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CLASSICAL AND MICROLOCAL ANALYSIS OF
THE X-RAY TRANSFORM ON ANOSOV MANIFOLDS

SÉBASTIEN GOUËZEL AND THIBAULT LEFEUVRE

We complete the microlocal study of the geodesic x-ray transform on Riemannian manifolds with Anosov
geodesic flow initiated by Guillarmou (J. Differential Geom. 105:2 (2017), 177–208) and pursued by
Guillarmou and Lefeuvre in (Ann. of Math. (2) 190:1 (2019), 321–344). We prove new stability estimates
and clarify some properties of the operator 5m — the generalized x-ray transform. These estimates rely
on a refined version of the Livšic theorem for Anosov flows, especially on a new quantitative finite-time
Livšic theorem.

1. Introduction

Let M be a smooth closed (n+1)-dimensional manifold endowed with a vector field X generating a
complete flow (ϕt)t∈R. We assume that the flow (ϕt)t∈R is transitive and Anosov in the sense that there
exists a continuous flow-invariant splitting

Tx(M)= RX (x)⊕ Eu(x)⊕ Es(x), (1-1)

where Es(x) (resp. Eu(x)) is the stable (resp. unstable) vector space at x ∈M, and a smooth Riemannian
metric g such that

|dϕt(x) · v|ϕt (x) ≤ Ce−λt
|v|x for all t > 0, v ∈ Es(x),

|dϕt(x) · v|ϕt (x) ≤ Ce−λ|t ||v|x for all t < 0, v ∈ Eu(x),
(1-2)

for some uniform constants C, λ > 0. The norm, here, is | · |x := gx( · , · )
1/2. The dimension of Es

(resp. Eu) is denoted by ns (resp. nu). As a consequence, n+ 1= 1+ ns + nu (where the 1 stands for the
neutral direction, that is, the direction of the flow). The case we will have in mind will be that of a geodesic
flow on the unit tangent bundle of a smooth Riemannian manifold (M, g) with negative sectional curvature.

1A. X-ray transform on M. We denote by G the set of closed orbits of the flow and for f ∈ C0(M),
its x-ray transform I f is defined by

G 3 γ 7→ I f (γ ) := 〈δγ , f 〉 = 1
`(γ )

∫ `(γ )

0
f (ϕt x) dt,

where x ∈ γ and `(γ ) is the length of γ .
The Livšic theorem characterizes the kernel of the x-ray transform for a hyperbolic flow: the latter is

reduced to the coboundaries, which are the functions of the form f = Xu, where u is a function defined

MSC2010: 37C27, 37D40, 53C21, 53C22, 53C24.
Keywords: Anosov flow, hyperbolic dynamical systems, x-ray transform, microlocal analysis.

301

http://msp.org/apde/
https://doi.org/10.2140/apde.2021.14-1
http://msp.org
http://www.dx.doi.org/10.4310/jdg/1486522813
http://www.dx.doi.org/10.4007/annals.2019.190.1.6


302 SÉBASTIEN GOUËZEL AND THIBAULT LEFEUVRE

on M whose regularity is prescribed by that of f . This result was initially proved in [Livšic 1972] in
Hölder regularity: if f ∈ Cα(M) is such that I f = 0, then there exists u ∈ Cα(M), differentiable in the
flow direction, such that f = Xu and u is unique up to an additive constant. There is also a version of the
Livšic theorem in smooth regularity due to de la Llave, Marco, and Moriyón [1986]. Much more recently,
Guillarmou [2017, Corollary 2.8] proved a version of the Livšic theorem in Sobolev regularity which
implies the theorem of [de la Llave et al. 1986].

It is also rather natural to expect other versions of the Livšic theorem to hold. For instance, if we
modify the condition I f = 0 by I f ≥ 0, is it true that f ≥ Xu for some well-chosen function u (positive
Livšic theorem)? And if ‖I f ‖`∞ := supγ∈G |I f (γ )| ≤ ε, can one write f = Xu+h, where some norm of
h is controlled by a power of ε (approximate Livšic theorem)? Eventually, what can be said if I f (γ )= 0
for all closed orbits γ of length ≤ L (finite Livšic theorem)?

The positive Livšic theorem for Anosov flows was proved in [Lopes and Thieullen 2005] with an
explicit control of a Hölder norm of the coboundary Xu in terms of a norm of f .

Theorem 1.1 (Lopes–Thieullen). Let 0<α ≤ 1. There exist 0<β ≤ α, C > 0 such that, for all functions
f ∈Cα(M), there exist u ∈Cβ(M), differentiable in the flow-direction with Xu ∈Cβ(M) and h∈Cβ(M)

such that f = Xu+ h+m( f ), with h ≥ 0 and m( f )= infγ∈G I f (γ ). Moreover, ‖Xu‖Cβ ≤ C‖ f ‖Cα .

In this article, we prove a finite approximate version of the Livšic theorem, as follows.

Theorem 1.2. Let 0< α ≤ 1. There exist 0< β ≤ α and τ,C > 0 with the following property. Let ε > 0.
Consider a function f ∈ Cα(M) with ‖ f ‖Cα(M) ≤ 1 such that |I f (γ )| ≤ ε for all γ with `(γ ) ≤ ε−1/2.
Then there exist u ∈ Cβ(M) differentiable in the flow-direction with Xu ∈ Cβ(M) and h ∈ Cβ(M) such
that f = Xu+ h. Moreover, ‖u‖Cβ ≤ C and ‖h‖Cβ ≤ Cετ.

We note that a rather similar result has already been obtained by S. Katok [1990] in the particular case
of a contact Anosov flow on a 3-manifold.

The assumptions of Theorem 1.2 hold in particular if ‖I f ‖`∞ = supγ∈G |I f (γ )| ≤ ε. Under the
assumptions of the theorem (only mentioning the closed orbits of length at most ε−1/2), the decomposition
f = Xu+ h also gives a global control on ‖I f ‖`∞ of the form

‖I f ‖`∞ ≤ Cετ . (1-3)

Indeed, if one integrates f = Xu+ h along a closed orbit of any length, the contribution of Xu vanishes
and one is left with a bound ‖h‖C0 ≤Cετ. The bound (1-3) holds in particular if I f (γ )= 0 for all γ with
`(γ )≤ ε−1/2. This statement illustrates quantitatively the fact that the quantities I f (γ ) for different γ
are far from being independent.

Remark 1.3. In Theorem 1.2, the constants β,C, τ depend on the Anosov flow under consideration, but
in a locally uniform way: given an Anosov flow, one can find such parameters that work for any flow in a
neighborhood of the initial flow. The local uniformity can be checked either directly from the proof, or
using a (Hölder-continuous) orbit-conjugacy between the initial flow and the perturbed one.

Remark 1.4. It could be interesting to extend the positive and the finite approximate Livšic theorems to
other regularities like H s spaces for s > (n+ 1)/2 but we were unable to do so.
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1B. X-ray transform for the geodesic flow. If (M, g) is a smooth closed Riemannian manifold, we set
M := SM, where SM is the unit tangent bundle, and denote by X the geodesic vector field on SM.
We will always assume that the geodesic flow is Anosov on SM and we say that (M, g) is an Anosov
Riemannian manifold. It is a well-known fact that a negatively curved manifold has Anosov geodesic
flow. We will denote by C the set of free homotopy classes on M ; they are in one-to-one correspondence
with the set of conjugacy classes of π1(M, · ). If (M, g) is Anosov, we know by [Klingenberg 1974]
that given a free homotopy class c ∈ C, there exists a unique closed geodesic γ ∈ G belonging to the free
homotopy class c. In other words, G and C are in one-to-one correspondence. As a consequence, we
will rather see the x-ray transform as a map I g

: C0(SM)→ `∞(C) and we will drop the index g if the
context is clear.

If f ∈ C∞(M,⊗m
S T ∗M) is a symmetric tensor, then by Section 2, we can see f as a function

π∗m f ∈ C∞(SM), where π∗m f (x, v) := fx(v, . . . , v). The x-ray transform Im of f is simply defined
by Im f := I ◦ π∗m f . In other words, it consists in integrating the tensor f along closed geodesics by
plugging m-times the speed vector in f . This map Im may appear in different contexts. In particular, I2 is
well known to be the differential of the marked length spectrum and it was studied in [Guillarmou and
Lefeuvre 2019] to prove its rigidity, thus partially answering the conjecture of [Burns and Katok 1985].

The natural operator of derivation of symmetric tensors is D := σ ◦ ∇, where ∇ is the Levi-Civita
connection and σ is the operator of symmetrization of tensors (see Section 2). Any smooth tensor
f ∈C∞(M,⊗m

S T ∗M) can be uniquely decomposed as f = Dp+h, where p ∈C∞(M,⊗m−1
S T ∗M) and

h ∈ C∞(M,⊗m
S T ∗M) is a solenoidal tensor i.e., a tensor such that D∗h = 0, where D∗ is the formal

adjoint of D. We say that Dp is the potential part of the tensor f . We will see that Im(Dp) = 0. In
other words, the potential tensors are always in the kernel of the x-ray transform. We will say that Im is
solenoidal injective, or in short s-injective, if injective when restricted to

C∞sol(M,⊗
m
S T ∗M) := C∞(M,⊗m

S T ∗M)∩ ker(D∗).

Note that we will often add an index sol to a functional space on tensors to denote the fact that we are
considering the intersection with ker D∗.

It is conjectured that Im is s-injective for all Anosov Riemannian manifolds, in any dimension and
without any assumption on the curvature. Under the additional assumption that the sectional curvatures
are nonpositive, the Pestov energy identity allows us to show injectivity (see [Guillemin and Kazhdan
1980a; Croke and Sharafutdinov 1998] for the original proofs). Without any assumption on the curvature,
this is still true for surfaces by [Paternain, Salo, and Uhlmann 2014; Guillarmou 2017]. In higher
dimensions, it holds for m = 0, 1 (see [Dairbekov and Sharafutdinov 2003]) but remains an open question
for higher-order tensors without any assumption on the curvature. However, it is already known that
C∞sol(M,⊗

m
S T ∗M)∩ ker(Im) is finite-dimensional.

We will also prove a stability estimate on Im .

Theorem 1.5. Assume Im is s-injective. Then for all 0 < β < α < 1 there exists θ1 := θ(α, β) > 0
and C := C(α, β) > 0 such that if f ∈ Cα

sol(M,⊗
m
S T ∗M) is a solenoidal symmetric m-tensor such that

‖ f ‖Cα ≤ 1, then ‖ f ‖Cβ ≤ C‖Im f ‖θ1
`∞ .
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Actually, if Im is not known to be injective, one still has the previous estimate by taking f solenoidal and
orthogonal to the kernel of Im . Combining this estimate with Theorem 1.2 (and more specifically (1-3)),
we immediately obtain the following.

Theorem 1.6. Assume Im is s-injective. Then for all 0 < β < α < 1 there exist θ2 := θ(α, β) > 0 and
C :=C(α, β)> 0 such that for any L > 0 large enough if f ∈Cα

sol(M,⊗
m
S T ∗M) is a solenoidal symmetric

m-tensor such that ‖ f ‖Cα ≤ 1, and Im f (γ )= 0 for all closed geodesics γ ∈ C such that `(γ )≤ L , then
‖ f ‖Cβ ≤ C L−θ2.

Even in the case where f ∈ Cα(M) is a function on M, this result seemed to be previously unknown.

2. On symmetric tensors

We describe elementary properties of symmetric tensors on Riemannian manifolds. This is a background
section for which we also refer to [Guillemin and Kazhdan 1980b; Dairbekov and Sharafutdinov 2010].

2A. Definitions and first properties.

2A1. Symmetric tensors in Euclidean space. Let E be a Euclidean (n+1)-dimensional vector space
endowed with a metric g and let (e1, . . . , en+1) be an orthonormal basis. We say that a tensor f ∈⊗m E∗

is symmetric if f (v1, . . . , vm) = f (vτ(1), . . . , vτ(m)) for all v1, . . . , vm ∈ E and τ ∈ Sm , the group of
permutations of order m. We denote by ⊗m

S T ∗E the vector space of symmetric m-tensors on E . There is
a natural projection σ : ⊗m E∗→⊗m

S E∗ given by

σ(v∗1 ⊗ · · ·⊗ v
∗

m)=
1

m!

∑
τ∈Sm

v∗τ(1)⊗ · · ·⊗ v
∗

τ(m)

for all v∗1 , . . . , v
∗
m ∈ E∗. The metric g induces a scalar product 〈 · , · 〉 on ⊗m E∗ by declaring the basis

(e∗i1
⊗ · · ·⊗ e∗im

)1≤i1,...,im≤n+1 to be orthonormal which yields

〈u∗1⊗ · · ·⊗ u∗m, v
∗

1 ⊗ · · ·⊗ v
∗

m〉 =

m∏
i=1

g−1(u∗i , v
∗

i ),

where g−1 is the dual metric, that is, the natural metric on E∗ which makes the musical isomorphism
] : E→ E∗ an isometry. Since σ is self-adjoint with respect to this metric, it is an orthogonal projection. Let
(gi j )1≤i, j≤n+1 denote the metric g in the coordinates (x1, . . . , xn+1). Then the metric can be expressed as

〈 f, h〉 =
n+1∑

i1,...,im=1

fi1···im hi1···im ,

where hi1···im =
∑n+1

j1,..., jm=1 gi1 j1 · · · gim jm h j1··· jm . We define the trace Trg : ⊗
m
S E∗→⊗m−2

S E∗ of a sym-
metric tensor by

Trg( f )=
n+1∑
i=1

f (ei , ei , · , . . . , · ).
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In coordinates, Trg( f )(v2, . . . , vm)= Tr(g−1 f ( · , · , v2, . . . , vm)). Its adjoint with respect to the scalar
products is the map I : ⊗m−2

S E∗→⊗m
S E∗ given by I (u)= σ(g⊗ u).

Symmetric tensors can also be seen as homogeneous polynomials on the unit sphere of the Euclidean
space. We denote by SE the n-dimensional unit sphere on (E, g) and by d S the Riemannian measure
on the sphere induced by the metric g|SE . We define πm : (x, v) 7→ (x,⊗mv) for v ∈ E ; it induces
a canonical morphism π∗m : ⊗

m
S E∗→ C∞(SE) given by π∗m f (v) = f (v, . . . , v). Its formal adjoint is

〈π∗m f, h〉L2(SE ,d S) = 〈 f, πm∗h〉⊗m T ∗M , where f ∈ ⊗m
S T ∗M and h ∈ C∞(SE). In coordinates,

(πm∗h)i1···im := πm∗h(∂i1, . . . , ∂im )=

n+1∑
j1,..., jm=1

gi1 j1 · · · gim jm

∫
SE

h(v)v j1 · · · v jm d S. (2-1)

Also note that (2-1) can be rewritten intrinsically as,

for all u1, . . . , um ∈ E, πm∗h(u1, . . . , um)=

∫
SE

h(v)g(v, u1) · · · g(v, um) dv. (2-2)

The map πm∗π
∗
m is an isomorphism we will study in the next section. Also note that π∗m(σ f )= π∗m f

(since all the antisymmetric parts of the tensor f vanish by plugging m times the same vector v).
We denote by jξ the multiplication by ξ , that is, jξ : f 7→ ξ ⊗ f , and by iξ the contraction, that is,

iξ : f 7→ u(ξ ], · , . . . , · ). The adjoint of iξ on symmetric tensors with respect to the L2-scalar product
is σ jξ , that is

for all f ∈ ⊗m−1
S E∗, h ∈ ⊗m

S E∗, 〈σ jξ f, h〉 = 〈 f, iξh〉.

The space ⊗S
m E∗ can thus be decomposed as the direct sum

⊗
m
S E∗ = ran(σ jξ |⊗m−1

S E∗)⊕
⊥ ker(iξ |⊗m

S E∗).

We denote by πker iξ the projection onto the right space, parallel to the left space. We will need the
following.

Lemma 2.1. For all f, h ∈ ⊗m
S E∗,

Cn,m

∫
〈ξ,v〉=0

π∗m f (v)π∗mh(v) d Sξ (v)= 〈πker iξπm∗π
∗

mπker iξ f, h〉,

where

Cn,m =

∫ π

0
sinn−1+2m(ϕ) dϕ =

√
π

0((n+ 2m)/2)
0((n+ 1+ 2m)/2)

and d Sξ is the canonical measure induced on the (n−1)-dimensional sphere SE,ξ := SE ∩ {〈ξ, v〉 = 0}.

Proof. We can write h=σ jξh1+h2, where h1 ∈⊗
m−1
S E∗, h2 ∈ ker(iξ |⊗m

S T ∗x M). Note that π∗m(σ jξh1)(v)=

π∗m( jξh1)(v)= 〈ξ, v〉π
∗

m−1h1(v) and this vanishes on {〈ξ, v〉 = 0} (and the same holds for f ). In other
words, π∗mh = π∗mπker iξ on {〈ξ, v〉 = 0}. We are thus left to check that, for f, h ∈ ker iξ ,

Cn,m

∫
〈ξ,v〉=0

π∗m f (v)π∗mh(v) d Sξ (v)=
∫

SE

π∗m f (v)π∗mh(v) d S(v).
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We will use the coordinates v′ = (v, ϕ) ∈ SE,ξ ×[0, π] on SE , which allow us to take the decomposition
v′ = sin(ϕ)v+ cos(ϕ)ξ ]/|ξ |. Then the measure on SE disintegrates as d S = sinn−1(ϕ) dϕ d Sξ (v). Also
note that π∗m f (v+ cos(ϕ)ξ ]/|ξ |)= π∗m f (v). Then, if Cn,m :=

∫ π
0 sinn−1+2m(ϕ) dϕ, we obtain∫

〈ξ,v〉=0
π∗m f (v)π∗mh(v) d Sξ (v)

= C−1
n,m

∫ π

0
sinn−1+2m(ϕ) dϕ

∫
〈ξ,v〉=0

π∗m f (v)π∗mh(v) d Sξ (v)

= C−1
n,m

∫ π

0

∫
〈ξ,v〉=0

π∗m f (sin(ϕ)v+ cos(ϕ)ξ ]/|ξ |)π∗mh(sin(ϕ)v+ cos(ϕ)ξ ]/|ξ |) sinn−1(ϕ) dϕ d Sξ (v)

= C−1
n,m

∫
SE

π∗m f (v′)π∗mh(v′) d S(v′). �

2A2. Spherical harmonics. Let 1|SE := divSE ∇SE be the Laplacian on the unit sphere SE induced by
the metric g|SE and 1 be the usual Laplacian on E induced by g. Let

L2(SE)=
⊕
+∞

m=0�m

be the spectral break-up in spherical harmonics, where�m :=ker(1|SE+m(m+n−1)) are the eigenspaces
of the Laplacian. We denote by Em the vector space of trace-free symmetric m-tensors, where the trace
is, as before, taken over the first two coordinates.

Lemma 2.2. The map π∗m : Em→�m is an isomorphism and πm∗π
∗
m |Em = λm,n1Em for some constant

λm,n 6= 0.

This also shows that, up to rescaling by the constant λm,n , π∗m : Em→�m is an isometry. One could
be more accurate and actually show that the maps

π∗m : ⊗
m
S E∗→

⊕[m/2]
k=0 �m−2k, πm∗ :

⊕[m/2]
k=0 �m−2k→⊗

m
S E∗ (2-3)

are isomorphisms, where [m/2] stands for the integer part of m/2. This follows from the (unique)
decomposition of a symmetric tensor into a trace-free part and a remainder (which lies in the image of
the adjoint of Tr). More precisely, by iterating this process, one can decompose u as u =

∑[m/2]
k=0 I k(uk),

where I : ⊗•S E∗→⊗•+2
S E∗ is the adjoint of Tr with respect to the scalar products and uk ∈ ⊗

m−2k
S E∗,

Tr(uk) = 0 and π∗m I k(uk) ∈ �m−2k . Then (2-3) is an immediate consequence of the previous lemma.
The map πm∗π

∗
m acts by scalar multiplication on each component I k(uk) (but with a different constant

though, so πm∗π
∗
m is not a multiple of the identity). Since we will only need the fact that πm∗π

∗
m is an

isomorphism, we do not provide further details.

2A3. Symmetric tensors on a Riemannian manifold.

Decomposition in solenoidal and potential tensors. We now consider the Riemannian manifold (M, g)
and denote by dµ the Liouville measure on the unit tangent bundle SM. All the previous definitions
naturally extend to the vector bundle T M→ M. For f, h ∈ C∞(M,⊗m

S T ∗M), we define the L2-scalar
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product

〈 f, h〉 =
∫

M
〈 fx , hx 〉x d vol(x),

where 〈 · , · 〉x is the scalar product on Tx M introduced in the previous paragraph and d vol is the Rie-
mannian measure induced by g. The map π∗m :C

∞(M,⊗m
S T ∗M)→C∞(SM) is the canonical morphism

given by π∗m f (x, v)= fx(v, . . . , v), whose formal adjoint with respect to the two L2-inner products (on
L2(SM, dµ) and L2(⊗m

S T ∗M, d vol)) is πm∗; i.e., 〈π∗m f, h〉L2(SM,dµ) = 〈 f, πm∗h〉L2(⊗m
S T ∗M,d vol).

If ∇ denotes the Levi-Civita connection, we set D :=σ◦∇ :C∞(M,⊗m
S T ∗M)→C∞(M,⊗m+1

S T ∗M),
which is the symmetrized covariant derivative. Its formal adjoint with respect to the L2-scalar product is
D∗ =−Tr(∇), where the trace is taken with respect to the two first indices, like in Section 2A1. One has
the following relation between the geodesic vector field X on SM and the operator D:

Lemma 2.3. Xπ∗m = π
∗

m+1 D.

The operator D can be seen as a differential operator of order 1. Its principal symbol is given by
σ(D)(x, ξ) f 7→ σ(ξ ⊗ f )= σ jξ f (see [Sharafutdinov 1994, Theorem 3.3.2]).

Lemma 2.4. D is elliptic. It is injective on tensors of odd order, and its kernel is reduced to Rσ(g⊗m/2)

on even tensors.

When m is even, we will denote by Km = cmσ(g⊗m/2), with cm > 0, a unitary vector in the kernel
of D.

Proof. We fix (x, ξ) ∈ T ∗M. For a tensor u ∈⊗m
s T ∗x M, using the fact that the antisymmetric part of ξ ⊗u

vanishes in the integral, we have

〈σ(D)u, σ (D)u〉 =
∫

Sn
x

〈ξ, v〉2π∗mu2
(v) d Sx(v)= |ξ |

2
∫

Sn
x

〈ξ/|ξ |, v〉2π∗mu2
(v) d Sx(v) > 0,

unless u ≡ 0. Since ⊗m
s T ∗x M is finite-dimensional, the map

(u, ξ/|ξ |) 7→ 〈σ(D)(x, ξ/|ξ |)u, σ (D)(x, ξ/|ξ |)u〉,

defined on the compact set {u ∈ ⊗m
S T ∗x M : |u|2 = 1}×Sn is bounded and attains its lower bound C2 > 0

(which is independent of x). Thus ‖σ(x, ξ)‖ ≥ C |ξ |, so the operator is uniformly elliptic and can be
inverted (on the left) modulo a compact remainder: there exist pseudodifferential operators Q, R of
respective orders −1,−∞ such that Q D = 1+ R.

As to the injectivity of D, if D f = 0 for some tensor f ∈ D′(M,⊗m
S T ∗M), then f is smooth and

π∗m+1 D f = Xπ∗m f = 0. By ergodicity of the geodesic flow, π∗m f = c ∈ �0 is constant. If m is odd,
then π∗m f (x, v)=−π∗m f (x,−v) so f ≡ 0. If m is even, then, by Section 2A2, f = I m/2(um/2), where
um/2 ∈ ⊗

0
S E∗ ' R so f = c′σ(g⊗m/2). �

By classical elliptic theory, the ellipticity of D implies that

H s(M,⊗m
S T ∗M)= D(H s+1(M,⊗m−1

S T ∗M))⊕ ker D∗|H s(M,⊗m
S T ∗M), (2-4)
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and the decomposition still holds in the smooth category and in the Ck,α-topology for k ∈ N, α ∈ (0, 1).
This is the content of the following theorem:

Theorem 2.5 (tensor decomposition). Let s ∈ R and f ∈ H s(M,⊗m
S T ∗M). Then, there exists a unique

pair of symmetric tensors (p, h) ∈ H s+1(M,⊗m−1
S T ∗M)× H s(M,⊗m

S T ∗M) such that f = Dp+ h and
D∗h = 0. Moreover, if m = 2l + 1 is odd, 〈p, K2l〉 = 0.

Tensorial distributions. The spaces H s(M,⊗m
S T ∗M) that have been mentioned so far are the L2-based

Sobolev spaces of order s ∈ R. They can be defined in coordinates (each coordinate of the tensor has
to be in H s

loc(R)) or more intrinsically by setting H s(M,⊗m
S T ∗M) := (1+ D∗D)−s/2L2(M,⊗m

S T ∗M).
These two definitions are equivalent by [Shubin 2001, Proposition 7.3], following the properties of the
operator 1+ D∗D (it is elliptic, invertible, positive). In the same fashion, the spaces L p(M,⊗m

S T ∗M)
for p ≥ 1 can be defined in coordinates. Note that the maps

π∗m : H
s(M,⊗m

S T ∗M)→ H s(SM), πm∗ : H
s(SM)→ H s(M,⊗m

S T ∗M)

are bounded for all s ∈ R (and they are bounded on L p-spaces for p ≥ 1). The operator πm∗ acts by
duality on distributions, namely

πm∗ : C
−∞(SM)→ C−∞(M,⊗m

S T ∗M), 〈πm∗ f1, f2〉 := 〈 f1, π
∗

m f2〉,

where 〈 · , · 〉 denotes the distributional pairing.

The projection on solenoidal tensors. When m is even, we denote by 5Km := 〈Km, · 〉Km the orthogonal
projection on RKm . We define 1m := D∗D+ε(m)5Km , where ε(m)= 1 for m even, ε(m)= 0 for m odd.
The operator 1m is an elliptic differential operator of order 2 which is invertible; as a consequence, its
inverse is also pseudodifferential of order −2 (see [Shubin 2001, Theorem 8.2]). We can thus define the
operator

πker D∗ := 1− D1−1
m D∗. (2-5)

One can check that this is exactly the L2-orthogonal projection on solenoidal tensors, it is a pseudodiffer-
ential operator of order 0 (as a composition of pseudodifferential operators).

Since σ(D)(x, ξ)= σ jξ , we know by Section 2A1 that given (x, ξ) ∈ T ∗M, the space ⊗m
S T ∗x M breaks

up as the direct sum

⊗
m
S T ∗x M = ran(σ (D)(x, ξ)|

⊗
m−1
S T ∗x M)⊕ ker(σ (D∗)(x, ξ)|⊗m

S T ∗x M)

= ran(σ jξ |⊗m−1
S T ∗x M)⊕ ker(iξ |⊗m

S T ∗x M).

We recall that πker iξ is the projection on ker(iξ |⊗m
S T ∗x M) parallel to ran(σ jξ |⊗m−1

S T ∗x M).

Lemma 2.6. The principal symbol of πker D∗ is σπker D∗ = πker iξ .

Proof. First, observe that

D1−1
m D∗D1−1

m D∗ = D1−1
m (1m − ε(m)5Km )1

−1
m D∗

= D1−1
m D∗− ε(m)D1−1

m 5Km1
−1
m D∗.
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The second operator is smoothing so at the principal symbol level

σ(D1−1
m D∗)2 = σ

2
D1−1

m D∗
= σD1−1

m D∗,

which implies that σD1−1
m D∗ is a projection. Moreover, σD1−1

m D∗ = σDσ1−1
m
σD∗ = σ jξσ1−1

m
iξ , so it is the

projection onto ran σ jξ with kernel ker iξ . Since πker D∗ = 1− D1−1
m D∗, the result is immediate. �

3. On Livšic-type theorems

We will denote by d :M×M→ R the Riemannian distance on M inherited from the Riemannian
metric g. The α-Hölder norm of f is defined by

‖ f ‖Cα := sup
x∈M
| f (x)| + sup

x,y∈M, x 6=y

| f (x)− f (y)|
d(x, y)α

= ‖ f ‖∞+‖ f ‖α.

In a series of inequalities, we will sometimes write A . B to denote the fact that there exists a universal
constant C > 0 such that A ≤ C · B. Note that a constant C > 0 may still appear from time to time and,
as usual, it may change from one line to another.

3A. Properties of Anosov flows. We refer to the exhaustive [Katok and Hasselblatt 1995] and the book
[Hasselblatt and Fisher 2019] for an introduction to hyperbolic dynamics.

3A1. Stable and unstable manifolds. The global stable and unstable manifolds W s(x),W u(x) are de-
fined by

W s(x)= {x ′ ∈M : d(ϕt(x), ϕt(x ′))→t→+∞ 0},

W u(x)= {x ′ ∈M : d(ϕt(x), ϕt(x ′))→t→−∞ 0}.

For ε > 0 small enough, we define the local stable and unstable manifolds W s
ε (x) ⊂ W s(x) and

W u
ε (x)⊂W u(x) by

W s
ε (x)= {x

′
∈W s(x) : for all t ≥ 0, d(ϕt(x), ϕt(x ′))≤ ε},

W u
ε (x)= {x

′
∈W u(z) : for all t ≥ 0, d(ϕ−t(x), ϕ−t(x ′))≤ ε}.

For all ε > 0 small enough, there exists t0 > 0 such that

for all x ∈M, for all t ≥ t0, ϕt(W s
ε (x))⊂W s

ε (ϕt(x)), ϕ−t(W u
ε (x))⊂W u

ε (ϕ−t(x)), (3-1)

and

Tx W s
ε (x)= Es(x), Tx W u

ε (x)= Eu(x).

3A2. Classical properties. The main tool we will use to construct suitable periodic orbits is the following
classical shadowing property of Anosov flows. Part of the proof can be found in [Katok and Hasselblatt
1995, Corollary 18.1.8] and [Hasselblatt and Fisher 2019, Theorem 5.3.2]. The last bound is a consequence
of hyperbolicity and can be found in [Hasselblatt and Fisher 2019, Proposition 6.2.4]. For the sake of
simplicity, we will write γ = [xy] if γ is an orbit segment with endpoints x and y.
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Theorem 3.1. There exist ε0 > 0, θ > 0 and C > 0 with the following property. Consider ε < ε0 and a
finite or infinite sequence of orbit segments γi = [xi yi ] of length Ti greater than 1 such that, for any n,
d(yn, xn+1) ≤ ε. Then there exists a genuine orbit γ and times τi such that γ restricted to [τi , τi + Ti ]

shadows γi up to Cε. More precisely, for all t ∈ [0, Ti ], one has

d(γ (τi + t), γi (t))≤ Cεe−θ min(t,Ti−t). (3-2)

Moreover, |τi+1− (τi + Ti )| ≤ Cε. Finally, if the sequence of orbit segments γi is periodic, then the orbit
γ is periodic.

Remark 3.2. In this theorem, we could also allow the first orbit segment γi to be infinite on the left, and
the last orbit segment γ j to be infinite on the right. In this case, (3-2) should be replaced by its obvious
reformulation: assuming that γi is defined on (−∞, 0] and γ j on [0,+∞), we would get for some τ̃i+1

within Cε of τi+1 and all t ≥ 0

d(γ (τ̃i+1− t), γi (−t))≤ Cεe−θ t (3-3)

and

d(γ (τ j + t), γ j (t))≤ Cεe−θ t .

In particular, if γ0 is an orbit segment [xy] with d(y, x) ≤ ε0, then applying the above theorem to
γi := γ0 for all i ∈ Z, one gets a periodic orbit that shadows γ0; this is the Anosov closing lemma. We
will also use thoroughly the version with two orbit segments that are repeated to get a periodic orbit.

3A3. Cover by parallelepipeds. We will now fix ε0 small enough so that the previous propositions are
guaranteed. For ε ≤ ε0, we define the set Wε(x) :=

⋃
y∈W u

ε (x)
W s
ε (x). We can cover the manifold M by a

finite union of flow boxes Ui :=
⋃

t∈(−δ,δ) ϕt(6i ), where 6i :=Wε0(xi ) and xi ∈M.
We denote by πi :Ui→6i the projection by the flow on the transverse section and we define ti :Ui→R

such that πi (x)= ϕti (x)(x) for x ∈ Ui . We will need the following lemma:

Lemma 3.3. The maps πi , ti are Hölder-continuous.

Proof. This is actually a general fact related to the Hölder regularity of the foliation and the smoothness
of the flow.

For the sake of simplicity, we drop the index i in this proof. Let us first prove the Hölder-continuity
for x close to 6 and x ′ close to x . We fix p ∈ 6 and choose smooth local coordinates ψ : B(p, η)→
Rn+1

= R× Rns × Rnu around p (and centered at 0) so that dψp(X) = ∂x0 . This choice guarantees
that in a neighborhood of 0, the flow is transverse to the hyperplane {0} × Rns+nu. We still denote
by 6η its image ψ(6η) ⊂ Rn+1, which is a submanifold of Hölder regularity (the index η indicates
that we consider the same objects intersected with the ball B(x, η)). Moreover, there exists a Hölder-
continuous homeomorphism 8 : S→6η, where S ⊂ {0}×Rns+nu (since 6η is a submanifold of M with
Hölder regularity). We consider ϕ̂ : (−δ, δ)× S→ ϕ(−δ,δ)(S)=: V ⊃6η defined by ϕ̂(t, z)= ϕt(0, z),
which is a smooth diffeomorphism. Note that, for (0, z) ∈ S, t satisfies (t(z), z)= ϕ̂−1(8(z)). So it is
Hölder-continuous on S. Then z 7→ π(0, z)= ϕt(z)(0, z) is Hölder-continuous on S too.
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We denote by πS : V → S the projection and by tS : V → S the time such that πS(x)= ϕtS(x)(x). These
two maps are smooth by the implicit function theorem since the flow is transverse to S. Moreover, we have
π(x)= π |S(πS(x)) so π is Hölder-continuous. And t(x)= tS(x)+ t|S(πS(x)), so t is Hölder-continuous
too. Note that by compactness of 6, this procedure can be done with only a finite number of charts,
thus ensuring the uniformity of the constants. Thus, πi , ti are Hölder-continuous in a neighborhood
of 6. Now, in order to obtain the continuity on the whole cube U , one can repeat the same argument
i.e., write the projection as the composition of a first projection on a smooth small section S defined in a
neighborhood of 6 with the actual projection on 6. This provides the desired result. �

3B. Proof of the approximate Livšic theorem. We now deal with the proof of Theorem 1.2.

3B1. A key lemma. The following lemma states that we can find a sufficiently dense and yet separated
orbit in the manifold M. The separation can only hold transversally to the flow direction, and is defined
as follows. Recall that Wε(x) :=

⋃
y∈W u

ε (x)
W s
ε (x). Then we say that a set S is ε-transversally separated

if, for any x ∈ S, we have S ∩Wε(x)= {x}.

Lemma 3.4. Consider a transitive Anosov flow on a compact manifold. There exist βs, βd > 0 such that
the following holds. Let ε > 0 be small enough. There exists a periodic orbit O(x0) := (ϕt x0)0≤t≤T with
T ≤ ε−1/2 such that this orbit is εβs -transversally separated and (ϕt x0)0≤t≤T−1 is εβd -dense. If κ > 0 is
some fixed constant, then one can also require that there exists a piece of O(x0) of length ≤ C(κ) which is
κ-dense in the manifold.

Proof. We could give a combinatorial construction in terms of Markov partitions and carefully chosen
sequences of symbols in the symbolic dynamics representation of the flow. However, controlling rigorously
the boundary effects on separation is delicate. Instead, we give a geometric construction solely based on
the shadowing theorem. It is easy to obtain an εβd -dense orbit by concatenating orbit segments thanks to
the shadowing theorem. However, separation is harder to enforce. In this proof, we introduce several
constants, but none of them will depend on ε.

Let us fix two periodic points p1 and p2 with different orbits O(p1) and O(p2) of respective lengths
`1 and `2. By the shadowing theorem and transitivity, there exists an orbit γ− which is asymptotic to
O(p1) in negative time and to O(p2) in positive time. Also, there exists an orbit γ+ which is asymptotic
to O(p2) in negative time and to O(p1) in positive time. On γ−, fix a point z0, and ρ0 > 0 small enough
so that γ− ∪ γ+ meets W3ρ0(z0) only at z0, and O(p1) and O(p2) are at distance > 3ρ0 of z0. Denote by
C0 the constant C in the shadowing theorem, Theorem 3.1. Reducing ρ0 if necessary, we can assume
ρ0 < ε0, where ε0 is given by Theorem 3.1. Let us also fix a large constant C1, on which our construction
will depend.

We truncate γ− in positive time, stopping it at a fixed time where it is within distance ρ0/(2C0) of p2

to get an orbit γ ′
−

. Let t− be the largest time in (−∞,−2C1|log ε|], where γ ′
−
(t) is within distance ε

of p1. As the orbit γ ′
−

converges exponentially quickly in negative time to O(p1) by hyperbolicity, one
has d(γ ′

−
(t),O(p1))≤ ε for t ≤−2C1|log ε| if C1 is large enough. Hence, one needs to wait at most `1

before being ε-close to p1. This shows that the time t− satisfies t− =−2C1|log ε| + O(1).
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In the same way, we truncate γ+ in negative time at a fixed time for which it is within distance
ρ0/(2C0) of p2, obtaining an orbit γ ′

+
. We denote by t+ the smallest time in [2C1|log ε|,+∞) with

d(γ ′
+
(t), p1)≤ ε. It satisfies t+ = 2C1|log ε| + O(1).

As the flow is transitive, it has a dense orbit. Therefore, for any x, y, there exists an orbit γx,y starting
from a point within distance ρ0/(2C0) of x , ending at a point within distance ρ0/(2C0) of y, and with
length ∈ [1, T0], where T0 is fixed and independent of x and y.

To any x , we associate an orbit as follows. Start with γ ′
−

, then follow γp2,ϕ−C1|log ε|x , then follow the orbit
of x between times −C1|log ε| and C1|log ε|, then follow γϕC1|log ε|x,p2 , then follow γ ′

+
. In this sequence,

the distance between an endpoint of a piece and the starting point of the next one is always less than
ρ0/C0. Hence, Theorem 3.1 applies and yields an infinite orbit γ ′x that follows the above pieces of orbits
up to ρ0. If C1 is large enough, (3-2) implies that x is within distance at most ε of γ ′x . The inequality (3-3)
shows that γ ′

−
(t−) and the corresponding point x− on γ ′x are within distance e−θ t−. If C1 is large enough,

this is bounded by ε since t− =−2C1|log ε| + O(1). Therefore, d(x−, p1) ≤ 2ε. In the same way, the
point x+ on γ ′x matching γ ′

+
(t+) is within distance ε of γ ′

+
(t+) and therefore within distance 2ε of p1.

Let us truncate γ ′x between x− and x+ to get an orbit segment γx of length 6C1|log ε| + O(1), starting
and ending within 2ε of p1, and passing within ε of x .

Let βd = 1/(3 dim(M)). We define a sequence of points of M as follows. Let x1 be an arbitrary point
for which the C(κ)-beginning of its orbit is κ/2-dense, to guarantee in the end that the last condition
of the lemma is satisfied. If γx1 is not εβd/2-dense, we choose another point x2 which is not in the
εβd/2-neighborhood of γx1 . Then γx1 ∪ γx2 contain both x1 and x2 in their ε-neighborhood, and therefore
in their εβd/2-neighborhood. If γx1∪γx2 is still not εβd/2-dense, then we add a third piece of orbit γx3 , and
so on. By compactness, this process stops after finitely many steps, giving a finite sequence x1, . . . , xN .

As all γxi start and end with p1 up to 2ε, we can glue the sequence

. . . , γxN , γx1, γx2, . . . , γxN , γx1, . . .

thanks to Theorem 3.1. We get a periodic orbit γ which shadows them up to 2C0ε. We claim this orbit
satisfies the requirements of the lemma. We should check its length, its density, and its separation.

Let us start with the length. The points xi are separated by at least εβd/3. The balls of radius εβd/6 are
disjoint, and each has a volume ≥ cεβd ·dim(M)

= cε1/3. We get that the number N of points xi is bounded
by Cε−1/3. As each piece γxi has length at most C |log ε|, it follows that the total length of γ is bounded
by C |log ε|ε−1/3

≤ ε−1/2.
Let us check the density. By construction, the union of the γxi is εβd/2-dense. As γ approximates each

γxi within 2C0ε, it follows that γ is 2C0ε+ ε
βd/2 dense, and therefore εβd -dense. In the statement of the

lemma, we require the slightly stronger statement that if one removes a length-1 piece at the end of the
orbit, it remains εβd -dense. Such a length-1 piece in γxN consists of points that are within 2ε of O(p1).
They are approximated within εβd by the start and end of all the other γxi .

Finally, let us check the more delicate separation, which has motivated the finer details of the construc-
tion as we will see now. Let βs be suitably large. We want to show that any two points x, y of γ within
distance εβs are on the same local flow line. Since the expansion of the flow is at most exponential, for any
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t ≤ 20C1|log ε|, we have d(ϕt x, ϕt y)≤ ε if βs is large enough. In the piece of γ of length 10C1|log ε|
starting at x , there is an interval [t1, t2] of length 4C1|log ε| + O(1) during which ϕt x is within distance
at most ρ0/2 of O(p1), corresponding to the junction between the orbits γxi and γxi+1 , where i is such
that x belongs to the shadow of γxi−1 . For t ∈ [t1, t2], one also has d(ϕt y,O(p1)) ≤ ρ0 as the orbits
follow each other up to ε. Note that in each γ j the consecutive time spent close to O(p1) is bounded
by 2C1|log ε| as we have forced a passage close to p2 (and therefore far away from O(p1)) after this
time in the construction. It follows that also for y the time interval [t1, t2] has to correspond to a junction
between two orbits γx j and γx j+1 . Consider the smallest times t and t ′ after the junctions for which ϕt(x)
and ϕt ′(y) are 2ρ0-close to z0. Since the orbit γ ′

−
meets W3ρ0(z0) at the single point z0, these times have

to correspond to each other; i.e., the orbits are synchronized up to an error O(ε). To conclude, it remains
to show that i = j . Suppose by contradiction i < j for instance. The orbit of x follows γxi up to 2C0ε,
the orbit of y follows γx j up to 2C0ε, and the orbits of x and y are within ε of each other. We deduce that
γxi and γx j follow each other up to (4C0+ 1)ε. Since x j is within ε of γx j , it follows that x j is within
(4C0+ 2)ε of γxi . This is a contradiction with the construction, as we could have added the point x j only
if it was not in the εβd -neighborhood of γxi , and εβd > (4C0+ 2)ε if ε is small enough. �

3B2. Construction of the approximate coboundary. Let us now prove Theorem 1.2. The result is obvious
if ε is bounded away from 0 by taking u = 0 and h = f . Hence, we can assume that ε is small enough
to apply Lemma 3.4, with κ = ε0. On the orbit O(x0) given by this lemma, we define a function ũ
by ũ(ϕt x0) =

∫ t
0 f (ϕs x0) ds. Note that it may not be continuous at x0. As a consequence, we will

rather denote by O(x0) the set (ϕt x0)0≤t≤T−1 (which satisfies the required properties of density and
transversality) in order to avoid problems of discontinuity.

Lemma 3.5. There exist β1,C > 0 independent of ε such that ‖ũ‖Cβ1 (O(x0))
≤ C.

Proof. We first study the Hölder regularity of ũ; namely we want to control |ũ(x)− ũ(y)| by Cd(x, y)β1

for some well-chosen exponent β1, when d(x, y)≤ ε0 (where ε0 is the scale under which the shadowing
theorem, Theorem 3.1, holds). If x and y are on the same local flow line, then the result is obvious since
f is bounded by 1, so we are left to prove that ũ is transversally Cβ1. Consider x = ϕt0 x0 ∈O(x0) and
y = ϕt0+t ∈Wε0(x). By transversal separation of O(x0), these points satisfy d(x, y)≥ εβs. We can close
the segment [xy]; i.e., we can find a periodic point p such that d(p, x)≤Cd(x, y) with period tp = t+τ ,
where |τ | ≤ Cd(x, y), which shadows the segment. Then

|ũ(y)− ũ(x)| ≤
∣∣∣∣∫ t

0
f (ϕs x) ds−

∫ tp

0
f (ϕs p) ds

∣∣∣∣︸ ︷︷ ︸
= (I)

+

∣∣∣∣∫ tp

0
f (ϕs p) ds

∣∣∣∣︸ ︷︷ ︸
= (II)

.

The first term (I) is bounded by Cd(x, y)β
′

1 for some β ′1 > 0 depending on the dynamics, whereas the
second term (II) is bounded — by assumption — by εtp. But εtp . εt . εT . ε1/2 . d(x, y)1/2βs . We
thus obtain the desired result with β1 :=min

(
β ′1,

1
2βs

)
.

We now prove that ũ is bounded for the C0-norm. We know that there exists a segment of the orbit
O(x0)— call it S — of length ≤ C which is ε0-dense in M. In particular, for any x ∈O(x0), there exists
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xS ∈ S with d(x, xS) ≤ ε0, and therefore |ũ(x)− ũ(xS)| ≤ Cd(x, xS)
β1 ≤ Cεβ1

0 thanks to the Hölder
control of the previous paragraph. Using the same argument with x0, we get, as ũ(x0)= 0,

|ũ(x)| = |ũ(x)− ũ(x0)| ≤ |ũ(x)− ũ(xS)| + |ũ(xS)− ũ((x0)S)| + |ũ(x0)− ũ((x0)S)|.

The first and last term are bounded by Cεβ1
0 , and the middle one is bounded by C as S has a bounded

length and ‖ f ‖C0 ≤ 1. �

For each i , we extend the function ũ (defined on O(x0)) to a Hölder function ui on 6i by the formula
ui (x) = sup ũ(y)−‖ũ‖Cβ1 (O(x0))

d(x, y)β1 , where the supremum is taken over all y ∈ O(x0). With this
formula, it is classical that the extension is Hölder-continuous, with ‖ui‖Cβ1 (6i )

≤ ‖ũ‖Cβ1 (O(x0))
. We

then push the function ui by the flow in order to define it on Ui by setting, for x ∈ 6i , ϕt x ∈ Ui ,
ui (ϕt x) = ui (x)+

∫ t
0 f (ϕs x) ds. Note that by Lemma 3.3, the extension is still Hölder with the same

regularity. We now set u :=
∑

i uiθi and h := f − Xu =−
∑

i ui Xθi . The functions Xθi are uniformly
bounded in C∞, independently of ε so the functions ui Xθi are in Cβ1 with a Hölder norm independent of
ε > 0, and thus ‖h‖Cβ1 ≤ C .

Lemma 3.6. ‖h‖Cβ1/2 ≤ ε
β3/2.

Proof. We claim that h vanishes on O(x0): indeed, on Ui∩O(x0) one has ui ≡ ũ and thus h=−ũ
∑

i Xθi =

−ũ X
∑

i θi =−ũ X1= 0. Since O(x0) is εβd -dense and ‖h‖Cβ1 ≤C , we get that ‖h‖C0 ≤Cεβ1βd =Cεβ3,
where β3 = β1βd . By interpolation, we eventually obtain that ‖h‖Cβ1/2 ≤ ε

β3/2. �

Proof of Theorem 1.2. The previous lemma provides the desired estimate on the remainder h. This
completes the proof of Theorem 1.2. �

4. Generalized geodesic x-ray transform

From now on, we will use the dual decomposition of the cotangent space T ∗M= E∗0 ⊕ E∗u ⊕ E∗s , where
E∗0(Eu ⊕ Es) = 0, E∗s (Es ⊕RX) = 0, E∗u(Eu ⊕RX) = 0. If A−> denotes the inverse transpose of a
linear operator A, then the dual estimates to (1-2) are

|dϕ−>t (x) · ξ |ϕt (x) ≤ Ce−λt
|ξ |x for all t > 0, ξ ∈ E∗s (x),

|dϕt(x) · ξ |ϕt (x) ≤ Ce−λ|t ||ξ |x for all t < 0, ξ ∈ E∗u(x),
(4-1)

where | · |x is now g−1, the dual metric to g (which makes the musical isomorphism [ : TM→ T ∗M an
isometry). For the sake of simplicity, we now assume that X generates a contact Anosov flow; the results
of this section will be applied to the case of an Anosov geodesic flow. It would actually be sufficient to
assume that the flow is Anosov, preserves a smooth measure and is mixing for this measure. Note that a
contact Anosov flow is exponentially mixing by [Liverani 2004]. We will denote by µ the normalized
volume form induced by the contact 1-form. In the case of a geodesic flow, µ is nothing but the Liouville
volume form. By L2(M), we will always refer to the space L2(M, dµ). The orthogonal projection on
the constant function is denoted by 1⊗ 1.
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4A. Resolvent of the flow at 0. By [Faure and Sjöstrand 2011], we know that the resolvents R±(λ) :=
(X ± λ)−1

:Hs
±
→Hs

±
(initially defined for <(λ) > 0) admit a meromorphic extension to the half-space

{<(λ) >−cs}— where Hs
±

are anisotropic Sobolev spaces — and thus R±(λ) :C∞(M)→D′(M) admit
a meromorphic extension to the whole complex plane. For <(λ) > 0, R±(λ) : L2(M)→ L2(M) are
bounded and the expression R+(λ) is given by

R+(λ)= (X + λ)−1
=

∫
+∞

0
e−λt e−t X dt, (4-2)

where e−t X f (x)= f (ϕ−t(x)) for f ∈ C∞(M), x ∈M.
In a neighborhood of 0, we can thus write the Laurent expansions

R+(λ)= R+0 +
1⊗ 1
λ
+O(λ), R−(λ)= R−0 −

1⊗ 1
λ
+O(λ), (4-3)

where R+0 : H
s
+
→ Hs

+
, R−0 : H

s
−
→ Hs

−
are bounded. Since H s

⊂ Hs
±
⊂ H−s, we obtain that R±0 :

H s
→ H−s are bounded and thus (R+0 )

∗
: H s
→ H−s is bounded too. Moreover, it is easy to check that

formally (R+0 )
∗
=−R−0 (i.e., the operators coincide on C∞(M)), in the sense that for all f1, f2 ∈C∞(M),

〈R−0 f1, f2〉L2(M)=〈 f1,−R+0 f2〉L2(M). Since C∞(M) is dense in H s(M), we obtain that (R+0 )
∗
=−R−0

on H s(M), in the sense that for all f1, f2 ∈ H s(M), 〈R−0 f1, f2〉L2(M) = 〈 f1,−R+0 f2〉L2(M).
Also note that, as operators C∞(M)→ D′(M), one has

X R+0 = R+0 X = 1− 1⊗ 1, X R−0 = R−0 X = 1− 1⊗ 1. (4-4)

For the sake of simplicity, we will write R0 := R+0 . We introduce the operator

5 := R0+ R∗0 , (4-5)

the sum of the two holomorphic parts of the resolvent. An easy computation, using (4-3), proves that
5(1)= 0 and the image 5(C∞(M)) is orthogonal to the constants. We recall:

Theorem 4.1. [Guillarmou 2017, Theorem 1.1] For all s > 0, the operator 5 : H s(M)→ H−s(M) is
bounded, self-adjoint and satisfies:

(1) For all f ∈ H s(M), we have X5 f = 0.

(2) For all f ∈ H s(M) such that X f ∈ H s(M), we have 5X f = 0.

If f ∈ H s(M) with 〈 f, 1〉L2 = 0, then f ∈ ker5 if and only if there exists a solution u ∈ H s(M) to the
cohomological equation Xu = f , and u is unique modulo constants.

There exist two other characterizations of the operator 5 that are more tractable and which we detail
in the next proposition. We set 5λ := 1(−∞,λ](−i X).

Proposition 4.2. For f1, f2 ∈ C∞(M) such that 〈 f, 1〉L2 = 0:

(1) 〈5 f1, f2〉 = 2π∂λ|λ=0〈5λ f1, f2〉.

(2) 〈5 f1, f2〉 =
∫
+∞

−∞
〈 f1 ◦ϕt , f2〉 dt.
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Proof. (1) For f1, f2 ∈ C∞(M) such that
∫
M fi dµ= 0, we have using Stone’s formula, for δ > 0,

〈5λ+δ f1, f2〉− 〈5λ−δ f1, f2〉 = 〈1[λ−δ,λ+δ] f1, f2〉

=
1

2π

∫ λ+δ

λ−δ

〈(R+(−iλ)− R−(iλ)) f1, f2〉 dλ.

Dividing by 2δ and passing to the limit δ→ 0+, we obtain ∂λ|λ=0〈5λ f1, f2〉 =
1

2π 〈(R
+

0 − R−0 ) f1, f2〉 =
1

2π 〈5 f1, f2〉.

(2) Thanks to the exponential decay of correlations (see [Liverani 2004]), one can apply Lebesgue’s
dominated convergence theorem in the limit λ→ 0+ in the expression

〈5 f1, f2〉 = lim
λ→0+

∫
+∞

−∞

e−λ|t |〈 f1 ◦ϕ−t , f2〉 dt,

and the result is then immediate. Note that a polynomial decay would have been sufficient. �

The quantity 〈5 f, f 〉 is sometimes referred to in the literature as the variance of the flow. In particular,
it enjoys the following positivity property:

Lemma 4.3. The operator 5 : H s(M)→ H−s(M) is positive in the sense of quadratic forms, namely
〈5 f, f 〉L2 ≥ 0 for all real-valued f ∈ H s(M).

There are different ways of proving this lemma, related to the different characterizations of the
operator 5. We only detail one of them which is in the dynamical spirit of this article. Another way could
be to use the first item of Proposition 4.2 and the fact that the spectral measure 5λ is nondecreasing.

Proof. By density, it is sufficient to prove the lemma for a real-valued f ∈ C∞(M). We will actually
show that for λ > 0 〈(

R+(λ)−
1⊗1
λ

)
f, f

〉
= 〈R+(λ) f, f 〉− 1

λ

(∫
M

f dµ
)2

≥ 0.

The same arguments being valid for R−(λ), we will deduce the result by taking the limit λ→ 0+. By
Parry’s formula [1988, Section 3], we know that

〈R+(λ) f, f 〉 = lim
T→∞

1
N (T )

∑
`(γ )≤T

e
∫
γ

J u 1
`(γ )

∫ `(γ )

0
R+(λ) f (ϕt z) f (ϕt z) dt, (4-6)

where γ is a periodic orbit, z ∈ γ , `(γ ) is the length of γ and N (T )=
∑

`(γ )≤T e
∫
γ

J u
is a normalizing

coefficient, where

J u
: x 7→ ∂t det dϕt(x)|Eu(x)|t=0

is the unstable Jacobian (or the geometric potential). Let us fix a closed orbit γ and a base point z ∈ γ . We
set f̃ (t) := f (ϕt z), which we see as a smooth function, `-periodic on R (with ` := `(γ )). Since R+(λ)
commutes with X , R+(λ) acts as a Fourier multiplier on functions defined on γ . As a consequence, if we
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take the decomposition f̃ (t)=
∑

n∈Z cne2iπnt/`, we have

R+(λ) f̃ (t)=
∫
+∞

0
e−λs f̃ (t + s) ds

=

∑
n∈Z

cne2iπnt/`
∫
+∞

0
e−(λ−2iπn/`)s ds

=

∑
n∈Z

cn(λ+ 2iπn/`)
λ2+ 4π2n2/`2 e2iπnt/`.

Then

〈R+(λ) f̃ , f̃ 〉L2 =
1
`

∫ `

0
R+(λ) f̃ (t) f̃ (t) dt =

∑
n∈Z

|cn|
2(λ+ 2iπn/`)

λ2+ 4π2n2/`2 = λ
∑
n∈Z

|cn|
2

λ2+ 4π2n2/`2 ,

by oddness of the imaginary part of the sum. In particular

1
`

∫ `

0
R+(λ) f̃ (t) f̃ (t) dt ≥

|c0|
2

λ
=

1
λ

(
1
`

∫ `

0
f̃ (t) dt

)2

. (4-7)

Inserting (4-7) into (4-6), and then applying Jensen’s convexity inequality we have

〈R+(λ) f, f 〉 ≥ λ−1 lim
T→∞

1
N (T )

∑
`(γ )≤T

e
∫
γ

J u
(

1
`(γ )

∫ `(γ )

0
f (ϕt z) dt

)2

≥ λ−1 lim
T→∞

(
1

N (T )

∑
`(γ )≤T

e
∫
γ

J u 1
`(γ )

∫ `(γ )

0
f (ϕt z) dt

)2

=
1
λ

(∫
SM

f dµ
)2

,

where we used again Parry’s formula in the last equality. �

4B. The normal operator. We now consider a smooth closed manifold (M, g) with Anosov geodesic
flow and define M := SM, the unit tangent bundle (with respect to the metric g). We introduce

5m := πm∗(5+ 1⊗ 1)π∗m . (4-8)

Recall from Section 2A3 that given (x, ξ) ∈ T ∗M, the space ⊗m
S T ∗x M decomposes as the direct sum

⊗
m
S T ∗x M = ran(σD(x, ξ)|⊗m−1

S T ∗x M)⊕ ker(σD∗(x, ξ)|⊗m
S T ∗x M)

= ran(σ jξ |⊗m−1
S T ∗x M)⊕ ker(iξ |⊗m

S T ∗x M).

The projection on the right space parallel to the left space is denoted by πker iξ and Op(πker iξ )=πker D∗+S
by Lemma 2.6, where S ∈ 9−1 and Op is any quantization on M (see [Shubin 2001, Section 6.4] for
instance). Here, 9m denotes the set of pseudodifferential operators of order m ∈ R and we will denote by
Sm the class of usual symbols of order m. Given P ∈ 9m, we will denote by σm its principal symbol.
The following structure theorem is crucial in the sequel. It can be seen as a more intrinsic version of
[Sharafutdinov, Skokan, and Uhlmann 2005, Theorem 2.1].
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Theorem 4.4. 5m is a pseudodifferential operator of order −1 with principal symbol

σm := σ5m : (x, ξ) 7→
2π

Cn,m
|ξ |−1πker iξπm∗π

∗

mπker iξ ,

with Cn,m =
∫ π

0 sinn−1+2m(ϕ) dϕ.

Proof. The fact that 5m is pseudodifferential was proved in [Guillarmou 2017]. All that is left to compute
is the principal symbol of 5m . According to the proof in [Guillarmou 2017, Theorem 3.1], we can
only consider the integral in time between (−ε, ε). Namely, given χ ∈ C∞c (R) a smooth cutoff function
around 0 whose support is contained in (−ε, ε), one has

5m = πm∗

∫ ε

−ε

χ(t)e−t X dtπ∗m −πm∗R
+

0

∫
+∞

0
χ ′(t)e−t X dtπ∗m

−πm∗R
−

0

∫ 0

−∞

χ ′(t)e−t X dtπ∗m +
(

1−
∫
+∞

−∞

χ(t) dt
)
πm∗1⊗ 1π∗m .

On the right-hand side, the last term is obviously smoothing. Following the same computations as in
[Guillarmou 2017, Theorem 3.1], one can prove that the second and the third terms are also smoothing
(this stems from an argument on the wavefront set of the kernel of these operators, using the fact that
there are no conjugate points in the manifold). Thus, the pseudodifferential behavior of the operator 5m

is encapsulated by the first term whose kernel has a support living in a neighborhood of the diagonal in
M ×M. In the following, ε > 0 is chosen small enough (less than the injectivity radius at the point x).

Let us consider a smooth section f1 ∈ C∞(M,⊗m
S T ∗M) defined in a neighborhood of x ∈ M and

f2 ∈ ⊗
m
S T ∗x M. Then

〈σm(x0, ξ) f1, f2〉x0 = lim
h→0

h−1e−i S(x0)/h
〈5m(ei S(x)/h f1), f2〉x0

= lim
h→0

h−1e−i S(x0)/h
〈5π∗m(e

i S(x)/h f1), π
∗

m f2〉L2(Sx0 M),

where ξ = d S(x) 6= 0. Here, it is assumed that Hessx S is nondegenerate. We obtain

〈σm(x, ξ) f1, f2〉x0

= lim
h→0

h−1
∫

Sn

∫
+ε

−ε

ei/h(S(γ (t))−S(x))π∗m f1(γ (t), γ̇ (t))π∗m f2(x0, v)χ(t) dt dv

= lim
h→0

h−1
∫

Sn−1

(∫ π

0

∫
+ε

−ε

ei/h(S(γ (t))−S(x))π∗m f1(γ (t), γ̇ (t))π∗m f2(x0, v) sinn−1(ϕ)χ(t) dt dϕ
)

du,

where χ is a cutoff function with support in (−ε, ε), γ is the geodesic such that γ (0) = x , γ̇ (0) = v,
and we have decomposed v = cos(ϕ)n + sin(ϕ)u with n = ξ ]/|ξ | = d S(x)]/|d S(x)|, u ∈ Sn−1. We
apply the stationary phase lemma [Zworski 2012, Theorem 3.13] uniformly in the u-variable, where
u ∈Sn−1. For fixed u, the phase is 8 : (t, ϕ) 7→ S(γ (t))− S(x) so ∂t8(t, ϕ)= d S(γ̇ (t)). More generally
if 8̃ : (t, v) 7→ S(γ (t))− S(x) denotes the map defined for any v ∈ Sn, then

∂v8̃(t, v) · V = dπ(dϕt(x, v) · V ) for all V ∈ V,
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where V = ker dπ0, with π0 : SM → M the natural projection. Since (M, g) has no conjugate points,
dπ(dϕt(x, v)) · V 6= 0 as long as t 6= 0 and V ∈ V \ {0}. And d S(γ̇ (0)) = d S(cos(ϕ)n + sin(ϕ)u) =
cos(ϕ)|d S(x)| = 0 if and only if ϕ = π

2 . So the only critical point of 8 is
(
t = 0, ϕ = π

2

)
. Let us also

remark that

Hess(0,π/2)8=
(

Hessx S(u, u) −|d S(x)|
−|d S(x)| 0

)
is nondegenerate with determinant −|ξ |2, so the stationary phase lemma can be applied and we get∫ π

0

∫
+ε

−ε

ei/h(S(γ (t))−S(x0))π∗m f1(γ (t), γ̇ (t))π∗m f2(x0, v) sinn−1(ϕ) dt dϕ

∼h→0 2πh|ξ |−1π∗m f1(x0, u)π∗m f2(x0, u).
Eventually, we obtain

〈σm(x, ξ) f1, f2〉x0 =
2π
|ξ |

∫
{〈ξ,v〉=0}

π∗m f1(v)π
∗

m f2(v) d Sξ (v),

where d Sξ is the canonical measure induced on the (n−1)-dimensional sphere Sx M ∩ {〈ξ, v〉 = 0}. The
sought result then follows from Lemma 2.1. �

4C. Ellipticity, injectivity on solenoidal tensors.

Lemma 4.5. The operator 5m is elliptic on solenoidal tensors; that is, there exist pseudodifferential
operators Q and R of respective orders 1 and −∞ such that

Q5m = πker D∗ + R.
Proof. We define

q̃(x, ξ)=
{

0 on ran(σ jξ ),
1

2πCn,m |ξ |(πker iξπm∗π
∗
mπker iξ )

−1 on ker(iξ ),

and q(x, ξ) = (1− χ(x, ξ))q̃(x, ξ) for some cutoff function χ ∈ C∞c (T
∗M) around the zero section.

By construction, Op(q)5m = πker D∗ − R′ with R′ ∈ 9−1. Let r ′ = σR′ and define a ∼
∑
∞

k=0 r ′k. Then
Op(a) is a microlocal inverse for 1− R′; that is, Op(a)(1− R′) ∈9−∞. Since R′D = 0, we obtain that
R′ = R′πker D∗ and thus

Op(a)Op(q)︸ ︷︷ ︸
= Q

5m = Op(a)(1− R′)πker D∗ = πker D∗ + R,

where R is a smoothing operator. �

From now on, we assume that the x-ray transform is injective on solenoidal tensors.

Lemma 4.6. If Im is solenoidal injective, then 5m is injective on H s
sol(M,⊗

m
S T ∗M) for all s ∈ R.

Proof. We fix s ∈ R. We assume that 5m f = 0 for some f ∈ H s
sol(M,⊗

m
S T ∗M). By ellipticity of the

operator, we get that f ∈ C∞sol(M,⊗
m
S T ∗M), and

〈5m f, f 〉L2 = 〈5π∗m f, π∗m f 〉L2 +

(∫
SM
π∗m f dµ

)2

= 〈(1+1m)
−s5π∗m f, π∗m f 〉H s +

(∫
SM
π∗m f dµ

)2

= 0.
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Here, the Laplacian 1m is the one introduced in Section 2A3. The scalar product on H s is 〈 f, h〉H s :=

〈(1+1m)
s/2 f, (1+1m)

s/2h〉L2 . By Lemma 4.3, since 〈5π∗m f, π∗m f 〉≥0, we obtain that
∫

SM π
∗
m f dµ=0.

Moreover, (1+1m)
−s5 is bounded and positive (hence self-adjoint) on H s so there exists a square root

R : H s
→ H s , that is, a bounded positive operator satisfying (1+1m)

−s5 = R∗R, where R∗ is the
adjoint on H s. Then

〈(1+1m)
−s5π∗m f, π∗m f 〉H s = 0= ‖Rπ∗m f ‖2H s .

This yields (1+1m)
−s5π∗m f = 0, so 5π∗m f = 0. By Theorem 4.1, there exists u ∈ C∞(SM) such that

π∗m f = Xu, so f ∈ ker Im ∩ ker D∗. By s-injectivity of the x-ray transform, we get f ≡ 0. �

A direct consequence of Lemmas 4.6 and 4.5 is:

Theorem 4.7. If Im is solenoidal injective, then there exists a pseudodifferential operator Q′ of order 1
such that Q′5m = πker D∗ .

Proof. The operator 5m is elliptic of order −1 on ker D∗, and thus is Fredholm as an operator
H s

sol(M,⊗
m
S T ∗M)→ H s+1

sol (M,⊗
m
S T ∗M) for all s ∈ R. It is self-adjoint on H−1/2

sol (M,⊗m
S T ∗M), and

thus Fredholm of index 0 (the index being independent of the Sobolev space considered, see [Shubin
2001, Theorem 8.1]) and injective, and thus invertible on H s

sol(M,⊗
m
S T ∗M). We multiply the equality

Q5m = πker D∗ + R on the right by Q′ := πker D∗5
−1
m πker D∗ :

Q5m Q′ = Q5mπker D∗︸ ︷︷ ︸
=5m

5−1
m πker D∗ = Qπker D∗ = Q′+ RQ′.

As a consequence, Q′ = Qπker D∗ + smoothing so it is a pseudodifferential operator of order 1, and
Q′5m = πker D∗ . �

This yields the following stability estimate:

Lemma 4.8. If Im is solenoidal injective, then for all s ∈ R there exists a constant C := C(s) > 0 such
that,

for all f ∈ H s
sol(M,⊗

m
S T ∗M), ‖ f ‖H s ≤ C‖5m f ‖H s+1 .

4D. Stability estimates for the x-ray transform. Before going on with the proof of Theorem 1.5, let us
recall the definition Hölder–Zygmund spaces. Let ψ ∈ C∞c (R) be a smooth cutoff function with support
in [−2, 2] and such that ψ ≡ 1 on [−1, 1]. For j ∈N, we introduce the functions ϕ j ∈C∞c (T

∗M) defined
by ϕ0(x, ξ) := ψ(|ξ |), ϕ j (x, ξ) := ψ(2− j

|ξ |)−ψ(2− j+1
|ξ |), for j ≥ 1 with (x, ξ) ∈ T ∗M, | · | being

the norm induced by g on the cotangent bundle. Since ϕ j is a symbol in S−∞, one observes that the
operators Op(ϕ j ) are smoothing.

For s ∈ R, we define C s
∗
(M), the Hölder–Zygmund space of order s as the completion of C∞(M) with

respect to the norm
‖u‖Cs

∗
:= sup

j∈N

2 js
‖Op(ϕ j )u‖L∞,

and we recall (see [Taylor 1991, Appendix A, A.1.8] for instance) that a pseudodifferential operator
P ∈ 9m(M) of order m ∈ R is bounded as an operator C s+m

∗
(M)→ C s

∗
(M) for all s ∈ R. Note that
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the previous definition of Hölder–Zygmund spaces can be easily generalized to sections of a vector
bundle. When s ∈ (0, 1), it is a well-known fact that the space C s

∗
(M) coincides with C s(M), the space

of Hölder-continuous functions, with equivalent norms ‖u‖Cs
∗
� ‖u‖Cs . The Hölder–Zygmund spaces

correspond to the Besov spaces Bs
q,r (M), with q = r =+∞, while the Sobolev spaces H s(M) correspond

to the choice q = r = 2. Here

‖u‖Bs
q,r
:=

(+∞∑
j=0

‖2s j Op(ϕ j )u‖rLq

)1/r

In particular, Lemma 4.8 can be upgraded to:

Lemma 4.9. If Im is solenoidal injective, then for all s ∈R there exists a constant C :=C(s)> 0 such that

for all f ∈ C s
∗,sol(M,⊗

m
S T ∗M), ‖ f ‖Cs

∗
≤ C‖5m f ‖Cs+1

∗
.

Eventually, we will need this last result:

Lemma 4.10. For all s > 0, the operator 5 : C s
∗
(SM)→ C−s−(n+1)/2

∗ (SM) is bounded.

Proof. Fix ε > 0 small enough. Then

C s
∗
↪→ H s−ε 5

−→ H−s+ε ↪→ C−s−(n+1)/2+ε
∗

↪→ C s−(n+1)/2
∗

by Sobolev embeddings. �

We can now deduce from the previous work the stability estimate of Theorem 1.5.

Proof of Theorem 1.5. We assume that f ∈ Cα
sol(M,⊗

m
S T ∗M) is such that ‖ f ‖Cα ≤ 1. By Theorem 1.2,

we can write π∗m f = Xu+ h, with u, Xu, h ∈ Cα′, where 0< α′ < α and ‖h‖Cα′ . ‖Im f ‖τ`∞ .
We have

‖ f ‖
C−1−α′−(n+1)/2
∗

. ‖52 f ‖
C−α

′−(n+1)/2
∗

(by Lemma 4.9)

. ‖5π∗2 f ‖
C−α

′−(n+1)/2
∗

. ‖5(Xu+h)‖
C−α

′−(n+1)/2
∗

. ‖5h‖
C−α

′−(n+1)/2
∗

. ‖h‖Cα′ (by Lemma 4.10)

. ‖I2 f ‖τ`∞ (by Theorem 1.2).

Using ‖ f ‖Cα ≤ 1 and interpolating Cβ between C−1−α′−(n+1)/2 and Cα, one obtains the desired result. �
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