eta} \subset X_{\eta}^{d}$ l'image de $x \mapsto (f_{\eta}^{m_{1}}(x), \ldots, f_{\eta}^{m_{d}}(x))$; plus précisément, Γ_{η} est l'adhérence de l'image de cette application pour x hors des points d'indétermination des $f_{s}^{m_{i}}$. Soit Γ l'adhérence de Γ_{η} dans le produit fibré $\mathcal{X}_{|S|}^{d}$; cette variété est munie d'une projection $\pi_{\Gamma} \colon \Gamma \to S$ dont les fibres Γ_{s} sont des sous-variétés de X_{s}^{d} . Les d+1 projections de Γ vers \mathcal{X} permettent de rapatrier le fibré \mathcal{L} en d+1 fibrés $\mathcal{L}_{m_{1}}, \ldots, \mathcal{L}_{m_{d}}$ sur Γ . Les points clé sont les suivants : (a) si la famille $\Gamma \to S$ était plate, les produits d'intersection $(L_{m_{1},s} \cdots L_{m_{d},s})$, calculés dans Γ_{s} , seraient constants; (b) un théorème de Raynaud et Gruson (1971) permet de se ramener au cas d'une famille plate après un changement de base $S' \to S$ obtenu en éclatant S (voir aussi Guignard (2021)); (c) après un tel changement de base, pour $s \in S$ général Γ_{s} coïncide avec l'image de $s \mapsto (f_{s}^{m_{1}}(x), \ldots, f_{s}^{m_{d}}(x))$ et dans ce cas

(19)
$$((f_s^{m_1})^*L_s\cdots (f_s^{m_d})^*L_s) = (L_{m_1,s}\cdots L_{m_d,s})$$

(20)
$$= \left((f_{\eta}^{m_1})^* L_s \cdots (f_{\eta}^{m_d})^* L_s \right),$$

mais pour certains paramètres, Γ_s est l'union de l'image de cette application et de composantes additionnelles : dans ce cas l'égalité (19) devient une inégalité.

La raison pour la semi-continuité (plutôt que la continuité) est donc la suivante : lorsque s_n converge vers un point $t \in S$, la limite des graphes des f_{s_n} peut être consituée du graphe de f_t et de composantes irréductibles additionnelles éventuelles.

Exemple 5.7. — Reprenons l'exemple du § 5.1.1. Éclatons les 9 points base p_{ℓ} du pinceau (C_t) . Ceci fournit une surface rationnelle $\epsilon \colon \mathcal{X} \to \mathbb{P}^2$ et une fibration $\pi \colon \mathcal{X} \to \mathbb{P}^1$ dont les fibres X_t vérifient $\epsilon(X_t) = C_t$. Après conjugaison par ϵ , la transformation $f \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ induit une transformation dominante de \mathcal{X} que nous noterons encore f; le couple (f, π) est une famille de transformations rationnelles dominantes en dimension 1. Éclatons \mathcal{X} en les 12 points q_j , ce qui remplace chaque fibre singulière X_{s_j} par deux courbes rationnelles A_j et B_j s'intersectant transversalement en 2 points : A_j est la transformée stricte de $X_{s_j} \simeq C_{s_j}$ et B_j le diviseur exceptionnel. Notons \mathcal{X}' la surface obtenue et f' la transformation rationnelle induite par f. Alors f'_{s_j} envoie A_j et B_j sur A_j avec degré 2. La famille des graphes des f'_s est plate et en s_j elle contient deux composantes : l'une est fournie par l'application $z \mapsto z^{-2}$ sur A_j , l'autre par l'application de B_j vers A_j .

Remarque 5.8. — Comme $\lambda_d(f_s) = \deg_{d,L_s}(f_s)/(L_s^d) = \deg_{top}(f_s)$ (voir le théorème 4.1), la proposition 5.5 établit la semi-continuité de λ_d .

5.4. Démonstration du théorème 5.3 : le cas des surfaces

Montrons le théorème de semi-continuité en dimension 2, le cas général sera décrit dans la section 6. D'après la remarque 5.8, il suffit d'expliquer que $s \mapsto \lambda_1(f_s)$ est semi-continue inférieurement. Pour cela commençons par établir

a. pour tout $s \in S$, $\lambda_1(f_s) \leq \lambda_1(f_\eta)$, où η est le point générique de S.

D'après la proposition 5.5, en effet, nous avons $\deg_{1,L_s}(f_s^n) \leq \deg_{1,L_\eta}(f_\eta^n)$, et en prenant des racines n-èmes nous obtenons le résultat. Montrons maintenant

b. si $\beta < \lambda_1(f_n)$, il existe un ouvert dense $U \subset S$ sur lequel $\lambda_1(f_s) > \beta$.

C'est le point délicat. Par définition de λ_1 , il existe un entier $m_0 \geq 1$ tel que

$$\lambda_1(f_\eta^m) \ge \left(\frac{1}{4} \frac{\deg_{1,L_\eta}(f^{2m})}{\deg_{1,L_\eta}(f^m)}\right)^{1/m} > \beta$$

pour tout $m \geq m_0$. Comme $s \mapsto \deg_{1,L_s}(f_s^m)$ est semi-continue et ne prend que des valeurs entières, il existe un ouvert dense $V \subset S$ tel que $\deg_{1,L_s}(f_s^m) = \deg_{1,L_\eta}(f_\eta^m)$ et $\deg_{1,L_s}(f_s^{2m}) = \deg_{1,L_\eta}(f_\eta^{2m})$ pour tout $s \in U$. Le théorème 4.8 montre alors que $\lambda_1(f_s) = \lambda_1(f_s^m)^{1/m} > \beta$ sur cet ouvert.

Les assertions (i) et (ii) du lemme 5.2 se démontrent de la même façon que (a.) et (b.) (en remplaçant S par $\overline{\{x\}}$), ce qui établit la semi-continuité cherchée.

6. INÉGALITÉS DE XIE ET SEMI-CONTINUITÉ

Pour démontrer le théorème de semi-continuité en dimension 2, nous avons dû faire appel à la minoration $\lambda_1(f) \geq \deg_1(f^2)/(4\deg_1(f))$. Il s'agit maintenant d'obtenir des substituts à cette inégalité qui suffiront à démontrer la semi-continuité des λ_i pour des dimensions d et codimensions i quelconques. Dans cette partie, X est donc une variété projective de dimension d, $f: X \longrightarrow X$ est dominante et L est un fibré en droites gros et nef sur X. Notons $L_n = (f^n)^*L$. Plus précisément, L_n sera toujours considéré sur des modèles birationnels de X adéquats. C'est-à-dire que nous factoriserons f^n en la composée $f^n = F_n \circ \epsilon^{-1}$ de deux morphismes $F_n: Z \to X$ et $\epsilon: Z \to X$, avec ϵ birationnel; l'incarnation de L_n sur Z sera le fibré F_n^*L . Si $\pi: Z' \to Z$ est un autre modèle birationnel de X dominant Z, l'incarnation de L_n sur Z' coïncide avec $\pi^*F_n^*L$.

Étant donnés des entiers positifs m_i et r_i tels que $r_1 + r_2 + \cdots + r_s = d$, nous considèrerons les intersections

$$\left(L_{m_1}^{r_1} \cdot L_{m_2}^{r_2} \cdots L_{m_s}^{r_s}\right) \in \mathbf{N};$$

ces entiers seront appelés degrés mixtes. À nouveau, de manière implicite, les L_{m_i} et les intersections sont considérées sur un modèle adéquat de X (comme au paragraphe 2.3, ou dans la démonstration du théorème 4.2). Nous avons $\deg_r(f^m) = (L_m^r \cdot L^{d-r})$.

Cette partie étant très technique, nous recommandons, en première lecture, de simplement lire le paragraphe 6.1.3, la définition des multiplicateurs $\mu_i(f)$ (§ 6.2.1) et le théorème 6.5.

6.1. Degrés mixtes et degrés dynamiques : comparaison

6.1.1. Application des inégalités de Siu. — Soient s_1 , s_2 et t des entiers positifs tels que $s_1 + s_2 \le d$ et $t \le s_1$. Soient n_1 et n_2 des entiers positifs. Si $n_1 \ge n_2$, alors

(21)
$$L_{n_1}^{s_1} \cdot L_{n_2}^{s_2} \leq_{num} \binom{d - s_1 - s_2 + t}{t} \frac{\deg_{s_1}(f^{n_1 - n_2})}{\deg_{s_1 - t}(f^{n_1 - n_2})} L_{n_1}^{s_1 - t} \cdot L_{n_2}^{s_2 + t}$$

où \leq_{num} signifie que l'inégalité est satisfaite dès que l'on intersecte les membres de gauche et de droite avec des classes nef $C_1, \ldots, C_{d-s_1-s_2}$ (dans un modèle adéquat de X). Si $n_2 \geq n_1$, alors

(22)
$$L_{n_1}^{s_1} \cdot L_{n_2}^{s_2} \leq_{num} \binom{d - s_1 - s_2 + t}{t} \frac{\deg_{d - s_1}(f^{n_2 - n_1})}{\deg_{d - s_1 - t}(f^{n_2 - n_1})} L_{n_1}^{s_1 - t} \cdot L_{n_2}^{s_2 + t}.$$

Démonstration. — On se place sur un modèle dominant X où L_{n_1} et L_{n_2} sont bien définis. Perturbant L_{n_i} en $L_{n_i} + \varepsilon_i H$ avec H ample, nous pouvons supposer que L_{n_i} est ample puis, par homogénéité des inégalités cherchées, que L_{n_i} est en fait très ample, donc engendré par ses sections. Soit V l'intersection de $s_1 - t$ sections de L_{n_1} et de s_2 sections de L_{n_2} prises en position générale. En appliquant le théorème 3.3 à

- la variété V (au lieu de X), qui est de dimension $d s_1 s_2 + t$,
- la classe du fibré L_{n_1} restreint à V (au lieu des classes E_i),
- la classe du fibré L_{n_2} restreint à V (au lieu de la classe D),

$$-$$
 et $j = t$,

nous obtenons

$$L_{n_1|V}^t \le_{num} \binom{d - s_1 - s_2 + t}{t} \frac{\left(L_{n_1|V}^t \cdot L_{n_2|V}^{d - s_1 - s_2}\right)}{\left(L_{n_2|V}^{d - s_1 - s_2 + t}\right)} L_{n_2|V}^t$$

où les intersections sont calculées dans V. Ceci donne

(23)
$$L_{n_1}^{s_1} \cdot L_{n_2}^{s_2} \leq_{num} \binom{d - s_1 - s_2 + t}{t} \frac{(L_{n_1}^{s_1} \cdot L_{n_2}^{d - s_1})}{(L_{n_1}^{s_1 - t} \cdot L_{n_2}^{d - s_1 + t})} L_{n_1}^{s_1 - t} \cdot L_{n_2}^{s_2 + t}$$

Si $n_1 \geq n_2$, nous avons $(L_{n_1}^{s_1} \cdot L_{n_2}^{d-s_1}) = (((f^{n_1})^*L)^{s_1} \cdot ((f^{n_2})^*L)^{d-s_1})$ par définition, donc $(L_{n_1}^{s_1} \cdot L_{n_2}^{d-s_1}) = \deg_{top}(f^{n_2}) \deg_{s_1}(f^{n_1-n_2})$ par la formule de projection. De même, $(L_{n_1}^{s_1-t} \cdot L_{n_2}^{d-s_1-t}) = \deg_{top}(f^{n_2}) \deg_{s_1-t}(f^{n_1-n_2})$. L'inégalité (21) découle donc de (23). Lorsque $n_2 \geq n_1$, nous obtenons $(L_{n_1}^{s_1} \cdot L_{n_2}^{d-s_1}) = \deg_{top}(f^{n_1}) \deg_{d-s_1}(f^{n_2-n_1})$ et $(L_{n_1}^{s_1-t} \cdot L_{n_2}^{d-s_1+t}) = \deg_{top}(f^{n_1}) \deg_{d-s_1-t}(f^{n_2-n_1})$, si bien que (22) découle aussi de (23).

6.1.2. Comparaison entre degrés et degrés mixtes. —

PROPOSITION 6.1. — Soient $m_1 \ge m_2 \ge \cdots \ge m_s$ des entiers positifs et r_1, r_2, \ldots, r_s des entiers positifs dont la somme est égale à d. Notons $\ell_i = r_1 + \cdots + r_i$. Les degrés mixtes vérifient alors

$$\frac{\left(L_{m_1}^{r_1} \cdots L_{m_s}^{r_s}\right)}{(L^d)} \le \prod_{i=1}^s \binom{d-r_{i+1}}{\ell_i} \prod_{i=1}^s \frac{\deg_{\ell_i}(f^{m_i-m_{i+1}})}{(L^d)}$$

et

$$\deg_d(f^{m_1}) \prod_{i=1}^s \binom{d-\ell_i}{r_i+1}^{-1} \prod_{i=1}^s \frac{\deg_{\ell_i}(f^{m_1-m_{i+1}})}{\deg_{\ell_{i+1}}(f^{m_1-m_{i+1}})} \le \left(L_{m_1}^{r_1} \cdots L_{m_s}^{r_s}\right)$$

Démonstration. — Pour la première inégalité, appliquons l'inégalité (21) avec $n_1 = m_1$, $n_2 = m_2$, $s_1 = r_1$, $s_2 = r_2$ et $t = r_1$, puis intersectons avec $L_{m_3}^{r_3} \cdots L_{m_s}^{r_s}$. Cela donne

$$(24) \qquad \left(L_{m_1}^{r_1} \cdot L_{m_2}^{r_2} \cdots L_{m_s}^{r_s}\right) \le \binom{d-r_2}{r_1} \frac{\deg_{r_1}(f^{m_1-m_2})}{\deg_0(f^{m_1-m_2})} \left(L_{m_1}^0 \cdot L_{m_2}^{r_1+r_2} \cdot L_{m_3}^{r_3} \cdots L_{m_s}^{r_s}\right)$$

(25)
$$\leq {d - r_2 \choose \ell_1} \frac{\deg_{\ell_1}(f^{m_1 - m_2})}{(L^d)} \left(L_{m_2}^{\ell_2} \cdot L_{m_3}^{r_3} \cdots L_{m_s}^{r_s} \right)$$

Nous pouvons alors effectuer une récurrence sur le nombre s de termes dans le degré mixte. L'initialisation, prise pour s=1 et $r_1=d$, correspond à $\left(L_{m_1}^d\right) \leq \deg_d(f^{m_1})$ (il y a en fait égalité). Maintenant, supposons le résultat montré pour s-1. Puisque $\ell_2 + r_3 + \cdots + r_s = d$, l'hypothèse de récurrence peut être appliquée aux s-1 termes L_{m_2}, \ldots, L_{m_s} , ce qui donne

$$(L^d)^{-1} (L_{m_2}^{\ell_2} \cdot L_{m_3}^{r_3} \cdots L_{m_s}^{r_s}) \le \prod_{i=2}^s \binom{d-r_{i+1}}{\ell_i} \prod_{i=2}^s \frac{\deg_{\ell_i}(f^{m_i-m_{i+1}})}{(L^d)}.$$

On conclut alors avec l'inégalité (25). La seconde inégalité est similaire.

- **6.1.3.** Équivalence asymptotique. Soient (u_n) et (v_n) des suites de réels strictement positifs. Nous noterons $u_n \lesssim v_n$ si les propriétés équivalentes suivantes sont satisfaites :
 - pour tout $\varepsilon > 0$, il existe $D(\varepsilon) > 0$ telle que $u_n \leq D(\varepsilon) e^{\varepsilon n} v_n$ pour tout $n \geq 0$;
 - pour tout $\varepsilon > 0$, $u_n \leq e^{\varepsilon n} v_n$ si n est suffisamment grand;
 - $--\lim \sup_{n} (u_n/v_n)^{1/n} \le 1.$

6 5

4

3

2

 $1 \nmid \ell_0$

-1

-2

-3

Nous noterons $u_n \asymp v_n$ si $u_n \lesssim v_n$ et $v_n \lesssim u_n$.

Corollaire 6.2. — Les degrés mixtes et les degrés dynamiques vérifient

$$\left(L_{m_1}^{r_1}\cdots L_{m_s}^{r_s}\right) \asymp \prod_{i=1}^s \lambda_{\ell_i}(f)^{m_i-m_{i+1}}.$$

Autrement dit, pour tout $\delta \in]0,1[$, il existe $C=C_L(f;\delta)\geq 1$ tel que

$$C^{-1}\delta^{m_1} \prod_{i=1}^s \lambda_{\ell_i}(f)^{m_i - m_{i+1}} \le \left(L_{m_1}^{r_1} \cdots L_{m_s}^{r_s} \right) \le C\delta^{-m_1} \prod_{i=1}^s \lambda_{\ell_i}(f)^{m_i - m_{i+1}}$$

pour tous choix d'entiers $m_1 \geq m_2 \geq \cdots \geq m_s \geq 0$ et $r_i \geq 0$ tels que $r_1 + \cdots + r_s = d$. La majoration résulte de la proposition 6.1 en écrivant $\deg_{\ell_i}(f^n) \leq D(\varepsilon)\lambda_{\ell_i}(f)^n e^{\varepsilon n}$; la minoration est similaire.

6.2. Multiplicateurs cohomologiques et inégalités fondamentales

6.2.1. Multiplicateurs. — Par définition, les multiplicateurs cohomologiques (ou simplement multiplicateurs) associés à f sont les quotients

$$\mu_i(f) = \frac{\lambda_i(f)}{\lambda_{i-1}(f)} \in \mathbf{R}_+^*,$$

avec la convention $\lambda_{-1}(f) = 1$, si bien que $\mu_0(f) = \lambda_0(f) = 1$. La log-concavité des degrés dynamiques équivaut à la décroissance des multiplicateurs. La courbe affine par morceaux reliant les points $(i, \log(\lambda_i(f)))$ est le graphe d'une fonction concave : les $\log(\mu_i(f))$ sont les pentes de ce graphe. Nous noterons $\mu_j = \mu_j(f)$ pour simplifier.

L'exemple de la figure ci-contre représente $\ell_i = \log(\lambda_i)$ et $m_i = \log(\mu_i)$ pour $0 \le i \le 8 = \dim(X)$; ici, $\lambda_3 = \lambda_4 = \lambda_5$, donc $\mu_4 = \mu_5 = 1$.

Pour des entiers r_1 et r_2 positifs fixés satisfaisant $r_1 + r_2 < d$, définissons

(26)
$$t = \min\{i \ge 1 ; \mu_{r_1+1+i}\mu_{r_1+r_2+1+i} < \mu_{r_1+1}\mu_{r_1+r_2+1}\}$$

 m_6 m_7 m_8

$$(27) \eta = \mu_{r_1+t}\mu_{r_1+r_2+1+t}$$

Autrement dit, t-1 est la longueur maximale pour laquelle μ_j est simultanément constante à partir de $j=r_1+1$ et de $j=r_1+r_2+1$. En particulier, $\mu_{r_1+1}=\mu_{r_1+t}$ et $\eta=\mu_{r_1+1}\mu_{r_1+r_2+t+1}$. De plus $\eta\leq \mu_{r_1+1}\mu_{r_1+r_2+1}$ car les μ_i décroissent. Cette inégalité est stricte dès que $\mu_{r_1+r_2+1}>\mu_{r_1+r_2+2}$, car alors $\mu_{r_1+r_2+t}<\mu_{r_1+r_2+1}$.

Remarque 6.3. — La suite $j \mapsto \eta^{-j} \lambda_j \lambda_{r_2+j}$ croît pour j entre 0 et $r_1 + t$, atteint un maximum en $j = r_1 + t$, puis décroît pour j entre $r_1 + t$ et $d - r_2$.

Pour s'en convaincre, supposons $j \leq r_1 + t - 1$. Par définition, $\mu_{j+1}\lambda_j = \lambda_{j+1}$ et $\mu_{r_2+j+1}\lambda_{r_2+j} = \lambda_{r_2+j+1}$; d'autre part,

$$\eta \le \mu_{r_1+t}\mu_{r_1+r_2+t} \le \mu_{j+1}\mu_{r_2+j+1};$$

donc $\eta \lambda_j \lambda_{r_2+j} \leq \lambda_{j+1} \lambda_{r_2+j+1}$, ce qui donne la monotonie désirée en multipliant par η^{-j-1} . Le cas $j \geq r_1 + t + 1$ est similaire. De même, on obtient :

La suite $j \mapsto \eta^{-j} \lambda_j \lambda_{r_2+j+1}$ croît pour j entre 0 et $r_1 + t - 1$, atteint un maximum en $j = r_1 + t - 1$, puis décroît pour j entre $r_1 + t - 1$ et $d - r_2$.

6.2.2. Inégalités fondamentales. —

THÉORÈME 6.4. — Soient X une variété projective de dimension d et f une transformation rationnelle dominante de X. Soient r_1 et r_2 deux entiers positifs tels que $r_1 + r_2 \le d$; soient t et η les paramètres associés. Pour tout $\varepsilon > 0$ il existe un entier $m(\varepsilon) \ge 1$ tel que, pour tout $m \ge m(\varepsilon)$

$$(L_{2m} + \eta^m L) \cdot L_m^{r_2} >_{num} e^{-\varepsilon m} \mu_{r_1+1}^m L_m^{r_2+1}.$$

Par conséquent, en intersectant avec $(L_{2m} + \eta^m L)^{d-r_2-1}$ nous obtenons

(28)
$$\left((L_{2m} + \eta^m L)^{d-r_2} \cdot L_m^{r_2} \right) \ge e^{-\varepsilon m} \mu_{r_1+1}^m \left((L_{2m} + \eta^m L)^{d-r_2+1} \cdot L_m^{r_2+1} \right)$$

pour tout m suffisamment grand. De manière équivalente,

(29)
$$\left((L_{2m} + \eta^m L)^{d-r_2} \cdot L_m^{r_2} \right) \gtrsim \mu_{r_1+1}^m \left((L_{2m} + \eta^m L)^{d-r_2+1} \cdot L_m^{r_2+1} \right).$$

Démonstration du théorème 6.4. — Nous allons d'abord établir l'inégalité (29). Le théorème s'ensuivra par le critère de Siu.

Etape 1. – En développant, nous obtenons la somme de termes strictement positifs

$$\left((L_{2m} + \eta^m L)^{d-r_2} \cdot L_m^{r_2} \right) = \sum_{j=0}^{d-r_2} \binom{d-r_2}{j} \eta^{m(d-r_2-j)} \left(L_{2m}^j \cdot L^{d-r_2-j} \cdot L_m^{r_2} \right).$$

D'après le corollaire 6.2, les degrés mixtes vérifient

$$\left(L_{2m}^j \cdot L^{d-r_2-j} \cdot L_m^{r_2}\right) \simeq \lambda_j(f)^m \lambda_{r_2+j}(f)^m \lambda_d(f^0) \simeq \lambda_f(f)^m \lambda_{r_2+j}(f)^m.$$

La première assertion de la remarque 6.3 assure que le terme dominant de la somme, donc la somme toute entière, est d'ordre $\approx (\eta^{(d-r_2-r_1-t)}\lambda_{r_1+t}(f)\lambda_{r_2+r_1+t}(f))^m$. Ainsi

$$\left((L_{2m} + \eta^m L)^{d-r_2} \cdot L_m^{r_2} \right) \simeq (\eta^{(d-r_2-r_1-t)} \lambda_{r_1+t}(f) \lambda_{r_2+r_1+t}(f))^m.$$

De même,

$$\left((L_{2m}+\eta^m L)^{d-r_2-1}\cdot L_m^{r_2+1}\right) = \sum_{j=0}^{d-r_2-1} \binom{d-r_2-1}{j} \eta^{m(d-r_2-1-j)} \left(L_{2m}^j\cdot L^{d-r_2-j-1}\cdot L_m^{r_2+1}\right)$$

Par la dernière assertion de la remarque 6.3, le terme dominant se comporte comme

$$\mu_{r_1+1}^m \left((L_{2m} + \eta^m L)^{d-r_2-1} \cdot L_m^{r_2+1} \right) \simeq \left(\mu_{r_1+1} \eta^{d-r_2-r_1-t} \lambda_{r_1+t-1}(f) \lambda_{r_1+r_2+t}(f) \right)^m.$$

Puisque $\mu_{r_1+1} = \mu_{r_1+t}$ et $\mu_{r_1+1}\lambda_{r_1+t-1}(f) = \lambda_{r_1+t}(f)$, le second membre se comporte comme $(\eta^{d-r_2-r_1-t}\lambda_{r_1+t}(f)\lambda_{r_1+r_2+t}(f))^m$, c'est-à-dire comme $((L_{2m} + \eta^m L)^{d-r_2} \cdot L_m^{r_2})$, au sens de l'équivalence asymptotique \approx . Ceci termine la preuve de (29).

Étape 2.– Une fois $\varepsilon > 0$ fixé, l'étape précédente montre que

$$(d-r_2)e^{-\varepsilon m}\mu_{r_1+1}^m\left((L_{2m}+\eta^m L)^{d-r_2+1}\cdot L_m^{r_2+1}\right) \le \left((L_{2m}+\eta^m L)^{d-r_2}\cdot L_m^{r_2}\right)$$

dès que m est assez grand. Fixons m grand et plaçons nous sur un modèle de X où l'on peut calculer ces produits. Quitte à perturber L_m nous pouvons supposer que c'est un fibré ample puis, par homogénéité, que c'est un fibré très ample. Soient V l'intersection de r_2 sections de L_m en position générale. Considérons les restrictions des fibrés $D = L_m + \eta^m L$ et $E = e^{-\varepsilon m} \mu_{r_1+1}^m L_m$ à V. Alors $\dim(V) = d - r_2$ et

$$(d - r_2) \left(E \cdot D^{d - r_2 - 1} \right) = (d - r_2) e^{-\varepsilon m} \mu_{r_1 + 1}^m \left(L_m \cdot (L_m + \eta^m L))^{d - r_2 - 1} \cdot L_m^{r_2} \right)$$

$$\leq \left((L_m + \eta^m L)^{d - r_2} \cdot L_m^{r_2} \right)$$

$$= \left(D^{d - r_2} \right).$$

Le critère de Siu montre alors que D-E est gros (comme diviseur sur V). Le théorème en résulte.

6.2.3. Conséquence. — Pour $i \in \{0, 1, ..., d\}$, définissons

$$u(i) = \max\{j \in \{0, 1, \dots, d\} ; \mu_i = \mu_i\} \in [i, d].$$

Puisque $\mu_0 = 1$, $u(0) \ge 1$ si, et seulement si $\lambda_1 = 1$, si et seulement si tous les λ_k valent 1. Donc u(0) = 0 dans les cas intéressants, u est croissante, et u(d) = d par définition. Supposons maintenant $i \ge 1$. En choisissant $r_1 = i - 1$ et $r_2 = 0$ dans le théorème 6.4, nous obtenons $t = \min\{j \ge 1 : \mu_{i+j}\mu_{i+j} < \mu_i\mu_i\} = u(i) + 1 - i$ et

$$\eta = \mu_{u(i)}\mu_{u(i)+1} = \mu_i\mu_{u(i)+1}.$$

Puisque $r_2 = 0$, la démonstration du théorème 6.4 (étape 2) certifie que $L_{2m} + (\mu_i \mu_{u(i)+1})^m L - (\varepsilon \mu_i)^m L_m$ est gros (sur des modèles adéquats de X). Puisque $i \leq u(i)$, $\mu_{u(i)+1} \leq \mu_{i+1}$, donc $L_{2m} + (\mu_i \mu_{i+1})^m L - (\varepsilon \mu_i)^m L_m$ est également gros. Ceci montre le théorème suivant, obtenu par Xie (2024a) (voir aussi Matsuzawa et Wang (2024)).

Théorème 6.5. — Pour tout $i \in \{0, 1, ..., d\}$ et tout $\varepsilon \in]0, 1[$, il existe un entier $m(\varepsilon) \geq 1$ tel que les fibrés

$$L_{2m} + (\mu_i \mu_{u(i)+1})^m L - (\varepsilon \mu_i)^m L_m$$
 et $L_{2m} + (\mu_i \mu_{i+1})^m L - (\varepsilon \mu_i)^m L_m$

sont gros pour tout $m \geq m(\varepsilon)$.

6.3. Minoration et approximation des λ_i

Notre but est désormais de fournir un algorithme permettant d'estimer les degrés dynamiques $\lambda_i(f)$, en prenant pour acquis l'existence d'un programme calculant les degrés mixtes. La difficulté est d'approximer $\lambda_i(f)$ par valeurs inférieures. C'est ce qui servira aussi à établir la semi-continuité des λ_i .

6.3.1. Paramètres de calcul. — Donnons nous des réels $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_d > 0$ et définissons $\beta_0 = 1$ et $\beta_i = \prod_{j=1}^i \alpha_j$ pour $i \geq 1$. Il faut penser aux α_i et β_i comme à des approximations des $\mu_i(f)$ et $\lambda_i(f)$, car si $\alpha_i = \mu_i(f)$ pour tout i, alors $\beta_i = \lambda_i(f)$ pour tout i. Fixons également deux constantes ε et γ dans l'intervalle]0,1[; il faut penser ε et γ proches de 1. Ces quantités α_i , ε et γ sont les paramètres de calcul.

Nous dirons que les paramètres sont adaptés à f, à l'indice i et au temps m si

(30)
$$\frac{\left((L_{2m} + (\alpha_i \alpha_{j+1} \gamma)^m L)^{d-i+j+1} \cdot L_m^{i-j-1} \right)}{\left((L_{2m} + (\alpha_i \alpha_{j+1} \gamma)^m L)^{d-i+j} \cdot L_m^{i-j} \right)} > (d-i+j+1)(\varepsilon \alpha_{j+1})^m$$

quelque soit l'entier $j \in \{0, 1, ..., i-1\}$. Cette condition permet d'appliquer le critère de Siu et entraı̂ne, comme dans l'étape 2 de la démonstration du théorème 6.4, que

(31)
$$L_{2m} \cdot L_m^{i-j-1} + (\alpha_i \alpha_{j+1} \gamma)^m L_m^{i-j-1} \cdot L >_{num} (\varepsilon \alpha_{j+1})^m L_m^{i-j}.$$

6.3.2. Récurrence. — En intersectant l'inégalité (31) avec L_{2m}^j nous obtenons

$$L_{2m}^{j+1} \cdot L_m^{i-j-1} + (\alpha_i \alpha_{j+1} \gamma)^m L_{2m}^j \cdot L_m^{i-j-1} \cdot L >_{num} (\varepsilon \alpha_{j+1})^m L_{2m}^j \cdot L_m^{i-j}.$$

Notons alors $d_n(u, v, w) = \left(L_{(n+2)m}^u \cdot L_{(n+1)m}^v \cdot L_{nm}^w \cdot L^{d-u-v-w}\right)$, où $n \in \mathbb{N}$. En appliquant $(f^{nm})^*$ à l'inégalité précédente et en intersectant avec L^{d-i} , nous trouvons

$$(\varepsilon \alpha_{j+1})^m d_n(j, i-j, 0) < (\alpha_i \alpha_{j+1} \gamma)^m d_n(j, i-j-1, 1) + d_n(j+1, i-j-1, 0).$$

Nous allons maintenant fixer m et laisser n tendre vers $+\infty$.

En divisant par $(\varepsilon^{j+1}\beta_{j+1})^m$ et en utilisant $\beta_{j+1} = \beta_j \alpha_{j+1}$, il vient

$$\frac{d_n(j, i - j, 0)}{(\varepsilon^j \beta_j)^m} - \frac{d_n(j + 1, i - j - 1, 0)}{(\varepsilon^{j+1} \beta_{j+1})^m} < \frac{(\alpha_i \gamma)^m d_n(j, i - j - 1, 1)}{(\varepsilon^{j+1} \beta_j)^m};$$

donc en sommant de j = 0 à i - 1 nous obtenons

$$d_n(0,i,0) - \frac{d_n(i,0,0)}{(\varepsilon^i \beta_i)^m} < \sum_{j=0}^{i-1} \frac{(\alpha_i \gamma)^m d_n(j,i-j-1,1)}{(\varepsilon^{j+1} \beta_j)^m}.$$

Par définition, $d_n(0, i, 0) = \deg_i(f^{(n+1)m})$ et $d_n(i, 0, 0) = \deg_i(f^{(n+2)m})$. D'autre part, la proposition 6.1 fournit la majoration

$$d_n(j, i - j - 1, 1) \le \binom{d - i + j + 1}{j} \binom{d - 1}{i - 1} \frac{\deg_j(f^m)}{(L^d)} \frac{\deg_{i - 1}(f^m)}{(L^d)} \deg_i(f^{nm})$$

En majorant les coefficients binomiaux qui apparaissent dans cette inégalité par $\binom{d}{j}$ et $\binom{d}{i}$, nous sommes conduits à introduire les réels $B_i = B_i(\alpha_1, \dots, \alpha_d; \varepsilon, \gamma; m)$ définis par

$$B_i = \sum_{j=0}^{d-1} {d \choose j} {d \choose i} \frac{(\alpha_i \gamma)^m}{(\varepsilon^{j+1} \beta_j)^m} \frac{\deg_j (f^m)}{(L^d)} \frac{\deg_{i-1} (f^m)}{(L^d)}.$$

Les B_i ne dépendent pas de n, et nous venons de démontrer que, si les paramètres sont adaptés à f, i et m, alors

$$\deg_i(f^{m(n+1)}) - (\varepsilon^i \beta_i)^{-m} \deg_i(f^{m(n+2)}) < B_i \deg_i(f^{nm}).$$

Ainsi, la suite $a_n = \deg_i(f^{mn})$ vérifie la relation de récurrence linéaire

$$a_{n+2} - B_i \varepsilon^{mi} \beta_i^m a_n > \varepsilon^{mi} \beta_i^m a_{n+1}.$$

Introduisons alors les quantités

$$\phi = (\varepsilon^{2i}\beta_i)^m$$
 et $\psi = B_i \varepsilon^{-mi}$.

Nous dirons que les conditions de récurrence sont satisfaites à l'instant N si

- 1. $\phi + \psi < (\varepsilon^i \beta_i)^m$, ce qui revient à dire que $B_i < \varepsilon^{2mi} \beta_i^m (1 \varepsilon^{mi})$;
- 2. $a_{N+1} \psi a_N > 0$, ce qui signifie que $\deg_i(f^{m(N+1)}) > B_i \varepsilon^{-mi} \deg_i(f^{mN})$.

LEMME 6.6. — Si les paramètres α_j , γ et ε sont adaptés à f, i, et m, et si les conditions de récurrence sont satisfaites pour un entier $N \geq 1$, alors $\lambda_i(f) \geq \varepsilon^{2i}\beta_i$.

Démonstration. — La première condition assure que $a_{n+2} - \phi \psi a_n > (\phi + \psi) a_{n+1}$ et donc que $a_{n+2} - \psi a_{n+1} > \phi(a_{n+1} - \psi a_n)$. D'après la seconde condition, $a_{N+1} - \psi a_N > 0$. Par récurrence, nous obtenons donc

$$a_{n+1} - \psi a_n > \phi^n (a_{N+1} - \psi a_N) / \phi^N$$

pour $n \geq N$, ce qui montre que $\lambda_i(f^m) \geq \phi = (\varepsilon^{2i}\beta_i)^m$ et $\lambda_i(f) \geq \varepsilon^{2i}\beta_i$.

6.3.3. Satisfaire les conditions. — Pour employer le lemme 6.6, nous aurons donc besoin d'un critère permettant d'assurer que les paramètres sont adaptés et que les conditions de récurrence sont satisfaites.

LEMME 6.7. — Soit $i \in \{0, 1, ..., d\}$ un indice pour lequel $\mu_i > \mu_{i+1}$. Supposons les paramètres α_i égaux aux μ_i . Si γ est suffisamment proche de 1 et $0 < \gamma^{\frac{1}{3d}} < \varepsilon < 1$, il existe un entier $m_0(\varepsilon)$ tel que

- 1. les paramètres ε et γ sont adaptés à f, i et m dès que $m \geq m_0(\varepsilon)$;
- 2. pour tout $N \geq 0$, les conditions de récurrence sont satisfaites.

La démonstration ne faisant pas apparaître d'idée nouvelle, nous renvoyons donc le lecteur au Lemme 3.14 de Xie (2024a). Notez que la preuve nécessite de se placer en un point de « rupture de pente », i.e. un indice i en lequel $\mu_i > \mu_{i+1}$.

6.3.4. Conclusion. — Nous pouvons maintenant décrire un algorithme qui approxime les degrés dynamiques $\lambda_i(f)$ par des valeurs $\lambda_i^-(s) \leq \lambda_i(f) \leq \lambda_i^+(t)$ telles que $\lambda_i^+(t) - \lambda_i^-(s)$ tende vers 0 lorsque $s, t \in \mathbb{N}$ tendent vers $+\infty$.

Pour le degré topologique λ_d on définit $\lambda_d^-(s) = \lambda_d^+(s) = \deg_{top}(f)$ pour tout $s \ge 1$. Cette quantité est égale à $((f^*L)^d)/(L^d)$ et à $\lambda_d(f)$ sans avoir besoin d'itérer f.

Pour l'approximation supérieure, il suffit de poser $\lambda_i^+(t) = (c_i \deg_i(f^t))^{1/t}$, où $c_i = (L^d)^{-1} \binom{d}{i}$. Cette suite converge vers $\lambda_i(f)$ par valeurs supérieures car la suite $n \mapsto c_i \deg_i(f^n)$ est sous-multiplicative (voir les théorèmes 4.1 et 4.2).

Pour l'approximation inférieure, notons $\operatorname{Par}(\mathbf{Q})$ l'ensemble des paramètres de calculs rationnels, c'est-à-dire l'ensemble des vecteurs $\mathbf{p} = (\alpha_1, \dots, \alpha_d, \varepsilon, \gamma, m) \in \mathbf{Q}^{d+3}$ tels que $\alpha_1 \geq \dots \alpha_d > 0$, ε et γ appartiennent à]0,1[, et $m \in \mathbf{N}$. Nous pouvons énumérer ces vecteurs (disons par hauteur et ordre lexicographique croissants), ce qui donne une bijection $s \in \mathbf{N}^* \mapsto \mathbf{p}(s) \in \operatorname{Par}(\mathbf{Q})$. Pour s = 0, l'algorithme est initialisé en posant $\lambda_i^-(0) = 1$ pour tout i. On applique alors le processus suivant à s = 1, puis s = 2, etc.

À l'étape s, on considère le paramètre p(s) et on évalue les quantités $\beta_i(s) = \prod_{j \leq i} \alpha_j(s)$, $B_i(s) := B_i(p(s))$ et $\phi_i(s) = (\varepsilon(s)^i \beta_i(s))^{m(s)}$. On teste alors si les paramètres sont adaptés et si les conditions de récurrence sont satisfaites. Si ce n'est pas le cas, on laisse les estimations précédentes inchangées en définissant $l(i) = \lambda_i^-(s-1)$. Si c'est le cas, on pose, $l(i) = \max\{\lambda_i(s-1), \phi_i(s)\}$. Puis, on améliore ces choix en se rappelant que les λ_i sont log-concave, donc en définissant :

(32)
$$\lambda_i^-(s) = \max \left\{ l(i), \max_{1 \le u \le i, 1 \le v \le d-i} (l(i-u)^u l(i+v)^v)^{1/(u+v)} \right\} \ge \lambda_i^-(s-1).$$

Il s'agit de voir que les $\lambda_i^-(s)$ convergent bien vers $\lambda_i(f)$.

Si $\mu_i > \mu_{i+1}$, la suite $(\lambda_i^-(s))_s$ converge vers $\lambda_i(f)$ par valeurs inférieures. En effet, dire que les paramètres sont adaptés et que les conditions de récurrence sont satisfaites, c'est écrire une famille finie d'inégalités strictes entre certains produits d'intersection. Par le théorème 6.5, ces inégalités sont satisfaites (pour certains (ε, γ, m)) lorsque les paramètres α_i sont remplacés par les multiplicateurs μ_i ; donc ces inégalités sont satisfaites pour des paramètres rationnels p(s) dont les α_i sont arbitrairement proches des μ_i et dont les coefficients ε et γ vérifient les hypothèses du lemme 6.7.

Maintenant, si i < i' sont deux indices en lesquels $\mu_i > \mu_{i+1}$ et $\mu_{i'} > \mu_{i'+1}$ et si $\mu_{i+1} = \cdots = \mu_{i'}$, on sait que $\lambda_i^-(s)$ et $\lambda_{i'}^-(s)$ tendent vers $\lambda_i(f)$ et $\lambda_{i'}(f)$ par valeurs inférieures. Mais alors $\lambda_j^-(s)$ tend aussi vers $\lambda_j(f)$ par log-concavité grâce au choix effectué dans l'équation (32).

6.4. Semi-continuité

Pour démontrer la semi-continuité des $\lambda_i(f_s)$ énoncée au théorème 5.3, le point clé est – comme au paragraphe 5.4 – de démontrer que, si $\beta < \lambda_i(f_\eta)$, alors $\lambda_i(f_s) > \beta$ sur un ouvert dense $U \subset S$. Pour cela, on fait tourner l'algorithme précédent jusqu'à un temps s_0 pour obtenir une bonne approximation des $\lambda_i(f_\eta)$, disons à 2^{-N} près avec $2^{-N} < \lambda_i(f_\eta) - \beta$. Le temps s_0 étant ainsi fixé, considérons les paramètres p(s) avec

 $s \leq s_0$ adaptés à f et vérifiant les conditions de récurrence; ils sont déterminés par certaines inégalités, en nombre fini, entre degrés mixtes. Par la proposition 5.5, ces produits d'intersection restent constants sur un ouvert dense $U \subset S$, et alors $\lambda_i(f_s) > \beta$ pour tout $s \in U$.

7. PROPRIÉTÉS ARITHMÉTIQUES

7.1. Dénombrabilité et transcendance

Les degrés dynamiques $\lambda_i(f)$ forment un sous-ensemble dénombrable $\Lambda \subset [1, +\infty[$ (Bonifant et Fornæss, 2000; Urech, 2018). En effet, chaque transformation rationnelle $f \colon X \dashrightarrow X$ est définie sur le corps de type fini $K \subset \mathbf{k}$ qui est obtenu en adjoignant les coefficients des équations déterminant X et des formules définissant f au corps de base (donc à \mathbf{Q} ou à \mathbf{F}_p , $p = \mathsf{carac}(\mathbf{k})$). À isomorphisme près, il n'y a qu'une quantité dénombrable de tels corps, car chacun d'entre eux est une extension de degré fini d'une extension transcendante pure de degré fini du corps de base. Enfin, K étant fixé, il n'y a qu'une quantité dénombrable de transformations rationnelles définie sur K.

L'exemple 2.3 montre que Λ contient les rayons spectraux des matrices entières de déterminant non nul, donc les entiers algébriques $\lambda \in [1, +\infty[$ qui sont supérieurs au module des autres racines $\lambda' \in \mathbf{C}$ de leur polynôme minimal.

THÉORÈME 7.1 (Bell, Diller, Jonsson et Krieger). — Soit \mathbf{k} un corps de caractéristique différente de 2. Il existe des transformations rationnelles de $\mathbb{P}^2_{\mathbf{k}}$ et des transformations birationnelles de $\mathbb{P}^3_{\mathbf{k}}$ dont les degrés dynamiques sont transcendants.

Les exemples employés par Bell, Diller et Jonsson (2020) puis Bell, Diller, Jonsson et Krieger (2024) sont des compositions $f_A \circ s \circ f_B$ où s est l'involution de Cremona standard et f_A et f_B sont monomiales. Il est également probable que le degré de transcendance de $\mathbf{Q}(\Lambda)$ sur \mathbf{Q} soit infini. Nous verrons ci-dessous que $\lambda_1(f)$ est algébrique si f est une transformation birationnelle d'une surface, mais il pourrait exister une paire (f,g) de transformations birationnelles du plan dont le degré dynamique joint, c'est-à-dire la limite de $(\max_w \deg(w))^{1/n}$ où w décrit toutes les compositions de f, g, f^{-1} et g^{-1} de longueur $\leq n$, soit transcendant. Le théorème 7.1 et sa démonstration suggèrent d'étudier en détails les séries génératrices $\sum_{n\geq 0} \deg_i(f^n)t^n$ et les propriétés d'approximation diophantienne des $\lambda_i(f)$ (voir Nguyen, 2025, pour de premiers résultats).

7.2. Transformations birationnelles des surfaces

Si f est une transformation birationnelle d'une surface X, ses points d'indétermination forment un sous-ensemble fini $\operatorname{Ind}(f) \subset X$. Nous avons vu au paragraphe 2.4 qu'en général l'action de f^* sur $\operatorname{NS}(X; \mathbf{R})$ ne vérifie pas $(f^n)^* = (f^*)^n$. Plus précisément, si $g \colon X \dashrightarrow Y$ et $h \colon Y \dashrightarrow Z$ sont des applications rationnelles dominantes entre surfaces projectives, alors $(h \circ g)^* \neq g^* \circ h^*$ si et seulement si g contracte une courbe sur un point d'indétermination de h. Ainsi, pour que $(f^n)^*$ soit toujours égal à $(f^*)^n$ il faut

que l'orbite positive de $\operatorname{Ind}(f^{-1})$ sous l'action de f ne rencontre pas $\operatorname{Ind}(f)$. Sinon, on trouve une courbe $E \in \operatorname{Exc}(f)$ contractée sur un point q de $\operatorname{Ind}(f^{-1})$ qui, pour un $n \geq 0$ que nous choisirons minimal, vérifie $f^n(q) \in \operatorname{Ind}(f)$. Si l'on éclate X en q, f(q), ..., $f^n(q)$, on peut espérer faire disparaître ce phénomène tout en réduisant le nombre total de points d'indétermination de f. Grâce à cette idée, Diller et Favre (2001) ont montré le théorème suivant.

Théorème 7.2 (Diller et Favre). — Soit f une transformation birationnelle d'une surface. Il existe un morphisme birationnel $\pi\colon Y\to X$ telle que l'application birationnelle $f_Y:=\pi^{-1}\circ f\circ \pi$ vérifie les propriétés suivantes :

- 1. f_Y est algébriquement stable, c'est-à-dire que les endomorphismes linéaires de $NS(Y; \mathbf{Z})$ associés aux itérés de f_Y vérifient $(f_Y^n)^* = (f_Y^*)^n$ pour tout $n \geq 0$;
- 2. $\lambda_1(f_Y)$ est le rayon spectral de $f_Y^* : NS(X; \mathbf{Z}) \to NS(X; \mathbf{Z})$;
- 3. $\lambda_1(f) = \lambda_1(f_Y)$ est égal à 1, ou à un nombre de Salem, ou à un nombre de Pisot.

Autrement dit, $\lambda_1(f)$ est un entier algébrique appartenant à $[1, +\infty[$ dont les conjugués galoisiens ont tous un module complexe ≤ 1 .

Esquisse de démonstration. — Nous avons expliqué ci-dessus d'où provient le point (1.). Le point (2.) est conséquence de (1.) et de la première propriété établie au paragraphe 2.4. En particulier, $\lambda_1(f_Y)$, qui est égal à $\lambda_1(f)$ par le théorème 4.1(3.), est un entier algébrique : c'est une racine du polynôme caractéristique de f_Y^* .

Le point (3.) est plus délicat. Pour décrire les arguments clé, supposons directement que $f = f_Y$ est algébriquement stable. D'après le théorème de l'indice de Hodge, la forme d'intersection sur $NS(X; \mathbf{R})$ est non-dégénérée et de signature $(1, \rho(X) - 1)$.

Si f est un automorphisme, la forme d'intersection est f^* -invariante, ainsi que le cône ample, si bien que les deux composantes de $\{u \in \mathrm{NS}(X;\mathbf{R}) \; ; \; (u \cdot u) > 0\}$ sont invariantes. Lorsque le rayon spectral de f^* est > 1, le théorème de Perron-Frobenius fournit un vecteur propre isotrope θ_f^+ de valeur propre $\lambda_1(f) = \rho(f^*)$. La valeur propre $1/\lambda_1(f)$ apparaît aussi dans le spectre de f^* , pour un autre vecteur isotrope θ_f^- . Le sous-espace de $\mathrm{NS}(X;\mathbf{R})$ orthogonal à $\mathrm{Vect}_{\mathbf{R}}(\theta_f^+,\theta_f^-)$ est f^* -invariant et la forme d'intersection y est définie négative, donc les autres valeurs propres de f^* sont de module 1. Ceci montre que $\lambda_1(f)$ est la racine d'un polynôme unitaire à coefficients entiers (le polynôme caractéristique de $f^* \in \mathrm{GL}(\mathrm{NS}(X;\mathbf{Z}))$), dont les racines sont $\lambda_1(f) \geq 1$, $1/\lambda_1(f)$, et des nombres de module 1. Ainsi, $\lambda_1(f)$ est soit égal à 1, soit un entier quadratique réciproque, soit un nombre de Salem.

Lorsque f n'est pas un automorphisme, la forme d'intersection n'est plus invariante. Toutefois, pour tout diviseur D,

(33)
$$(f^*D \cdot f^*D) = (D \cdot D) + \sum_{j} (D \cdot E_j)^2$$

où les E_j sont des diviseurs effectifs portés par $\operatorname{Exc}(f^{-1})$; ainsi, $(D \cdot D)$ ne peut qu'augmenter sous l'action de f^* , ce qui suffit pour conclure (Diller et Favre, 2001).

Pour D effectif, l'explication géométrique de (33) est la suivante : si un point d'indétermination q est envoyé par f sur un diviseur E et si $(E \cdot D) = m$, alors f^*D passera par q avec multiplicité m et E apparaîtra avec multiplicité m dans f_*f^*D . Ceci montre que $f_*f^*D = D + \sum_j (D \cdot E_j)E_j$ pour certains diviseurs effectifs E_j portés par $\operatorname{Exc}(f^{-1})$, et l'égalité (33) en découle en intersectant avec D.

Remarque 7.3. — Les nombres de Pisot (resp. Salem) ne sont pas tous réalisés comme degrés dynamiques de transformations birationnelles de surfaces. Ces degrés dynamiques, en effet, forment un sous-ensemble bien ordonné de $[1, +\infty[$, ce qui n'est pas le cas des nombres de Salem (voir Blanc et Cantat, 2016). De plus, le plus petit degré dynamique > 1 réalisé par une transformation birationnelle de surface est le nombre de Lehmer, c'est-à-dire la racine $\lambda_L \simeq 1,17628$ de l'équation $t^{10}+t^9-(t^7+\cdots+t^3)+t+1=0$.

Remarque 7.4. — Pour les transformations birationnelles des surfaces, un théorème de Gizatullin permet de répondre au problème décrit au paragraphe 4.4.1. Si $\lambda_1(f)=1$, seuls trois cas sont possibles :

- a. $\deg(f^n)$ est une suite bornée.— Dans ce cas il existe une application birationnelle $g\colon Y\dashrightarrow X$ et un entier $k\geq 1$ tels que $g^{-1}\circ f^k\circ g$ appartienne à un sous-groupe algébrique connexe de $\operatorname{Aut}(Y)$.
- b. $deg(f^n) \simeq cn$ pour un c > 0.— Dans ce cas f préserve un pinceau de courbes et un seul, et ce pinceau est formé de courbes rationnelles.
- c. $\deg(f^n) \simeq cn^2$ pour un c>0.— Dans ce cas f préserve un pinceau de courbes et un seul, et ce pinceau est formé de courbes de genre 1.

Nous renvoyons aux survols de Favre (2010), Cantat (2018) et Cantat (2025) pour ces deux remarques. Ils décrivent notamment comment interpréter ces énoncés à l'aide de géométrie hyperbolique, $\log(\lambda_1(f))$ devenant la longueur de translation d'une isométrie.

7.3. Endomorphismes de l'espace affine

Pour un endomorphisme $f: \mathbb{A}^d \to \mathbb{A}^d$, Blanc et Santen (2022) suggèrent que $\lambda_1(f)$ est un entier algébrique de degré $\leq d$ ($\leq d-1$ lorsque $f \in \operatorname{Aut}(\mathbb{A}^d)$) qui est supérieur au module de toutes les racines de son polynôme minimal. Le cas des automorphismes du plan résulte du théorème de Jung et van der Kulk, qui stipule que $\operatorname{Aut}(\mathbb{A}^2)$ est le produit amalgamé du groupe affine et du groupe des transformations élémentaires $(x_1, x_2) \mapsto (x_1 + p(x_2), x_2)$ le long de leur intersection (Lamy, 2001). Le cas des endomorphismes des surfaces affines est traité par Favre et Jonsson (2011) et Abboud (2023).

THÉORÈME 7.5 (Dang et Favre). — Si f est un endomorphisme propre de l'espace affine $\mathbb{A}^d_{\mathbf{C}}$ tel que $\lambda_1(f)^2 > \lambda_2(f)$, alors $\lambda_1(f)$ est un nombre algébrique de degré $\leq d$.

En corollaire, si f est un automorphisme de $\mathbb{A}^3_{\mathbf{C}}$, alors $\lambda_1(f)$ est un nombre algébrique de degré ≤ 6 . Les méthodes employées pour ce type d'énoncés diffèrent fortement de celles décrites dans le reste de cet exposé. Il s'agit notamment de décrire l'action de

f sur l'espace des valuations de $\mathbf{C}[x_1,\ldots,x_d]$, l'anneau des fonctions de \mathbb{A}^d , qui sont centrées à l'infini. Nous renvoyons le lecteur à l'article de Dang et Favre (2021).

8. ENDOMORPHISMES RÉGULIERS

Pour conclure cet exposé, nous allons décrire deux théorèmes qui ont été obtenus pour les endomorphismes (réguliers) mais pourraient avoir des analogues pour toute transformation rationnelle dominante. Le premier résultat dit que les multiplicateurs μ_i peuvent être retrouvés en considérant l'action des $(f^n)^*$ seulement sur $NS(X; \mathbf{R})$ (et pas sur les $N^i(X; \mathbf{R})$). Le second montre que si $\deg_i(f^n) \leq c^{ste} n^a$ pour un certain degré a, alors en fait $\deg_i(f^n) \leq c^{ste} n^{i(2d-2)}$, où $d = \dim(X)$.

8.1. Multiplicateurs et groupe de Néron-Severi

8.1.1. Spectre associé à un cône. — Soient W un espace vectoriel réel de dimension finie et g un endomorphisme de W. Nous noterons $\operatorname{Sp}_{\mathbf{C}}(g) \subset \mathbf{C}$ le spectre de g et $\operatorname{Sp}_{\mathbf{R}}(g)$ sa partie réelle, c'est-à-dire l'ensemble des valeurs propres réelles de g.

Soit $\mathcal{C} \subset W$ un cône tel que (i) \mathcal{C} est ouvert, non vide, et convexe; (ii) \mathcal{C} est (strictement) saillant, c'est-à-dire qu'il existe une forme linéaire $\xi \in W^{\vee}$ telle que $\xi(u) > 0$ pour tout $u \in \overline{\mathcal{C}} \setminus \{0\}$; et (iii) \mathcal{C} est g-invariant : $g(\mathcal{C}) = \mathcal{C}$.

On définit alors le spectre de g relatif à $\mathcal C$ par

(34)
$$\operatorname{Sp}(q; \mathcal{C}) = \{ \alpha \in \mathbf{R} : (q - \alpha \operatorname{id})(W) \cap \mathcal{C} = \emptyset \}.$$

C'est un sous-ensemble de $\operatorname{Sp}_{\mathbf{R}}(g) \cap \mathbf{R}_{>0}$ car si α est négatif, alors $(g - \alpha \operatorname{id})(\mathcal{C}) \subset \mathcal{C}$, et si α n'est pas une valeur propre de g, alors $(g - \alpha \operatorname{id})(W) = W$. Si $\mathcal{C}_1 \subset \mathcal{C}_2$ sont des cônes g-invariants alors $\operatorname{Sp}(g; \mathcal{C}_2) \subset \operatorname{Sp}(g; \mathcal{C}_1)$.

Lemme 8.1. — Soit α un réel ≥ 0 . Les assertions suivantes sont équivalentes

- $a. \ \alpha \in \operatorname{Sp}(q; \mathcal{C});$
- b. il existe $n \geq 1$ tel que $\alpha^n \in \operatorname{Sp}(g^n; \mathcal{C})$;
- c. pour tout $n \geq 1$, $\alpha^n \in \operatorname{Sp}(g^n; \mathcal{C})$.

En particulier, pour tout $n \ge 1$, $\operatorname{Sp}(g^n; \mathcal{C}) = \{\alpha^n ; \alpha \in \operatorname{Sp}(g; \mathcal{C})\}.$

Démonstration. — Notons que (c.) entraı̂ne (a.) qui entraı̂ne (b.). Supposons $\alpha \notin \operatorname{Sp}(g; \mathcal{C})$. Il existe alors $w \in W$ tel que $g(w) - \alpha w$ appartient à \mathcal{C} ; donc

$$g^{n}(w) - \alpha^{n}w = g^{n-1}(g(w) - \alpha w) + \alpha g^{n-1}(g(w) - \alpha w) + \dots + \alpha^{n-1}(g(w) - \alpha w)$$

appartient à \mathcal{C} ; donc $\alpha^n \notin \operatorname{Sp}(g^n; \mathcal{C})$. Ceci montre que (b.) implique (a.). Il reste à établir que (a.) entraı̂ne (c.). Il revient au même de montrer que si $\alpha^m \notin \operatorname{Sp}(g^m; \mathcal{C})$ pour un $m \geq 1$, alors $\alpha \notin \operatorname{Sp}(g; \mathcal{C})$. L'hypothèse $\alpha^m \notin \operatorname{Sp}(g^m; \mathcal{C})$ fournit en effet un vecteur $v \in W$ tel que $g^m(v) - \alpha^m v$ appartient à \mathcal{C} ; en posant $w = \alpha^m v + \alpha^{m-1} g(v) + \cdots + \alpha^{m-1} g^{m-1}(v)$ on obtient un vecteur qui vérifie $g(w) - \alpha w = g^m(v) - \alpha^m v \in \mathcal{C}$, donc $\alpha \notin \operatorname{Sp}(g; \mathcal{C})$. \square

8.1.2. Spectres associés aux cônes gros et amples. —

THÉORÈME 8.2 (Xie, 2025). — Soient X une variété projective et $f: X \to X$ un endomorphisme dominant. L'application linéaire $f^*: \operatorname{NS}(X; \mathbf{R}) \to \operatorname{NS}(X; \mathbf{R})$ préserve les cônes $\operatorname{Big}(X)$ et $\operatorname{Amp}(X)$. Le spectre de f^* associé à $\operatorname{Big}(X)$ est égal à l'ensemble des multiplicateurs de f^* :

$$Sp(f^*; Big(X)) = {\mu_i(f) ; i = 1, ..., dim(X)}.$$

Le spectre de f* associé au cône ample est

$$Sp(f^*; Amp(X)) = \bigcup_{V} \{\mu_i(V, f) ; i = 1, ..., dim(V)\}.$$

où l'union est prise sur toutes les sous-variétés irréductibles de X de dimension ≥ 1 qui sont f-périodiques.

Voici un énoncé équivalent à la première assertion : pour qu'il existe un fibré en droites L tel que $f^*L - \alpha L$ soit gros, il faut et il suffit que α ne soit pas l'un des $\mu_i(f)$.

Ce théorème montre que les degrés dynamiques se déduisent de la seule connaissance de $f^*: NS(X; \mathbf{R}) \to NS(X; \mathbf{R})$ et de $Big(X) \subset NS(X; \mathbf{R})$. Par exemple, si $\alpha_1 > \alpha_2 > \cdots > \alpha_k$ sont les valeurs propres réelles positives de $f^*: NS(X; \mathbf{R}) \to NS(X; \mathbf{R})$, alors $\lambda_1(f)$ est égal à $\alpha_1, \lambda_2(f) = \alpha_{i_2}\lambda_1(f)$ pour un indice $i_2 \geq 1, \lambda_3(f) = \alpha_{i_3}\lambda_2(f)$ pour un indice $i_3 \geq i_2$, etc.

Démonstration pour $\operatorname{Big}(X)$. — Soit d la dimension de X. Soit L la classe d'un fibré en droites ample sur X. Comme précédemment, nous noterons $L_n = (f^n)^*L$ et $\mu_i = \mu_i(f)$, et nous emploierons la convention $\mu_{d+1} = 0$.

Étape 1.– Soit α un réel > 0 tel que $\alpha \notin \{\mu_i(f) ; i = 1, ..., d\}$. Montrons que α n'appartient pas à $\operatorname{Sp}(f^*; \operatorname{Big}(X))$. C'est le cas si α n'appartient pas au spectre de f^* : $\operatorname{NS}(X; \mathbf{R}) \to \operatorname{NS}(X; \mathbf{R})$. Comme $\mu_1 = \lambda_1$ est le rayon spectral de f^* , nous pouvons supposer $\mu_1 > \alpha > 0$. Il existe donc un entier i minimal tel que $\alpha > \mu_{i+1}$; et alors $\mu_i > \alpha > \mu_{i+1}$. Soit $\varepsilon \in]0,1[$. Pour m assez grand (fixé), le théorème 6.5 assure que $M := L_{2m} + (\mu_i \mu_{i+1})^m L - (\varepsilon \mu_i)^m L_m$ appartient à $\operatorname{Big}(X)$. Définissons $N = L_m - (\mu_i \mu_{i+1} \alpha^{-1})^m L$, et remarquons que

$$(f^{m})^{*}N - \alpha^{m}N = L_{2m} - (\mu_{i}\mu_{i+1}\alpha^{-1})^{m}L_{m} - \alpha^{m}L_{m} + (\mu_{i}\mu_{i+1})^{m}L$$

= $M + ((\varepsilon\mu_{i})^{m} - \alpha^{m} - (\mu_{i}\mu_{i+1}\alpha^{-1})^{m}))L_{m}.$

Donc $(f^m)^*N - \alpha^m N$ appartient à Big(X) si $\varepsilon \in]0,1[$ vérifie $\varepsilon \mu_i > \alpha$ et $\varepsilon \mu_i > \mu_i \mu_{i+1} \alpha^{-1}$, et un tel choix est possible car $1 > \alpha/\mu_i$ et $1 > \mu_{i+1}\alpha^{-1}$. Ceci montre que α^m appartient à Sp $((f^m)^*; \text{Big}(X))$. Comme $(f^*)^m = (f^m)^*$, on conclut avec le lemme 8.1.

Étape 2. – Supposons maintenant que $\alpha = \mu_i$ pour un $i \in \{1, ..., d\}$ et montrons que α appartient à $\operatorname{Sp}(f^*; \operatorname{Big}(X))$. Raisonnons par l'absurde, en supposant qu'il existe $N \in \operatorname{NS}(X; \mathbf{R})$ tel que $M := f^*N - \mu_i N$ est une classe grosse. Nous pouvons alors multiplier N (et donc M) par une constante > 0 pour que M - L soit grosse. Nous

fixerons des constantes c et $c' \ge 1$ telles que $-cL \le N \le cL$ (au sens où cL - N et cL + N sont grosses) et $f^*L \le c'L$.

Soit h(n,m) le réel > 0 défini par $h(n,m) = \mu_i^{-m} \left(L_n^{i-1} \cdot L_m \cdot L^{d-i} \right)$. Remarques intermédiaires – Montrons les trois propriétés suivantes

- 1. $h(n+1,m) \leq (c')^{i-1}h(n,m)$;
- 2. $h(n, m + 1) \le (c'/\mu_i)h(n, m)$;
- 3. pour tout $\delta \in]0,1[$ il existe une constante $c'' \geq 1$ telle que

$$(c'')^{-1}\delta^n \le \frac{h(n,m)}{\lambda_{i-1}^n} \le c''\delta^{-n}$$

pour tous les entiers $n \geq m \geq 0$.

Pour (1.), on écrit $h(n+1,m) = \mu_i^{-m} \left((f^n)^* (f^*L)^{i-1} \cdot L_m \cdot L^{d-i} \right)$ et on utilise $f^*L \leq c'L$. L'inégalité (2.) s'obtient de manière analogue. Pour (3.), on applique le corollaire 6.2 en prenant $s=3,\ r_1=i-1,\ r_2=1,\ r_3=d-i$ et $m_1=n,\ m_2=m,\ m_3=0$. Alors $\ell_1=i-1,\ \ell_2=i,\ \ell_3=d$ et

$$(c'')^{-1}\delta^n\lambda_{i-1}^{n-m}\lambda_i^m\lambda_d^0 \le \left(L_n^{i-1}\cdot L_m\cdot L^{d-i}\right) \le c''\delta^{-n}\lambda_{i-1}^{n-m}\lambda_i^m\lambda_d^0$$

dès que $n \geq m \geq 0$. En remarquant que $\lambda_i/\lambda_{i-1} = \mu_i$, ceci donne

$$(c'')^{-1}\delta^n \lambda_{i-1}^n \le h(n,m) \le c'' \delta^{-n} \lambda_{i-1}^n.$$

Conclusion (esquisse). – En sommant h(n, j) entre m_0 et m et en utilisant $L \leq M$ nous obtenons

$$\sum_{j=m_0}^{m} h(n,j) \leq \sum_{j=m_0}^{m} \mu_i^{-j} \left(L_n^{i-1} \cdot M_j \cdot L^{d-i} \right)
\leq \mu_i^{-m} \left(L_n^{i-1} \cdot N_{m+1} \cdot L^{d-i} \right) - \mu_i^{-m_0+1} \left(L_n^{i-1} \cdot N_{m_0} \cdot L^{d-i} \right)
\leq (c\mu_i) h(n,m+1) + (c\mu_i) h(n,m_0)
\leq (cc') h(n,m) + (c\mu_i) h(n,m_0).$$

 $\operatorname{car} -cL \leq N \leq cL \text{ et } h(n, m+1) \leq (c'/\mu_i)h(n, m).$

Nous voulons déduire une contradiction de cette inégalité en choisissant convenablement $m_0 \leq m \leq n$. La fonction $h \colon \mathbf{N} \times \mathbf{N} \to \mathbf{R}_+$ est une combinaison linéaire de fonctions du type $(n,m) \mapsto \alpha^n \beta^m n^a m^b$ où les coefficients α et β sont des valeurs propres de f^* sur $\mathrm{NS}(X; \mathbf{C})$. Simplifions la situation en supposant que $h(n,m) = \alpha^n \beta^m n^a m^b$.

La propriété (3.) démontrée ci-dessus entraı̂ne alors $\beta = 1$ et $\alpha = \lambda_{i-1}$, donc $h(n, m) = \lambda_{i-1}^n n^a m^b$. Mais alors

$$\sum_{j=m_0}^{m} h(n,j) = \lambda_{i-1}^{n} n^a \left(\frac{1}{b+1} m^{b+1} + O(m^b) \right),$$

ce qui contredit l'inégalité $\sum_{j=m_0}^m h(n,j) \leq (cc')h(n,m) + (c\mu_i)h(n,m_0)$.

Le cas d'une combinaison linéaire quelconque $h(n,m) = \sum_k c_k \alpha_k^n \beta_k^m n^{a_k} m^{b_k}$ est plus délicat mais conduit à une contradiction similaire.

8.2. Croissance polynomiale

Soit $f: X \to X$ un endomorphisme dominant de X tel que $\lambda_1(f) = 1$. Par le corollaire 4.5, $\lambda_i(f) = 1$ pour tout i. D'après le paragraphe 2.4, $\lambda_i(f)$ est le rayon spectral de f^* sur $N^i(X; \mathbf{R})$, donc les valeurs propres de f^* sur $N^i(X; \mathbf{R})$ sont de module ≤ 1 . Comme f^* préserve le réseau $N^i(X; \mathbf{Z})$, son polynôme caractéristique est unitaire et à coefficients entiers et ses valeurs propres sont des racines de l'unité. Il existe alors un entier $k \geq 1$ tel que $(f^k)^*$ est unipotent. Dans le cas kählérien, la même démarche peut être couplée à l'assertion (3.) du paragraphe 2.4 et donne : si les $\lambda_i(f)$ valent 1, il existe un entier $k \geq 1$ tel que $(f^k)^*$: $H^*(X; \mathbf{R}) \to H^*(X; \mathbf{R})$ est unipotent. En écrivant f^* sous forme de Jordan, on voit alors que la croissance de $\|(f^n)^*\|$ sur $NS(X; \mathbf{R})$ (resp. sur $H^{1,1}(X; \mathbf{R})$) est polynomiale. La taille des blocs de Jordan étant évidemment majorée par $\rho(X) = \dim(NS(X; \mathbf{R}))$, nous obtenons $\|(f^n)^*\| \leq c^{ste} n^{\rho(X)-1}$ (resp. $\leq n^{h^{1,1}(X)} - 1$). Il existe en fait une majoration qui ne dépend que de $\dim(X)$:

Théorème 8.3. — Soit $f: X \to X$ un endomorphisme d'une variété projective de dimension d défini sur un corps k. Si ses degrés dynamiques valent 1, alors

$$||(f^n)^*_{NS(X;\mathbf{R})}|| = O(n^{2d-2}).$$

Ce résultat est optimal : il existe des endomorphismes de variétés abéliennes pour lesquels $\|(f^n)_{NS(X;\mathbf{R})}^*\|$ croît comme n^{2d-2} .

Les inégalités de Khovanskii et Teissier fournissent alors un entier $k \geq 1$ tel que

- 1. $(f^k)^*$ est une transformation linéaire unipotente de $\bigoplus_i N^i(X; \mathbf{R})$;
- 2. $\deg_i(f^n) = O(n^{i(2d-2)})$, si bien que chaque bloc de Jordan de $(f^k)^*$ sur $N^i(X; \mathbf{R})$ est de taille $\leq i(2d-2)+1$.

Ces énoncés restent valables pour les transformations holomorphes des variétés compactes kählériennes, en remplaçant l'action de f^* sur $N^i(X; \mathbf{R})$ par celle sur $H^{i,i}(X; \mathbf{R})$. Ils ont été démontrés par Lo Bianco (2019) lorsque $\dim(X) \leq 3$, puis Dinh, Lin, Oguiso et Zhang (2022) si X est kählérienne et Hu et Chen (2024) si X est projective. Lorsque $\dim(X) = 2$, l'énoncé reste valable pour les transformations birationnelles (voir la remarque 7.4); mais on ne sait pas si c'est le cas en dimension ≥ 3 .

Pour conclure, décrivons quelques points de la démonstration obtenue par Dinh, Lin, Oguiso et Zhang (2022), car les idées principales diffèrent de ce que nous avons expliqué jusqu'ici : il s'agit de suivre l'étude classique de la cohomologie des variétés kählériennes, notamment la preuve des théorèmes de Lefschetz, en ajoutant l'action de f.

Supposons f^* unipotent. Les cônes $\operatorname{Kah}(X)^i \subset H^{i,i}(X;\mathbf{R})$ étant f^* -invariants, on construit facilement des éléments $M_i \in \operatorname{\overline{Kah}}(X) \subset H^{1,1}(X;\mathbf{R})$, pour $i=1,\ldots,d-1$, tels que les produits $L_i := M_1 \cdots M_i$ vérifient $L_i \neq 0$ et $f^*L_i = L_i$. Les auteurs considèrent alors deux filtrations de $H^{1,1}(M;\mathbf{R})$. La première, $\{0\} = F_0 \subset F_i \subset F_{i+1} \subset F_d = H^{1,1}(M;\mathbf{R})$, est définie par la propriété suivante : une classe D appartient à F_i si $(L_i \cdot D) \cdot (E_i \cdots E_{d-i-1}) = 0$ pour toutes classes $E_j \in H^{1,1}(X;\mathbf{R})$. Nous noterons

 $L_i \cdot D \equiv 0$ pour cette propriété. La seconde, F_i' , peut être définie par $F_i' = \{D \in H^{1,1}(X; \mathbf{R}); L_i \cdot D \cdot D \equiv 0\}$. Par construction, $F_{i-1} \subset F_i' \subset F_i$.

Dinh et Nguyên (2006) ont établi des relations de Hodge-Riemann pour des classes de $\overline{\operatorname{Kah}(X)}$ qui pouvent être distinctes. Elles permettent de montrer que $\dim(F_i'/F_{i-1}) \leq 1$, avec égalité si et seulement si $F_i' = F_{i-1} \oplus \mathbf{R} M_i$.

Fixons maintenant une forme de Kähler κ , écrivons $(f^n)^*\kappa = ((f^* - \mathrm{id}) + \mathrm{id})^n\kappa$, et développons :

$$(f^n)^* \kappa = \sum_{j \ge 0} \binom{n}{j} \omega_j$$
 avec $\omega_j = (f^* - \mathrm{id})^j \kappa$.

Ainsi $||(f^n)^*\kappa||$ croît comme n^a , où a est le plus grand entier tel que $(\omega_a \cdot \kappa^{d-1}) \neq 0$. Le théorème 8.3 résulte alors du fait remarquable suivant : soit t(j) le plus grand indice tel que $\omega_j \in F_{t(j)} \setminus F_{t(j)-1}$; alors t(2j-1) = t(2j) > t(2j+1) = t(2j+2) pour tout j. Donc $\omega_j = 0$ dès que $j \geq 2(d-1)$ et la croissance est majorée par $n^{2(d-1)}$.

RÉFÉRENCES

Marc Abboud (2023). « On the dynamics of endomorphisms of affine surfaces ». Preprint arxiv :2311.18381.

Vladimir I. Arnol'd (1990). « Dynamics of complexity of intersections », Bol. Soc. Brasil. Mat. (N.S.) 21 (1), p. 1-10.

Jason P. Bell, Jeffrey Diller et Mattias Jonsson (2020). « A transcendental dynamical degree », Acta Math. 225 (2), p. 193-225.

Jason P. Bell, Jeffrey Diller, Mattias Jonsson et Holly Krieger (2024). « Birational maps with transcendental dynamical degree », *Proc. Lond. Math. Soc.* (3) **128**(1), Paper No. e12573, 47.

Jérémy Blanc et Serge Cantat (2016). « Dynamical degrees of birational transformations of projective surfaces », J. Amer. Math. Soc. 29 (2), p. 415-471.

Jérémy Blanc et Immanuel van Santen (2022). « Dynamical degrees of affine-triangular automorphisms of affine spaces », *Ergodic Theory Dynam. Systems* **42** (12), p. 3551-3592.

Araceli M. Bonifant et John Erik Fornæss (2000). « Growth of degree for iterates of rational maps in several variables », *Indiana Univ. Math. J.* **49**(2), p. 751-778.

Yurii D. Burago et Viktor A. Zalgaller (1988). Geometric inequalities. T. 285. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Translated from the Russian by A. B. Sosinskii, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, p. xiv+331.

- Serge Cantat et Junyi Xie (2020). « On degrees of birational mappings », Math. Res. Lett. 27 (2), p. 319-337.
- Ionuţ Chiose (2016). « The Kähler rank of compact complex manifolds », *J. Geom. Anal.* **26** (1), p. 603-615.
- Nguyen-Bac Dang (2020). « Degrees of iterates of rational maps on normal projective varieties », *Proc. Lond. Math. Soc.* (3) **121** (5), p. 1268-1310.
- Nguyen-Bac Dang et Charles Favre (2021). « Spectral interpretations of dynamical degrees and applications », Ann. of Math. (2) **194**(1), p. 299-359.
- Jean-Pierre Demailly (1993). « A numerical criterion for very ample line bundles », J. Differential Geom. 37 (2), p. 323-374.
- Jean-Pierre Demailly et Mihai Paun (2004). « Numerical characterization of the Kähler cone of a compact Kähler manifold », Ann. of Math. (2) **159** (3), p. 1247-1274.
- Jeffrey Diller et Charles Favre (2001). « Dynamics of bimeromorphic maps of surfaces », *Amer. J. Math.* **123** (6), p. 1135-1169.
- Tien-Cuong Dinh (2005). « Suites d'applications méromorphes multivaluées et courants laminaires », J. Geom. Anal. 15 (2), p. 207-227.
- Tien-Cuong Dinh, Hsueh-Yung Lin, Keiji Oguiso et De-Qi Zhang (2022). « Zero entropy automorphisms of compact Kähler manifolds and dynamical filtrations », Geom. Funct. Anal. 32 (3), p. 568-594.
- Tien-Cuong Dinh et Viêt-Anh Nguyên (2006). « The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds », Geom. Funct. Anal. 16 (4), p. 838-849.
- ——— (2011). « Comparison of dynamical degrees for semi-conjugate meromorphic maps », Comment. Math. Helv. 86 (4), p. 817-840.
- Tien-Cuong Dinh et Nessim Sibony (2004). « Regularization of currents and entropy », Ann. Sci. École Norm. Sup. (4) 37 (6), p. 959-971.
- Hélène Esnault et Vasudevan Srinivas (2013). « Algebraic versus topological entropy for surfaces over finite fields », Osaka J. Math. **50** (3), p. 827-846.
- Benson Farb et Dan Margalit (2012). A primer on mapping class groups. T. 49. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, p. xiv+472.
- Charles Favre (2010). « Le groupe de Cremona et ses sous-groupes de type fini », in : 332. Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011, Exp. No. 998, vii, 11-43.
- Charles Favre et Mattias Jonsson (2011). « Dynamical compactifications of \mathbb{C}^2 », Ann. of Math. (2) 173 (1), p. 211-248.
- Charles Favre, Tuyen Trung Truong et Junyi Xie (2022). Topological entropy of a rational map over a complete metrized field. arXiv: 2208.00668 [math.DS].
- Charles Favre et Elizabeth Wulcan (2012). « Degree growth of monomial maps and McMullen's polytope algebra », *Indiana Univ. Math. J.* **61** (2), p. 493-524.
- William Fulton (1998). *Intersection theory*. Second. T. 2. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, p. xiv+470.

- Mikhaïl Gromov (1990). « Convex sets and Kähler manifolds », in : Advances in differential geometry and topology. World Sci. Publ., Teaneck, NJ, p. 1-38.
- Quentin Guignard (2021). « A new proof of Raynaud-Gruson's flattening theorem », Int. Math. Res. Not. IMRN (9), p. 6932-6966.
- Fei Hu et Jiang Chen (2024). « An upper bound for polynomial volume growth of automorphisms of zero entropy ». arXiv :2408.15804.
- Chen Jiang et Zhiyuan Li (2023). « Algebraic reverse Khovanskii-Teissier inequality via Okounkov bodies », *Math. Z.* **305** (2), Paper No. 26, 14.
- Anatole Katok et Boris Hasselblatt (1995). Introduction to the modern theory of dynamical systems. T. 54. Encyclopedia of Mathematics and its Applications. With a supplementary chapter by Katok and Leonardo Mendoza. Cambridge University Press, Cambridge, p. xviii+802.
- János Kollár (1996). Rational curves on algebraic varieties. T. 32. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, p. viii+320.
- Stéphane Lamy (2001). « L'alternative de Tits pour $\operatorname{Aut}[\mathbb{C}^2]$ », J. Algebra **239** (2), p. 413-437.
- Robert Lazarsfeld (2004). *Positivity in algebraic geometry. I.* T. 48. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Classical setting: line bundles and linear series. Springer-Verlag, Berlin, p. xviii+387.
- Brian Lehmann et Jian Xiao (2017). « Correspondences between convex geometry and complex geometry », Épijournal Géom. Algébrique 1, Art. 6, 29.
- Jan-Li Lin (2012). « Pulling back cohomology classes and dynamical degrees of monomial maps », Bull. Soc. Math. France 140 (4), p. 533-549.
- Federico Lo Bianco (2019). « On the cohomological action of automorphisms of compact Kähler threefolds », Bull. Soc. Math. France 147 (3), p. 469-514.
- Yohsuke Matsuzawa et Long Wang (2024). « Arithmetic degrees and Zariski dense orbits of cohomologically hyperbolic maps », Trans. Amer. Math. Soc. 377 (9), p. 6311-6340.
- Yohsuke Matsuzawa et Junyi Xie (2025). « Arithmetic degree and its application to Zariski dense orbit conjecture », J. Lond. Math. Soc. (2) 112 (3), Paper No. e70282.
- Quang-Khai Nguyen (2025). « On the generating series of the degree sequence ». arXiv:2510.06142.
- Dan Popovici (2016). « Sufficient bigness criterion for differences of two nef classes », *Math. Ann.* **364** (1-2), p. 649-655.
- Michel Raynaud et Laurent Gruson (1971). « Critères de platitude et de projectivité. Techniques de "platification" d'un module », *Invent. Math.* **13**, p. 1-89.
- Silvain Rideau-Kikuchi (2022). « Sur un théorème de Lang-Weil tordu [d'après E. Hrushovski, K. V. Shuddhodan et Y. Varshavsky] », in : Séminaire Bourbaki. Vol. 2022/2023. Exposés 1200.

- Alexander Russakovskii et Bernard Shiffman (1997). « Value distribution for sequences of rational mappings and complex dynamics », *Indiana Univ. Math. J.* **46** (3), p. 897-932.
- Bernard Teissier (1979). « Du théorème de l'index de Hodge aux inégalités isopérimétriques », C. R. Acad. Sci. Paris Sér. A-B 288 (4), A287-A289.
- Tuyen Trung (2020). « Relative dynamical degrees of correspondences over a field of arbitrary characteristic », J. Reine Angew. Math. 758, p. 139-182.
- Christian Urech (2018). « Remarks on the degree growth of birational transformations », *Math. Res. Lett.* **25** (1), p. 291-308.
- Long Wang (2024). « Periodic points and arithmetic degrees of certain rational self-maps », J. Math. Soc. Japan **76** (3), p. 713-738.
- Jian Xiao (2018). « Movable intersection and bigness criterion », *Univ. Iagel. Acta Math.* (55), p. 53-64.
- Junyi Xie (2015). « Periodic points of birational transformations on projective surfaces », *Duke Math. J.* **164**(5), p. 903-932.
- ——— (2024a). « Algebraic dynamics and recursive inequalities ». arXiv :2402.12678.
- ——— (2024b). « Numerical spectrums control Cohomological spectrums ». arXiv :2412.01216.
- ——— (2025). « Numerical action for endomorphisms ». arXiv :2502.04779.
- Yosef Yomdin (1987). « Volume growth and entropy », Israel J. Math. 57 (3), p. 285-300.

Serge Cantat

CNRS et Université de Rennes Bâtiment 22-23 du Campus de Beaulieu F-35042 Rennes cedex *E-mail*: serge.cantat@univ-rennes.fr