BIRATIONAL AUTOMORPHISM GROUPS AND THE MOVABLE CONE THEOREM FOR CALABI-YAU MANIFOLDS OF WEHLER TYPE VIA UNIVERSAL COXETER GROUPS

SERGE CANTAT AND KEIJI OGISO

Dedicated to Professor Yujiro Kawamata on the occasion of his sixtieth birthday.

ABSTRACT. Thanks to the theory of Coxeter groups, we produce the first family of Calabi-Yau manifolds X of arbitrary dimension n, for which $\text{Bir}(X)$ is infinite and the Kawamata-Morrison movable cone conjecture is satisfied. For this family, the movable cone is explicitly described; its fractal nature is related to limit sets of Kleinian groups and to the Apollonian Gasket. Then, we produce explicit examples of (biregular) automorphisms with positive entropy on some Calabi-Yau varieties.

1. INTRODUCTION

1.1. Coxeter groups. Coxeter groups (see eg. [Hum], [Vi]) play a fundamental role in group theory. Among all Coxeter groups generated by N involutions, the universal Coxeter group of rank N

$$\text{UC}(N) := \mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z} \ast \cdots \ast \mathbb{Z}/2\mathbb{Z},$$

where $\mathbb{Z}/2\mathbb{Z}$ is the cyclic group of order 2, is the most basic one: there is no non-trivial relation between its N natural generators, hence every Coxeter group is a quotient of some $\text{UC}(N)$. The group $\text{UC}(1)$ coincides with $\mathbb{Z}/2\mathbb{Z}$, and $\text{UC}(2)$ is isomorphic to the infinite dihedral group; in particular, $\text{UC}(2)$ is almost abelian in the sense that it contains a cyclic abelian subgroup \mathbb{Z} as an index 2 subgroup. For $N \geq 3$, $\text{UC}(N)$ contains the free group $\mathbb{Z} \ast \mathbb{Z}$.

Given a Coxeter diagram with N vertices and its associated Coxeter group W, one can construct a real vector space V of dimension N, together with a quadratic form b, and a linear representation $W \to \text{GL}(V)$ that preserves b (see §2). We shall refer to this representation $W \to \text{GL}(V)$ as the geometric representation of W. The group W preserves a convex cone $T \subset V$, called the Tits cone, that contains an explicit sub-cone $D \subset T$ which is a fundamental domain for the action of W on T. A precise description of the geometric representation and the invariant cone for $W = \text{UC}(N)$ is given in Section 2.2. In particular,
for \(N \geq 3 \), the quadratic form \(b \) is non-degenerate and has signature \((1, N - 1)\), and the fundamental domain \(D \) is a cone over a simplex.

1.2. **Wehler varieties.** Coxeter groups also appear in the theory of algebraic surfaces, mostly as hyperbolic reflection groups acting on Néron-Severi groups (see for instance [Ni], [Bor], [CaDo], [Do], [Mc2], [To]).

Let \(n \) be a positive integer. Let \(X \) be a smooth complex hypersurface of \((\mathbb{P}^1)^{n+1}\). The adjunction formula implies that the Kodaira dimension of \(X \) vanishes if and only if \(X \) has multi-degree \((2,2,\ldots,2)\), if and only if the canonical bundle of \(X \) is trivial. These smooth hypersurfaces \(X \subset (\mathbb{P}^1)^{n+1} \) of degree \((2,2,\ldots,2)\) will be called **Wehler varieties** in what follows.

Let \(X \) be such a Wehler variety. The \(n+1 \) projections \(p_i: X \to (\mathbb{P}^1)^n \) which are obtained by forgetting one coordinate are ramified coverings of degree 2; thus, for each index \(i \), there is a birational transformation \(\iota_i: X \dasharrow X \) that permutes the two points in the fibers of \(p_i \). This provides a morphism

\[
\Psi: UC(n+1) \to Bir(X)
\]

into the group of birational transformations of \(X \).

Remark 1.1. Wehler surfaces and their variants appear in the study of complex dynamics and arithmetic dynamics as handy, concrete examples ([Ca], [Mc1], [Sil]).

1.2.1. **Curves and surfaces.** In dimension \(n = 1 \), the hypersurface \(X \) is an elliptic curve \(\mathbb{C}/\Lambda \), and the image of the dihedral group \(UC(2) \) is contained in the semi-direct product of \(\mathbb{Z}/2\mathbb{Z} \), acting by \(z \mapsto -z \) on \(X \), and \(\mathbb{C}/\Lambda \), acting by translations.

For \(n = 2 \), \(X \) is a surface of type K3. Since the group of birational transformations of a K3 surface coincides with its group of (biregular) automorphisms, the image of \(UC(3) \) is contained in \(\text{Aut}(X) \). From a paper of Wehler, specifically from the last three lines in [We], one can deduce the following properties.

- The morphism \(\Psi: UC(3) \to \text{Aut}(X) \) is injective;
- if \(X \) is generic, the dimension of its Néron-Severi group \(\text{NS}(X) \) is equal to 3 and the linear representation of \(\text{Aut}(X) \) in \(\text{GL}(\text{NS}(X) \otimes \mathbb{R}) \) is conjugate to the geometric representation of \(UC(3) \);
- if \(X \) is generic, the ample cone coincides with one connected component of the set of vectors \(u \in \text{NS}(X) \otimes \mathbb{R} \) with self-intersection \(u \cdot u > 0 \).

See Section 3.4 for the proof of a slightly more general result. For simplicity, we refer to these statements as Wehler’s theorem, even if they are not contained in Wehler’s paper.
1.2.2. Higher dimensional Wehler varieties. The aim of this article is to extend the results of the previous section, in the birational and biregular ways, for Wehler varieties X of higher dimension. For $n \geq 3$, X is a Calabi-Yau manifold of dimension n. By definition, this means that X is simply connected, there is no holomorphic k-form on X for $0 < k < n$, and there is a nowhere vanishing holomorphic n-form ω_X; hence,

$$H^0(X, \Omega_X^k) = 0, \forall k \in \{1, \ldots, n-1\},$$
and

$$H^0(X, \Omega_X^n) = C\omega_X.$$

Projective K3 surfaces are Calabi-Yau manifolds of dimension 2.

Before stating our main results, we need to recall the definition of various cones in $\text{NS}(X) \otimes \mathbb{R}$ and to describe the movable cone conjecture of Morrison and Kawamata.

1.3. The movable cone conjecture. The precise formulation of the Kawamata-Morrison movable cone conjecture may be found in [Ka2] (see Conjecture (1.12)). One can also consult [Mo] for the biregular version of the conjecture and relation with mirror symmetry, as well as [To] for a more general version of these conjectures. In this short section, we introduce the main players and describe the conjectures.

1.3.1. Cones (see [Ka2]). Let M be a complex projective manifold. An integral divisor D on M is effective if the complete linear system $|D|$ is not empty; it is \mathbb{Q}-effective if there exists a positive integer m such that mD is effective; and it is movable if $|D|$ has no fixed components, so that the base locus of $|D|$ has codimension at least 2.

The Néron-Severi group $\text{NS}(X)$ is the group of classes of divisors modulo numerical equivalence; given a ring A, for example $A \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, we denote by $\text{NS}(X; A)$ the group $\text{NS}(X) \otimes \mathbb{Z} A$.

The effective cone $\text{Be}(M) \subset \text{NS}(X; \mathbb{R})$ is the convex cone generated by the classes of effective divisors. The big cone $\mathcal{B}(M)$ (resp. the ample cone $\text{Amp}(X)$) is the convex cone generated by the classes of big (resp. ample) divisors. The nef cone $\text{Amp}(M)$ is the closure of the ample cone, and $\text{Amp}(M)$ is the interior of the nef cone. Note that $\mathcal{B}(M) \subset \text{Be}(M)$ and the pseudo-effective cone $\text{B}(M)$ is the closure of both $\mathcal{B}(M)$ and $\text{Be}(M)$.

The movable cone $\overline{\mathcal{M}}(M)$ is the closure of the convex cone generated by the classes of movable divisors. The movable effective cone $\text{Me}(M)$ is defined to be $\overline{\mathcal{M}}(M) \cap \text{Be}(M)$.

Both the nef cone and the movable cone involve taking closures. So, a priori, $\overline{\mathcal{M}}(M)$ is not necessarily a subset of $\text{Be}(M)$; similarly, $\text{Amp}(M)$ is not necessarily a subset of $\mathcal{B}(M)$ nor of $\text{Me}(M)$, while it is always true that $\text{Amp}(M) \subset \overline{\mathcal{M}}(M)$.
1.3.2. The cone conjecture. Assume that M is a Calabi-Yau manifold. All birational transformations of M are isomorphisms in codimension one (see §3.2.2 below); in other words, the group of birational transformations coincides with the group of pseudo-automorphisms. Thus, if g is an element of Bir(M) and D is movable (resp. effective, \mathbb{Q}-effective), then $g^*(D)$ is again movable (resp. effective, \mathbb{Q}-effective). As a consequence, Bir(M) naturally acts on the three cones $\overline{M}(M), B^e(M)$ and $M^e(M)$.

The abstract version of the Morrison-Kawamata movable cone conjecture is the following:

Conjecture 1.2 (Morrison and Kawamata). The action of Bir(M) on the movable effective cone $M^e(M)$ has a finite rational polyhedral cone Δ as a fundamental domain. Here Δ is called a fundamental domain if $g^*(\Delta^\circ) \cap \Delta^\circ = \emptyset, \forall g \in \text{Bir}(X)$ with $g^* \neq \text{Id}$, where Δ° is the interior of Δ, and

$$\text{Bir}(M) \cdot \Delta = M^e(M).$$

This conjecture holds for log K3 surfaces ([To]) and abelian varieties ([Ka2], [PS]), and its relative version has been verified for fibered Calabi-Yau threefolds ([Ka2]). The conjecture is also satisfied for several interesting examples of Calabi-Yau threefolds: See for instance [GM] for the biregular situation and [Fr] for the birational version. A version of the conjecture is proved in [Mar] for compact hyperkähler manifolds.

1.4. The movable cone conjecture for Wehler varieties. Our first main result is summarized in the following statement.

Theorem 1.3. Let $n \geq 3$ be an integer. Let X be a generic hypersurface of multi-degree $(2,\ldots,2)$ in \mathbb{P}^{n+1}. Then,

1. the automorphism group Aut(X) is trivial, i.e. Aut$(X) = \{\text{Id}_X\}$;
2. The morphism Ψ that maps each generator t^j of UC$(n+1)$ to the involution t^j of X is an isomorphism $\Psi: \text{UC}(n+1) \rightarrow \text{Bir}(X)$;
3. X satisfies Conjecture 1.2: The cone $\overline{\text{Amp}}(X)$ is a fundamental domain for the action of Bir(X) on the movable effective cone $M^e(X)$; this fundamental domain is a cone over a simplex.

More precisely, there is a linear conjugacy between the (dual of the) geometric representation of UC$(n+1)$ and the representation of Bir(X) on NS(X) that maps equivariantly the Tits cone \mathcal{T} to the movable cone and the fundamental cone D to the nef cone $\overline{\text{Amp}}(M)$.

The conjugacy described in the second and third assertions enables us to describe more precisely the geometry of the movable cone. First, one can list explicitly all rational points on the boundary of the movable cone and prove that every rational point on the boundary of the (closure of the) movable cone is
movable, a result that is not predicted by Kawamata’s conjecture. Second, one can draw pictures of this cone, and show how it is related to Kleinian groups and the Appollonian Gasket. In particular, we shall see that the boundary of the movable cone has a fractal nature when \(n \geq 3 \); it is not smooth, nor polyhedral.

To our best knowledge, this theorem is the first non-trivial result in which the movable cone conjecture is checked for non-trivial examples of Calabi-Yau manifolds in dimension \(\geq 4 \). Our proof is a combination of recent important progress in the minimal model theory in higher dimension due to Birkar, Cascini, Hacon, and McKernan ([BCHM]) and to Kawamata ([Ka3]) and of classical results concerning Coxeter groups and Kleinian groups (Theorems 2.1 and 2.4 below).

1.5. Automorphisms with positive entropy. As already indicated by Theorem 1.3, in higher dimensional algebraic geometry, birational transformations are more natural, and in general easier to find, than regular automorphisms. Nevertheless, it is also of fundamental interest to find non-trivial regular automorphisms of higher dimensional algebraic varieties. The following result describes families of Calabi-Yau manifolds in all even dimensions ([OS], Theorem 3.1): Let \(Y \) be an Enriques surface and \(\text{Hilb}^n(Y) \) be the Hilbert scheme of \(n \) points on \(Y \), where \(n \geq 2 \). Let

\[
\pi : \widetilde{\text{Hilb}}^n(Y) \to \text{Hilb}^n(Y)
\]

be the universal cover of \(\text{Hilb}^n(Y) \). Then \(\pi \) is of degree 2 and \(\widetilde{\text{Hilb}}^n(Y) \) is a Calabi-Yau manifold of dimension \(2n \).

In Section 5, we prove that the automorphism group of \(\widetilde{\text{Hilb}}^n(Y) \) can be very large, and may contain element with positive topological entropy. This is, again, related to explicit Coxeter groups. For instance, we prove the following result.

Theorem 1.4. Let \(Y \) be a generic Enriques surface. Then, for each \(n \geq 2 \), the biregular automorphism group of \(\widetilde{\text{Hilb}}^n(Y) \) contains a subgroup isomorphic to the universal Coxeter group \(UC(3) \), and this copy of \(UC(3) \) contains an automorphism with positive entropy.

The Calabi-Yau manifolds of Theorems 1.3 and 1.4 are fairly concrete. We hope that these examples will also provide non-trivial handy examples for complex dynamics ([DS], [Zh]) and arithmetic dynamics ([Sil], [Kg]) in higher dimension.

2. Universal Coxeter Groups and Their Geometric Representations

In this section we collect a few preliminary facts concerning the universal Coxeter group on \(N \) generators, and describe the geometry of its Tits cone.
2.1. **Coxeter groups** (see [Hum]).

2.1.1. **Definitions.** Let \(W \) be a group with a finite set of generators \(S = \{ s_j \}_{j=1}^N \). The pair \((W,S)\) is a **Coxeter system** if there are integers \(m_{ij} \in \mathbb{Z}_+ \cup \{ \infty \} \) such that

- \(W = \langle s_j \in S \mid (s_is_j)^{m_{ij}} = 1 \rangle \) is a presentation of \(W \),
- \(m_{jj} = 1 \), i.e., \(s_j^2 = 1 \) for all \(j \),
- \(2 \leq m_{ij} = m_{ji} \leq \infty \) when \(i \neq j \) (here \(m_{ij} = \infty \) means that \(s_is_j \) is of infinite order).

A group \(W \) is called a **Coxeter group** if \(W \) contains a finite subset \(S \) such that \((W,S)\) forms a Coxeter system.

Let \(UC(N) \) be the free product of \(N \) cyclic groups \(\mathbb{Z}/2\mathbb{Z} \) of order 2, as in Section 1.1. The group \(UC(N) \) is generated by \(N \) involutions \(t_j \), \(1 \leq j \leq N \), with no non-obvious relations between them. With this set of generators, \(UC(N) \) is a Coxeter group with \(m_{ij} = \infty \) for all \(i \neq j \).

If \((W,S)\) is a Coxeter system with \(|S| = N \), there is a unique surjective homomorphism \(UC(N) \to W \) that maps \(t_j \) onto \(s_j \); its kernel is the minimal normal subgroup containing \(\{ (t_it_j)^{m_{ij}} \} \). In this sense, the group \(UC(N) \) is universal among all Coxeter groups with \(N \) generators; thus, we call \(UC(N) \) (resp. \((UC(N),\{t_j\}_{j=1}^N)\)) the **universal Coxeter group** (resp. the universal Coxeter system) of rank \(N \).

2.1.2. **Geometric representation.** Let \((W,\{s_j\}_{j=1}^N)\) be a Coxeter system with \((s_is_j)^{m_{ij}} = 1\), as in the previous paragraph. An \(N \)-dimensional real vector space \(V = \bigoplus_{j=1}^N \mathbb{R}\alpha_j \) and a bilinear form \(b(\ast,\ast) \) on \(V \) are associated to these data; the quadratic form \(b \) is defined by its values on the basis \((\alpha_j)_{j=1}^N\):

\[
b(\alpha_i,\alpha_j) = -\cos \frac{\pi}{m_{ij}}.
\]

Then, as explained in [Hum] (see the Proposition page 110), there is a well-defined linear representation \(\rho : W \to \text{GL}(V) \), which maps each generator \(s_j \) to the symmetry

\[
\rho(s_j) : \lambda \in V \mapsto \lambda - 2b(\alpha_j,\lambda)\alpha_j.
\]

The representation \(\rho \) is the **geometric representation** of the Coxeter system \((W,S)\). The following theorem (see [Hum], Page 113, Corollary) is one of the fundamental results on Coxeter groups:

Theorem 2.1. The geometric representation \(\rho \) of a Coxeter system \((W,S)\) is faithful. In particular, all Coxeter groups are linear.
2.1.3. **Tits cone.** The dual space V^* contains two natural convex cones, which we now describe. Denote the dual representation of W on V^* by ρ^*. The first cone $D \subset V^*$ is the intersection of the half-spaces

$$D_i^+ = \{ f \in V^* | f(\alpha_i) \geq 0 \}.$$

It is a closed convex cone over a simplex of dimension $N - 1$; the facets of D are the intersections $D \cap D_i^+$.

Remark 2.2. Since $\rho(s_i)$ maps α_i to its opposite, the action of $\rho^*(s_i)$ on V^* exchanges D_i^+ and $-D_i^+$. This is similar to the behavior of the relatively ample classes in the flopping diagram.

The second cone, called the **Tits cone**, is the union T of all images $\rho^*(w)(D)$, where w describes W.

Theorem 2.3 (see [Hum], §5.13, Theorem on page 126). The Tits cone $T \subset V$ of a Coxeter group W is a convex cone. It is invariant under the action of W on V and D is a fundamental domain for this action.

Given $J \subset S$, consider the subgroup W_J of W generated by the elements of J. Define $D(J)$ by

$$D(J) = (\cap_{j \in J} \{ f \in V^* | f(\alpha_j) = 0 \}) \cap (\cap_{i \notin J} \{ f \in V^* | f(\alpha_i) > 0 \});$$

hence, each $D(J)$ is the interior of a face of dimension $N - |J|$. Then W_J is a Coxeter group; it coincides with the stabilizer of every point of $D(J)$ in W.

2.2. **The universal Coxeter group.** We now study the Coxeter group $UC(N)$. The vector space of its geometric representation, the Tits cone and its fundamental domain are denoted with index N: V_N, T_N, D_N, etc.

2.2.1. **The linear representation.** With the basis $(\alpha_j)_{j=1}^N$, identify V_N to \mathbb{R}^N, and $\text{GL}(V)$ to $\text{GL}_N(\mathbb{R})$. Let $M_{N,j}$ ($1 \leq j \leq N$) be the $N \times N$ matrices with integer coefficients, defined by:

$$M_{N,j} = \begin{pmatrix}
1 & 0 & \ldots & 0 & 2 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & 2 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & 2 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & -1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 & 2 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 2 & 0 & \ldots & 1
\end{pmatrix},$$

(2.1)

where -1 is the (j,j)-entry. For instance,

$$M_{3,1} = \begin{pmatrix}
-1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1
\end{pmatrix}, \quad M_{3,2} = \begin{pmatrix}
1 & 2 & 0 \\
0 & -1 & 0 \\
0 & 2 & 1
\end{pmatrix}, \quad M_{3,3} = \begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{pmatrix}.$$
Theorem 2.4. The geometric representation \(\rho \) of the universal Coxeter system \((\text{UC}(N), \{t_j\}_{j=1}^N)\) of rank \(N \) is given by \(\rho(t_j) = M'_{N,j} \), where \(M'_{N,j} \) is the transpose of \(M_{N,j} \). In particular, in \(\text{GL}_N(\mathbb{R}) \), we obtain

\[
\langle M_{N,j}, 1 \leq j \leq N \rangle = \langle M_{N,1} \rangle \ast \langle M_{N,2} \rangle \ast \cdots \ast \langle M_{N,N} \rangle = \rho(\text{UC}(N)) \approx \text{UC}(N).
\]

Proof. By definition, \(m_{jj} = 1 \) and \(m_{ij} = \infty \) (\(i \neq j \)) for the universal Coxeter system. Hence

\[
\rho(t_j)(\alpha_i) = \alpha_i + 2\alpha_j \text{ for } i \neq j, \quad \rho(t_j)(\alpha_j) = -\alpha_j,
\]

i.e., the matrix representation of \(\rho(t_j) \) in the basis \(\{\alpha_j\}_{j=1}^N \) is \(M'_{N,j} \).

2.2.2. The quadratic form. Let \(b_N \) denote the opposite of the quadratic form defined in Section 2.1.2. Its matrix \(B_N \), in the basis \(\{\alpha_i\}_{i=1}^N \) is the integer matrix with coefficients \(-1\) on the diagonal and \(+1\) for all remaining entries.

When \(N = 1 \), \(b_N \) is negative definite. When \(N = 2 \), \(b_N \) is degenerate: \(b(u,u) = (x-y)^2 \) for all \(u = x\alpha_1 + y\alpha_2 \) in \(V \). For \(N \geq 3 \), the following properties are easily verified (with \(\|v\|_{\text{euc}} \) the usual euclidean norm):

1. The vector \(u_N = \sum_{i=1}^N \alpha_i \) is in the positive cone; more precisely
 \[
 b_N(u_N, u_N) = N(N-2).
 \]

2. \(b_N(v,v) = -2 \|v\|_{\text{euc}}^2 = -2\sum x_i^2 \) for all vectors \(v = \sum_{i=1}^N x_i \alpha_i \) of the orthogonal complement \(u_N^\perp = \{v = \sum_i x_i \alpha_i \mid \sum_i x_i = 0\} \).

3. The signature of \(b_N \) is \((1,N-1)\).

In what follows, \(N \geq 3 \) and \(u_N \) denotes the vector \(\sum_i \alpha_i \). A vector \(w = au_N + v \), with \(v \) in \(u_N^\perp \), is isotropic if and only if

\[
N(N-2)a^2 = 2 \|v\|_{\text{euc}}^2.
\]

Thus, if \(\{\beta_1, \ldots, \beta_{N-1}\} \) is an orthonormal basis of \(u_N^\perp \) and \(\beta_N = u_N \), then the isotropic cone is the cone over a round sphere; its equation is

\[
(N(N-2)/2)\gamma_0^2 = \sum_{i=1}^{N-1} \gamma_i^2
\]

for \(v = \sum_j y_j \beta_j \). The vectors \(\alpha_i + \alpha_j \), with \(i \neq j \), are isotropic vectors.

Example 2.5. For \(N = 3 \), consider the basis \(\{(0,1,1),(1,0,1),(1,1,0)\} \). The matrix of \(b_3 \) in this basis has coefficients 0 along the diagonal, and coefficients 1 on the six remaining entries.
2.2.3. The Tits cone T_N. To understand the Tits cone of UC(N), one can identify V_N to its dual V_N^\ast by the duality given by the non-degenerate quadratic form b_N; with such an identification, D_N is the set of vectors w such that $b_N(w, \alpha_i) \geq 0$ for all i, and T_N becomes a convex cone in V_N. The half-space $D_{N,i}^+$ is the set of vectors w such that $b_N(w, \alpha_i) \geq 0$ and its boundary is the hyperplane α_i^\perp. The convex cone D_N is the convex hull of its N extremal rays $\mathbf{R}_+ c_j$, $1 \leq j \leq N$, where

$$c_N = -(N-2) \alpha_N + \sum_{i=1}^{N} \alpha_i$$

$$= (1, 1, \ldots, 1, -(N-3))$$

and the $N-1$ remaining c_j are obtained from c_N by permutation of the coordinates. For all $N \geq 3$, and all indices j, one obtains

$$b_N(c_j, c_j) = -2(N-2)(N-3).$$

Example 2.6. For $N = 3$, (c_1, c_2, c_3) is the isotropic basis already obtained in Example 2.5. For $N = 4$, one gets the basis $(-1, 1, 1, 1), (1, -1, 1, 1), (1, 1, -1, 1), (1, 1, 1, -1)$, with $b_4(c_j, c_j) = -4$.

2.2.4. A projective view of D_N. To get some insight in the geometry of the Tits cone, one can draw its projection in the real projective space $\mathbb{P}(V_N)$, at least for
small values of N. We denote the projection of a non-zero vector v in $\mathbb{P}(V_N)$ by $[v]$.

To describe $\mathbb{P}(T_N)$ and $\mathbb{P}(D_N)$, denote by S_N the projection of the isotropic cone (it is a round sphere, as described in § 2.2.2). Consider the projective line L_{ij} through the two points $[c_i]$ and $[c_j]$ in $\mathbb{P}(V_N)$; this line is the projection of the plane $\text{Vect}(c_i, c_j)$. For example, with $(i, j) = (N - 1, N)$, this plane is parametrized by $sc_{N-1} + tc_N$ with s and t in \mathbb{R}, and its intersection with the isotropic cone corresponds to parameters (s, t) such that

$$(N - 3)(s^2 + t^2) = 2st.$$

Hence, we get the following behaviour:

- If $N = 3$, L_{ij} intersects the sphere S_N transversally at $[c_i]$ and $[c_j]$.
- If $N = 4$, L_{ij} is tangent to S_N at $[c_i + c_j]$.
- If $N \geq 5$, L_{ij} does not intersect S_N.

Similarly, one shows that the faces $\alpha_i^+ \cap \alpha_j^+$ of D_N of codimension 2 intersect the isotropic cone on the line $\mathbb{R}(\alpha_i + \alpha_j)$: Projectively, they correspond to faces of $\mathbb{P}(D_N)$ that intersect the sphere S_N on a unique point. The faces $\alpha_i^+ \cap \alpha_j^+ \cap \alpha_k^+$ of codimension ≥ 3 do not intersect the isotropic cone (i.e. do not intersect S_N in $\mathbb{P}(V_N)$).

In dimension $N = 3$, D is a triangular cone with isotropic extremal rays and $\mathbb{P}(D_3)$ is a triangle (see Figure 2). In dimension $N = 4$, a projective view of D_4 is shown on Figure 1.
2.2.5. A projective view of the Tits cone T_3 (see [Mag]). The cone T_N is the union of all images $\rho(w)(D_N)$, for w in $UC(N)$. When $N = 3$, the sphere S_3 is a circle, that bounds a disk. This disk can be identified to the unit disk in C with its hyperbolic metric, and the group $UC(3)$ to a discrete subgroup of the isometry group $PGL_2(R)$. Up to conjugacy, $UC(3)$ is the congruence subgroup

$$\{M \in PGL_2(Z) \mid M = 1d_2 \mod(2)\}.$$

In particular, $UC(3)$ is a non-uniform lattice in the Lie group $PGL_2(R)$ (i.e. in the orthogonal group of b_3). The fundamental domain $P(D_3)$ is a triangle with vertices on the circle S_3. Its orbit $P(T_3)$ under $UC(3)$ is the union of

- the projection of the positive cone $\{w \in V \mid b(w,u) > 0 \text{ and } b(w,w) > 0\}$ in $P(V)$,
- the set of rational points $[w] \in S_3$ where w describes the set of isotropic vectors with integer coordinates.

All rational points of S_3 can be mapped to one of the vertices of $P(D_3)$ by the action of $UC(3)$.

2.2.6. The limit set. The group $UC(N)$ preserves the quadratic form b_N and this form is non-degenerate, of signature $(1,N-1)$. Thus, after conjugacy by an element of $GL_N(R)$, $UC(N)$ becomes a discrete subgroup of $O_{1,N-1}(R)$. The limit set of such a group is the minimal compact subset of the sphere S_N that is invariant under the action of $UC(N)$; we shall denote the limit set of $UC(N)$ by Λ_N. This set coincides with (see [Rat], chap. 12)

- the closure of the points $[v]$ for all vectors $v \in V_N$ which are eigenvectors of at least one element f in $UC(N)$ corresponding to an eigenvalue > 1;
- the intersection of S_N with the closure of the orbit $UC(N)[w]$, for any given $[w]$ such that $b_N(w,w) \neq 0$.

The convex hull $\text{Conv}(\Lambda_N)$ of the limit set is invariant under $UC(N)$, and is contained in the closed ball enclosed in S_N. The dual of $\text{Conv}(\Lambda_N)$ with respect to the quadratic form b_N is also a closed invariant convex set. One can show that this convex set coincides with the closure of $P(T_N)$, and corresponds to the maximal invariant and strict cone in V_N (see [B], §3.1); we shall not use this fact (see Section 4.2 for a comment).

Remark 2.7. For $N = 4$, $O(b_4)$ is isogeneous to $PGL_2(C)$ and $UC(4)$ is conjugate to a Kleinian group (see [Bea]).

Remark 2.8. Note that $UC(3)$ is a lattice in the Lie group $O(b_3)$ while, for $N \geq 4$, the fundamental domain $P(D_N)$ contains points of the sphere S_N in its interior and the Haar measure of $O(b_N)/UC(N)$ is infinite.

2.2.7. A projective view of the Tits cone T_4. Let us fix a vertex, say c_N, of D_N. Its stabilizer is the subgroup $UC(N)_{\{N\}}$ of $UC(N)$ (cf. § 2.1.3). It acts on c_N^\perp and the orbit of $D_N \cap c_N^\perp$ under the action of $UC(N)_{\{N\}}$ tessellates the intersection $T_N \cap c_N^\perp$; moreover, up to conjugacy by a linear map, $T_N \cap c_N^\perp$, together
with its action of $\text{UC}(N)_{(N)}$, is equivalent to the Tits cone in dimension $N - 1$, together with the action of $\text{UC}(N - 1)$. Hence, if one looks at $\mathbb{P}(T_N)$ from a vertex of $\mathbb{P}(D_N)$, one obtains a cone over $\mathbb{P}(T_{N-1})$.

Let us apply this fact to the case $N = 4$. Then, V_4 has dimension 4, $\mathbb{P}(V_4)$ has dimension 3, and the sphere S_4 is a round sphere in \mathbb{R}^3 (once the hyperplane $[u_4^+]$ is at infinity). In particular, $\text{UC}(4)$ acts by conformal transformations on this sphere; thus, $\text{UC}(4)$ is an example of a Kleinian group, i.e. a discrete subgroup of $\text{O}_{1,3}(\mathbb{R})$ (see §2.2.6).

Viewed from the vertex $[c_4] \in \mathbb{P}(V_4)$, the convex set $\mathbb{P}(T_4)$ looks like a cone over $\mathbb{P}(T_3)$. More precisely, the intersection of $[c_4^+]$ with the sphere S_4 is a circle, and the orbit of $\mathbb{P}(D_4) \cap [c_4^+]$ under the stabilizer $\text{UC}(4)_{(4)}$ tessellates the interior of this circle, as in Figure 2 (see §2.1.3). All segments that connect $[c_4]$ to a rational point of this circle are contained in $\mathbb{P}(T_4)$. Thus, $\mathbb{P}(T_4)$ contains a “chinese hat shell” (Calyptraea chinensis), tangentially glued to the sphere S_4, with vertex $[c_4]$. The picture is similar in a neighborhood of $[c_1]$, $[c_2]$, and $[c_3]$.

Since $\text{UC}(4)$ acts by projective linear transformations on $\mathbb{P}(V_4)$, an infinite number of smaller and smaller chinese hat shells are glued to S_4, with vertices
on the orbits of the $[c_i]$; the accumulation points of these orbits, and of the "chinese hats" attached to them, converge towards the limit set of the Kleinian group UC(4).

To get an idea of the convex set $\mathbb{P}(T_4)$, one needs to describe the sequence of circles along which the shells are glued: This sequence is made of circles on the sphere S_4, known as the Apollonian Gasket. The closure of the union of all these circles is a compact subset of S_4 that is invariant under the action of UC(4); as such, it coincides with the limit set of the Kleinian group UC(4), i.e. with the unique minimal UC(4)-invariant compact subset of S_4. Its Hausdorff dimension has been computed by McMullen (see [Mc3]):

$$\text{H.-dim}(\text{Apollonian Gasket}) = 1.305688...$$

Remark 2.9. Up to conjugacy in the group of conformal transformations of the Riemann sphere, there is a unique configuration of tangent circles with the combinatorics of the Apollonian Gasket. Thus this circle packing is “unique”.

Proposition 2.10. The projective image of the Tits cone T_4 is a convex set $\mathbb{P}(T_4) \subset \mathbb{P}(V_4)$. Its closure $\overline{\mathbb{P}(T_4)}$ is a compact convex set. Let $\text{Ex}(\mathbb{P}(T_4))$ be the set of extremal points of $\mathbb{P}(T_4)$. This set is UC(4)-invariant, and the set of all its accumulation points coincides with the limit set $Λ(4)$ of UC(4) in S_4. The Hausdorff dimension of $Λ(4)$ is approximately equal to 1.305688.

In higher dimension the set $\mathbb{P}(T_N)$ contains a solid cone with vertex $[c_N]$ and with basis $\mathbb{P}(T_N) \cap [c_N^+]$ equivalent to $\mathbb{P}(T_{N-1})$; the picture is similar around each vertex $[c_i]$, and the convex set $\mathbb{P}(T_N)$ is the union of the interior of the sphere and the orbits of these chinese hat shells (see below for a precise definition). Thus, the complexity of T_N increases with N.

2.2.8. **Rational points.** This section may be skipped on a first reading; it is not needed to prove the Kawamata-Morrison conjecture in the Wehler examples, but is useful in order to provides stronger results concerning the rational points on the boundary of the movable cone. The following two propositions describe the rational points of the boundary of $\mathbb{P}(T_N)$; it shows that these rational points are the obvious ones.

Proposition 2.11. Let $N \geq 3$ be an integer. Let $[v]$ be a rational point of the boundary of the convex set $\mathbb{P}(T_N)$. Then $[v]$ is of the form $[\rho(w)(v')]$ where

- $[v']$ is a rational point of the boundary of $\mathbb{P}(T_N)$;
- w' is a point of $\mathbb{P}(D_N)$.

Before starting the proof, define the **chinese hat shell** of $\mathbb{P}(T_N)$ with vertex $[c_N]$ as the set of points of $\mathbb{P}(T_N)$ contained in the convex set generated by $[c_N]$ and $\mathbb{P}(T_N) \cap [c_N^+]$; this subset of $\mathbb{P}(T_N)$ is a solid cone with vertex $[c_N]$ and basis equivalent to $\mathbb{P}(T_{N-1})$; it coincides with the projection of the subset

$$\{v \in V \mid v \in T_N \text{ and } b_N(c_N, v) > 0\} = \{v = \sum_i a_i \alpha_i \mid v \in T_N \text{ and } a_N \leq 0\}.$$
Each vertex \([c_i]\) of \(\mathbb{P}(T_N)\) generates a similar shell; in this way, we get \(N\) elementary shells, one per vertex \([c_i]\). The image of such a shell by an element \(\gamma\) of UC(N) is, by definition, the chinese hat shell with vertex \([\gamma(c_i)]\).

Remark 2.12 (see [Rat]). Let \(H\) be one of these shells; denote by \(s\) its vertex. If \((\gamma_a)\) is a sequence of elements of UC(N) going to infinity all accumulation points of \((\gamma_a(s))\) are contained in the limit set \(\Lambda_N \subset S_N\) of UC(N). Thus, the sequence \((\gamma_n(H))\) is made of smaller and smaller shells and its accumulation points are also contained in the limit set \(\Lambda_N\). Conversely, every point of \(\Lambda_N\) is the limit of such a sequence \((\gamma_n(H))\).

Remark 2.13. The Tits cone \(T_N\) is the orbit of \(D_N\). Thus, an easy induction on \(N\) based on the previous remark, shows that the boundary points of \(\mathbb{P}(T_N)\) are contained in the union of the shells and of the limit set \(\Lambda_N\).

Proof. We prove the statement by induction on \(N \geq 3\). The case \(N = 3\) has already been described previously. Let \([v]\) be a rational point. One can assume that \([v]\) is the projection of a vector \(v \in V\) with integer, relatively prime, coordinates.

If \([v]\) is in a chinese hat shell, the conclusion follows from the induction hypothesis. If not, \([v]\) is in the sphere \(S_N\) (cf. Remark 2.13). Thus, \(v = \sum a_i \alpha_i\) satisfies the equation of \(S_N\); this can be written

\[
\sum_{i=1}^{N} a_i (\sigma(v) - 2a_i) = 0
\]

where \(\sigma(v) = \sum_{j=1}^{N} a_j\). The condition that assures that \([v]\) is in the chinese hat shell with vertex \([c_i]\) reads \(a_i \leq 0\). Thus, one can assume \(a_i \geq 1\) for all indices \(i\), because the \(a_i\) are integers. From Equation (2.2), one deduces that \(\sigma(v) - 2a_i \leq -1\) for at least one index \(i\), say for \(i = 1\). Apply the involution \(\rho(t_1)\). Then, the first coordinate \(a'_1\) of \(\rho(t_1)(v)\) is equal to \(-3a_1 + 2\sigma(v)\), while the other coordinates remain unchanged: \(a'_j = a_j\) for \(j \geq 2\). Hence,

\[
a'_1 - a_1 = -4a_1 + 2\sigma(v) = 2(-2a_1 + \sigma(v)) \leq -2,
\]

so that \(a'_1 - a_1\) is strictly negative.

Iterating this process a finite number of times, the sum \(\sigma(\cdot)\) determines a decreasing sequence of positive integers. Consequently, in a finite number of steps, one reaches the situation where a coefficient \(a_i\) is negative, which means that the orbit of \([v]\) under the action of UC(N) falls into one of the \(N\) elementary chinese hat shells, as required.

Assume, now that \([v_1], \ldots, [v_{l+1}]\) are rational boundary points of \(\mathbb{P}(T_N)\). If the convex set

\[
C = \text{Conv}([v_1], \ldots, [v_{l+1}])
\]

has dimension \(l\) and is contained in the boundary of \(\mathbb{P}(T_N)\), we say that \(C\) is a rational boundary flat (of dimension \(l\)).
Proposition 2.14. If \(C \) is a rational boundary flat of \(\mathbb{P}(T_N) \) of dimension \(l \), there exists an element \(g \) of \(UC(N) \) such that \(g(C) \) is contained in a boundary face of \(\mathbb{P}(D_N) \) of dimension \(l \).

Proof. We prove this proposition by induction on the dimension \(N \geq 3 \). When \(N = 3 \), the statement is equivalent to the previous proposition, because all boundary flats have dimension 0.

Assume, now, that the proposition is proved up to dimension \(N - 1 \). Let \([u] \in C\) be a generic rational point, and let \(h \) be an element of \(UC(N) \) that maps \([u]\) into \(D_N \). Since, \(C \) is in the boundary of the Tits cone, so is \(h(C) \). Projects \(h(C) \) into \([c_1^+]\) from the vertex \([c_1]\). The image \(\pi_1(h(C)) \) is in the boundary of \(\mathbb{P}(T_N) \cap [c_1^+] \); hence, \(\pi_1(h(C)) \) is a rational boundary flat of dimension \(l \) or \(l - 1 \). Thus, there exists an element \(h' \) of \(UC(N) \) that stabilizes \([c_1]\) and maps \(\pi_1(h(C)) \) into the boundary of \(\mathbb{P}(D_N) \cap [c_1^+] \) (\(\simeq \mathbb{P}(D_{N-1}) \)). The convex set generated by \(h'\pi_1(h(C)) \) and \([c_1]\) is also contained in a boundary face of \(\mathbb{P}(D_N) \). This proves the proposition by induction. \(\square \)

3. AUTOMORPHISMS, BIRATIONAL TRANSFORMATIONS, AND THE UNIVERSAL COXETER GROUP

Our goal, in this section, is to prove the first assertion of Theorem 1.3: We describe the groups of regular automorphisms and of birational transformations of generic Wehler varieties \(X \). The group \(\text{Bir}(X) \) turns out to be isomorphic to \(UC(n+1) \) and its action on the Néron-Severi group \(\text{NS}(X) \) is conjugate to the geometric representation of \(UC(n+1) \), as soon as \(\text{dim}(X) \geq 3 \).

3.1. Calabi-Yau hypersurfaces in Fano manifolds. A Fano manifold is a complex projective manifold \(V \) with ample anti-canonical bundle \(K_V \).

Theorem 3.1. Let \(n \geq 3 \) be an integer and \(V \) be a Fano manifold of dimension \((n+1) \). Let \(M \) be a smooth member of the linear system \(|-K_V| \). Let \(\tau: M \rightarrow V \) be the natural inclusion. Then:

1. \(M \) is a Calabi-Yau manifold of dimension \(n \geq 3 \).
2. The pull-back morphism \(\tau^*: \text{Pic}(V) \rightarrow \text{Pic}(M) \) is an isomorphism, and it induces an isomorphism of ample cones:
 \[\tau^*(\text{Amp}(V)) = \text{Amp}(M) \]
3. \(\text{Aut}(M) \) is a finite group.

Remark 3.2. For a Calabi-Yau manifold (resp. for a Fano manifold) \(M \), the natural cycle map \(\text{Pic}(M) \rightarrow \text{NS}(M) \) given by \(L \mapsto c_1(L) \) is an isomorphism because \(h^1(O_M) = 0 \). So, in what follows, we identify the Picard group \(\text{Pic}(M) \) and the Néron-Severi group \(\text{NS}(M) \).

Proof. By the adjunction formula, it follows that \(O_M(K_M) \simeq O_M \).
manifold is simply connected. Consider the long exact sequence which is deduced from the exact sequence of sheaves
\[0 \to \mathcal{O}_V(-K_V) \to \mathcal{O}_V \to \mathcal{O}_M \to 0 \]
and apply the Kodaira vanishing theorem to \(-K_V\): It follows that \(h^k(O_M) = 0\) for \(1 \leq k \leq n-1\); hence \(h^0(\Omega^k_M) = 0\) for \(1 \leq k \leq n-1\) by Hodge symmetry. This proves the assertion (1).

The first part of assertion (2) follows from the Lefschetz hyperplane section theorem, because \(n \geq 3\). By a result of Kollár ([Bo], Appendix), the natural map \(\tau_* : \text{NE}(V) \to \text{NE}(M)\) is an isomorphism. Taking the dual cones, we obtain the second part of assertion (2).

The proof of assertion (3) is now classical (see [Wi] Page 389 for instance). By assertion (1), \(T_M \simeq \Omega^{n-1}_M\); hence \(h^0(T_M) = 0\). Thus \(\text{dim Aut}(M) = 0\).

The cone \(\text{Amp}(V)\), which is the dual of \(\text{NE}(V)\), is a finite rational polyhedral cone because \(V\) is a Fano manifold. As a consequence of assertion (2), \(\text{Amp}(M)\) is also a finite rational polyhedral cone. Thus, \(\text{Amp}(M)\) is the convex hull of a finite number of extremal rational rays \(\mathbb{R}^+ h_i, 1 \leq i \leq \ell\), each \(h_i\) being an integral primitive vector. The group \(\text{Aut}(M)\) preserves \(\text{Amp}(M)\) and, therefore, permutes the \(h_i\). From this, follows that the ample class \(h = \sum_{i=1}^{\ell} h_i\) is fixed by \(\text{Aut}(M)\). Let \(L\) be the line bundle with first Chern class \(h\). Consider the embedding \(\Theta_L : M \to \mathbb{P}(H^0(M,L^\otimes k)^\vee)\) which is defined by a large enough multiple of \(L\). Since \(\text{Aut}(M)\) preserves \(h\), it acts by projective linear transformations on \(\mathbb{P}(H^0(M,L^\otimes k)^\vee)\) and the embedding \(\Theta_L\) is equivariant with respect to the action of \(\text{Aut}(M)\) on \(M\), on one side, and on \(\mathbb{P}(H^0(M,L^\otimes k)^\vee)\), on the other side. The image of \(\text{Aut}(M)\) is the closed algebraic subgroup of \(\text{PGL}(H^0(M,L^\otimes k)^\vee)\) that preserves \(\Theta_L(M)\). Since \(\text{dim Aut}(M) = 0\), this algebraic group is finite, and assertion (3) follows.

\[\square\]

3.2. Transformations of Wehler varieties.

3.2.1. Products of lines. Let \(n\) be a positive integer. Denote
\[
P(n+1) := (\mathbb{P}^1)^{n+1} = \mathbb{P}^1_1 \times \mathbb{P}^1_2 \times \cdots \times \mathbb{P}^1_{n+1}
\]
\[
P(n+1)_j := \mathbb{P}^1_1 \times \cdots \mathbb{P}^1_{j-1} \times \mathbb{P}^1_j \times \cdots \times \mathbb{P}^1_{n+1} \simeq P(n)
\]
and
\[
p^j : P(n+1) \to \mathbb{P}^1_j \simeq \mathbb{P}^1
\]
\[
p_j : P(n+1) \to P(n+1)_j
\]
the natural projections. Let H_j be the divisor class of $(p^j)^*(O_{\mathbb{P}^1}(1))$. Then $P(n+1)$ is a Fano manifold of dimension $n+1$ that satisfies

$$NS(P(n+1)) = \bigoplus_{j=1}^{n+1} \mathbb{Z}H_j,$$

$$-K_{P(n+1)} = \sum_{j=1}^{n+1} 2H_j,$$

$$\text{Amp}(P(n+1)) = \{ \sum a_iH_i | a_i \in \mathbb{R}_{>0} \text{ for all } i \} .$$

3.2.2. Wehler varieties. Let X be an element of the linear system $| - K_{P(n+1)}|$; in other words, X is a hypersurface of multi-degree $(2,2,\ldots,2)$ in $P(n+1)$. More explicitly, for each index j between 1 and $n+1$, the equation of X in $P(n+1)$ can be written in the form

$$F_{j,1}x_{j,0}^2 + F_{j,2}x_{j,0}x_{j,1} + F_{j,3}x_{j,1}^2 = 0 \quad (3.1)$$

where $[x_{j,0} : x_{j,1}]$ denotes the homogenous coordinates of \mathbb{P}^1_j and the $F_{j,k} (1 \leq k \leq 3)$ are homogeneous polynomial functions of multi-degree $(2,2,\ldots,2)$ on $P(n+1)_j$.

Let $\tau : X \rightarrow V$ be the natural inclusion and $h_j := \tau^*H_j$. If X is smooth, then X is a Calabi-Yau manifold of dimension $n \geq 3$, and Theorem 3.1 (1) implies that

$$\text{NS}(X) = \bigoplus_{j=1}^{n+1} \mathbb{Z}h_j \text{ and } \text{Amp}(X) = \bigoplus_{j=1}^{n+1} \mathbb{R}_{>0}h_j. \quad (3.2)$$

Let

$$\pi_j := p_j \circ \tau : X \rightarrow P(n+1)_j \simeq P(n).$$

This map is a surjective morphism of degree 2; it is finite in the complement of

$$B_j := \{ F_{j,1} = F_{j,2} = F_{j,3} = 0 \} .$$

In what follows, we assume that each B_j has codimension ≥ 3 and that X is smooth. This is satisfied for a generic choice of $X \in | - K_{P(n+1)}|$. For $x \in B_j$, we have $\pi_j^{-1}(x) \simeq \mathbb{P}^1$. It follows that π_j contracts no divisor. For $x \notin B_j$, the set $\pi_j^{-1}(x)$ consists of 2 points, say $\{ y, y' \}$: The correspondence $y \leftrightarrow y'$ defines a birational involutive transformation τ_j of X over $P(n+1)_j$. Thus, Bir(X) contains at least $n+1$ involutions τ_j.

The group Bir(X) naturally acts on NS(X) as a group of linear automorphisms. Indeed, since K_X is trivial, each element of Bir(X) is an isomorphism in codimension 1 (see eg. [Ka3], Page 420). When $n = 2$, X is a projective K3 surface. Since X is a minimal surface, each τ_k is a (biregular) automorphism (see eg. [BHPV], Page 99, Claim).

3.3. The groups Aut(X) and Bir(X) in dimension $n \geq 3$. In this section we prove the following strong version of the first assertions in Theorem 1.3.

Theorem 3.3. Let $n \geq 3$ be an integer. Let $X \subset (\mathbb{P}^1)^{n+1}$ be a generic Wehler variety. Let τ_j be the $n+1$ natural birational involutions of X. Then
(1) In the basis \((h_k)_{k=1}^{n+1} \) of \(\text{NS}(X) \), the matrix of \(\tau_j^* \) coincides with \(M_{n+1,j} \) (see Equation (2.1)).

(2) The morphism

\[
\Psi : \text{UC}(n+1) \to \text{Bir}(X)
\]

that maps the generators \(\tau_j \) to the involutions \(\tau_j \) is injective; the action of \(\Psi(\text{UC}(n+1)) \) on \(\text{NS}(X) \) is conjugate to the (dual of the) geometric representation of \(\text{UC}(n+1) \).

(3) The automorphism group of \(X \) is trivial: \(\text{Aut}(X) = \{ \text{Id}_X \} \).

(4) \(\text{Bir}(X) \) coincides with the subgroup \(\langle \tau_1, \tau_2, \ldots, \tau_{n+1} \rangle \cong \text{UC}(n+1) \).

Remark 3.4. As our proof shows, Assertions (1) and (2) holds whenever \(X \) is smooth and \(n \geq 3 \). They are also satisfied when \(n = 2 \), if \(\text{NS}(X) \) is replaced by the subspace \(\mathbb{Z} h_1 \oplus \mathbb{Z} h_2 \oplus \mathbb{Z} h_3 \) (this subspace is invariant under the three involutions even if \(\text{NS}(X) \) has dimension \(\geq 4 \)).

Assertion (4) is certainly the most difficult part of this statement, and its proof makes use of delicate recent results in algebraic geometry.

Proof of Assertions (1) and (2). By definition of \(\tau_j \), we have \(\tau_j^*(h_k) = h_k \) for \(k \neq j \). Write \(P(n+1) = P(n+1)_j \times \mathbb{P}^1_j \), where \(\mathbb{P}^1_j \) is the \(j \)-th factor of \(P(n+1) \). Let \((a, [b_0 : b_1]) \) be a point of \(X \setminus \pi_j^{-1}(B_j) \), with \(a \in P(n+1)_j \) and \([b_0 : b_1] \in \mathbb{P}^1_j \). Then \(\tau_j(a, [b_0 : b_1]) \) is the second point \((a, [c_0 : c_1]) \) of \(X \) with the same projection \(a \) in \(P(n+1)_j \). The relation between the roots and the coefficients of the quadratic Equation (3.1) provides the formulas:

\[
\frac{c_0}{c_1} \cdot \frac{b_0}{b_1} = \frac{F_{j,3}(a)}{F_{j,1}(a)} \quad \text{and} \quad \frac{c_0}{c_1} + \frac{b_0}{b_1} = -\frac{F_{j,2}(a)}{F_{j,1}(a)}.
\]

Here the polynomial \(F_{j,3} \) is not zero and the divisors \(\text{div}(F_{j,k}|X) \) (\(k = 1, 2, 3 \)) have no common component, because \(X \) is smooth. Thus, in \(\text{Pic}(X) \cong \text{NS}(X) \), we obtain

\[
\tau_j^*(h_j) + h_j = \sum_{k \neq j} 2h_k.
\]

This proves Assertion (1).

Since \(\text{UC}(n+1) \) is a free product of \((n+1) \) groups of order 2, and its geometric representation is faithful, assertion (2) follows from assertion (1) and the definition of the matrices \(M_{N,j} \).

Proof of Assertion (3). Let \(x_j \) be the standard affine coordinate on \(\mathbb{P}^1_j \setminus \{ \infty \} \). Then \(X \in |-K_{P(n+1)}| \) is determined by a polynomial function \(f_X(x_1, \ldots, x_{n+1}) \) of degree \(\leq 2 \) with respect to each variable \(x_j \).

By the third assertion in Theorem (3.1), \(\text{Aut}(X) \) is a finite group. Since \(\text{Aut}(X) \) preserves \(\text{Amp}(X) \), it preserves the set \(\{ h_j \mid 1 \leq j \leq n+1 \} \), permuting its elements. Thus, the isomorphism \(H^0(O_{P(n+1)}(H_j)) \cong H^0(O_X(h_j)) \) implies
that \(\text{Aut}(X) \) is a subgroup of \(\text{Aut}(P(n+1)) \):
\[
\text{Aut}(X) \subset \text{Aut}(P(n+1)) = \text{PGL}_2(\mathbb{C})^{n+1} \rtimes \mathcal{S}_{n+1},
\]
where \(\mathcal{S}_{n+1} \) denotes the group of permutations of the \((n+1)\) factors of \(P(n+1) \).

The group \(\text{PGL}_2(\mathbb{C})^{n+1} \rtimes \mathcal{S}_{n+1} \) acts on \(| -K_{P(n+1)} \rangle \) and \(\text{Aut}(X) \) coincides with the stabilizer of the corresponding point \(X \in | -K_{P(n+1)} \rangle \). Consider, for a generic \(X \), the image \(G \) of the morphism
\[
\text{Aut}(X) \to \text{PGL}_2(\mathbb{C})^{n+1} \rtimes \mathcal{S}_{n+1} \to \mathcal{S}_{n+1}.
\]
If \(g \) is an element of \(G \), and \(X \) is generic, there is a lift \(\tilde{g}_X : X \to X \) which is induced by an automorphism of \(P(n+1) \). This turns out to be impossible, by considering the actions on the inhomogeneous quadratic monomials \(x_j^2 \) in the equation \(f_X \) (for \(1 \leq j \leq n+1 \)).

Thus for \(X \) generic, \(\text{Aut}(X) \) coincides with a finite subgroup of \(\text{PGL}_2(\mathbb{C})^{n+1} \).

Let \(\text{Id}_X \neq g \) be an automorphism of \(X \); \(g \) is induced by an element of \(\text{PGL}_2(\mathbb{C})^{n+1} \) of finite order. Then *up to conjugacy* inside \(\text{PGL}_2(\mathbb{C})^{n+1} \), the co-action of \(g \) can be written as \(g^*(x_j) = c_j x_j \) \((1 \leq j \leq n+1)\), where \(c_j \) are all roots of 1 and at least one \(c_j \), say \(c_1 \), is not 1. By construction the equation \(f_X(x_j) \) is \(g^* \)-semi-invariant: \(f_X \circ g = \alpha(g) f_X \) for some root of unity \(\alpha(g) \). Decompose \(f_X \) into a linear combination of monomial factors
\[
x_1^{k_1} x_2^{k_2} \cdots x_{n+1}^{k_{n+1}}, \quad k_j = 0, 1, 2;
\]
the possible factors satisfy the eigenvalue relation
\[
c_1^{k_1} c_2^{k_2} \cdots c_{n+1}^{k_{n+1}} = \alpha(g).
\]

Since \(c_1 \neq 1 \), for each fixed choice of \((k_2, k_3, \ldots, k_{n+1})\), at most two of the three monomials
\[
x_1^2 x_2^{k_2} \cdots x_{n+1}^{k_{n+1}}, \quad x_1 x_2^{k_2} \cdots x_{n+1}^{k_{n+1}}, \quad x_2^{k_2} \cdots x_{n+1}^{k_{n+1}}
\]
satisfy the relation above. Hence the number of monomial factors in \(f_X(x_j) \) is at most \(2 \cdot 3^n \). Moreover, given \(g \), the possible values of \(\alpha(g) \) are finite (their number is bounded from above by the order of \(g \)).

Thus, the subset of varieties \(X \in | -K_{P(n+1)} \rangle \) with at least one automorphism \(g \neq 1 \) belongs to countably many subsets of dimension at most
\[
2 \cdot 3^n - 1 + \dim \text{PGL}_2(\mathbb{C})^{n+1} = 3^{n+1} + 3(n+1) - 3^n - 1
\]
in \(| -K_{P(n+1)} \rangle \). Since \(\dim | -K_{P(n+1)} \rangle = 3^{n+1} - 1 \), the codimension of these subsets is at least
\[
3^n - 3(n+1) \geq 3
\]
for \(n \geq 2 \). Thus, removing a countable union of subsets of \(| -K_{P(n+1)} \rangle \) of codimension \(\geq 3 \), the remaining generic members \(X \) of \(| -K_{P(n+1)} \rangle \) have trivial automorphism group. \(\square \)
Proof of Assertion (4). Let
\[X \stackrel{\pi_j}{\rightarrow} \overline{X}_J \rightarrow P(n + 1)_J \]
be the Stein factorization of \(\pi_j \). Then, \(\pi_j \) is the small contraction corresponding to the codimension 1 face \(F_j := \sum_{k\neq j} R_{\geq 0} h_k \) of the nef cone \(\overline{\Amp}(X) \). Thus, \(\rho(\overline{X}_J) = 1 \) with a \(\overline{\pi}_j \)-ample generator \(h_j \). Hence \(\overline{\pi}_j \) is a flopping contraction of \(X \). Let us describe the flop of \(\overline{\pi}_j \).

By definition of the Stein factorization, \(\iota_j \) induces a biregular automorphism \(\iota_j \) of \(\overline{X}_J \) that satisfies \(\iota_j \circ \pi_j = \pi_j \circ \iota_j \). We set \(\pi_j^+ := (\iota_j)^{-1} \circ \overline{\pi}_j : X \rightarrow \overline{X}_J \).

Then, \(\iota \circ \pi_j^+ = \overline{\pi}_j \) and \(\iota_j^+(h_j)^{-1} = -h_j + \sum_{k\neq j} 2h_k \) by (1). In particular, \(\iota_j^+(h_j) \) is \(\pi_j^+ \)-anti-ample. Hence \(\pi_j^+ : X \rightarrow \overline{X}_J \), or by abuse of language, the associated birational transformation \(\iota_j \), is the flop of \(\overline{\pi}_j : X \rightarrow \overline{X}_J \).

Recall that any flopping contraction of a Calabi-Yau manifold is given by a codimension one face of \(\overline{\Amp}(X) \) up to automorphisms of \(X \) (\cite[Theorem (5.7)]{Ka2}). Since there is no codimension one face of \(\overline{\Amp}(X) \) other than the \(F_j \) (\(1 \leq j \leq n + 1 \)), it follows that there is no flop other than \(\iota_j \) (\(1 \leq j \leq n + 1 \)) up to \(\text{Aut}(X) \). On the other hand, by a fundamental result of Kawamata (\cite[Theorem 1]{Ka3}), any birational map between minimal models is decomposed into finitely many flops up to automorphisms of the source variety. Thus any \(\varphi \in \text{Bir}(X) \) is decomposed into a finite sequence of flops modulo automorphisms of \(X \). Hence \(\text{Bir}(X) \) is generated by \(\text{Aut}(X) \) and \(\iota_j \) (\(1 \leq j \leq n + 1 \)). Since \(\text{Aut}(X) = \{ \text{Id}_X \} \) for \(X \) generic, assertion (4) is proved. \(\square \)

Remark 3.5. In general, the minimal models of a given variety are not unique up to isomorphisms. See for instance [LO] for an example on a Calabi-Yau threefold. However, by the proof of Assertion (3), the generic Wehler variety \(X \) has no other minimal model than \(X \) itself.

3.4. Wehler surfaces.

3.4.1. Statement. Assume \(n = 2 \), so that \(X \) is now a smooth surface in \(P(3) \). Then, \(X \) is a projective K3 surface; in particular, \(X \) is a minimal surface and each \(t_k \) is a (biregular) automorphism (see eg. \cite[Page 99, Claim]{BHPV}). Thus

\[\langle t_1, t_2, t_3 \rangle \subset \text{Aut}(X). \]

We now prove the following result, which contains a precise formulation of § 1.2.1. To state it, we keep the same notations as in Sections 3.2 and 3.3; in particular, \(\tau \) is the embedding of \(X \) in \(P(3) \) and the \(h_j \) are obtained by pull-back of the classes \(H_j \).

Theorem 3.6. Let \(X \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \) be a smooth Wehler surface.

(1) If \(X \) is smooth, then \(\Psi(\text{UC}(3)) \subset \text{Aut}(X) \).
(2) If X is generic, then $\text{NS}(X) = \bigoplus_{j=1}^{3} \mathbb{Z}h_j$.

(3) If X is generic, then $	ext{Aut}(X) = \langle \iota_1, \iota_2, \iota_3 \rangle = \langle \iota_1 \rangle \ast \langle \iota_2 \rangle \ast \langle \iota_3 \rangle \simeq \text{UC}(3)$.

Remark 3.7. The Néron-Severi group may have dimension $\rho(X) > 3$; such a jump of $\rho(X)$ can be achieved by arbitrary small deformations (see [Og]), and it may lead to very nice examples of ample cones (see [Bar]).

3.4.2. Proof of Theorem 3.6

The three following lemmas prove Theorem 3.6. In this section, X is a smooth Wehler surface. We start with a description of $\text{NS}(X)$ and of the quadratic form defined by the intersection of divisor classes.

Lemma 3.8. If X is generic, then $\text{NS}(X) = \bigoplus_{j=1}^{3} \mathbb{Z}h_j$. The matrix $((h_i \cdot h_j)_{X})$ of the intersection form on $\text{NS}(X)$ is

$$
((h_i \cdot h_j)_{X}) = \begin{pmatrix}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{pmatrix}.
$$

Proof. Since X is generic, it follows from the Noether-Lefschetz theorem ([Vo], Theorem (3.33)) that $\tau^*: \text{NS}(P(3)) \to \text{NS}(X)$ is an isomorphism. This proves (1), and (2) follows from $((h_i \cdot h_j)_{X}) = (H_i \cdot H_j, 2(H_1 + H_2 + H_3))_{P(3)}$. □

Remark 3.9. More generally, if W is a generic element of $|-K_V|$ of a smooth Fano threefold with very ample anti-canonical divisor $-K_V$, then W is a K3 surface and $\text{NS}(V) \simeq \text{NS}(W)$ under the natural inclusion map.

Thus, the intersection form corresponds to the quadratic form b_3 on V_3 that is preserved by UC(3). The fact that b_3 has signature $(1,2)$ is an instance of Hodge index theorem (see Remark 2.5).

Once we know the intersection form, one can check that there is no effective curve with negative self-intersection on X. Indeed, if there were such a curve, one could find an irreducible curve $E \subset X$ with $E \cdot E < 0$; the genus formula would imply that E is a smooth rational curve with self-intersection -2; but the intersection form does not represent the value -2.

It is known that the ample cone is the set of vectors u in $\text{NS}(X; \mathbb{R})$ such that $u \cdot u > 0$, $u \cdot E > 0$ for all effective curves, and $u \cdot u_0 > 0$ for a given ample class (for example $u_0 = \sum h_j$). Since there are no curves with negative self-intersection, one obtains:

Lemma 3.10. If X is generic, the ample cone $\text{Amp}(X)$ coincides with the positive cone $\text{Pos}(X) = \{ u \in \text{NS}(X; \mathbb{R}) \mid u \cdot u > 0 \text{ and } u \cdot h_1 > 0 \}$.

Remark 3.11. Even though X is generic and $\tau^*: \text{NS}(P(3)) \to \text{NS}(X)$ is an isomorphism, the image of $\tau^*: \text{Amp}(P(3)) \to \text{Amp}(X)$ is strictly smaller than $\text{Amp}(X)$, in contrast with the higher dimensional case (see Theorem (3.1)).

1This gives an explicit, negative, answer for a question of Prof. Yoshinori Gongyo to K. Oguiso.
From the previous sections (see Remark 3.4), we know that, for all smooth Wehler surfaces,

- the subspace \(N_X := \oplus_{j=1}^{3} \mathbb{Z} h_j \) is invariant under the action of \(\langle t_1^*, t_2^*, t_3^* \rangle \) on \(\text{NS}(X) \);
- the matrix of \((\iota_j^*)|_{N_X} \) in the basis \((h_1, h_2, h_3) \) is equal to \(M_{3,k} \), where \(M_{3,k} \) is defined in § 2.2.1;
- there are no non-obvious relations between the three involutions \(\iota_j^* \), hence

\[
\langle t_1 \rangle \ast \langle t_2 \rangle \ast \langle t_3 \rangle \simeq \text{UC}(3)
\]

Moreover, there is a linear isomorphism from the (dual of the) geometric representation \(V_3 \) to \(N_X \) which conjugates the action of \(\text{UC}(3) \) with the action of \(\langle t_1, t_2, t_3 \rangle \), and maps \(D_3 \) to the convex cone

\[
\Delta = \mathbb{R}_+ h_1 \oplus \mathbb{R}_+ h_2 \oplus \mathbb{R}_+ h_3,
\]

the quadratic form \(b_3 \) to the intersection form on \(N_X \), and the Tits cone \(T_3 \) to the positive cone \(\text{Pos}(X) \). Since the ample cone is invariant under the action of \(\text{Aut}(X) \) and contains \(\mathbb{R}_+ h_1 \oplus \mathbb{R}_+ h_2 \oplus \mathbb{R}_+ h_3 \), this gives another proof of Lemma 3.10.

Lemma 3.12. If \(X \) is generic, then

1. no element of \(\text{Aut}(X) \setminus \{ \text{Id}_X \} \) is induced by an element of \(\text{Aut}(P(3)) \).
2. \(\text{Aut}(X) = \langle t_1, t_2, t_3 \rangle \).

Proof. The proof of (1) is the same as for Theorem 3.3. Let us prove (2). Since \(X \) is generic, \(\text{NS}(X) = N_X \). The image \(G \) of \(\text{Aut}(X) \) in \(\text{GL}(\text{NS}(X)) \) contains the group generated by the three involutions \(t_j^* \); as such it as finite index in the group of isometries of the lattice \(\text{NS}(X) \) with respect to the intersection form (see § 2.2.5). Thus, if \(G \) is larger than \(\langle t_1^*, t_2^*, t_3^* \rangle \), there exists an element \(g^* \) of \(G \setminus \{ \text{Id} \} \) that preserves the fundamental domain \(\Delta \). Such an element permutes the vertices of \(\Delta \). As in the proof of Theorem 3.3, one sees that \(g^* \) would be induced by an element of \(\text{Aut}(P(3)) \), contradicting Assertion (1). Thus, \(G \) coincides with \(\langle t_1^*, t_2^*, t_3^* \rangle \). On the other hand, if \(f \in \text{Aut}(X) \) acts trivially on \(\text{NS}(X) \) then, again, \(f \) is induced by an element of \(\text{Aut}(P(3)) \). Thus, Assertion (2) follows from Assertion (1). \(\square \)

4. THE MOVABLE CONE

To conclude the proof of Theorem 1.3, we need to describe the movable cone of Wehler varieties. This section provides a proof of a more explicit result, Theorem 4.1.

4.1. Statement. To state the main result of this section, we implicitly identify the geometric representation \(V_{n+1} \) of \(\text{UC}(n+1) \) to its dual \(V_{n+1}^* \); for this, we make use of the duality offered by the non-degenerate quadratic form \(b_{n+1} \).
as in Section 2.2. This said, let \(\rho : \text{UC}(n + 1) \to \text{GL}(V_{n+1}) \) be the geometric representation of the universal Coxeter group \(\text{UC}(n + 1) \). Let

\[
\Psi : \text{UC}(n + 1) \to \text{Bir}(X)
\]

be the isomorphism that maps the generators \(t_i \) of \(\text{UC}(n + 1) \) to the generators \(t_i \) of \(\text{Bir}(X) \).

Theorem 4.1. Let \(n \geq 3 \) be an integer, and let \(X \subset (\mathbb{P}^1)^{n+1} \) be a generic Wehler variety of dimension \(n \).

There is a linear isomorphism \(\Phi : V_{n+1} \to \text{NS}(X) \) such that

1. \(\Phi \circ \rho(w) = \Psi(w)^\ast \circ \Phi \) for all elements \(w \) of \(\text{UC}(n + 1) \);
2. the fundamental domain \(D_{n+1} \) of \(\text{UC}(n + 1) \) is mapped onto the nef cone \(\overline{\text{Amp}}(X) \) by \(\Phi \);
3. the Tits cone \(T_{n+1} \subset V \) is mapped onto the movable effective cone \(\mathcal{M}^e(X) \) by \(\Psi \).

In particular, the nef cone is a fundamental domain for the action of \(\text{Bir}(X) \) on the movable effective cone.

Remark 4.2. Since \(\text{Bir}(X) \) is much bigger than \(\text{Aut}(X) \), Theorem 4.1 implies that the movable effective cone \(\mathcal{M}^e(X) \), whence the pseudo effective cone \(\overline{\mathcal{B}}(X) \), is much bigger than the nef cone \(\overline{\text{Amp}}(X) \). On the other hand, for the ambient space \(P(n + 1) \), we have

\[
\overline{\mathcal{B}}(P(n + 1)) = \overline{\text{Amp}}(P(n + 1)).
\]

This is a direct consequence of the fact that the intersection numbers

\[
(v \cdot H_1 \cdots H_{k-1} \cdot H_{k+1} \cdots H_{n+1})_{P(n+1)}, \quad 1 \leq k \leq n + 1,
\]

are non-negative if \(v \in \overline{\mathcal{B}}(P(n + 1)) \). So, under the isomorphism \(\text{NS}(P(n + 1)) \simeq \text{NS}(X) \), we have

- \(\overline{\text{Amp}}(P(n + 1)) \simeq \overline{\text{Amp}}(X) \) (see Theorem 3.1)
- \(\overline{\mathcal{B}}(P(n + 1)) \not\simeq \overline{\mathcal{B}}(X) \), even if \(X \) is generic.

In the rest of this section, we prove Theorem 4.1. Thus, in what follows, \(X \) is a generic Wehler variety of dimension \(n \geq 3 \).

4.2. Proof. Let \(\Psi \) be the isomorphism described in Section 4.1, and \(\Phi \) the linear map which applies the cone \(D_{n+1} \) onto the nef cone \(\overline{\text{Amp}}(X) \), mapping each vertex \(c_j \) to \(h_j \). With such a choice, Assertions (1) and (2) are part of Section 3.3, and we only need to prove Assertion (3), i.e. that the Tits cone \(T_{n+1} \) is mapped bijectively onto the movable effective cone \(\mathcal{M}^e(X) \) by \(\Phi \).

Lemma 4.3. Let \(X \) be a generic Wehler variety of dimension \(n \geq 3 \). Then

1. \(\overline{\text{Amp}}(X) \subset \mathcal{M}^e(X) \);

\(^2\)This remark provides an explicit negative answer to the question asked by Mr Y. Gongyo (in any dimension \(\geq 3 \)) to K. Oguiso.
(2) $g^*(\text{Amp}(X)) \cap \text{Amp}(X) = \emptyset$ for all $g \neq \text{Id}_X$ in Bir(X).

Proof. Since the divisor classes h_j $(1 \leq j \leq n + 1)$ are free, they are movable; assertion (1) follows from the fact that the nef cone is generated, as a convex cone, by these classes. If $g \in$ Bir(X) satisfies $g^*(\text{Amp}(X)) \cap \text{Amp}(X) \neq \emptyset$, then $g \in$ Aut(X) (see [Ka2], Lemma 1.5). Thus, Assertion (2) follows from Aut$(X) = \{\text{Id}_X\}$. \qed

Since the movable effective cone is Bir(X)-invariant, the orbit of $\text{Amp}(X)$ is contained in $\mathcal{M}^e(X)$. Hence,

$$\Phi(T_{n+1}) \subset \mathcal{M}^e(X)$$

and we want to show the reverse inclusion (note that the closures of these two sets are equal).

Lemma 4.4. Let X be a generic Wehler variety of dimension $n \geq 3$. For any given effective integral divisor class D, there is a birational transformation g of X such that $g^*(D) \in \text{Amp}(X)$. That is, D is contained in $\Phi(T_{n+1})$.

The proof is similar to the proof of Proposition 2.11. Here, one makes use of the intersection form and positivity properties of effective divisor classes, instead of the quadratic form b_N.

Remark 4.5. We do not know any geometric interpretation of the quadratic form b_{n+1} on $\text{NS}(X)$ for $n \geq 3$.

Proof. Define $D_1 := D$. In $\text{NS}(X)$, we can write

$$D_1 = \sum_{j=1}^{n+1} a_j(D_1) h_j,$$

where the coefficients $a_j(D_1)$ are integers. Put

$$s(D_1) := \sum_{j=1}^{n+1} a_j(D_1).$$

By definition, $s(D_1)$ is an integer. Since D_1 is an effective divisor class and the classes h_i are nef, it follows that

$$a_n(D_1) + a_{n+1}(D_1) = (D \cdot h_1 \cdot h_2 \cdots h_{n-1}) X \geq 0.$$

For the same reason, $a_i(D_1) + a_j(D_1) \geq 0$ for all $1 \leq i \neq j \leq n + 1$. Hence there is at most one i such that $a_i(D_1) < 0$.

Moreover the sum $s(D_1)$ is non-negative. Indeed, there is at most one negative term, say $a_1(D_1)$, in the sum defining $s(D_1)$; since

$$s(D_1) = (a_1(D_1) + a_2(D_1)) + a_3(D_1) + \cdots + a_{n+1}(D_1) \geq 0$$

and $a_1(D) + a_2(D_1) \geq 0$, this shows that $s(D_1)$ is non-negative.

If $D_1 \in \text{Amp}(X)$, then we can take $g = 1$. So, we may assume that D_1 is not in $\text{Amp}(X)$, which means that there is a unique index i with $a_i(D_1) < 0$. Then,
consider the new divisor class $D_2 := t_j^*(D_1)$; it is effective. By definition of $a_j(\cdot)$ and Theorem 3.3 (first assertion), we have

$$D_2 = \sum_{j=1}^{n+1} a_j(D_2) h_j$$

$$= -a_i(D_1) h_i + \sum_{j \neq i} (a_j(D_1) + 2a_i(D_1)) h_j .$$

Computing $s(D_2) = \sum a_j(D_2)$, the inequality $a_i(D_1) < 0$ provides

$$s(D_2) = -a_i(D_1) + \sum_{j \neq i} (a_j(D_1) + 2a_i(D_1))$$

$$= s(D_1) + (2n-1)a_i(D_1)$$

$$< s(D_1) .$$

If $a_j(D_2) \geq 0$ for all j, then $D_2 \in \overline{\text{Amp}}(X)$, and we are done. Otherwise, there is j such that $a_j(D_2) < 0$. Consider then the divisor class $D_3 := t_j^*(D_2)$. As above, D_3 is an effective divisor class such that $s(D_3) < s(D_2)$.

We repeat this process: At each step, the sum $s(\cdot)$ decreases by at least one unit. Since $s(\cdot)$ is a positive integer for all effective divisors, the process stops, and provides an effective divisor D_k in the Bir(X)-orbit of D_1 such that all coefficients $a_i(D_k)$ are non-negative, which means that D_k is an element of $\overline{\text{Amp}}(X)$. □

Let u be an element of the movable cone $\mathcal{M}^e(X)$. As $\mathcal{M}^e(X)$ is the intersection of $\overline{\mathcal{M}}(X)$ and $\mathcal{B}^e(X)$, we can write

$$u = \sum_{i=1}^{l+1} r_i D_i$$

where each D_i is an effective divisor class and all r_i are positive real numbers. The Tits cone T_{N+1} is a convex set (see § 2.1.3) and the previous lemma shows that each D_i is in the image of T_{N+1}; since u is a convex combination of the D_i, u is an element of $\Phi(T_{N+1})$. Consequently, we obtain

$$\Phi(T_{n+1}) = \mathcal{M}^e(X) ,$$

and Theorem 4.1 is proved.

4.3. Complement. The following theorem follows from our description of the movable cone as (the image of) the Tits cone T_{N+1} and the description of rational boundary points of T_{N+1} obtained in Section 2.2.8. As far as we know, this kind of statement is not predicted by the original cone conjecture.

Theorem 4.6. Let $n \geq 3$ be an integer. Let X be a generic hypersurface of multi-degree $(2, \ldots, 2)$ in $[\mathbb{P}^1]^{n+1}$. Let D be rational boundary point of the movable cone $\overline{\mathcal{M}}(M)$. Then there exists a pseudo-automorphism f of X such
that \(f^*(D) \) is in the nef cone \(\overline{\text{Amp}}(M) \). Hence, rational boundary points of \(\overline{M}(M) \) are movable.

5. Universal Cover of Hilbert Schemes of Enriques Surfaces

In this section, we shall prove Theorem 1.4 and a few refinements.

5.1. Enriques surfaces (see eg. [BHPV], Chapter VIII). An Enriques surface \(S \) is a compact complex surface whose universal cover \(\tilde{S} \) is a K3 surface. The Enriques surfaces form a 10-dimensional family; all of them are projective and their fundamental group is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \).

Let \(S \) be an Enriques surface. The free part of the Néron-Severi group \(\text{NS}_f(S) \) is isomorphic to the lattice \(U \oplus E_8(-1) \), were (cf. [BHPV], Chapter I, Section 2)

- \(U \) is the unique even unimodular lattice of signature \((1,1)\);
- \(E_8(-1) \) is the unique even unimodular negative definite lattice of rank 8.

From now on, we identify the lattices \(\text{NS}_f(S) \) and \(U \oplus E_8(-1) \). We denote the group of isometries of \(\text{NS}_f(S) \) preserving the positive cone by \(O_{10}^+ \). Here, by definition, the positive cone \(\text{Pos}(S) \) is the connected component of \(\{ x \in \text{NS}(S)_{\mathbb{R}} \mid (x^2) > 0 \} \), containing the ample cone. We define

\[
O_{10}^+[2] = \{ \varphi \in O_{10}^+ \mid \varphi = \text{Id} \mod (2) \}.
\]

Theorem 5.1 (see [BP], Theorem 3.4, Proposition 2.8). Let \(S \) be a generic Enriques surface. Then \(S \) does not contain any smooth rational curve and the morphism \(g \mapsto g^* \in \text{GL}(\text{NS}_f(S)) \) provides an isomorphism

\[
\text{Aut}(S) \simeq O_{10}^+[2].
\]

Moreover, \(O_{10}^+ \) is isomorphic to the Coxeter group associated to the Coxeter diagram \(T_{2,3,7} \), a tree with 10 vertices and three branches of length 2, 3, and 7 respectively (see [CoDo]). From now on, \(S \) is a generic Enriques surface.

5.2. Hilbert schemes and positive entropy. The group \(\text{Aut}(S) \) acts by automorphisms on the Hilbert scheme \(\text{Hilb}^n(S) \); this defines a morphism

\[
\rho_n : \text{Aut}(S) \to \text{Aut}(\text{Hilb}^n(S)).
\]

Denote by \(\mathcal{H}^n(S) \) the universal cover \(\tilde{\text{Hilb}}^n(S) \), and by \(A_n(S) \) the group of all automorphisms of \(\mathcal{H}^n(S) \) which are obtained by lifting elements of \(\rho_n(\text{Aut}(S)) \). By construction, there is an exact sequence

\[
1 \to \mathbb{Z}/2\mathbb{Z} \to A_n(S) \to \rho_n(\text{Aut}(S)) \to 1.
\]

Up to conjugacy, the group \(O_{10}^+[2] \) is a lattice in the Lie group \(O_{1,9}(\mathbb{R}) \); as such, it contains a non-abelian free group (we shall describe an explicit free subgroup below). Since all elements in the kernel of \(\rho_n \) have finite order, the group \(A_n(S) \) is commensurable to a lattice in the Lie group \(O_{1,9}(\mathbb{R}) \) and contains a non-abelian free group. Since all holomorphic vector fields on \(\mathcal{H}^n(S) \) vanish
identically, one can find such a free group that acts faithfully on the Néron-Severi group of \(\mathcal{H}^n(S) \).

Lemma 5.2. Let \(M \) be a complex projective manifold. Let \(G \) be a subgroup of \(\text{Aut}(M) \) such that (i) \(G \) is a non-abelian free group and (ii) \(G \) acts faithfully on \(\text{NS}(M) \). Then there exists an element \(g \) in \(G \) such that \(g^*: \text{NS}(M) \to \text{NS}(M) \) has an eigenvalue \(\lambda \) with \(|\lambda| > 1 \). In particular, the topological entropy of \(g \) is strictly positive.

Proof. The first assertion follows from the fact that \(G \) is a subgroup of \(\text{GL}(\text{NS}(X)) \), hence of \(\text{GL}_m(\mathbb{Z}) \), where \(m \) is the Picard number of \(M \): If all eigenvalues of all elements \(g^* \) had modulus one, they would be roots of 1, and a finite index subgroup of \(G \) would be solvable (conjugate to a subgroup of \(\text{GL}_m(\mathbb{R}) \) made of upper triangular matrices with coefficients 1 on the diagonal). The second follows from Yomdin’s lower bound for the topological entropy. \(\square \)

Thus \(\mathcal{H}^n(S) \) has many automorphisms with positive entropy. In the next sections, we make this statement more precise and explicit, by constructing an embedding of \(\text{UC}(3) \) into \(A_n(S) \).

5.3. Three involutions and positive entropy.

Let \(e_1, e_2 \) be a standard basis of \(U \), that is \(U = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \) and
\[
(e_1^2)_S = (e_2^2)_S = 0, \quad (e_1 \cdot e_2)_S = 1.
\]

We can, and do choose \(e_1 \) and \(e_2 \) in the closure of the positive cone \(\text{Pos}(S) \).

Let \(v \in E_8(-1) \) be an element such that \((v^2)_S = -2 \). Put \(e_3 := e_1 + e_2 + v \). Then, we have
\[
(e_3^2)_S = 0, \quad (e_3 \cdot e_1)_S = (e_3 \cdot e_2)_S = 1.
\]

So, \(e_2 \) and \(e_3 \) are also in the closure of the positive cone and the three sublattices
\[
U_3 = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2, \quad U_2 = \mathbb{Z}e_1 \oplus \mathbb{Z}e_3, \quad U_1 = \mathbb{Z}e_2 \oplus \mathbb{Z}e_3
\]
of \(\text{NS}_f(S) \) are isomorphic to \(U \).

Let \(j \) be one of the indices 1, 2, 3. The sublattice \(U_j \) determines an orthogonal decomposition \(\text{NS}_f(S) = U_j \oplus U_j^\perp \). Consider the isometry of \(\text{NS}_f(S) \) defined by
\[
\iota_j^* = \text{id}_{U_j} \oplus -\text{id}_{U_j^\perp}
\]

Then, \(\iota_j^* \) is an element of \(\text{O}_m^+([2]) \), and is induced by a unique automorphism \(\iota_j \) of \(S \), and \(\iota_j \) is an involution (apply Theorem 5.1). Let \(\langle \iota_1, \iota_2, \iota_3 \rangle \) be the subgroup of \(\text{Aut}(S) \) generated by \(\iota_1, \iota_2 \) and \(\iota_3 \).

\(^3\text{An element } g \in \text{Aut}(M) \text{ is of positive entropy if and only if the spectral radius of the action of } g \text{ on } H^{1,1}(M, \mathbb{R}) \text{ is strictly bigger than 1. The entropy } h_{\text{top}}(g) \text{ is equal to the spectral radius of } g^* \text{ on } \bigoplus_p H^{p,p}(M, \mathbb{R}). (see [Gro])} \)
Theorem 5.3. Let S be a generic Enriques surface. There are no non-trivial relations between the three linear transformations t_i: The groups $\langle t_1, t_2, t_3 \rangle$, $\langle t_1^* \rangle \ast \langle t_2^* \rangle \ast \langle t_3^* \rangle$ and $\text{UC}(3)$ are isomorphic. Moreover, the maximal eigenvalue of $t_1^* t_2 t_3^*$ on $\text{NS}(S)$ is equal to $9 + 4\sqrt{5}$. In particular, the topological entropy of the automorphism $t_3 \circ t_2 \circ t_1$ is positive.

Proof. Consider the sub-lattice of $\text{NS}(S)$ defined by $$L = Ze_1 \oplus Ze_2 \oplus Zv = Ze_1 \oplus Ze_2 \oplus Ze_3.$$ By construction $t_1^*(e_2) = e_2$ and $t_1^*(e_3) = e_3$. Since $2e_2 + v$ is orthogonal to both e_2 and e_3, it follows that $2e_2 + v \in U_1^\perp$. Thus $t_1^*(2e_2 + v) = -(2e_2 + v)$ and $t_1^*(v) = -4e_2 - v$. One deduces easily that $t_1^*(e_1) = -e_1 + 2e_2 + 2e_3$. Permuting the indices, we obtain a similar formula for t_2^* and t_3^*. It follows that the lattice L is $\langle t_1, t_2, t_3 \rangle$-invariant, and the matrices of the involutions in the basis (e_1, e_2, e_3) are $$t_3^*|_L = M_{3,3}, \quad t_2^*|_L = M_{3,2}, \quad t_1^*|_L = M_{3,1},$$ ($M_{3,3}, M_{3,2}$ and $M_{3,1}$ are the matrices introduced in Section 2.2.1).

The remaining assertions follow from the fact that the maximal eigenvalues of the product matrix $M_{3,1}M_{3,2}M_{3,3}$ is $9 + 4\sqrt{5} > 1$. □

The following remark, which has been kindly communicated to us by professor Shigeru Mukai, provides a geometric explanation of the previous statement, which is related to Wehler surfaces.

Remark 5.4. The class $h = e_1 + e_2 + e_3$ determines an ample line bundle of degree 6 and the projective model of S associated to $|h|$ is a sextic surface in \mathbb{P}^3 singular along the 6-lines of a tetrahedron. Then the universal cover \tilde{S} has a projective model of degree 12: It is a quadratic section of the Segre manifold $P(3) = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$; so, \tilde{S} is a K3 surface of multi-degree $(2, 2, 2)$ in $P(3)$, i.e., a Wehler surface.

Equivalently, let $\pi: \tilde{S} \to S$ be the universal cover of S. The classes $\pi^* e_i$ define three different elliptic fibrations $\varphi_i: \tilde{S} \to \mathbb{P}^1$ with no reducible fiber. Hence $\varphi_1 \times \varphi_2 \times \varphi_3$ embeds \tilde{S} into $P(3)$ and the image is a surface of multi-degree $(2, 2, 2)$.

Then, one easily shows that the action of $\text{UC}(3)$ on S is covered by the natural action of $\text{UC}(3)$ on the Wehler surface \tilde{S} (Theorem 3.6-(2) in §6).

5.4. Proof of Theorem 1.4. We have a natural biregular action of the group $\text{UC}(3) \simeq \langle t_1, t_2, t_3 \rangle$ on the Hilbert scheme $\text{Hilb}^n(S)$, induced by the action on S. Each $t_j \in \text{Aut}(\text{Hilb}^n(S))$ lifts equivariantly to a biregular action $\tilde{t}_j \in \text{Aut}(\mathcal{H}^n(S))$ on the universal cover $\mathcal{H}^n(S) = \widetilde{\text{Hilb}}^n(S)$. It suffices to show that each \tilde{t}_j is an involution (we will then have natural surjective homomorphisms $\text{UC}(3) \to \langle \tilde{t}_1, \tilde{t}_2, \tilde{t}_3 \rangle \to \langle t_1, t_2, t_3 \rangle \simeq \text{UC}(3)$, hence all the arrows will be isomorphic).
Lemma 5.5 (see [MN]). Let s be a holomorphic involution of $\text{Hilb}^n(S)$. Then, all lifts \tilde{s} of s to the universal cover $\mathcal{H}^n(S)$ are involutions too.

Proof. Let $\pi : \mathcal{H}^n(S) \to \text{Hilb}^n(S)$ be the universal covering map and σ be the covering involution. Let \tilde{s} be a lift of s, i.e. an automorphism of $\mathcal{H}^n(S)$ with $\pi \circ \tilde{s} = s \circ \pi$. Then $(\tilde{s})^2$ is either the identity map or σ. Assume $(\tilde{s})^2 = \sigma$ and follow [MN], Lemma (1.2), to derive a contradiction. By assumption, (\tilde{s}) is a cyclic group of order 4 and acts freely on $\mathcal{H}^n(S)$ because so does σ. By citeOS, Theorem (3.1), Lemma (3.2), the Euler characteristic of the sheaf $O_{\mathcal{H}^n(S)}$ is equal to 2. Since the group (\tilde{s}) has order 4 and acts freely, the quotient $\mathcal{H}^n(S)/(\langle \tilde{s} \rangle)$ is smooth and

$$\chi \left(\frac{O_{\mathcal{H}^n(S)}}{\langle \tilde{s} \rangle} \right) = \frac{1}{4} \chi \left(O_{\mathcal{H}^n(S)} \right) = \frac{1}{2},$$

a contradiction because this characteristic should be an integer. \hfill \Box

This completes the proof of Theorem 1.4: one gets an embedding of UC(3) in $\text{Aut}(\mathcal{H}^n(S))$, and its image contains automorphisms with positive entropy (either by Theorem 5.3 or Lemma 5.2).

5.5. A question. There are Enriques surfaces with $|\text{Aut}(S)| < \infty$; on the other hand, Kondo shows that $|\text{Aut}(\tilde{S})| = \infty$ for every K3 surface \tilde{S} which is the universal cover of an Enriques surface (see [Kn] for these facts). Thus, it is natural to ask the following question.

Question 5.6. $|\text{Aut}(\text{Hilb}^n(S))| = \infty$ for every Enriques surface?

Acknowledgement. The main idea of this work was found by the second author after fruitful discussions with Professors Klaus Hulek and Matthias Schuëtt and with Doctor Arthur Prendergast-Smith, during his stay at Hannover in May 2011. K. Oguiso would like to express his best thanks to all of them for discussions and to Professors K. Hulek and M. Schuëtt for invitation. We are also very grateful to Professors H. Esnault, Akira Fujiki, Yoshinori Gongyo, Shu Kawaguchi, János Kollár, James McKernan and Shigeru Mukai for many valuable comments relevant to this work.

References

SERGE CANTAT, DMA, ENS-Ulm, UMR 8553 du CNRS, 45 rue d’Ulm, F-75230 Paris cedex 05
E-mail address: serge.cantat@univ-rennes1.fr

KEIJI OGUSO, DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY, TOYONAKA 560-0043 OSAKA, JAPAN AND KOREA INSTITUTE FOR ADVANCED STUDY, HOEGIRO 87, SEOUL, 130-722, KOREA
E-mail address: ogusio@math.sci.osaka-u.ac.jp