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Abstract

The dynamical degree λ(f) of a birational transformation f measures the exponen-
tial growth rate of the degree of the formulae that define the n-th iterate of f . We
describe some of the properties of the set of all dynamical degrees of all birational
transformations of projective surfaces, and the relationship between the value of
λ(f) and the structure of the conjugacy class of f . For instance, the set of all
dynamical degrees of birational transformations of the complex projective plane is
a closed and well ordered set of algebraic numbers. We also survey some recent
advances on this topic, both for surfaces and higher dimensional algebraic varieties.

1 Introduction

Dynamical degrees and dynamics.– Let f : X 99K X be a rational transfor-
mation of a projective variety X, defined over a field k. For each codimension
p between 0 and dim(X), one associates to f its p-th dynamical degree λp(f)
(see Section 2.1 for a definition). The dynamical degrees λp(f) are positive real
numbers that measure the complexity of the dynamics of f . They play a crucial
role if one wants to describe the dynamics of f from an algebraic, an arithmetic,
a topological or an ergodic viewpoint. For instance, if k is the field of complex
numbers, then

• λdim(X)(f) is the toplogical degree of f ;
• if one sets λ(f) = max{λp(f) ; 0 ≤ p ≤ dim(X)}, the neperian loga-
rithm log(λ(f)) provides an upper bound for the topological entropy of
f : X(C) 99K X(C) and is equal to it under natural assumptions, for in-
stance when f is a regular endomorphism of X (see [1, 12]).

We refer to [16] for a recent study of the relationship between dynamical degrees
and topological dynamics when C is replaced by an ultrametric field.

Surfaces and analogies.– The goal of [4] was to study the structure of the set of
all dynamical degrees, when f runs over the group of all birational transformations
Bir(X) and X over the collection of all projective surfaces. In that case, λ0(f) =
1 = λ2(f), and we only have to study λ(f) = λ1(f). This set is now quite well
understood. In particular, as we will explain later, it consists of some special
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algebraic integers, called Pisot or Salem numbers, it is well-ordered, and it is
closed if the ground field is C. Dynamical degrees are invariant under conjugacy,
and an important feature of the results of [4] may be summarized by the following
slogan: Precise knowledge on λ(f) provides useful information on the conjugacy
class of f . In particular, [4] provides quantitative bounds for the solutions of
certain equations in Bir(X), like the conjugacy problem asking for a solution h of
the equation hfh−1 = g.

Another motivation of [4] is to develop a dictionary between groups of bira-
tional transformations of projective surfaces and mapping class groups of higher
genus, closed, orientable surfaces. The dynamical degree λ(f) plays a role which
is similar to the dilatation factor λ(φ) of pseudo-Anosov mapping classes (see [4,
§8]). The main results of [4] can also be compared to two theorems proved by
W. Thurston. The first one describes explicitly the set of topological entropies of
post-critically finite, continuous, multimodal transformations of the unit interval
as the set of logarithms of “weak Perron numbers”. The second describes the
structure of the set of volumes of hyperbolic manifolds of dimension 3; this set is
also countable, non-discrete, and well ordered subset of the real line.

Higher dimensions.– In higher dimensions, dynamical degrees are still rather
mysterious. Altogether, the set of possible dynamical degrees is countable (see [21],
[7]). But recently, the existence of a birational map of P3

C (and thus of Pn
C for

each n ≥ 3) with transcendental dynamical degree was given in [2], showing that
the situation is very different from the surface case. Some features are however
independent of the dimension, like the semi-continuity of the dynamical degrees
[23] (see Section 4.2). We will also mention the case of polynomial automorphisms
of the affine space Am

C : they correspond to interesting particular birational maps
of the Pm

C and their dynamical degrees are more restricted (see section 5.2 below).

2 Dynamical degrees, Pisot and Salem numbers,
algebraic stability

2.1 Dynamical degrees

Let X be a projective variety defined over an algebraically closed field k. Set

m = dim(X).

In what follows, NS(X) denotes the Néron-Severi group of X. Given a ring A,
NSA(X) stands for NS(X)⊗Z A; hence, NSZ(X) coincides with NS(X).

Let f be a rational transformation of X defined over k. It determines an
endomorphism f∗ : NS(X) → NS(X), and the first dynamical degree λ1(f) of
f is defined as the spectral radius of the sequence of endomorphisms (fn)∗, as n
goes to +∞. More precisely, once a norm ∥ · ∥ has been chosen on the real vector
space End(NSR(X)), one defines

λ(f) = lim
n→∞

∥ (fn)∗ ∥1/n ;
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this limit exists, and does not depend on the choice of the norm. Moreover, for
every ample divisor D ⊂ X

λ1(f) = lim
n→∞

(
Dm−1 · (fn)∗D

)1/n
,

where (C1 · C2 · · ·Cm) denotes the intersection number between divisors or divi-
sor classes, and Dk = D · D · · ·D taken k times. Similarly, the p-th dynamical
degree λp(f) is defined by looking at the action of f on classes of subvarieties of
codimension p, and is the limit of (Dm−p · (fn)∗(Dp))1/n as n goes to +∞.

The most important features of dynamical degrees are: (1) their definition
does not depend on the choice of norm ∥ · ∥ (resp. of polarization D), (2) they
are invariant under conjugacy, and (3) they form a log concave sequence, which
means that

λp(f)
2 ≤ λp−1(f)λp+1(f).

This follows from the Khovansky-Teissier inequalities for intersection numbers,
hence to the Alexandrov-Fenchel inequalities concerning mixed volumes of convex
bodies (see [15, 23, 13]).

Example 2.1 Let m ≥ 2 be an integer. The Néron-Severi group of Pm
k coincides

with the Picard group Pic(Pm
k ), has rank 1, and is generated by the class e0 of a

hyperplane:
NS(Pm

k ) = Pic(Pm
k ) = Ze0.

Fix a choice of homogeneous coordinates [x0 : · · · : xm] on the projective space Pm
k .

Let f be an element of Crm(k) = Bir(Pm
k ). One can then find homogeneous poly-

nomials P0, . . . , Pm ∈ k[x0, . . . , xm] of the same degree d, and without common
factor of positive degree, such that

f([x0 : · · · : xm]) = [P0(x0, . . . , xm) : · · · : Pm(x0, . . . , xm)].

This degree d does not depend on the choice of homogeneous coordinates; it is
denoted by deg(f) and called the degree of f . On Pic(Pm

k ), f acts by multiplica-
tion by deg(f); thus, we have λ(f) = lim deg(fn)1/n. For instance, the standard
involution

σ([x0 : · · · : xn]) = [
1

x0
: · · · : 1

xm
] = [x1x2 · · ·xm : x0x2 · · ·xm : · · · : x0 · · ·xm−1].

satisfies deg(σn) = 1 or m, according to the parity of n; hence λ1(σ) = 1. Simi-
larly, λp(σ) = 1 for every p ≤ m.

2.2 Pisot and Salem numbers (see [3])

A Pisot number is an algebraic integer λ ∈ ]1,∞[ whose other Galois conjugates
lie in the open unit disk; the set of Pisot numbers includes all integers d ≥ 2 as
well as all reciprocal quadratic integers λ > 1. A Salem number is an algebraic
integer λ ∈ ]1,∞[ whose other Galois conjugates are in the closed unit disk, with
at least one on the boundary; hence, the minimal polynomial of λ has at least two
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complex conjugate roots on the unit circle, its roots are permuted by the involution
x 7→ 1/x, and its degree is at least 4. We denote by Pis the set of Pisot numbers
and by Sal the set of Salem numbers.

It is known that Pis is a closed subset of the real line. It is contained in the
closure of Sal, and its infimum is equal to λP ≃ 1.324717, the unique root λP > 1
of the cubic equation x3 = x + 1; this Pisot number is known as the plastic
number, or padovan number. The smallest accumulation point of Pis is the
golden mean λG = (1 +

√
5)/2; all Pisot numbers between λP and λG have been

listed.
Our present knowledge of Salem numbers is much weaker. Conjecturally, the

infimum of Sal is larger than 1, and should be equal to the Lehmer number,
i.e. to the Salem number λL ≃ 1.176280 obtained as the unique root > 1 of the
irreducible polynomial x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1.

2.3 Dynamical degrees and algebraic stability

Now, assume that X is a surface and f is birational. Then, as said above, we
have λ(f) = λ1(f). By definition, f is loxodromic if λ(f) > 1. The dynamical
spectrum of X is defined as the set

Λ(X) = {λ(f) | f ∈ Bir(X)}.

If one wants to specify the field k, one may denote the dynamical spectrum by
Λ(X,k).

One says that f ∈ Bir(X) is algebraically stable when the endomorphism
f∗ of the Néron-Severi group NS(X) satisfies

(fn)∗ = (f∗)n (2.1)

for all positive integers n. If f is algebraically stable, then f−1 is also algebraically
stable and λ(f) is the spectral radius of the endomorphism f∗ of NS(X); in par-
ticular, λ(f) is an algebraic integer. Diller and Favre proved in [11] that every
birational transformation of a projective surface X is conjugate by a birational
morphism π : Y → X to an algebraically stable transformation π−1 ◦ f ◦ π. From
this fact and the Hodge index theorem, they obtained the following result.

Theorem 2.2 ([11]) Let k be a field and let f be a birational transformation of a
projective surface defined over k. If λ(f) is different from 1, then λ(f) is a Salem
or a Pisot number.

Note that this result is false in dimension at least 3: first, there are bira-
tional transformations of threefolds (resp. dominant rational transformations of
surfaces) which are not conjugate to algebraically stable ones (see [14]); second,
there are regular automorphisms of threefolds (for instance abelian threefolds) for
which λ1(f) is not in {1}∪Pis∪ Sal (see [17]); third, there are birational transfor-
mations of threefolds (resp. dominant rational transformations of surfaces) with
transcendental dynamical degrees [2], as already mentioned in the Introduction.
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In [4], we initiated the study of the dynamical spectrum Λ(X), where X is a
surface. By Diller-Favre Theorem, Λ(X) splits in two parts, its Pisot part ΛP (X)
and its Salem part ΛS(X). The problem is to describe the nature of these sets,
which numbers can appear in each of these sets, as well as the relationship between
these two sets.

Example 2.3 When f is an algebraically stable transformation of P2
k, one gets

λ(f) = deg(f). For instance, the automorphism h of the affine plane defined by
h(X,Y ) = (Y,X + Y d) extends to a birational map of the projective plane such
that deg(hn) = dn for all n ≥ 0. In particular, Λ(P2

k) contains all integers d ≥ 1,
for all fields k.

Example 2.4 Consider the group GL2(Z) acting by (monomial) automorphisms
of the multiplicative group k∗ × k∗: If

A =

(
a b
c d

)
is an element of GL2(Z) and (X,Y ) denotes the coordinates on k∗ ×k∗, the auto-
morphism associated to A is defined by fA(X,Y ) = (XaY b, XcY d). This provides
an embedding of GL2(Z) in the automorphism group Aut(k∗ × k∗), and thus in
Bir(P2

k(k)). For every A in GL2(Z), the dynamical degree of fA is equal to the
spectral radius of the matrix A, i.e. to the modulus of its unique eigenvalue λ with
|λ| ≥ 1; this implies that fA is not an algebraically stable transformation of P2

k as
soon as λ(fA) > 1, because λ(fA) is not an integer in that case. As a byproduct of
this example, the dynamical spectrum of the plane contains all reciprocal quadratic
integers, i.e. all roots λ > 1 of equations x2 + 1 = tx with t in Z.

2.4 Salem numbers and automorphisms

The dynamical degree of an automorphism of a projective surface, if different
from 1, is either a quadratic number or a Salem number (see [11]). In [4] we
proved a converse statement:

Theorem A [4, Theorem A] Let k be an algebraically closed field. Let f be a
birational transformation of a projective surface X, defined over k. If λ(f) is
a Salem number, there exists a projective surface Y and a birational mapping
φ : Y 99K X such that φ−1 ◦ f ◦ φ is an automorphism of Y .

Thus, one can decide whether a birational transformation is conjugate to an
automorphism by looking at its dynamical degree, except when this degree is 1 or a
quadratic integer. For the quadratic case, [4, Examples 2.2 and 2.3] show that there
are quadratic integers which are simultaneously realized as dynamical degrees of
automorphisms and of birational transformations that cannot be conjugate to an
automorphism. See [4, Remark 2.4] for birational transformations with dynamical
degree equal to 1.

Once Theorem A is proved, three corollaries can be deduced from results
of McMullen and the second author (see [20] and [9]). The first corollary is a
spectral gap property for dynamical degrees:
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• There is no dynamical degree in the interval ]1, λL[ [4, Corollary 2.7] .

The second corollary does not seem to be related to values of dynamical degrees,
but a simple proof makes use of the spectral gap. It asserts that

• For each loxodromic element f ∈ Bir(X), its centralizer in Bir(X) if a finite
extension of the infinite cyclic group ⟨f⟩ [4, Corollary 4.7].

The third consequence is an effective and explicit bound for the optimal degree of
a conjugacy (see [4, §4.4]):

• Two loxodromic elements f , g ∈ Bir(P2
k) of degree ≤ d are conjugate if and

only if they are conjugate by an element h of degree ≤ (2d)57.

3 From projective surfaces to the projective plane

Non rational surfaces are easily handled with, because a birational transformation
of such a surface X either preserves a fibration by curves (in which case λ(f) = 1)
or is conjugate to an automorphism by some birational change of variable Y 99K
X. From this, and Enriques’ classification of surfaces, one obtains the following
theorem.

Theorem B [4, Theorem B] Let k be an algebraically closed field. Let X be a
projective surface defined over k. If X is not rational, then

1. Λ(X) = {1} if X is not birationally equivalent to an abelian surface, a K3
surface, or an Enriques surface;

2. Λ(X) \ {1} is made of quadratic integers and of Salem numbers of degree at
most 6 (resp. 22, resp. 10) if X is an abelian surface (resp. a K3 surface,
resp. an Enriques surface).

The union of all dynamical spectra Λ(X,k), for all fields and all surfaces which
are not geometrically rational, is a closed discrete subset of the real line.

Remark 3.1 When the characteristic of the field k is equal to 0, the degree bounds
of Assertion (2) become 4, 20, and 10 (in place of 6, 22, and 10).

This result, proved in [4, Section 3], shows that the most interesting case is
provided by rational surfaces. Thus, in the following section, one can assume that
X is birationally equivalent to the projective plane P2

k; the dynamical spectrum
is then equal to the set Λ(P2

k) of dynamical degrees of elements of the Cremona
group Cr2(k) = Bir(P2

k).

4 Degrees and conjugacy classes

4.1 Minimal degree in the conjugacy class

Given an element f of Bir(P2
k), define the minimal degree of f in its conjugacy

class as the positive integer

mcdeg(f) = min deg(g ◦ f ◦ g−1)
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where g describes Bir(P2
k) (thus, mcdeg(f) depends on the field and may decrease

after a field extension). The function mcdeg is constant on conjugacy classes, and

λ(f) ≤ mcdeg(f) ≤ deg(f)

for all birational transformations of the plane. One of the key technical results of
[4] is the following reverse inequality:

Theorem C [4, Theorem C] Let k be an algebraically closed field and let f be a
birational transformation of the plane P2

k.

1. If λ(f) ≥ 106 then mcdeg(f) ≤ 4700λ(f)5.
2. If λ(f) > 1, then mcdeg(f) ≤ cosh(18 + 345 log(λ(f))) ≤ e18λ(f)345.

On the other hand, there are sequences of elements fn ∈ Bir(P2
k) such that

mcdeg(fn) goes to +∞ with n while λ1(fn) = 1 for all n.

4.2 Semi-continuity

Another crucial statement, obtained by Junyi Xie in [?], concerns the semi-continuity
of the function f 7→ λ1(f). To state it, one needs the following notion: an alge-
braic family of rational transformations of a projective variety X is the data of
an algebraic variety T and a rational map F : T ×X 99K T ×X such that the in-
determinacy set of F does not contain any fiber {t0} ×X and F (t, x) = (t, ft(x))
for some family ft of dominant rational transformations of X. Such a family is
usually denoted by (ft)t∈T , instead of F .

Theorem 4.1 (J. Xie, [22, 23]) If (ft)t∈T is a family of rational transforma-
tions of a projective variety X and 0 ≤ p ≤ dim(X) is an integer, then the function
t ∈ T 7→ λp(t) ∈ R is upper semi-continuous with respect to the Zariski topology
of T .

This result had already been proven for birational transformations of surfaces
in [22], and the general statement given here is taken from the preprint [23].

4.3 Well ordered sets

The set Λ(P2
k) is a subset of R+ and, as such, is totally ordered. The following

statement, which follows from Theorem C and Theorem 4.1, asserts that Λ(P2
k)

is well ordered: Every non-empty subset of Λ(P2
k) has a minimum; equivalently,

it satisfies the descending chain condition (if (fn)n≥0 is a sequence of birational
transformations of P2

k and λ(fn+1) ≤ λ(fn) for each n, then λ(fn) becomes even-
tually constant).

Theorem D [4, Theorem D] Let k be an algebraically closed field. The dynamical
spectrum Λ(P2

k) ⊂ R is well ordered, and it is closed if k is uncountable.

In [4, Theorem 7.4], we also show that ΛP (P2
k) is contained in the closure

of ΛS(P2
k) if k is algebraically closed and of characteristic 0. As Λ(P2

k) ⊂ R is
well-ordered, it corresponds to an ordinal. Recently, Anna Bot proved that
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• The ordinal of Λ(P2
k) is at most ωω, with equality when k = C (see[8]).

From Theorems B and D, one obtains the existence of gaps in the dynamical
spectrum of projective surfaces: There are intervals of real numbers that con-
tain infinitely many Pisot and Salem numbers, but do not contain any dynamical
degree.

Corollary 4.2 Let Λ be the set of all dynamical degrees of birational transforma-
tions of projective surfaces, defined over any field. Then,

(1) Λ is a well ordered subset of R+;
(2) if λ is an element of Λ, there is a real number ϵ > 0 such that ]λ, λ+ ϵ] does

not intersect Λ;
(3) there is a non-empty interval ]λG, λG + ϵ], on the right of the golden mean,

that contains infinitely many Pisot and Salem numbers but does not contain
any dynamical degree.

Gaps as in the third assertion of this corollary occur infinitely often, because there
are infinitely many Pisot numbers that are limits of Pisot numbers from the right.

5 Open questions

5.1 Degree growth

The dynamical degrees λp(f) describe the exponential growth rate of the action
of f : X 99K X on numerical classes of divisors of codimension p. Subexponential
phenomena are not yet understood, except in dimension 2. Indeed, if f is a
birational transformation of a surface and λ(f) = 1, then ∥ (fn)∗ ∥ is either
bounded, or grows linearly, or grows quadratically with n; and in each case, f
permutes the members of a pencil of curves given by some rational map π : X 99K C
onto a curve (see [9]). Such a classification is missing in higher dimension, and what
should be expected is not clear at all. For instance, one does not know whether
a regular automorphism with ∥ (fn)∗ ∥ gorwing polynomially must preserve a
fibration, one does not know whether ∥ (fn)∗ ∥ can grow like log(n) or exp(

√
n)

for a birational transformation.

5.2 Polynomial automorphisms

For each integer m and each field k, the group Aut(Am
k ) of polynomial automor-

phisms of the affine space Am
k is a natural subgroup of Bir(Am

k ) = Bir(Pm
k ), whose

structure is still mysterious in dimension m ≥ 3. One may then ask what are the
possible dynamical degrees of elements of Aut(Am

k ). For instance, the following
conjecture is taken from [10, Conjecture 2] and [5, Question 1.1.2]:

Conjecture 5.1 For each integer m ≥ 2 and each field k, the dynamical degree
of every element of Aut(Am

k ) is an algebraic integer of degree at most m− 1.
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Conjecture 5.1 is only proven for m = 2 (see [18, Proposition 3] and [5,
Corollary 2.4.3]). For m = 3, it has been proven for specific families of polynomial
automorphisms, like quadratic automorphisms [19] or cubic and triangular auto-
morphisms [5, 6]. For general automorphisms, the best statement obtained so far
is the following result:

Theorem 5.2 [10, Corollary 3] The dynamical degree of every element of Aut(A3
C)

is an algebraic number of degree at most 6.

Each of the main results described in this short introduction, for instance
Theorem C and its consequences, Theorem 4.1, or Theorem 5.2, required a better
understanding of the space of numerical classes of cycles in an algebraic variety X,
and in all birational models Y 99K X of X; indeed, for a birational transformation
f that is not algebraically stable, the study of its dynamical degrees requires to
blow-upX along the indeterminacy set of all iterates of f , hence an infinite number
of blow-ups. In [4], the main ingredient comes from an additional structure which
is given by the intersection form and Hodge index theorem: on the inductive limit
of NS(Y ) over all birational models π : Y → X (π a birational morphism), the
intersection form provides an infinite dimensional Minkowski form; then, hyper-
bolic geometry can be combined with algebraic geometry and dynamics to study
dynamical degrees. Such a structure does not exist in dimension ≥ 3, and [10, 23]
are the first important papers to provide tools towards a better understanding of
these numbers λp(f).
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[3] Marie-José Bertin, Annette Decomps-Guilloux, Marthe Grandet-Hugot,
Martine Pathiaux-Delefosse, and Jean-Pierre Schreiber, Pisot and Salem
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