Fonction numérique d'une variable réelle

MATHEMATIQUES APPLIQUEES

Licence 1 Administration Economique et Sociale

Sébastien Pommier

2007 - 2008

Définition

On définit une fonction f comme une relation numérique **telle qu'à chaque réel** x, soit associée au plus une image notée f(x).

$$f : \mathbb{R} \leadsto \mathbb{R}$$
$$x \leadsto f(x)$$

L'ensemble des réels admettant une image par f constitue **l'ensemble de définition** de la fonction f, noté D_f .

2 / 19

Notion d'Extrema

Définition

Soit x_0 un élément de D_f (on note aussi $x_0 \in D_f$)

On dit que f atteint un maximum en x_0 lorsque :

 $\forall x \in D_f, f(x) \le f(x_0).$

On dit que f atteint un minimum en x_0 lorsque :

 $\forall x \in D_f, f(x) \ge f(x_0)$

Notion de limite

- Quelques précisions de notation...et d'expression
- On dira : f admet w pour limite en a ou bien f tend vers w lorsque x tend vers a. On écrira de manière équivalente :

$$\lim_{x \to a} f(x) = w$$

ou bien :

$$f(x) \xrightarrow[x \to a]{} w$$

Definition

 $\forall \varepsilon \in \mathbb{R}_*^+ \quad \exists \eta \in \mathbb{R}_*^+ \mid \forall x \in I \cap D_f, \ |x - x_0| \le \eta \implies |f(x) - w| \le \epsilon$

4 / 19

Propriétés

On admet les propriétés suivantes (élémentaires)

$$\begin{array}{ccc} f(x) & \longrightarrow & w \implies \lambda f(x) = \lambda w \\ f(x) \longrightarrow w & \Longrightarrow & f(x) + g(x) \longrightarrow w + w' \\ g(x) \longrightarrow w' & \Longrightarrow & f(x)g(x) \longrightarrow ww' \end{array}$$

• et si $w' \neq 0$ et que g(x) ne s'annule pas alors

$$\frac{f(x)}{g(x)} \longrightarrow \frac{w}{w'}$$

et encore pour les limites infinies :

$$\begin{array}{ccc} f(x) + \lambda \longrightarrow +\infty \\ f(x) \longrightarrow +\infty & \Longrightarrow & \lambda f(x) \longrightarrow +\infty \text{ si } \lambda > 0 \\ \lambda f(x) \longrightarrow -\infty \text{ si } \lambda < 0 \\ \frac{1}{f(x)} \longrightarrow 0 \end{array}$$

Propriétés

ATTENTION

Il y a des cas pour lesquels les limites ne sont pas déterminées.

- **1** La différence de 2 fonctions tendant vers $^+_-\infty$.
- 2 Le quotient de deux fonctions tendant vers 0
- 3 Le quotient de deux fonctions tendant vers l'infini
- 4 Le produit d'une fonction tendant vers 0 et d'une fonction tendant vers l'infini.

Limites d'une somme de fonctions

 $\forall x_0 \in \mathbb{R}$

		$\lim_{x \to x_0} f$				
		$-\infty$	l	$+\infty$		
	$-\infty$	$-\infty$	$-\infty$?		
$\lim_{x \to x_0} g$	l'	$-\infty$	$l + l\prime$	$+\infty$		
	$+\infty$?	$+\infty$	$+\infty$		

Limites d'un produit ou d'un quotient

 $\forall x_0 \in \mathbb{R}$

$\lim_{x \to x_0} f(x)$	$-\infty$	$l \in \mathbb{R}^*$	0-	0+	$+\infty$
$\lim_{x \to x_0} \frac{1}{f(x)}$	0-	$\frac{1}{l}$	$-\infty$	$+\infty$	0+

		$\lim_{x \to x_0} f$	f			
	$\lim_{x \to x_0} f \times g$	$-\infty$	$l \in \mathbb{R}_{-}^{*}$	0	$l \in \mathbb{R}_+^*$	$+\infty$
	$-\infty$	$+\infty$	$+\infty$?	$-\infty$	$-\infty$
	$l' \in \mathbb{R}^*$	$+\infty$	ll'	0	ll'	$-\infty$
$\lim_{x \to x_0} g$	0	?	0	0	0	?
	$l' \in \mathbb{R}_+^*$	$-\infty$	ll'	0	ll'	$+\infty$
	$+\infty$	$-\infty$	$-\infty$?	$+\infty$	$+\infty$

Formes Indéterminées

Il existe des règles assez simples pour 'lever' les formes indéterminées et calculer les limites, dans le cas de fonctions polynomiales

PROPOSITIONS

- QUOTIENT DE DEUX FONCTIONS TENDANT VERS L'INFINI : ∞/∞ (ou PRODUIT $0\times\infty$) Il faut mettre en facteur le terme qui croit le plus vite (x à la puissane
 - la plus elevée possible) au numérateur et au dénominateur
- \bullet QUOTIENT DE DEUX FONCTIONS TENDANT VERS 0 quand x tend vers x_0
 - Il faut mettre en fateur le terme $\left(x-x_{0}\right)$ au plus haut degré possible

Formes Indéterminées

EXEMPLES

$$\lim_{x \to +\infty} f(x) = \frac{1+x^2}{x^2}$$

$$\lim_{x \to 2} f(x) = \frac{\sqrt{x+7}-3}{x-2}$$

$$\lim_{x \to 1} f(x) = \frac{x^3 - 1}{x - 1}$$

Les fonctions usuelles

- 1 Les fonctions affines : f(x) = ax + b
- 2 Les fonctions puissances rationnelles : $f(x) = Ax^r$ où $r \in \mathbb{Q}$
- 3 Les fonctions polynômes
- 4 La fonction logarithme népérien
- 5 La fonction exponentielle

Les fonctions affines

Definition

Pour $(a,b) \in \mathbb{R} \times \mathbb{R}$

$$\mathbb{R} \quad \leadsto \quad \mathbb{R}$$
 $x \quad \leadsto \quad ax + b$

est une fontion affine qui à tout réel x associe une image ax+b

Propriétés

	x	$-\infty$		0		$+\infty$
a > 0	f(x)	$-\infty$	7	b	7	$+\infty$
a < 0	f(x)	$+\infty$	>	b	>	$-\infty$
a = 0	f(x)	b		b		b

Les fonctions de puissances entières

Definition

Pour $x \in \mathbb{R}, f(x) = x^n$ avec $n \in \mathbb{N}$

Propriétés

Trois cas doivent être distingués :

1 n=0. La fonction est alors définie sur $\mathbb{R}*$, elle est constante :

$$\forall x \in \mathbb{R}^*. \quad x^0 = 1$$

- 2 n=2k avec $k\in\mathbb{N}*$, cette notation permet de désigner les fonctions de puissances paires.
- $\textbf{ 0} \ n=2k+1 \ \text{avec} \ k\in \mathbb{N}*, \ \text{c'est le cas des fonctions de puissances impaires}.$

x	$-\infty$		0		$+\infty$
$x \longrightarrow x^{2k}$	$+\infty$	/	0	7	$+\infty$
$x \longrightarrow x^{2k+1}$	$-\infty$	7	0	7	$+\infty$

Les fonctions de puissances relatives

Definition

$$\forall x \in \mathbb{R}^*, \ \forall n \in \mathbb{N}, \ x^{-n} = \frac{1}{x^n}$$

Propriétés

\underline{x}	$-\infty$			0			$-\infty$
21-			$+\infty$		$+\infty$		
$x \longrightarrow x^{-2k}$						7	
	0						0
	0				$+\infty$		
$x \longrightarrow x^{-(2k+1)}$		\				\	
			$-\infty$				0

Les fonctions de puissances rationnelles

Definition

Soient $p \in \mathbb{Z}$, $q \in \mathbb{N}*$, et $r \in \mathbb{Q}*$ tels que :

$$r=\frac{p}{q}$$

$$x^r = x^{\frac{p}{q}} = \sqrt[q]{x^p}$$

Propriétés

① Si q est **pair**, la fonction racine q-ieme est la réciproque de la fonction $f(x) = y^q$ sur \mathbb{R}^*

$$\forall x \in \mathbb{R}_{*}^{+}, \ \forall y \in \mathbb{R}_{*}^{+}: \ x = y^{q} \Longleftrightarrow y = \sqrt[q]{x} \Longleftrightarrow y = x^{\frac{1}{q}}$$

2 Si q est $\mathbf{impair},$ la fonction racine q-ieme est la réciproque de la fonction $f(x)=y^q$ sur $\mathbb R$

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}: \ x = y^q \Longleftrightarrow y = \sqrt[q]{x} \Longleftrightarrow y = x^{\frac{1}{q}}$$

Règles de calcul sur les puissances

Pour tout exposant $(a,b) \in \mathbb{Q}^2$ et pour tout réel $(x,y) \in \mathbb{R}^2$ (et différents de zéro pour un exposant nul ou négatif) :

$$x^a.x^b = x^{a+b}$$
 ; $(xy)^a = x^a.y^a$; $(x^a)^b = x^{ab}$

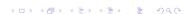
et pour tout $x \neq 0$

$$x^0=1$$
 ; $x^{-a}=(\frac{1}{x})^a=\frac{1}{x^a}$
$$\frac{x^a}{x^b}=x^{a-b}$$

$$(x.y)^{\frac{1}{q}} = \sqrt[q]{xy} = \sqrt[q]{x}.\sqrt[q]{y}$$

Exemple

Résoudre l'équation $x^n = \alpha$, avec $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}$



Les fontions polynômes

Définition

- ① On appelle monôme une fonction numérique d'une variable réelle de la forme : $f(x)=a_kx^k$ où $a_k\in\mathbb{R}*$ est le coefficient du monôme où $k\in\mathbb{N}$ est le degré du monôme
- 2 Une somme de monôme est un polynôme : $P(x)=a_0+a_1.x+a_2.x^2+\ldots+a_n.x^n \\ P(x)=\sum_{k=0}^n a_k.x^k$

Calculs usuels sur les fonctions polynomes

- Les quantités conjuguées : Cf exemples supra
- La division euclidienne, exple :

$$P(x) = \frac{x^4 - x^3 + x - 2}{x^2 - 2x + 4}$$

La fonction logarithme népérien

Définition

La fonction logarithme népérien est **la** primitive sur \mathbb{R}^+_* de la fonction inverse : $t \to \frac{1}{t}$ qui s'annule en **1**.

$$\forall x \in \mathbb{R}_{*}^{+}, \ \ln(x) = \int_{1}^{x} \frac{dt}{t}$$

Formulaire

1 La fonction ln est strictement croissante, on vérifie :

$$\ln x = 0 \Leftrightarrow x = 1 \quad \ln x > 0 \Leftrightarrow x > 1$$

$$\ln x < 0 \Leftrightarrow x < 1 \quad \ln x = 1 \Leftrightarrow x = e \approx 2{,}71828$$

2 On admet les règles de calcul suivantes : $\forall (x,y) \in \mathbb{R}^{+2}_*, \forall r \in \mathbb{Q}$

$$\ln\left(\frac{1}{x}\right) = -\ln x \; ; \; \ln\left(\frac{x}{y}\right) = \ln x - \ln y \; ; \; \ln\left(x^r\right) = r \ln x$$

3 Généralisation : changement de base

La fonction exponentielle

Définition

La fonction exponentielle $x \longrightarrow \mathbb{R}_{x}^{+}$ est la réciproque de la fonction ln :

$$\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}_*^+, \ y = e^x \iff x = \ln y$$

NB : Les règles usuelles de calcul sur les exposants s'appliquent.

Formulaire

- $\lim_{x \to +\infty} e^x = +\infty \text{ et } \lim_{x \to -\infty} e^x = 0$
- $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$
- $\lim_{x \to 0} \frac{e^x 1}{x} = 1$

4 D > 4 A > 4 B > 4 B > B = 900