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Abstract

In Young towers with sufficiently small tails, the Birkhoff sums of Holder continuous functions satisfy a central limit theorem
with speedO(1/4/n), and a local limit theorem. This implies the same results for many non uniformly expanding dynamical
systems, namely those for which a tower with sufficiently fast returns can be constructed.
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Résumé

Dans les tours de Young ayant des queues suffisamment petites, les sommes de Birkhoff des fonctions hélderiennes satisfont
le théoréme central limite avec viteség1/./n) et le théoréme de la limite locale. Par conséquent, de nombreux systemes
dynamiques non uniformément dilatants satisfont les mémes conclusions : il suffit de pouvoir construire une tour avec des

retours a la base suffisamment rapides.
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1. Results
1.1. Introduction

Let T:X — X be a probability preserving transformation afidX — R. The functionsf o T, for k € N,
are identically distributed random variables, and it is an important problem in ergodic theory to see whether they
satisfy the same kind of limit theorems as independent random variables.
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Many results are known wheh is uniformly expanding or uniformly hyperbolic (without or with singularities,
in the Markov or non Markov case), arfdis Holder continuous. In this case, it is indeed often possible to construct
a space of functions containingon which the transfer operator associated'tbas a spectral gap. Therefore, the
spectral perturbation method, introduced by Nagaev in the case of Markov chains, makes it possible to mimic
the probabilistic proofs on independent variables. In this way, it is possible to get distributional convergence (to
normal laws or stable laws), and more subtle results such as the speed of convergence (also called the Berry
Esseen theorem) or the local limit theorem (see for example [30,17,8,3]). These results, in turn, have important
consequences concerning the asymptotic behavior of the system [2,33].

On the other hand, when the system is not uniformly expanding or uniformly hyperbolic, it is not possible
to use directly the aforementioned spectral method. Consequently, other methods have been devised to handl
the distributional convergence of Birkhoff sums. Among many techniques, the most flexible one is probably the
martingale argument of Gordin (see for example [23,26,10,11,36]). Some results have also been obtained on the
speed in the central limit theorem, by direct estimates (see [22,27]). However, there is currently no result concerning
the local limit theorem, which is not surprising since the proof of this theorem requires a heavy Fourier machinery,
even in the probabilistic case, and is not easily accessible to elementary methods.

The aim of this article is to prove the local limit theorem and the Berry—Esseen theorem for Holder functions in
the setting ofYoung tower$35], where the decay of correlations is not exponential and the transfer operator has
no spectral gap. The Young towers are abstract spaces which can be used to model many non uniformly expandin
maps, for example the Pomeau—Manneville maps in dimension 1 studied by Liverani, Saussol and Vaienti [24], the
Viana map (for which a tower is built in [5]), or the unimodal maps for which the critical point does not return too
quickly close to itself [9]. Thus, all these maps also satisfy the local limit theorem, and the central limit theorem
with speedO (1/+/n). These results also apply in non uniformly hyperbolic settings, with the techniques of [34].

The proof is spectral: it uses perturbations of transfer operators, as in [17], but applied to first return transfer
operators associated to an induced map, as defined by Sarig in [32]. The method is related to [14], with a more
systematic use of Banach algebra techniques.

1.2. Results in Young towers

A Young tower[35] is a probability spac&X,m) with a partition (B; ;)icr,j< Of X by positive measure
subsets, wheré is finite or countable ang; € N*, together with a nonsingular map: X — X satisfying the
following properties.

1. Viel,VO< j<g; —1,T is ameasure preserving isomorphism betwBgpandB; ;1.

2. Foreveryi € I, T is an isomorphism betweey ,,, 1 and B := | J;; Bx.o0-

3. Letg be the function equal tp; on B; o, whencerl¢ is a function fromB to itself. Lets(x, y) be the separation
time of the pointst andy € B underT?, i.e.s(x, y) =inf{n |3 # j, (T*)"(x) € Bio, (T¥)"(y) € Bj 0}
As T% is an isomorphism betweeB; o and B, it is possible to consider the invergg of its jacobian with
respect to the measure. We assume that there exist constgfits: 1 andC > 0 such thatvx, y € B; o,
llog g (x) — 10g gm (y)| < CA*).

4. The mapl’ preserves the measure

5. The partition\/§’ T~"((B;,;)) separates the points.

The notion of Young tower has been introduced by Young in [34,35] as a model for non uniformly expanding
dynamical systems. The non uniformity is measured bysike of tailsm{x € B | ¢(x) > n}: if this quantity
is very small, then most points enjoy some expansion before dimehen they first return to the basis. This
expansion, in turn, is sufficient to study statistical properties of the system, including decay of correlations. Young
has proved that, if:[¢ > n] = O(1/n?) for someg > 1, then the correlations of sufficiently regular functions (see
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the definition ofC. (X) below) decay like0 (1/nf~1). In particular, if3 > 2, these correlations are summable, and
a martingale method can be used to prove that a central limit theorem holds.

We extend the separation timeto the whole tower, by setting(x, y) = 0 if x andy are not in the same set
B; j,ands(x, y) =s(x’,y’) + 1 otherwise, where’ andy’ are the next iterates afandy in B. For 0< t < 1, set

f) = fO)] <N,

This space has a norfif |- = inf{C | ¥x,y € X, | f (x) = f()| < CT*} + || f| oo
The following theorem is well known and can for example be proved using martingale techniques (see
[35, Theorem 4]).

C:(X)={f:X—>R|IC>0, Vx,y€ X,

Theorem 1.1.Lett < 1. Assume thau[¢ > n] = O(1/n?) with 8 > 2. Let f € C.(X) have a vanishing integral.
Then there exists2 > 0 such that

1 n—1
—ZfoTk%N(O,O'Z).
Vi k=0
Moreovero? = Qif and only if f is a coboundary, i.e. there exists a measurable fungfisnch thatf =g —goT
almost everywhere.

The main results of this article are Theorems 1.2 and 1.3. To formulate the first one, we will need the following
definition:

Definition. A map f : X — R is periodicif there existp € R, g: X — R measurable). > 0 andg : X — Z, such
that f = p + g — g o T + Aq almost everywhere. Otherwise, itaperiodic

Theorem 1.2(local limit theorem) Lett < 1. Assume thaii[¢ > n] = O(1/n?) with 8 > 2. Let f € C.(X) have
a vanishing integral, and let? be given by Theorerh 1
Assume thaf is aperiodic. This implies in particulas? > 0. Then, for any bounded interval c R, for any
real sequencé, with k,//n — « € R, for anyu € C,(X), for anyv: X — R measurable,
g %/(20%)
Vnm{xeX | S, f(x) €T +ky+ux)+v(T"x)} - |J|W.

The function on the right is the density &f(0, o2): this theorem (fou = v = 0 andk,, = x/n) means that

1 J J

m{ﬁSnfeK—i-ﬁ} "“P(N(O,O’Z) €K+ﬁ>.
Hence, it shows tha, f/./n behaves likeV'(0, o2) at the local level (contrary to Theorem 1.1 which deals with
the global level). It is important that is aperiodic. Otherwisef could be integer valued, and the theorem could
not hold, e.g. fok, =0,u =v=0andJ =[1/3, 2/3].

For f: X — R, define a functioryz on B by
p(x)-1
fe)= > f(T*n). 1)
k=0

In the probabilistic case, the Berry—Esseen theorem, giving the speed of convergence in the central limit theorem,
holds under ari.® moment condition [12]. In the dynamical setting, we will need the same kind of hypothesis, but
on the functionf. Note that, sincéfz| < || flloop @andp > 2, we always havep € L2(B).
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Theorem 1.3(speed in the central limit theorem)et t < 1. Assume that[¢ > n] = 0 (1/n?) with g > 2. Let
f € C:(X) have a vanishing integral, ang? be given by Theoreth 1

Assume that2 > 0, and that there exist® < § < 1 such that[ | f|21, =, dm = O(z~?%) whenz — oo. If
8 =1, assume also thaf 31, 7,/<. dm = O(1). Then there exist§ > 0 such thatvn € N*, Va € R,

‘m{x ‘ %Snf(x) <a} — P(N(0,0‘z) éa) < %

When f5 € L? for some 2< p < 3, then the conditions of the theorem are satisfied ferp — 2. In particular,
when fp € L3, we obtain a convergence with speéd1/./» ), which is the usual Berry—Esseen theorem. Note
also that, for anyf € C;(X), the conditions of the theorem are satisfiedfest 8 —2if2 < <3,andfors =1
if 8 > 3. The formulation we have given is more precise than the usual Berry—Esseen theorem, in view of the
applications, where ah? condition would not be optimal (see for example Theorem 1.5). In fact, the conditions
of the theorem ory’s correspond to necessary and sufficient conditions to get a central limit theorem with speed
0 (n~%/?) in the probabilistic (independent identically distributed) setting, as shown in [19, Theorem 3.4.1].

Remark. Using the same methods, it is possible to prove the same results in a more general setting, namely maps
for which a first return map i&ibbs—Markoun the sense of [1]. For the sake of simplicity, we will only consider
Young towers.

1.3. Applications

1.3.1. General setting

Let (X, d) be a locally compact separable metric space, endowed with a Borel probability megsame
T:X — X a nonsingular map for whicl is ergodic. Assume that there exist a bounded suBset X with
w(B) > 0, afinite or countable partition (mod 0B;);<; of B, with «(B;) > 0, and integerg; > 0 such that:

. Viel, T% is an isomorphism betwees} andB.

. 3x>1suchthatyi e I,Vx,y € B;,d(T%x,T%y) > Ad(x, y).

. 3C > O such thatyi € I, Vx, y € B, Yk < @i, d(T*x, T¥y) < Cd(T % x, T¥y).

. 36 > 0 andD > 0 such thatyi € I, the jacobiarg, defined onB; by g, (x) =du/d(u o T“g"i) satisfies: for all
X,y € B;, ||Oggu(x) - IOgg,u()’N <Dd(T%x, T(p[)’)g-

A WNBP

Denote byg the function onB equal tog; on eachB;. If w{x | ¢(x) > n} is summable, we can define a
spaceX' ={(y,j) | y€B, j<eox)},andamaf’': X' —> X' by T'(y,j)=(,j+ D if j <ekx)—1and
T'(y, j) = (T*Y) (), 0) otherwise. Define alsg : X’ — X by 7(y, j) =T/ (y). Thent o T’ =T o 7.

Setu' =Y 2o T."(n|B N {p > n}): it is @ measure of finite mass of, not necessarily’-invariant. Young
has proved in [35, Theorem 1] that there exists a unique invariant probability me#&someX” which is absolutely
continuous with respect ta’. It is ergodic, and X’, T’, ') is a Young tower in the sense of Section 1.2. The
measuren = m,(m’) is T-invariant, absolutely continuous and ergodic.

If f:X — R is Holder continuous, therf’ := f o 7 : X’ — R belongs toC,(X’) for  close enough to 1.
Moreover, the Birkhoff sum3{Z3 f o T* andY /=5 /' o T’ have the same distribution with respect respectively
tom andm’. Hence, Theorems 1.1, 1.2 and 1.3 on the funcjibim the Young toweX’, T’, m’) imply the same
results on the functiorf in (X, T, m).

To apply these theorems, we have to check their assumptions. The condiionn] = O (1/nf) with g > 2
corresponds simply to the requirement
> B = 0(%) for someg > 2.

Yi>n
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To apply Theorem 1.2, we additionally have to check that the funcfiois aperiodic forT’, which can be
complicated when the extensidfl is not explicitly described. On the other hand, the aperiodicity’ ahay be
easier to check, using for example the information at the periodic points. In this case, the following abstract theorem
ensures thaf’ is automatically aperiodic, whence we can apply Theorem 1.2.

Theorem 1.4.LetT’: X’ — X’ be a probability preserving map on a probability spac€, m’). Let (X, m) be
a standard probability spacel’: X — X an ergodic probability preserving map, and: X’ — X a map with
countable fibers, such that = 7, (m") andT or =7 o T'. Let f : X — R. Then

e The functionf is a coboundary foff" if and only the functiory o 7 is a coboundary fof”’.
e The functionf is aperiodic forT if and only if the functiory o x is aperiodic for7”.

1.3.2. Examples
Recently, many maps have been shown to fit in the previous setting. For example, [5, Theorem 3] shows that the
Alves—Viana map, given by

[STxR— ST xR,
| (w, x) — (160), a—x%+ esin(27w)))

satisfies these assumptions (for ghy 2) when 0 is preperiodic for the map— a — x2, ande is small enough.
In fact, any map close enough Toin the C3-topology also satisfies them.

In the one-dimensional case, [9] shows that many unimodal maps of the interval also satisfy these hypotheses:
it is sufficient that the returns of the critical point close to itself occur at a slow enough rate.

Finally, we will discuss with more details the case of the Pomeau—Manneville maps, studied among many others
by Liverani, Saussol and Vaienti [24]. They form an interesting class of applications, since the influence of the fixed
point 0 becomes more and more important waéncreases. The explicit formula (2) is not important, what matters
is only the local behavior around the fixed point. Hence, all the following results can be extended to a much larger
class of examples but, for the sake of simplicity, we will only consider the following maps.

Leta € (0,1/2), and considef : [0, 1] — [0, 1] given by

] x@4+2%x%) ifO0<x<1/2,
T(x)_{Zx—l if1/2<x<1. @

This map has a parabolic fixed point at 0, and is expanding elsewhere. It has a unique absolutely continuous
invariant probability measure, whose density is Lipschitz on any interval of the fo¢m1] [24, Lemma 2.3].

Theorem 1.5.LetO <« < 1/2, and letf : [0, 1] — R be a Hdlder function with vanishing integral, which cannot
be written asg — g o 7. Then satisfies a central limit theorem with varianeé > 0.

e If @ <1/3, or f£(0) =0 and there existy > o — 1/3 such that| f (x)| < Kx”, then there exist§ > 0 such
thatvn € N*, Va € R,

m{x ‘ %Snf(x) <a} — P(N(O,oz) ga)

< C

~ ﬁ‘

e If 1/3<a <1/2, £(0) =0 and there existy > 0 such that| f(x)| < Kx” and$ := ﬁ —2€(0,1), then
there exist€ > 0 such thatvn € N*, Va € R,

<

m{x ‘ %Snf(x) < a} — P(N(0,0%) <a)

02
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e If1/3<a <1/2and f(0) # 0, then there exist€ > 0 such thatvn € N*, Va e R,

1 C
nf] RS0 Sa) - PNO.0) <) € Ly

Moreover, if f is aperiodic, it satisfies the local limit theorem.

Proof. Let xo = 1, andx, 1 be the preimage aof, in [0,1/2]. Let y,1 be the preimage af, in (1/2, 1]: the
intervals B, = (y,+1, y»] form a partition of B = (1/2, 1] and, if ¢, = n, all the hypotheses of Section 1.3 are
satisfied. Moreover(B,) ~ nl/%ﬂ andx, ~ nl% for constantg”, D > 0 [24]. In particularm (¢ > n) = 0(1/nP)
forp=1/a > 2.

Let f be Holder on[0, 1]. If f(0) # 0, then fg = nf(0) + o(n) on B,. Otherwise, lety > 0 be such that
| f(x)| < Kx?. Reducingy if necessary, we can assume that «. Then it is easy to check thafg| < Cnl=7/®
on B,,.

Using these estimates, we can check the integrability assumptions of Theorem 4.3 fon the first case,
ﬁ — 2 in the second case, a@d— 2 in the third case. Hence, Theorem 1.3 implies the desired estimates on the
speed in the central limit theorem.

Finally, the local limit theorem is a direct consequence of Theorem 1.2.

The aperiodicity assumption is a priori not easy to check, since the periodicity eqfiglity— go T + p + Aq
is assumed to hold only almost everywhere. However, under suitable regularity assumptjgrisispossible to
prove that this equality holds everywhere (see e.g. [3] for locally congtgih] for Holder f). For example, ifl
is given by (2), thery =log|T’| — [ log|T’| is aperiodic.

In Section 2, we will prove Theorem 1.4, and show that it is sufficient to prove Theorems 1.2 and 1.3 in mixing
Young towers (i.e., such that the return timgssatisfy gcdy;) = 1). The rest of paper is devoted to the proof
of these theorems. In Section 3, we prove an abstract spectral result on perturbations of series of operators. Ii
Section 4, we apply this result to first return transfer operators, to get the key result Theorem 4.6. We then use
this estimate in the last two sections to prove respectively the local limit Theorem 1.2 and the Berry—Esseen
Theorem 1.3.

2. Preliminary reductions
2.1. Proof of Theorem 1.4

Proof of the coboundary result. If f is a coboundary, i.ef =g — go T, thenf’ := f o can be written as
=g — g oT', whereg’ = g o 7. However, the converse is not immediatefif= g’ — g’ o T, the functiong’
is a priori not constant on the fibers1(x), which prevents us from writing’ = g o 7.

We use the following characterization of coboundariest T be an endomorphism of a probability space
(X, m). Then a measurable functiohon X can be written ag — g o T if and only if

Ve>0,3C>0 Vn>1 mi{xeX||S,f(x)|>C}<e. ©))

This characterization, due to Schmidt, is proved for example in [4].
If f"is a coboundary, then (3) is satisfied Jiyin X’, whence it is also satisfied bfin X (since this condition
only involves distributions). Thusf can be writtenag —go 7. O

Proof of the aperiodicity result. If f is periodic onX, i.e. f = p + g — g o T + Lg wheregq is integer-valued,
thenfor=p+(gom)—(gom)oT +A(gom),i.e.fomis periodic. On the other hand, ffor =o' + g’ —
g oT' + Aq', itis not necessarily possible to write direcy= g o . The proof of the periodicity of will use
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ideas of [4]. We can assume for example that 2. Replacingn’ by one of its ergodic components, we can also
assume thak' is ergodic.

Since the projectiorr has countable fibers, there exists a measurable subsétX’ such thatr is an iso-
morphism betweer and X, andm’(A) > 0. Define a functiorg on X by g(x) = g’(x’), wherex’ is the unique
preimage ofx in A. Replacingf by f — g+ goT — p’, andg’ by ¢’ — g o =, we can assume without loss of
generality thag’ =0 on A andp’ =0.

Forx € X, let W, (x) be the measure aft* given by

W, (x) = % Za(eiskf(x))

k=1
wheres () is the Dirac mass at. Foru e C%(S1), itis possible by compactness to find a subsequepseich that

/udek (x) > Lw)(x) weakx in L=(X).
s1
It is possible to obtain this convergence for a dense countable set of functiGRgSh), by a diagonal argument.

By passing to a further subsequence, it is also possible to guarant(’i;eml fsl udW,, (x) - L(u)(x) on a set

Y C X with m(Y) = 1, by Komlos’ Theorem [21]. By density, we get the same convergence far ang°(s1).

Forx € Y, the mapu € COSYH > Lw)(x) eRis a nonnegative continuous linear functional sending 1 to 1,
thus given by a probability measurg. Moreover, these measures satigfy, (S) = P, (€/®) ) for any Borel
subsets of 1, sinceW, (Tx)(S) = W, (x)(€/®)5) + 2.

For somes > 0, we will prove that

m{x| Pc({1}) 2 e} >&. 4

If x' € ANT'~k(A), then &c/on() — & ()=goT“0) — 1 je.8 for(x') € 2r7Z. Hence,

/ W,l(x)({l}) dm(x) = % Z/l(Skf(x) € 27TZ) dm(x) > %Z/ LANT %Ay dm' (x')
X k=1

k=1y,

= f 1y - (} Z 140 T’k> dm’ (x') = m'(A)%2 >0
n
% k=1
by Birkhoff Theorem. Thus, for large enough [, W, (x)({1}) > 3¢ > 0, Whencef(% e Wi () (1) > 26
for large enougtu. Since(% Y i1 Wi, () ({1D) < 1, we get

1
m:x (; ZWnk(-x)> ({1}) > g} >e.

k=1
Thus, the se€ = {x | lim sup(% Y k1 Wi, () ({1}) > ¢} satisfiesn(C) > . Finally, P, ({1}) > ¢ on C, and this
proves (4).

Define a measurg on X x S1, by (U x V) = fU Py (V)dm(x). Thenu is invariant under the action of
Tr:(x,y) = (T(x), e 1/(y), and [4] proves that, for almost every ergodic componrif 1, there exists a
compact subgroupl of S* and a mapw: X — S* such that, denoting byt ;; the Haar measure df,

YUxVCXxSt PUx V):/my(a)(x)V) dm(x).
U

Moreover, in this case, it is possible to writd@ = ”2553) ¥ (x), wherey takes its values it .
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If, for all componentP of u, we hadH = S, thenP = m ® Leb for all P, whencey = m ® Leb. This is a
contradiction, since.(C x {1}) > 0, while (m ® Leb)(C x {1}) = 0. Thus, for some choice of, H = Z/kZ,
whencey (x)f = 1, and &) = o (Tx)* /w(x)*. Thus, f is periodic onX. O

Remark. The proof only shows that the period ¢gfon X divides the period off o 7 on X’, not that they are
equal. In fact, it is not hard to construct examples of Young towers where the two periods are different. Moreover,
the result is not true without the assumption that the fibers are countable.

2.2. Reduction to the mixing case

In the proofs in Young towers, it is often useful to assume that the tower is mixing, i.ép;ged 1. This
restriction may seem technical, but it is important (for example, without it, there is no decay of correlations any
more). For limit theorems, however, it is irrelevaimheoremsl.1, 1.2and 1.3 for mixing towers imply the same
results for general towers.

Proof. We assume that Theorems 1.1, 1.2 and 1.3 are true in any mixing Young towe¥. lketa non-mixing
Young tower, withN = gcd(g;) > 1, and letf € C,(X) be of vanishing integral. Fotk =0,..., N — 1, set
Zy =B, for j =k mod N. Then, for everyk, (Zx, TV) is a mixing Young tower, to which we can apply
Theorems 1.1, 1.2 and 1.3.

On Z;, we consider the functiorf; given byZ f(T’x) i.e. (Snf)z- Then[Z fr = fo 0. Theo-

rem 1.1 applied tgf; on (Z;, TV) gives a constant; such that, or?y,
1
——_S;nvf = N(O,0d.
m st k
Writing an integemn assN + r with r < N, we get that%snf — N(0,0P) on Z. Finally, if x € Zo, S, f(x) and
S, f(T*x) differ by at most 2| f||. Thus, -~ FoSnf = f
thatoy = og. Writing o for this common number, we get th%s,,f — N(0, c2) on X. Moreover, ifo = 0, then

S, f o T* tends to 0 in probability oZo, which shows

folis acoboundary forV, i.e. fo=g — go TN whereg: Zo — R is measurable. We extendo the whole tower:
if (x,j) e X,with j =sN +r andr < N, setg(x, j) =g(x,sN) — Z?;éf(x,sN +1). Itis then easy to check
that f = ¢ — g o T. This proves Theorem 1.1.

For the local limit theorem, let us assume thfats aperiodic, and take, v andk, as in the assumptions of
Theorem 1.2. We show that the functiofisare also aperiodic. Otherwise, for example=p +g—go TV + g,
whereg andg are defined 0iXp. We extend; andq to the whole tower: fofx, j) € X with j =sN+randO<r <
N, setg(x, j) =g, sN)—=> o (f(x SN +i)— )—I—)»q(x, sN),andg(x, j)=0.Thenf = £ +g—goT +Aq,
which is a contradiction. Thus, all the functloyi(sare aperiodic. We can apply to them Theorem 1.2 in the mixing
tower (Zx, TV), and get that

—k2/(20%)
VsNm{x € Zy | Ssn f(x) € T + kg +u(x) + v (TN x0)} - m(Z)| T |———=.
o2

Summing ovelk, we get the conclusion of Theorem 1.2 ffyand for the times of the form/N . For times of the
formsN + r with 0 < r < N, we use the same result fgro 7", u — S, f, v o T" and the sequendgy ., and get
that

2 2

e X /(20)

VSN +rm{x e X | S;nfoT (x) € J +ksnir +u(x) — S f(x) + (TN x)} — |J|72.
oA LT

AsS SsyfoT"(x)+ S, f(x) = Ssn+r f (x), this concludes the proof of Theorem 1.2.
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Finally, the central limit theorem with speed is deduced from the same result orZgaidr times of the form
sN. We extend the result to arbitrary times: writin@ss N +r withr < N, we have S,y f — Ssv f1 <71l f ll oo -
This introduces an error, of ordé€r(1//n) < 0(1/n%?). O

Remark. For this proof, it was important to have a strong version of the local limit theorem, involving funations
andv.

Theorem 1.1 is proved in [35, Theorem 4]. The rest of the paper is devoted to the proof of Theorems 1.2 and 1.3
in mixing Young towersFrom this point on X will be a mixing Young tower, i.gcd(g;) = 1.

3. An abstract result

If (a,)neny and (b,),en are two sequences indexed By we denote by(a,) x (b,) the sequence, =
Y i—oakbn—k. If (an)nez and(by)nez are two summable sequences indexe@bwe also define their convolution
cn = (an) * (by) by ¢, = Y po o akbn—k. Hence, ify_a,z" and)_b,z" are series with summable coefficients,
the coefficient of:” in (3 arz¥)(O" biz¥) is given by (a,) » (b,) (more precisely, it is given by theth term
((ax) * (bx)), Of this sequence, but we will often abuse notations and write sir@aplyx (b,,)). Finally, we write
D={zeC||zl]<landD={zeC]||z] <1}

The goal of this section is to prove the following theorem:

Theorem 3.1.Let 8 > 2. LetR,, for n € N*, be operators on a Banach spage with Z,f‘;nﬂ IRl = O(1/nP).
SetR(z) = Y R,7", and assume thét is a simple isolated eigenvalue &f(1), while I — R(z) is invertible for
z € D—{1}. Let P be the spectral projection associatedR¢1) and the eigenvalug, and assume tha R’ (1) P =
wP with > 0.

Let R, (t) be operators orE (for ¢ in some interval —«, a] with « > 0) such thatZ,‘z‘;,lJrl IRk () — Ryl <
Clt|/nP~L. SetR(z,t) = Y 7" R, (t). Let A(z, t) be the eigenvalue close foof R(z, 1), for (z,t) close to(1, 0).
We assume that(1, r) = 1 — M(z) with M (¢) ~ ct? for some constant with Re(c) > 0.

Then, for small enough I — R(z,t) is invertible for allz € D. Let us denote its inverse By 7,,(¢)z". Then
there existr’ > 0, d > 0 and C > 0 such that, for every € [—d/, «'], for everyn € N*,

1 1 n
T, (1) — —(1— —M(t)) P
% %

C 1 2

In the application of Theorem 3.1 to the proof of Theorems 1.2 and 1.3, the opeRatavdl describe the
returns to the basi, and will be easily understood, as well as their perturbati®ng@). On the other handr,
will describe all the iterates at time, and 7,,(+) will be closely related to the characteristic functi@rie’S:/).
Thus, (5) will enable us to describe precisé&lye’S:/), and this information will be sufficient to get Theorems 1.2
and 1.3.

3.1. Banach algebras and Wiener Lemma

In this paragraph, we define some Banach algebras which will be useful in the following estimates. We postpone
the proofs of the properties of these algebras to the Appendix.

A Banach algebrad is a complex Banach space with an associative multiplicador A — A such that
IAB| < ||A|lllB]l, and a neutral element. The set of invertible elements is then an open suldseairohich the
inversion is continuous.

Let C be a Banach algebra. #f > 1, we writeO,, (C) for the set of formal serie3 > A,z", whereA, € C
and||A,|| = O(1/|n]") whenn — +o00, endowed with the standard product of power series, corresponding to the
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convolution of the sequenced,) and(B,). It admits the naive norm syp,(|n| + 1)¥ || A, ||, for which it is not a
Banach algebra. However, there exists a norm, equivalent to the previous one, which/lpa&esto a Banach
algebra (Proposition A.1). Moreover, this algebra satisfies a Wiener Lemm&)it=)_ A,z" € O, (C) is such
that A(z) is invertible for every; € S1, thenA is invertible inO, (C) (Theorem A.3).

We will also use the Banach algetr@*(C), given by the set of serie€s’ A,z" € O, (C) such thatd,, = 0 for
n < 0. Itis a closed subalgebra 6%, (C), and it satisfies also a Wiener Lemma (Theorem A.4).

Notation. If f:[—«, ] x Z — R, for somea > 0, andC is a Banach algebra, we denote @y (f (¢, n)) the set
of series) ~° cn (1)7" wherec,, : [—a, ] — C is such that there existe > 0 andC > 0 such that

n=—oQ

Vie[—d o], VneZ, |ca()|<Cft,n).

We will often omit the subscript ir0¢. As usual, we will often write)_ ¢, (1)z" = O(f (¢, n)) instead of the
more correct formulation} ¢, (1)z" € O(f(z,n)). We will also write O (g(n)) for the set of seried_ A, z" with
A, ]l < Cg(n) for some constant'. This is a particular case of the previous notation, where the funcfions)
are independent af Until the end of Section 3, the notati@h will always have this signification.

Remark. The notations® and O should not be confused: there are similarities (which is why we have used
the same letter), but the calligraphic notatiOnindicates additionally a Banach algebra. In this case, we can for
example use the continuity of inversion.

With these notations, we can reformulate Theorem A.3 as follows: ,z" = O(1/(|n| + 1)?) for y > 1,
andY_ A,z" is invertible for every; € 1, then(>" A,z") "t = 0(1/(|n| + 1)¥). The fact tha0,, (C) is a Banach
algebra also implies that, for > 1,

) olit) o)
(Inl + DY (Inl + 1Y (nl+217 )

i.e., if two seriesy " A,z" and)_ B,z" (with A,, B, € C) satisfy
sup(ln| +1)7||Aull <oo and  sugfln| +1)" || Byl < oo,
nez

nez

then the serie3_ C,z" := (3~ A,z")(Q_ B,z") also satisfies sypy (|n| + 1Y [|Cp || < oo.

3.2. Preliminary technical estimates

For notational convenience, we will often writénstead of|z| in what follows. Equivalently, the reader may
consider that the proofs are written foe= 0. We will also write ¥|n|” instead of ¥(|n| + 1)¥, discarding the
problem at: = 0.

Lemma 3.2.Wheny > 1 andd > 0,
1 1 d ,\"
o — ) x0(1,50r2(A —di®>") c O — + L,s0t?(1—=7%) ).
<|n|y>* (izo™1 =) (|n|y+ "2

Proof. Forn <0, the coefficient in the convolution is less thaif2 12(1 — di?)* ;17 < ;5. Forn > 0, itis less
than
n/2

1, N
Z Wt L—dt®>"? + Z

k=—o00 k=n/2

Finally, asv1—dt?2 < (1— %IZ), we get the conclusion. O

C
2 2\n—k 2 2\n/2
t“(1—dt < Cte(l—dt + —.
(n/2) ( ) ( ) nY
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Lemma 3.3.Lety > 1andd > 0. LetG,(z) = O(t/[n]” +L,>0t3(1—dr?)"), and assume that (z) = O(1/|n|")
is invertible for every € S1. Then[F(z) + G;(2)] 1= F(») "1 + O (5w + Lisor3(1— &2,

Proof. We first assume thaf (z) = 1. SettingH, () = 3,z 772" + > en 31 — dt?)"z", the norm of the

coefficients of[1 + G,(z)]"1 is less than the coefficients ¢1 — H,(z)]1. Thus, it is sufficient to consider
1/(1—tK(z) —3/(1 — (1 — dt?)z)) whereK (z) = Y z"/|n|” . Note that

1 1 1—(1—dt®z

1-1KGz) —13/1—1—dDz) 1-1K@) —131— 1—d)[1+3/1—1Kz) — 13z’ "
For small enough, |(1 —dt®)[1+3/(1— 1K (z) — t3)]| < 1, whence
1—(1—di?z
1-1—dt)[1+13/(1—1tK(z) —1t3)]z
o0 3 n
_ _ 442 _ g42y\n 4 n
=(1-@A—dr )z)’;(l dr?) |:1+—1—IK(z)—t3] z
tz(1—dt?) 5 2n 13 "
+41—tK(z)—t3t ngc:](l—dt ) [1+41—t1{(z)—t3} 7. (8)

We first study the sum. Letl = O, (C) be the Banach algebra of the series whose coefficient® étrgin|”). As
K(z) € A, we have 1- 1K (z) — 13 =1+ 04(r). Since the inversion is Lipschitz on a Banach algebra, we get
13/(L—tK(z) —t3) =134+ 04(t*), whence||[[1+ 13/(1 — 1K (z) — 131" 4 < C(1 + 2r3)". Let us estimate the
coefficient ofz” in 12y "2° /(1 — dt?)"[1+13/(1 — tK (z) — t3)]"z". This is at most

0 3 n 3\n
2 2w t 2n(1+2t)
: Z(l a ) <|:1+ 1_1K(Z)_t3:| )—n+p Zt (1 a ) _|_p|1/

n=0 n=0

n
< th(l— %t2> -
o |=n+pl¥
for + small enough so thatl — dr?)(1+ 213) < (1 — ‘—étz). We find the same expression as in the convolution
betweenO(1n>ot2(1 tz) )yandO(1/|n|?), that we have already estimated in Lemma 3.2. Thus, we get at most
o/Ipl” + 1p>012(1— 23P).
Astz(1—dr?)/(1—tK(z) —t3) = O(t/|n|?), another convolution yields that (8) is

d n
1+ O(W +1n>0t (1— §l2> )

Multiplying by 1/(1 —tK (z) — %) = 1+ O(t/|n|”) gives that (7)=1+ O(t/In|” + L,>0t3(1 — &t?)"). This
concludes the proof in the cagdz) =1
We now handle the case of an arbitraryz). Note that

[F@+G()] =1+ F@) 6] "Fo™
The Wiener Lemma A.3 implies thaf(z)~! = 0(1/|n|”), whence Lemma 3.2 give#(z) 1G,(z) =
O(t/In]” + L,>0t3(1 — 412)"). Thus, the cas& (z) = 1 yields

[1+ F(Z)_th(Z)] =1+ O<W + 1n>Ot <l— 312 2) )

Another convolution withF(z)~1 gives the result. O
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3.3. Proof of Theorem 3.1

Let M(¢) be as in Theorem 3.1. We fix once and for &l 0 such thatjl — %M(I)I < 1 — dr? for small
enoughr, and we restrict the range ofso that this inequality is true. The invertibility & (z, ) for z € D and
small enough is proved in [14, Proposition 2.7].

To estimate the eigenvalues using Banach algebra techniques, we will need that the eigenvalue close to 1 o
R(z) is defined on the whole circl§!, which is not a priori the case. Consequently, we use the construction in
the second step of the proof of Theorem 2.4 in [14]: we replRee by R(z) = > R,z", such that it has a
unique eigenvalué(z) close to 1 forz € %, equal to 1 only for = 1, with 3", _, II1Rx | = O(1/n), and such
that R(z) = R(z) for z close to 1 onSt. We also setR(z, 1) = (R(z) — R(z)) + 3_ R.(r)z". For small enough,

R(z,t) has for allz € S a unique eigenvaluk(z, t) close to 1.

Lemma 3.4.We have
1—2(z,1) 1—2(2) < t 3( d z>>
= + 0 + 1,50t 1— =t .
1-1— 1/ wM@)z 1-z [n|p—1 " >0 2

Proof. We write K (z,7) = (A(1,1) — A(z,1))/(1—z) — (1 — A(z))/(1—2). Recall thati(1,1) = A(1, 1) =1 —
M(t). Then, writingB(z) = (1 — A(2))/(1 — z), we have

Az t)=1-M@®) + (- D(K (1) + B().

Thus,
1M o MO+ A= 9K )+ BE) — 1= A= A/mMO):IEG)
1- - QwMm): 1-A— M)z
1-z 1-zB(@)/u
= K(z, M
COTa-wemo: MO A Mo
=1+l
For |,
1-z 1 i 1 n—1
=1—-—M 1——M n 9
I-A-UwMO: & m;( M ) : ©)

is in 14+ O0(L,>0t?(1 — dr?™). We multiply it by K(z,1). Set A = Og_1(Hom(E)) (the Banach alge-
bra of functions whose coefficients are @(1/|n|?~1) for n € Z). We have(R(z,1) — R(1,1))/(z — 1) =
(R(z) — R(l))/(z —1) + 0O4(t). The proof of [14, Lemma 2.6], but in the algehrh and with tildes every-
where, applies (using Theorem A.3 to ensure that the inverses remdin ingives (A (z, t) — A(1,1))/(z — 1) =
(AMz) —A(1)/(z =1 + 04(t),i.e.K(z,1) = O(t/|n|P~1). Hence, Lemma 3.2 yields

I=o( —L— 41,503 1—ét2 ’
~ O \jppr 0 2 '

Since(R(z) — R(1))/(z — 1) = 0(1/|n|P), we prove thaB(z) = O(1/|n|?) as in the third step of the proof of
Theorem 2.4 in [14] (but in the Banach algelidg (Hom(E))). Since 1—- zB(z)/u vanishes at 1 (Step 7 of the
proof of Lemma 3.1 in [16]) and is i® (1/|n|?), it can be written agl — z)C(z) whereC(z) = O(1/|n|f~1).
To obtain Il, we multiplyC(z) by M(t)(1 — z)/(1 — (L — (1/w)M(1))z) = O(t? + 1, >0t*(1 — dt?)"). Lemma 3.2
yields

12 d 5\"
[ =O(W+ln>ot4<1—§t2) ) O
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Corollary 3.5. We have

- RG.0» - (I—ﬁ(z)> ( ! 3( d 2>)
- 0 Lisot?(1— ——t .
<1_(1—(1/M)M(t))z) 11—z T |- Tp=1 T >0 256
Proof. Let P(z,t) be the spectral projection associated to the eigenvaluer) of R(z,t), and Q(z,1) =
I — P(z,1). SetA = Op_1(Hom(E)). ThenR(z, 1) = R(z) + 0. 4(t) by assumption. AsA satisfies the Wiener
Lemma A.3, the integral expression of the pI’O]eC'[IB(E 1) shows thatP(z,7) = P(z) + O.4(t). Moreover,
I— R(z t)Q(z 1)=1-R(z) Q)+ 0a(t),whencell — R(z,1)0(z,1) 1= (I = R(2) 0(2)) "1+ 0.4(1), since

I — R(z)Q(z) is invertible in.4 by Theorem A.3, and the inversion is Lipschitz.
As

I-R@zt)=1-2z,0)P 0+ (I =Rz )0z 1))0(z 1),
Lemmas 3.3 and 3.4 yield that

( I —R(z,1) )‘1
- (1 — /WM (1))z
-(1- (1/M)M(l))Z Pzt + <1_ (1_ lM(Z))Z)([ _ R(Z, [)Q(Z, [))_1Q(Z,f)
1—i(z,1) 1

_ 1-z t 3 _i 2 n t
_[1—X<z>+0<|n|51+1”>°t (1 128’) )HP(Z”O(l P 1)]
+la-2+ 0(1n=ot2)][(1—Ié(z)é(z))‘1+ O(H%)][Q(ZHO(I |; 1)}
d 5 "
=== ()P(z)+(1—z)(1—R(Z)Q(z)) Q(z)+0(| T+ Lol <1—2—56t))
_(I-R@\* 1 d ,\"
-( 1_1) # 0t oo(1- 5gg) )
Corollary 3.6. We have
I—R(z1) t (1-R@E) t 3 d 5\"
(1—(1—(1/M)M(l))2> _< 1-z ) +0<| p1 ot (1‘5—12’))‘

Proof. Let x1, x2 be aC* partition of unity of ST such thatR(z) = R(z) on the support of1. Sincex1 is C*,
x1(2) = 0(1/|n|P~1). Writing A(z, 1) = ((I — R(z,1))/(1— (1= (1/w)M(1))z))~*, Corollary 3.5 ensures that

d n
x1(2)A(z, 1) = x1(2)A(z, 0) + O<| |;t3 1+ Laof (1_ 512 2) )

Concerningyz, we can modifyR outside of its support so thdt— R(z) is everywhere invertible o§™. Let A =
Op_1(HOM(E)). Sincel — R(z,t) =1 — R(z) + 0.4(t), Theorem A.3 yield§/ — R(z, N T=U—-Rx)) 1T+
O 4(t). Hence,

x2(2)A(z, 1) = x2(2)A(z,0) + O ;_ : O
In|p~-1

In fact, the functions in the previous corollary are defined on the wholeljsle. their coefficients for < 0
vanish. However, during the proof, it was important to work in a less restrictive context, for example to introduce
partitions of unity.
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Proof of Theorem 3.1. Set

F()_( I—R(z.1) )‘1_<I—R(z)>_1
W\ IS A - WMz 11—

and
-1
<1_7R(Z)> ~lria-nam
1-z 72
whereA(z) = 0(1/nf~1), by [32, Theorem 1] or [16, Theorem 1.1].
Then
S T2 = (1 - R@n)
! Lpy L 4+ @
= — z z
1-A-A/mM@)z 1 1-A-A/mM@)z 1-A- /WM
=141 +1.

The coefficient of” in I is 2 (1 — L M (1)) P. So, we have to bound the coefficients of Il and IIl to conclude.
By (9) and Lemma 3.2, the coefficients of Il belong to

1 1 d 5\"

2 2\n 2 2

[14+ O(r*(1 —dr?) )]*0<—nﬂl) c 0<_nﬂl +1 (1— 5! > )
For Ill, we get by Corollary 3.6 that the coefficient ¢f is bounded by

2\n ot 3. d o, "
O((1—dr%) )*0<nﬁl+t <1 512t) >

The convolution betweefl — dr?)" and3(1 — £45t2)" is bounded by the convolution betwegh— 45r2)"
andr3(1 — 512", which givesns3(1 — £5t2)". This is less thai'r (1 — 5,¢)", since
n n/2 1
S@A—ct?)' <Y (A= e A= er?)P < (L= et?) P =5
2 ct?
=0
As (1 — 15pat?)" <1(1— 519" * (-5=1), we get a bound of the form stated in the theorer.

4. The key estimate

In this section, the assumptions are as in Theorem 1.1Xiis.a Young tower whose return time satisfies
mlg > n] = 0(1/nP) with g > 2. We also assume that geg) = 1. Take alsof € C;(X) with [ fdm=0.

The goal of this section is to estimate precisﬂw'fsnf -u-vo T"dm whenu, v are functions orX. We will
use the same kind of perturbative ideas as in [30] and [17], but applied to transfer operators associated to inducec
maps on the basig of the tower (see [32]). Separating the different return times, it will be possible to use the
abstract Theorem 3.1, to finally get the key estimate Theorem 4.6.

4.1. First return transfer operators

Let 7' be the transfer operator associatedtadefined by[u-voTdm=[ Tu - vdm. Whenu is integrable
on X, itis given by

") = ) gn’ Mu),
Thy=x

Whereg,(,:’) is the inverse of the jacobian @f* at y.
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As the basisB of the tower plays a particular role, we will decompose the trajectories of the preimages of
underT”, keeping track of the moments their iterates fall agai®irMore formally, we introduce the following
operators:

Ryu(x) = > g (u(y),
Tlly=x
yeB, Ty,..., T" 1y¢B T"yeB

Taux)= Y g eu),

T"y=x
yeB,T"yeB
A= > g ),
T"y=x
ye€B, Ty,...T"y¢B
Byu(x) = > gt (Mu(y),
T"y=x

V.. T" 1y¢B T"yeB

Cau(r)= Y g Mu).

T"y=x

The interpretations of these operators are as folld®ygakes into account the first returnsBo while 7,, takes all
returns into account. Hence,

T, = Z Riy - Ry, (20)
k1+--+kj=n

The operatorsB, and A,, see respectively the beginning and the end of the trajectories, outsileTdfus, if x
is fixed andy satisfiesT"y = x and{y, Ty,...,T"y} N B # @, we can consider the firgt iterates ofy, until it
enters inB (this corresponds t®;,), then some successive returnspduring a timek (this corresponds t@y),
and finallya iterations outside oB (corresponding tai,). Thus,

T"=Coi+ Y AdTiBy (11)
a+k+b=n

The operatorC, takes into account the poingssuch thaty, Ty, ..., T"y} N B =@.
We perturb these operators, setting (foe= A, B, C, R, T, andt € R)

Xn(0)() = X, (€"50)).

Eq. (10) remains true witheverywhere:

Tu(t)= > R Ry (12)

ky+--+kj=n
Let 7(¢) be the perturbation df given by7 (1)(-) = 7'(€"/-). Then the following analogue of (11) holds:

T@W'=Ca+ Y AdTi(®)By(0). (13)
a+k+b=n

Let f5 be given by (1). Asfz = S, f on{y € B | ¢(y) = n}, we getR, (t)(u) = R, (€"/8u).
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Forz e D, write R(z) = Y_ R,z", and

R(z,1) = Z R,()7". (14)

n=0

Let T be the first return map induced Byon B, i.e. Tz(x) = T#™ (x). Then (14) corresponds to considering all
the preimages of a point iB underTg, whenceR(1) is the transfer operatdip associated td@’s, and

R, 1)(u) = Tp(dBu). (15)
Whenu is a function on a subset of X, we denote byD,u(Z) the best Hélder constant efon Z, i.e.
D.u(Z) = inf{C >0|Vx,yeZ, |u(x) — u(y)| < Ct‘v(x’y)} (16)

wheres(x, y) is the separation time af andy.
The operators,, andR,, (r) act onC,/(B) for anyt < 7’ < 1. Taken such that

O<n<min(1l/2, 8 —2) a7

and set = t". For technical reasons, we will let the operators ac€pB). We regroup in the following lemma
all the estimates we will need later. Their proofs are rather straightforward, but sometimes lengthy. Hence, we will
not give the details of the proofs, and rather give references to articles where similar estimates are proved.

Lemma 4.1.The operatorR,, and R, (¢) acting onC, (B) satisfy the following estimates

(1) 20,11 IRl = O(L/nP).
(2) The operatorR(z, t) satisfies a Doeblin—Fortet inequality

| R, 0"u| < CL4 1) (vlal) llull + Clzl ll] 1. (18)

In particular, the spectral radius aR(z, ¢) is < |z|, and its essential spectral radiusv|z|. Thus,/ — R(z, t)
is not invertible if and only ifl is an eigenvalue oR(z, t), and this can happen only fof| = 1.

(3) R(1) has a simple isolated eigenvaluelafthe eigenspace is the space of constant func}j@ml/ — R(z) is
invertible forz # 1.

(4) There exist€” > 0 such that, for any € R, for everyn € N*,

Y 1R - RO <C

k=n+1

(5) For everyt € R, there existsC = C(¢) such that, for any’ € R, for everyn € N*, |R,(t') — R,(1)| <
Clt' —t|Y2/nP-1,

Proof. The first assertion is a consequence of [14, Lemma 4.2]: it diRed = O (m[¢ = n]).
The inequality (18) is similar to [3, Proposition 2.1]. In this article, the hypothesis isihgk (B) < oo,
but the proofs work in fact as soon @sm(B;0) D, fp(Bio) < oo. In our case,D, fg(B;0) < Cy;, whence
> m(Bi,0)Dy f5(Bi,0) < CY . m(B;0)¢(Bio) = C by Kac’s Formula. Since the injectian, (B) — LY(B)is com-
pact, the statement on the essential spectral radiRg0f) is then a consequence of Hennion’s Theorem [18].
The third assertion is [14, Lemma 4.3].
The two remaining assertions are proved by direct estimates, similar to the estimates in [3, Theorem 2.4]. The
last one holds irfﬁ(X) but not inC (X). This is the reason of the requirement /. O

We will also need the following estimates dn (¢), B,(t) andC,(¢), acting onC,,(X).
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Lemma 4.2.Letu, v € L*°(X). There exists a constant such that, for any € R, for anya € N,

‘/Aa(t)(u)v_/Aa(“)U

Moreover, [ A, (u)v = O(1/a®), and
Z/Aa(lg)v:/v. (20)
a=0

Proof. Define a function’ on B by v'(x) = v(T“x) if ¢(x) > a, and 0 otherwise. Changing variables, we get
JAa®@v = [, g8/ yy'. Sincel€S«/ — 1| < |t|a|l flloo @andm (¢ > a) < C/aP, this implies (19).

Moreover,| [ Aq(u)v| < m(p > a)[[ullsollvlloo < (C/aP)ulloollv]ioo- Finally, [ Aq(1p)v = Jra
the setsI'“{¢ > a} form a partition ofX, (20) readily follows. O

1)
< C g luloellvlloe. (19)

(p=a) V- SiNCE

Lemma 4.3.Fort € R, By(t) = B, + O(|t|/bP~1), where|| B, || = O(1/bP) andVu € C,(X),

o0
Z/Bbudm:/udm.

b=0p X

Proof. Let A, be the set of points that enter in® after exactlyb iterations, so thaB,(¢)(u) takes the values
of u on A, into account. As in [3, Theorem 2.4], we check thid, (1) — Bp| < Clt|m(Ap) D, Sp f(Ap). As
D, Sy f < Chb andm(Ap) =mle > b] = 0(1/bP), we get indeed thatBy, (1) — By || < Ct|/bP~L.

Moreover, we check as in [14, Lemma 4.2.] tHa,|| = O (m(Ap)) = O(1/bP). Finally, asz Byudm =
S, wdm we gety”, [z Bpudm = [yudm. O

Lemma 4.4.Letu € L°°(X). There exists a constadt > 0 such that, for any € R, for anyn € N,

C
[€h @] 3 < 5 luloo.

Proof. SetX, 1 = X\ U;’ZOT—iB and Z,+1 = T"(X,+1). The functionC, (1) vanishes outside of, ;. Let
x € Zy4+1 and lety be its preimage undef”. Then |C,()(w)(x)| = [u(y)| < |lu|loo- Hence,||C (D) ()|l 1 <
m(ZpsDllulloo. Finally, m(Zy11) = m(Xp41) = 352, gm(e > p) = 0(L/n#~h. O

4.2. Result for the induced map

Eq. (15) and (2) in Lemma 4.1 imply that the perturbed transfer opefathrs) = T (1) = T5(€'/5.) has a
spectral gap. Thus, the classical methods of [17] apply to it, and yield an asymptotic expansion of the maximal
eigenvalue offg (1) (this implies a central limit theorem fdfg and the functionfs, but we are not interested in
it here). To estimate the speed in the central limit theorem, we will need a rather precise asymptotic expansion of
this eigenvalue, given by the following proposition.

Proposition 4.5.Assume thaT and f satisfy the assumptions of Theorérin a mixing Young tower. Let? be
the variance in this theorem. Then, for small enougR(1, ) has a unique eigenvalugl, 7) close tol. It can be

written asi(1,1) =1— %L(r) for a functionL such thatL(¢) ~ t2 when — 0.
Write Eg(u) = ﬁ [ u, and define a function on B bya = (I — Tp)~(Tp f3). Then

AL 1) = Eg(€"/®) —1?Ep(afp) + O(>). (21)
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Proof. Thefactthat(1,1)=1— o? (t?+0(1?)) is a consequence of [14, Theorem 3.7]. It remains to prove (21).

As everything takes place iB, wezng:gr)n multiplym by a constant, and assume thatB) = 1. SetR, = R(1,¢), and
let&; be the eigenfunction ak; corresponding to its eigenvalig close to 1. We normalize it so tht, = 1. We
will also write R = Rg = T.

Lemma 3.4 of [14] states that there exists a consfastich that, ifg : B — R is integrable,

Imﬂh<COﬂU+§}M&mDﬁme (22)
1

whereD, g(B; o) is the besv-Hbélder constant 0 on B, o, defined in (16). In particulaR fz € C,,(B).
Let us show that, i, (B),

éifs —1
R( - )=|Ruby+oay (23)
The Taylor Formula gives

s —1

1
- IfB = —lfg /(1 - M) eilufB du.
0

We use this formula to boun(ﬁ)v(eitff_1 — ifB)(Bi0), Where B; o is an element of the partition aB. Set

n = @(B; 0) the return time orB; 9. AS D, (h1h2) < Dy(h)|h2lloc + h1lleo Dy (h2),

e —1
Dv< ; - |fB)(Bi,0)
1

\mmmwm+memA;/m@WW&mm
0

<11 (fB)1810

The first term is< |t|n2. For the second term, takésuch thate” — 1| < C|s|" for anys € R (wheren was defined
in (17)). Then, ifx, y € B;.o,

|eithB(x) _ eilufB(y)| — |eitu(.fb(x)—f3(y)) —1< C|tu(f3(x) _ fB(y))|’7
< C|D: f3(Bi,o) "™ |" < Cny ),
whenceD, (éf“fB)(Bi,O) < Cn". An integration yields
difs _ 1 )
Dv< PR |fB>(Bi,0) < Jeln®t.
Eq. (22) gives that
efs —1
‘R( . —|f3> l)<C< lJrX:m[w=n]|f|nz+">-
As €8 — 1 —itfp| < t?f2, with f2 integrable, the first term i® (1). For the second terny, m[p = nln®"" =
S (mle > n — 1] — mlg > n)n?™" < CY m[p > nln**". Sincem[p > n] = 0(1/nP), this sum is finite by

definition of 5. This proves (23).
We return to the study of the eigenvalue As A&, = R;&;, we get after integration that

efs —1
‘ —1if

L

M=H&®+/@W—D@—D. (24)
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As fp e L? and [ fp =0, we have

. 2 2
@M =it [ fu- [ fhrour=1-5 [ s+, 25)

Moreover, by (4) inLemma 4. —1= O(||R; — R|) = O(t) in C,,(B), hence inL?, and &/s — 1=itfz+o(t) =
O(t) in L2, Consequently/ (€2 — 1)(& — 1) = O(t?), which implies that., = 1+ O (¢?).
Thus,

—1  MNE — - R; — R
Ett _ té"tt SO—G—O(I):(RZ )5 50 E t§0+ tt OEo—i-O(l‘).

As R, — Ro = O(t) and (§ —&o)/t is bounded,(R, — Ro)(& — &0)/t = O(t). Moreover, ((R; — Ro)/t)éo =
R((€"f8 —1)/1). Hence,

jtfs _
(I R)E S0 _ (é Bt 1)+0(r).

As Rfp € CV(B), and! — R is invertible on the functions af, (B) with vanishing integral ((3) in Lemma 4.1), it
is possible to define = (I — R)~"1(Rfs) € C,(B). Then, using (23),

jtfs _
(I—R)(Et 0 ia):R(e' . 1—if3)+0(t)=0(t).

As the inverse of — R is continuous on the functions with zero integral, we get thaf;,i0B) (hence inL®),
& =1+tia+ O@t?).

As €8 = 1+ itfg + O(t?) in L' since f2 is integrable, we get
f @ -1 -1 =—1 / fea+ 0.

Eq. (24) yields the desired conclusion

4.3. The key estimate

Theorem 4.6.Let X be a Young tower withi[¢ > n] = O(1/n?) for g > 2, andgcd(g;) = 1. Let f € C.(X) be
of zero integral. Let and L(¢) be given by Propositiod.5, and assume > 0. Then there exist > 0, C > 0 and
d > 0 such that, for any: € C;(X) andv € L*°(X), for anyn € N*, for anyt € [—«, «],

’/e'tSnf.u.voT”dm—(l—;L(t)) (/udm)(/vdm)’
X X X
1 1
<C|: +|t|( )*(1 dt?)" :|||M||||U||oo~

Proof. SetR(z,t) =>_ R,(¢)7", we wantto apply Theorem 3.1 Rz, r). Proposition 4.5 gives the behavior of the
eigenvalue ofR (1, r), while Lemma 4.1 shows the required estimates. Finally, the spectral projebt'ubrik(l 0)

is the projection on the constant functions Bngiven by Pg = ([, g dm)/m(B). It satisfiesPR'(1) P = P
[14, Lemma 4.4].

Consequently, we can apply Theorem 3.1 wih(r) = %L(t) and u = ﬁ. As > T,(t)z" = —

R(z, 1))~ 1 by (12), we get that there exists an error teffitn, ) such thatf}, (1) = m(B)(1— %L(r))”P + E(n,t),
with

m(B)

1 1
|E@m.n)| < c[F + It'(ﬁ) *x(1— dtz)”i| =:e(n,1). (26)
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In the following, C andd will denote generic constants, that may vary finitely many times. In particular, we may
write inequalities like 18(n, t) < e(n, t). With this convention, Lemma 3.2 implies that

1
<W) *xe(n,t) = O(e(n, t)). 27)

Letu € C;(X) andv € L*°(X). To simplify the expressions, we will assume that these functions are of norm at
most 1. Then (13) implies that

/eirsnf,u.voT":/f"(eifsnfu)v:/f(t)"(u)v

X X X
= ¥ [aonosow [ cow
a+k+b:nX X
02 k
= > /Aa(t)m(B)<1—7L(t)> P By (1) (u)v
a+k+b=nx
+ Y [awEcosowe s [ o (28)
a+k+b=ny X

By Lemma 4.4 [, C,(t)(u)v] < C/nP~L < e(n,1).

Let us bound the second sum of (28).Hfe C,(X), the function A,(t)h is supported inT%{y € B |
¢(y) > a}, whose measure iy > a]l = 0(1/a?). Thus,| [y Aq(t)h| < (C/aP)|h|o < (C/aP~1)|R]|. More-
over, || E(k, t)By(t)(u)|| < e(k, t)|| By(1)| < e(k, 1)C/bP~1 by Lemma 4.3. Thus,

c c
< ) et Np
a+k+b=n

1 1
<C<m>*e(n,t)*<m> <e(n,t) (29)

> [AwEk DB @@

a+k+b=ny

by (27).
The first sum of (28) can be written as

2 k
=y (/Aa([)(lB)U><1—%L(I)) (/Bb(t)(u)>.
a-+k+b=n X 3

Using Lemmas 4.2 and 4.3 and convolving, we find a sequepcich thatw, = O(1/n?), > w, = (fu)([ v),

and
] o\

As L(1) ~ t? whent — 0, the term coming fronO (|z|/n?~1) is bounded byiz|(1/nf 1) » (1 — d1?)" < e(n, 1).
Moreover, forx, y € R,

le" —e’| < |x — y| €M), (30)
Thus,
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n 2 k n 2 n
o o
E U)n_k(l— 7L(l)) —kE_Ou)n_k(l— 7L(I)>

k=0
02 02 k
\E: kW k)M(l—??LUO‘CL—??LUO
<e(n,t).

<§:cﬂu—dﬂf

1
—p—1
= n—k)p

Hence, up tad (e(n, 1)), the integralf €5/ . u - v o T" is equal t0Y_; _o wy—k (1 — “—;L(t))”. Finally,

This concludes the proof.O

Whenu = v =1, Theorem 4.6 states that, for smalithe characteristic function o, f behaves essentially

like (1 — éL(t))”, which is very similar to the characteristic function of the summdhdependent identically
distributed random variables. Hence, using this estimate, it will be possible to use the classical probabilistic proofs
to get the local limit theorem or the Berry—Esseen theorem. However, some care is still required to check that the
error term in Theorem 4.6 is sufficiently small so that these proofs still work.

5. Proof of the local limit theorem
5.1. Periodicity problems

This paragraph is related to the end of Section 3 of [3]. The differences come mainly from the inductive process
and the fact that we are considering series of operators instead of a single operator.

Let X be a Young tower with gag;) =1,7 <1 andf € C;(X). Fort e R, €'/ is said to becohomologouso
a constank e St if there existso: X — St such that & = A(w o T)/w almost everywhere.

Proposition 5.1.Letr € R, andz € S1. The following assertions are equivalent

1. €' is cohomologous te~ 2.
2. lis an eigenvalue of the operat®(z, ¢) acting onC, (B).

Proof. Suppose first that there exists a nonzere C,, (B) such thatR(z, f)w = w. AS R(z, t)(v) Tp(z¥ €'fby),
the adjoint operator oR (z, 1) in L?is W (v) =z ¥ e /8y 0 Tg. Then|Wo — w12, = [Wo|2, — ||o||2,. As Ts
preserves the measure, we hiiwd|; > = || Wol| 2, whence| Wow — || ;2 = 0. Consequentlyy = z 7% e 1fBywoTy
almost everywhere. Taking the modulus} = |w| o Tg, and the ergodicity of s gives thajw| is almost everywhere
constant. We can assume that = 1. We extend the functiom to X by setting

w(x, k) =w(x, 0)ei’f(x’0) . gif k=1 ok
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Then, fork < ¢(x) — 1, we have by constructiono T (x, k) /w(x, k) = z €/ ®-K)  Moreover, fork = ¢(x) — 1,
woT(x,k)/w(x,k) =wo Tg(x,0)/w(x, k) = /BE&O K1« 0)/w(x, k) =d R,

Thus, & = 771w o T /w almost everywhere. _
_ Conversely, suppose that a measurable functigatisfies B’ = 271w o T/w. The previous calculations give
ef8 = 779w o Ty /w. The operatoR (z, 1) = Tg(z* €'/5.) acts onL!, and satisfies

R(z. 1) (@) = Tp(z* €2w) = Tg(wo Tp) = 0.

But, in Lemma 4.1, we have seen th(z, ¢) satisfies a Doeblin—Fortet inequality between the spagés) and
L(B). [20] ensures that the eigenfunctions Bz, r) in L1(B) for the eigenvalue 1 are in fact ifi,(B), i.e.
weCy(B). O

Corollary 5.2. The setll := {t e R | €'/ is cohomologous to a constans a closed subgroup d@&. Moreover, for
everyr € 2, there exists a unique(r) € ST such thate’/ is cohomologous ta(r). Finally, the map — z(¢) is a
continuous morphism from to S

Proof. The setl is clearly a subgroup oR. If €'/ is cohomologous simultaneously toand 7/, thenz’ =
@"°T )z for some functionz: X — R. As T is mixing [35, Theorem 1(iii)], the only constastsatisfying
g o T = sg for some nonzero functiog is 1. This implies that = z’. The map — z(¢) is thus well defined, and
it is clearly a group morphism.

It remains to check that is closed and thai(r) is continuous. Let, be a sequence &f converging tol’ € R.
Let Z be a cluster point of the sequengg,). By (5) in Lemma 4.1(z,t) — R(z,t) is a continuous map with
values in HondC, (B)). If I — R(Z~1, T) were invertible, therd — R(z; %, ,) would also be invertible for large
enoughn, which is a contradiction by the previous proposition. Thus; R(Z~1, T') is not invertible, whence 1
is an eigenvalue oR(Z~1, T) by quasi-compactness. This implies thiat 2 and Z = z(T'), once again by the
previous proposition. O

Consequently, there are three cases to be considered for the local limit thé&biismeitherR, or {0}, or a
discrete subgroup &. Ifitis R, [25] ensures thaf can be written ag — g o T, hences = 0 in the central limit
theorem, and there is nothing to provellf= {0}, it is not possible to writef asp + g — go T + Aq, Wherep € R,

g:X — Ris measurable) > 0 andg : X — Z, i.e. f is aperiodic. This case is handled by Theorem 1.2. Finally,
A =2n7 means thatf = p + g — g o T + ¢ wWhereq takes integer values, and that there is no such expression
whereq takes its values inZ with n > 2. This is dealt with in Theorem 5.3.

5.2. The aperiodic case

Proof of Theorem 1.2. Let f be an aperiodic function oK, as in the hypotheses of Theorem 1.2. Then, for every
(z,1) € (D xR)—{(1,0)}, I — R(z, 1) is invertible: for|z| < 1, the spectral radius &(z, r) is at mostz| < 1 ((2)
in Lemma 4.1), and foyz| = 1 this comes from Proposition 5.1 and Corollary 5.2, sigice {0}.
Let @ > O be given by Theorem 4.6: we control the behavior of the integrals Whet«. Take K > 0. We
will show the following factthere existC > 0 such that, for everyr| € [«, K], for everyn € N*, for all functions
ue Cy(X)andv € L®(X),

/ei’S’lf-u~voT”
X

Let us write A = O/‘g*fl(Hom(C,,(B))) (the Banach algebra of serigsg” A,z" where A, € Hom(C,(B)) and

IAxll = O(1/nP=1), with the norm | 3" A,2" || = sup,en(n + DPL|A, ). The maps — R(z,1) is contin-
uous from[—K, —a] U [«, K] to A ((5) in Lemma 4.1). Moreover] — R(z,t) is invertible onD for ¢ in

<

lull vl so- (31)

nf-1
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these intervals. Theorem A.4 shows tli&t— R(z,¢))~! € A, and the continuity of the inversion even yields
thatr — (I — R(z,1))" 1 is continuous. By compactness, there exiStsuch that||(I — R(z,1)) 1|4 < C for
|t| €[a, K. As (I — R(z,1)) "1 =3 T,,()z", this implies that| 7,, (1) || < C/nf~2, uniformly in » andr.

We have

/eitSnf.u.voT":/C,,(t)(u)v+ Z /A ()T (1) By (1) ().

a+k+b=n X

By Lemma 4.4 [, C,(1)(w)v| < (C/nP~Y)|lul s v]lc- By Lemmas 4.2 and 4.3,

C C
‘/Aa(t)Tk(t)Bb(t)(u)v < F”Tk(t)Bb(t)(”)”oo”U”oo < FIITk(t)IIIIBb(t)II||uI|||v||oo
< C
S 1AL pp-1 llullllvioco-
Thus,

‘/eitS”f-u-voT”
X

<C 1 1 1 < C
R Y= el v =l Rl Wy lullllvlieo < Fllullllvlloo,
and (31) is proved.

We prove now the local limit theorem, using the method of Breiman [7]. Takeandk, as in the assumptions
of Theorem 1.2. Lety € LY(R) be such that its Fourier transforgh is supported iN—K, K]. Theny (x) =

£ (K ()€ dr, whence

(r)E(eiz(s,lf—k,l_u_voTn)) d&

<>

\/EE(W(Snf_kn —u _UOTn))_

¥% 5’!§

N‘Q\ R = lw\m

I&(lt) efizk,, E(eitS,,f efim efitvoT") dr
f t) e‘”"”E(e"S"f e—ltu e—ltvoT”) dr. (32)
1<K

Fora < |f| < K, the norms|le™""#|| and [e7""?||, remain bounded. Hence, (31) implies thate’ S/ e~ x
e ivoT" )| < C/nﬂfl. Therefore, the second integral tends to 0. For the first integral, we approxiiete / x

g it gmitvel™y by (1 — %ZL(t))" [e7i [ g7V By Theorem 4.6, the error term is bounded by

r/1 1 -

Let us show that this integral tends to 0. This is clear for the first term. For the second term, we cut the integral
in two pieces. Foit| < 1/./n, the convolution is bounded (sinc}—ﬁ}_—:L is summable andl — dr?)" < 1), whence

the integral is< C\/ﬁfmgl/ﬁ |t|dr — 0. For|t| > 1/4/n, Lemma 3.2 gives that the convolution is bounded by
1/(t|nP~H + 111 - dtz)”, whence the integral is less than

CJn / IIﬂ ——— +[t|(1—dr?)"dt < cf
1/ /n<|t|<a

— 0.

|:(1_ dt2)n+li|01
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Finally, we have proved that
’ . 2 no .
VIE(W(Syf —kn —u—voT") = ‘z/—f / U (r) e (1 - %L(t)) E€"™)E@E ™) dr + o(1).
But

Vi [ —itky a? N it —irv
E/w(t)e (1—?L(t)) Ee"™E@E")dr

r
_ 1 (L —itkn/ﬁ( _o? <L)>" Sidu i
T 2n / 1l’(\/ﬁ)e 1-SL NG E(e V")E(e Vi')dr

1 N ; o2
— —/w(O)e*"K e*T’Zdt,
21
R

by dominated convergence. We have used the factittrat~ 2 close to 0, and in particular, if is small enough,
(1-— “—;L(t/ﬁ))" < (1— o262/ (4n))" < e°°*/4 which gives the domination.
Sety (k) = e <"/ /(5+/277). We have proved that, for any in L with ¢ compactly supported,

ﬁE(w<snf—kn—u—voT">)»x<K>/w<x>dx. (33)
R

Eqg. (33) can then be extended to a larger class of functions by density arguments (see [7]), and this larger clas:
contains in particular the characteristic functions of bounded intervals. This concludes the pnoof.

5.3. The periodic case

The following theorem gives the local limit theorem when the graugf Paragraph 5.1 is a discrete subgroup
of R, for example 2 Z.

Theorem 5.3 (local limit theorem, periodic case)et X be a Young tower witlgcd(p;) = 1. Assume that
mlp > n]= 0(1/nP) with 8 > 2. Lett < 1. Takef € C,(X) of zero integral, and 2 given by Theorer.1

Assume thaf = p + g whereq takes integer values angde R, but that f cannot be written ag = p’ + g —
goT +xrq’,wherex e N— {1} andq’: X — Z (this implies in particularc > 0). Then, for every sequengg with
k, —np € Z such that, //n — k € R,

e «%/(20%)
oN2r
Proof. This is essentially the same proof as that of Theorem 1.2, but we use the Fourier transfo(ieoRourier

series) instead of the Fourier transform®n
If k and! are two integer numbers,

Vam{x € X | S, f(x)=kp} —

T
1 .
Lo = — / g!=h gy,
2

-7
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Applying this equation td&, — np ands,, f (x) — np and integrating gives

Y

1 . .
m{x e X | Sy f(x)=ky}= o / ek g (&S dr.
JT
—TT
This is an analogue of (32). From this point on, the proof of Theorem 1.2 applies. The only problem is to check that,
on[—m,—a]Ul[a, ], I — R(z,t) is invertible forz € D. This comes from the assumptions gnwhich ensures
that! — R(z, 1) is invertible as soon as¢ 27 7Z, by Proposition 5.1 and Corollary 5.2, siftle=277. O

6. Proof of the central limit theorem with speed

Proof of Theorem 1.3. The Berry—Esseen Theorem [12] implies that the result will be proved if we show that, for
somec > 0,

cy/n
1 ; 2 /072 1
il /NS fy _ o= (0%/2)t — =
/|t||E(é )—€ |dt—0(n8/2).
—cyn
We first estimate the integral betweerl/n and Vn:
1/n 1/n 1/n
/%|E(ei(l/«/ﬁ)5nf)_e—(02/2)12|dtg / |71||E(é<z/ﬁ>snf)_l|dt+ / %W—(UZ/Z)IZ—Mdt
—1/n —1/n —-1/n
1/n 1/n 2
1 o
< —E(|S dr —|t| dt.
/ﬁ (1S £1) +/ .
—1/n —1/n

But [ IS, f1 <n [|fI|, whence we ge© (1//n) for this term.
Let L(z) be given by Proposition 4.5. Then, for small enough

/ L |E@evmsity g2 | g

|1
2 n
o t 2 2
1-—L(— —g (@721

1n<t|<ev/n

/ 1
< -
It

1/n<tI<e/n

dr

n / Llg@ermsisy_ (120 (Z2)) a
I 2 "\ '
1/n<|t|<e/n
Let us show that the second term satisfies
1 - o2 r \\" 1
L p@evms.s _(1__L<_)) d =0(—>.
f 1| ¢ ) 2\)) |\

n<lr|<ey/n

Sete(n, 1) = C[1/nP~1 + |¢t](1/nP~1) » (1 — d1?)"]. By Theorem 4.6,

‘E(é“/ﬁ)&l«f)— (1—“—2L(L>>" <e(n L)
2 \yn)) | =\ )
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Thus, it is enough to prove that
f "’(””/ﬁ)dtzo(i).
lt] NG
1/n<tI<ey/n

For the term 1n#~1in e(n, 1), the integral iC (Inn) /n?~1, which isO (1//n).
For the other termna(n, 1) = |¢|(1/nf~1) » (1 — dt?)", we cut the integral in two pieces. F|mr < 1, the convolu-
tion is bounded (since/k#~1 is summable andl — dr?/n)" < 1). It remalnsfl/n |l Il dr < L. For|e| > 1, we

1] Jn ﬁ
use Lemma 3.2, which gives thetin, 1) < 1/(¢|n#~1) + |¢](1 — 42)". Thus,

ﬁl t
L < - —dt2/2
1/|t| c(n ﬁ) dr 2,1 /S I dr + f dr = (\/_>

Finally, we have proved that

e
|E(e|<r/f>snf) e <"2/2>’2\dt
It
7(:\/_
1 o2 t n 29,2 1
< —N1-=L[—=)) —e©/2"|d 0(—). 34
|me( 2 (ﬁ)) © R 5y
t|<ca/n

We have only to deal with the powers of a function. Hence, it will be possible to use the same methods as in
probability theory. More precisely, the study of the speed in the central limit theorem in [19, Theorem 3.4.1] uses
the two following facts:

1. Ifarandom variablé satisfiest (|Z[217)~.) = O(z %) with 0 < § < 1 and, in thel = 1 case £ (Z317/<,) =
0(1), then there exists a constant > 0 such thatE(e’?) = 1 — Lzztz(l + y (), with [* 2|y (1) dt =
0(x3+5) whenx — 0.

- If afunctiony () SatisfieSffx 270l dr = 0(x3+%) with 0 < § < 1, ando? > 0, thenA(r) := (1 + 7 (1))
sat|sf|esft|<cf i [(1— "ZA(ﬁ))n — e—(oz/Z)r2| dr = 0(n=%/2).

By Proposition 4.5, the eigenvalugr) of 7 (7) is equal toE 5 (€'/5) + a2 + O(¢3) for some constant. The
fact 1 applied to the random variabfg : B — R implies thatEB(ei’fB) =1- 222‘2(1 + y(¢)) for some function

V(t) Satiszingffx t2|)/(t)|dt= 0(X3+3).AS)\(I)= 2m(B)L(t) thlSlmp“EStha]L(t)_t2(1+m(B))“2y(;)+
O(1)). Hence, we can writé (1) = 12(1+ 7 (1)) with [*_r2|7(1)|dr = O (x3). Therefore, the fact 2 implies that
f\t|<cf \Tlll(l_ U_ZL(\LF))n _ e—(oz/Z)[2| dr = O(n—é/Z)_

By (34), we obtamf“/} LIE@VSIT) - e=©@%/21%| dr = 0 (n=3/2), which concludes the proof.00

Appendix. The Wiener Lemma

In this appendix, we prove that the algeld?a(C) introduced in Paragraph 3.1 is indeed a Banach algebra, and
that it satisfies a Wiener Lemma (Theorem A.3).
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LetC be a Banach algebra, and tgke- 1. Writew, = (n + 1)~ for n > 0. There exists a constansuch that
(wy) * (wy) < cw,. We define a norm o, (C) by

> A" <Z||A,1||+ sup 12zl ””) <Z||A I+ csupl 2l ””) (A1)

w
nez nez n=0 Wn nez n<0 Inl

Proposition A.1.LetC be a Banach algebra, and > 1. With the norn(A.1), O, (C) is a Banach algebra.

Proof. The completeness is clear. It is sufficient to prove the submultiplicativity of the norm for one half of this
norm, for example the first one. Let us writ® | A,z"|l1 = _ | Axll, @and Py, (3_ Anz") = SUp,>g [l Axll/wn. Then,
if A=) A,z" andB =) B,7", we have||AB||1 < ||A|l1||B|1- Moreover, forn > 0,

”(AB)n” < Zk lAx By k|l

Wy = Wy
1 n
<= Il ABu &Il +
Wn =0 k=— k=—

(w *w)y
< Py(A)Py(B)

+ [|All1Py (B) + [| Bl[1Pw (A).

n

Thus, P, (AB) < cPy,(A)Py,(B) + ||Al|l1Pw(B) + || B||1Py(A). This gives the conclusion.O

We will now identify the characters of the commutative algeBydC), i.e. the algebra morphisms frofh, (C)
to C. Forx € 1, we can define a charactgy on 0, (C) by x;.(a) = a,\"

Proposition A.2. The characters oD, (C) are exactly thex,, for A € st

Proof. This result is given by Rogozin in [28], but there is a (density) problem in his argument,£d¥. A cor-
rection is given in [29], and a more direct argument can be found in [13, Theorem 1.2(12].

The following theorem has been thoroughly used in Section 3. It is a Wiener Lemma in the aly&lana

Theorem A.3.LetC be a Banach algebrg; > 1, andA(z) =), ., Ax2" € O, (C). Assume that, for evetye st
A(z) is an invertible element @f. ThenA is invertible in the Banach algebr@,, (C).

Proof. Gelfand’s Theorem [31, Theorem 11.5 (c)] ensures that, if an elemeh& commutative Banach algebra
satisfiesy (a) # 0 for every charactey, thena is invertible. With Proposition A.2, this gives Theorem A.3 for
0, (C).

To handle the case of a general noncommutative Banach algebra, we use Theorem 3of [6].

The same kind of Wiener Lemma holds in the aIge(Bg}’a(C) (also defined in Section 3.1):

Theorem A.4.LetC be a Banach algebra; > 1, andA(z) =), .y AnZ" € (9;; (C). Assume that, for evetye D,
A(z) is an invertible element @f. ThenA is invertible in the Banach algebr@; ©).

Proof. This is the same proof as in Theorem A.3 (but here, the characte@;cm) are given byy; (a) =
Y ohay foraeD). O
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