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Abstract: We prove that the Birkhoff sums for “almost every” relevant observable in
the stadium billiard obey a non-standard limit law. More precisely, the usual central limit
theorem holds for an observable if and only if its integral along a one-codimensional
invariant set vanishes, otherwise a

√
n log n normalization is needed. As one of the two

key steps in the argument, we obtain a limit theorem that holds in Young towers with
exponential return time statistics in general, an abstract result that seems to be applicable
to many other situations.

Introduction

The subject of this article, the stadium billiard, belongs to the class of dynamical sys-
tems that are sometimes referred to as intermittent ones. This name is related to the
weakly chaotic nature of the time evolution that accounts for a modified, relaxed appear-
ance of the behavior characteristic to systems with uniform hyperbolicity. In particular,
the mathematically rigorous investigation of the stadium started with [Bun79] where
Bunimovich showed (with respect to the natural invariant measure) that the Lyapunov
exponents are almost everywhere non-zero, and that the system is ergodic. Thus in that
respect the stadium billiard resembles dispersing billiards, however, when finer statis-
tical properties are discussed, deviations start to show up. Recent works by Markarian
([Mar04]) and Chernov–Zhang ([CZ05]) have obtained an upper bound on the rate of
mixing: given two sufficiently smooth (Hölder or Lipschitz continuous) observables,
their correlations decay asO((log n)2/n). Although this upper bound is most likely not
sharp, it is definitely not far from the optimal either (see Corollary 1.3). In this paper
we investigate the issue of probabilistic limit laws and provide further evidence of the
intermittent nature of the dynamics. Namely we show that the limit behavior of a suffi-
ciently smooth observable with zero mean, to be denoted by f0, is characterized by a
quantity I (cf. (1)), its average along the one dimensional set of trajectories bouncing
forever along the straight segments. In the typical case I �= 0, the Birkhoff sums of f0
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satisfy a non-standard limit theorem – convergence in distribution to the Gaussian law
can be obtained with a

√
cn log n normalization, where the constant c is a multiple of I 2,

see Theorem 1.1. On the other hand the central limit theorem in its usual form applies
if I = 0, see Theorem 1.4. These results have some almost immediate corollaries: we
obtain the analogous limit theorems for the billiard flow (Corollary 1.6) and, though in
a very weak form, some lower bounds on the rate of correlation decay (Corollary 1.3).

The issue of probabilistic limit laws in dynamical systems has a long history. In
the chaotic setting the possibly most frequently applied method is Gordin’s martingale
argument (see [Gor69], or [You98] and references therein) that roughly states that under
quite general conditions, whenever the correlations decay at a summable rate, the usual
central limit theorem holds. This technique, however, cannot treat non-standard limit
behavior or non-summable decay rates. Recently Aaronson and Denker have proposed
an approach to the issue of non-standard limit theorems, see e.g. [AD01]. The dynamical
systems they study, the so-called Gibbs-Markov maps, possess some important features
characteristic to uniformly expanding Markov maps of the interval, in particular, they
are strongly chaotic. However, the functions f for which limit theorems are proved
are unbounded, and do not even belong to L2. This setting allows for the use of Perron-
Frobenius techniques: there is a one parameter family of transfer operators the spectra of
which give precise information on the limit behavior of the observable. In particular, the
Birkhoff sums satisfy exactly the same limit theorem that an i.i.d. sequence of random
variables with the distribution of f would have. For details see [AD01] and Sect. 3.1 of
the present paper.

The above ideas can be implemented to treat limit laws for bounded functions in
weakly chaotic systems T0 : X0 → X0 in case the following scenario applies. Let us
assume that the source of non-uniformity in hyperbolicity is a well-distinguishable geo-
metric effect. Then one may consider a subsetX ⊂ X0 such that the first return map onto
X is uniformly hyperbolic, however, our observable induces an unbounded function on
X. Thus we arrive at a setting close to that of [AD01]. This line of approach has been
successfully applied to systems for which the induced map is Gibbs-Markov (see e.g.
[Gou04]), which, however, is not exactly the case of the stadium billiard.

What replaces Gibbs-Markov property in billiards is the presence of a Young tower,
an object that has turned out to be very effective when estimating the rate of the decay of
correlations. There are two versions of Young towers: those with exponential return time
statistics ensure rapid mixing – exponential decay of correlations – via Perron-Frobenius
techniques ([You98]), while those with polynomial return time statistics give polynomial
bounds on the rate of correlation decay – slow mixing rates – via coupling techniques
([You99]).As to the case of the stadium billiard, theYoung towers constructed in [Mar04]
and [CZ05] have polynomial return time statistics with respect to the original map, and
exponential return time statistics with respect to the induced map. The aim of the present
paper is, in addition to present our results on the stadium billiard, to demonstrate that
Young towers, originally designed to estimate mixing rates, are almost equally powerful
when the issue of various limit laws is investigated. Note that this fact has already been
observed and emphasized by Szász and Varjú in the papers [SV04a] and [SV04b].

The proof of Theorem 1.1 consists of two clearly distinguishable ingredients. On the
one hand, via Perron-Frobenius techniques, we prove Theorem 3.4, a general result in
Young towers with exponential return time statistics. This concerns the limit behavior of
the Birkhoff sums of observables belonging to the non-standard domain of attraction of
the Gaussian law. It is important to note that, as the Gibbs-Markov property is replaced
by aYoung tower, a new effect shows up that typically rescales the normalizing sequence
with a constant multiplicator. We would also like to emphasize that this first ingredient
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of the proof is completely general and could be applied to many other situations. On the
other hand, the second ingredient is directly related to the stadium billiard. We rely on
[Mar04] and [CZ05] when considering a suitable induced map that allows for a Young
tower with exponential return time statistics. However, in order to “pull back” the limit
theorem from the Young tower to the phase space of the billiard, and in order to give a
transparent interpretation in terms of quantities easy to calculate, we need to perform a
finer and more detailed geometric analysis of the stadium than the one presented in the
above two papers.

We strongly do believe that our line of approach could be applied to obtain non-
standard limit theorems in many other hyperbolic dynamical systems, in particular, in
certain billiards with slow mixing rates. One of the most interesting candidates, the infi-
nite horizon Lorentz process, for which the significance of the limit behavior is further
emphasized as it may give an effective tool to discuss recurrence properties, is investi-
gated by Szász and Varjú ([SV05]). Among others, it is also worth mentioning skewed
stadia (see [CZ05]) and dispersing billiards with cusps ([Mac83]). We plan to turn back
to these systems in separate papers.

The article has five sections. In the first one we state our main results and fix some
basic notation. The second section is devoted to general results on the stadium billiard.
We essentially recall the existence of Young towers for an induced map, proved by
Markarian in [Mar04]. In the third part, we study abstract Young towers and establish a
spectral perturbation estimate. In particular, to get a limit theorem, it is sufficient to study
an integral with sufficient precision. In Sect. 4, we come back to the stadium billiard
map, and describe geometrically this integral. With a careful study of the singularities
of the stadium map, this gives an accurate description of this integral. Finally, in Sect. 5,
we use together the abstract results of Sect. 3 and the explicit estimate of Sect. 4, to
prove Theorem 1.1.

1. Results

Let � > 0. We consider a region in the plane delimited by two semicircles of radius 1,
joined by two horizontal segments of length �, tangent to the semicircles. To a point on
the boundary of this set and a vector pointing inwards, we associate an image by the
usual billiard reflection law. This defines the stadium billiard map T0 : X0 → X0. This
map admits a unique absolutely continuous invariant probability measure µ0.

A point in the phase space X0 is given by (r, θ), where r ∈ R/(2π + 2�)Z is the
position on the boundary, and θ ∈ (−π/2, π/2) is the angle with respect to the normal
to this boundary at r . The invariant measure µ0 is given by

dµ0 = cos θ dr dθ

2(2π + 2�)
.

We will assume that r = 0 corresponds to the lower endpoint of the right semi-circle,
and that the boundary is oriented counterclockwise. Hence, the semicircles correspond
to 0 � r � π and π + � � r � 2π + �.

Let f0 : X0 → R be a Hölder function. We will be interested in the asymptotic
behavior of the Birkhoff sums of f0. The map T0 is slowly mixing, by [Mar04] and
[CZ05]: its correlations decay (at least) likeO((log n)2/n). This estimate is not summa-
ble, whence the usual Gordin martingale argument to get a central limit theorem does
not apply. We will indeed prove that the usual central limit theorem does not hold.
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Let

I = 1

2�

[∫
r∈[π,π+�]

f0(r, 0) dr +
∫
r∈[2π+�,2π+2�]

f0(r, 0) dr

]
. (1)

This is the average of f0 along the trajectories bouncing perpendicularly to the segments
of the stadium.

In this article, we prove the following theorem:

Theorem 1.1. Let f0 : X0 → R be Hölder continuous, satisfying
∫
f0 dµ0 = 0 and

I �= 0. Then

∑n−1
k=0 f0 ◦ T k0√
cn log n

→ N (0, 1),

where

c = 4 + 3 log 3

4 − 3 log 3
· �2I 2

4(π + �)
.

Remark 1.2. Note that here, and throughout the paper, log means logarithm with respect
to the natural base e. This is related to the fact that, at the level of concrete calculations,
c is obtained as a sum that approximates the Riemann integral of the function 1

x
, see

Sect. 4.

Corollary 1.3. Under the assumptions of Theorem 1.1, the quantity n
∫
f0 ·f0 ◦T n0 does

not tend to zero.

Proof. We have

∫ [n−1∑
k=0

f0 ◦ T k0
]2

= n

∫
f 2

0 + 2
n−1∑
i=1

(n− i)

∫
f0 · f0 ◦ T i.

If
∫
f0 ·f0 ◦T i = o(1/i), we obtain

∫ [∑n−1
k=0 f0 ◦ T k0

]2 = o(n log n). In particular, the

variance of the random variable
∑n−1
k=0 f0◦T k0√
n log n

tends to zero. This implies that this random
variable tends to zero in probability, which is in contradiction with Theorem 1.1. ��

This corollary indicates that the upper bound O((log n)2/n) on the decay of corre-
lations, proved by Markarian and Chernov-Zhang, is close to optimal (it may probably
be replaced by O(1/n), since the (log n)2 seems to be due to the technique of proof).

We also obtain the following (easier) result:

Theorem 1.4. Let f0 : X0 → R be Hölder continuous, satisfying
∫
f0 dµ0 = 0 and

I = 0. Then there exists σ 2 � 0 such that
∑n−1
k=0 f0 ◦ T k0√

n
→ N (0, σ 2). (2)

Moreover, σ 2 = 0 if and only if there exists a measurable function χ0 : X0 → R such
that f0 = χ0 − χ0 ◦ T0 almost everywhere.
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Hence, when I = 0, the Birkhoff sums of f0 satisfy a usual central limit theorem.
Before going into the details of the proof we consider one particularly interesting

observable: the free path. Given x = (r, θ), we denote T0x = (r1, θ1) and define τ0(x)

as the planar distance of r and r1. In other words, τ0(x) is the length of the trajectory seg-
ment the point particle follows until the next collision. To investigate the limit behavior
of the free path τ0 : X0 → R, we have to subtract its mean E(τ0) = ∫ τ0 dµ0, thus we
define τ ∗

0 (x) = τ0(x)−E(τ0). There is a remarkably simple formula for E(τ0) that can
be obtained by comparing the invariant measures for the billiard map and the billiard
flow (see [Che97]):

E(τ0) = π(π + 2�)

2�+ 2π
. (3)

On the other hand, we may easily calculate (1) as we have τ0(r, 0) = 2 whenever
r ∈ [π, π + �] or r ∈ [2π + �, 2π + 2�], thus Iτ0 = 2 and Iτ∗

0
= 2 − π(π+2�)

2�+2π . This

means there is a “best” stadium with � = �∗ = 4π−π2

2π−4 ≈ 1.18 for which Iτ∗
0

= 0 and
consequently, by Theorem 1.4 the (centralized) free path satisfies the usual central limit
theorem. However, whenever � �= �∗, we have Iτ∗

0
�= 0 and, by Theorem 1.1 a stronger

normalization is needed.
It is interesting to know when the central limit theorem of Theorem 1.4 is degenerate,

i.e., when σ = 0. The coboundary condition f0 = χ0 − χ0 ◦ T0 is not easy to manipu-
late, since it is valid only almost everywhere, but it is nevertheless quite restrictive, by
Livšic-like arguments. For example, we can prove the following:

Proposition 1.5. In the stadium with � = �∗, the free path satisfies a non-degenerate
central limit theorem, i.e., σ �= 0.

This proposition will be proved in Subsect. 5.3.
Our interest in τ0 is also related to the fact that the billiard flow may be considered as

a suspension above the billiard map with the roof function τ0(x). By [MT04] suspension
flows do inherit some statistical properties from the base transformation, in particular
limit theorems, under quite general conditions. Let us denote the billiard flow by

Xτ = {(x, u) | x ∈ X0, 0 ≤ u ≤ τ0(x)}/ ∼, (x, τ0(x)) ∼ (T0x, 0),

St (x, u) = (x, u+ t), µτ = µ0 × Leb

E(τ0)
,

where the action of the flow is understood modulo identifications. Consider a Hölder
observable � : Xτ → R satisfying

∫
� dµτ = 0, and define

�T (x) =
∫ T

0
�(Stx) dt;

J� = 1

2�

[∫
r∈[π,π+�]∪[2π+�,2π+2�]

∫
t∈[0,2]

�(r, 0, t) dt dr

]
.

Corollary 1.6. 1. If J� �= 0, then

�T√
c

E(τ0)
T log T

→ N (0, 1).

Here c is the constant from Theorem 1.1, with I replaced by J�.
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2. If J� = 0, then

�T√
T

→ N (0, σ 2
�)

for some σ 2
� � 0.

Proof. Define f0 : X0 → R as f0(x) = ∫ τ0(x)

0 �(St (x, 0)) dt . The function f0 is
Hölder,

∫
f0 dµ0 = E(τ0)

∫
� dµτ = 0 and If0 = J�. Hence, depending on the value

of J�, one of our two main theorems applies. To show that� inherits the limit behavior
from f0, we apply the flow version of [Gou03, Theorem A1] recalled as Theorem 5.1 in
this paper (see also Remark 5.2). We only need to check that the three conditions of this
theorem are satisfied. In case J� �= 0 (and even if J� = 0 and � = �∗) Conditions 1 and
3 are satisfied with b = 1. Then Condition 2 is merely the Birkhoff ergodic theorem, thus
the first statement is established. If J� = 0, the appropriate normalization for τ0 may
be

√
n log n as opposed to

√
n needed for f0. Thus Conditions 1 and 3 of Theorem 5.1

are satisfied for any 0 < b < 1, but not for b = 1. This means Condition 2 has to be
established for some b < 1, but this is merely our Remark 5.6. This completes the proof
of the second statement. ��

We will say that a Hölder continuous function f0 : X0 → R with vanishing integral
satisfies (P1) if I �= 0 and f0 vanishes on the set of points x such that x, T0(x) and
T −1

0 (x) belong to the same semicircle, and that f0 satisfies (P2) if I = 0. We will in
fact prove Theorem 1.1 for functions satisfying (P1), and Theorem 1.4 for functions
satisfying (P2). This will imply Theorem 1.1 in full generality. Namely, if f0 is Hölder
continuous and satisfies I �= 0, then we may write it as f0 = f1 +f2, where f1 satisfies
(P 1) and f2 satisfies (P2). By Theorem 1.4, Snf2√

n log n
→ 0. Hence, it is equivalent to

have Theorem 1.1 for f0 or f1. We will comment on the technical reason for introducing
the classes (P1) and (P2) in Remark 2.4 below.

In this paper, C will denote a generic constant, that can change from one occurrence
to the next. Some constants, which will be used at different places in the paper, will be
denoted by C1, C2, . . . and will have a fixed value.

2. Background Material on the Stadium Billiard

2.1. Geometric description of the initial map and of an induced map. The map T0 has
almost everywhere two nonzero Lyapunov exponents. However, the expansion in the
unstable cone (and the contraction in the stable cone) are not uniform: points bounc-
ing many times between the segments, or sliding along the circles, have an expansion
arbitrarily close to 1.

To get uniform expansion, we follow [Mar04] and [CZ05]. First let us note that the
phase space X0, defined by two variables, the periodic position coordinate r , and the
angular velocity coordinate θ with values in the interval (−π/2, π/2), has the shape of
a cylinder. Let X be the set of points x in X0 such that x belongs to a semicircle and
T −1(x) does not belong to this semicircle. It is not hard to check geometrically that

X =
⋃

r∈(0,π)
{r} × (−r/2, π/2 − r/2) ∪

⋃
r∈(0,π)

{r + π + �} × (−r/2, π/2 − r/2).
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In particular,

µ0(X) = 2
∫ π

r=0

∫ π/2−r/2

θ=−r/2
cos θ dr dθ

4π + 4�
= 2

π + �
. (4)

Define a new probability measure on X by

dµ = cos θ dr dθ

8
.

For x ∈ X, let ϕ+(x) = inf{n � 1, T n0 (x) ∈ X}. This is the return time of x. Let

T : X → X be the first return map, induced by T0 on X, i.e., T (x) = T
ϕ+(x)

0 (x). This
map preserves the probability measure µ on X. Moreover, it is uniformly hyperbolic in
the following sense:

Proposition 2.1. There exists a continuous family of closed cones Cu(x) for x ∈ X,
such that DT (x)(Cu(x)) ⊂ Cu(T x). Moreover, there exist constants 	 > 1 and C > 0
such that, for all x ∈ X, for all v ∈ Cu(x), for all n ∈ N such that T n is defined and
differentiable at x, ∥∥DT n(x)v∥∥ � C	n ‖v‖ .
Moreover, these cones are uniformly bounded away from the horizontal and vertical
directions (i.e., {dθ = 0} and {dr = 0}). In the same way, there exist stable cones Cs(x),
which satisfy the same properties for T −1, except that they are not bounded away from
the horizontal direction.

This proposition can be found in [Mar04] and [CZ05]. For future reference we recall
some ideas from its proof. In billiard theory there are two different ways of measuring
the length of a stable or an unstable vector v = (δr, δθ). The euclidean metric is defined
as ‖v‖ =

√
|δr|2 + |δθ |2 while the p-metric as ‖v‖p = |δr| cos θ . Geometrically, the

p-metric measures distances orthogonally to the flow direction along the wavefront that
starts out of the one parameter family of phase points corresponding to the tangent vector
v. Furthermore, despite being degenerate on the full tangent space, it is well-defined on
both the stable and the unstable cone and it satisfies ‖v‖p � ‖v‖. Actually, the uniform
expansion of Proposition 2.1 is proved for the p-metric in [Mar04] and [CZ05]. How-
ever, it is easy to check that there existsC > 0 such that, for all x ∈ X, for all v ∈ Cu(x),
‖DT (x)v‖p � C ‖v‖. Hence, the uniform expansion in the p-metric implies the same
statement for the euclidean metric, up to a constant C.

Convention 2.2. Unless otherwise stated, in billiard related calculations we use the
euclidean metric throughout the paper.

There are two different types of points for which ϕ+(x) can be large: they correspond
to points bouncing many times between the segments, or sliding many times along the
circles. We will need to describe rather precisely the hyperbolic behavior of T in bounc-
ing regions. The proposition below can be checked by direct calculation, see also [CZ05]
and references therein.

Proposition 2.3. If x is a bouncing point satisfying ϕ+(x) = n, then T contracts the
p-metric of vectors in the stable cone at least by a factor C

n
, while T −1 contracts the

p-metric of vectors in the unstable cone at least by a factor C
n

. Moreover, T x and T −1x

are bouncing points with ϕ+(T x) � n/4, ϕ+(T −1x) � n/4 if n is large enough. This
implies, in turn, that the above contraction estimates are valid in the euclidean metric
as well.
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Remark 2.4. Note that if x is a sliding point satisfying ϕ+(x) = n, then we can only
guarantee that T x and T −1x are sliding points with ϕ+(T x) � C

√
n and ϕ+(T −1x) �

C
√
n. This has an unfortunate consequence: we can only apply the coboundary argu-

ments of Sect. 2.3 to functions vanishing along sliding trajectories. Essentially this is
the technical reason for introducing the classes (P1) and (P2). The proof of Theorem 1.1
relies heavily on Perron–Frobenius techniques, and thus requires an expanding setting,
which implies that collapsing along stable manifolds – coboundary arguments – are
essential. Now for the class (P2) it is enough to prove the usual central limit theorem
(Theorem 1.4) which can be carried out in a roundabout way in the hyperbolic setting,
see Sect. 5.2.

2.2. Young tower of T . A compact subsetR ⊂ X is a rectangle if there exist x ∈ R with
a local stable manifold Ws

loc(x) and a local unstable manifold Wu
loc(x), and two Cantor

sets Cs ⊂ Ws
loc(x) and Cu ⊂ Wu

loc(x), such that, for any ys ∈ Cs and yu ∈ Cu, then
ys has a local unstable manifold Wu

loc(ys) and yu has a local stable manifold Ws
loc(yu).

Moreover, these two local manifolds intersect at exactly one point, and this point belongs
to R.

An s-subrectangle of R is a set
(⋃

y∈C W
s
loc(y)

)
∩ R, where C is a compact subset

of Cu. A u-subrectangle is defined in the same way.
[Mar04] and [CZ05] have proved that T : X → X satisfies Chernov’s axioms of

[Che99]. This implies that it admits a hyperbolic Young tower in the following sense:
there exist a rectangle R of positive measure, a partition R = ⋃

Ri (modulo 0) by
s-subrectangles, and return times ri ∈ N such that T ri is a homeomorphism on Ri ,
and T ri (Ri) is a u-subrectangle of R. Moreover, the tails of the tower are exponentially
small: there exist ρ < 1 and C > 0 such that

∀n ∈ N, µ

(⋃
ri>n

Ri

)
� Cρn.

We can then define an abstract space �̄ as the disjoint union of the sets T k(Ri) for
i ∈ N and k < ri . It is endowed with a natural projection πX : �̄ → X and a dynamics
Ū : �̄ → �̄ such that πX ◦ Ū = T ◦ πX.

Young has proved in [You98] that it is possible to construct on �̄ a probability mea-
sure µ�̄ which is invariant under Ū and such that (πX)∗(µ�̄) = µ. Note however that
πX is in general strongly not injective, so that µ�̄ can not be defined as the pullback of
µ. Rather, one constructs an invariant measure for Ū , and one proves that its projection,
being absolutely continuous with respect to µ and T -invariant, is necessarily µ.

It is then useful to go from this abstract hyperbolic dynamics to an abstract expanding
dynamics. To do so, one identifies the points of �̄ which are on the same stable leaf in
some rectangle. This defines a space �, together with a projection π� : �̄ → �. Since
the map Ū sends stable leaves to stable leaves, it gives rise to a dynamics U : � → �

on the quotient. The measure µ� := (π�)∗(µ�̄) is invariant underU . Then (�,U,µ�)
is an expanding Young tower, in the sense of Sect. 3.2.

2.3. Coboundary results. Let f0 : X0 → R be a Hölder function satisfying (P1), for
which we want to prove a limit theorem. Since it is easier to work in an expanding and
well understood setting, we will first prove results in�, and then go back from� toX0.
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For x ∈ X, let first f (x) = ∑ϕ+(x)−1
k=0 f0(T

k
0 x). This function is not bounded any

more. However, if two points x and y are on a local stable manifold which is not cut by a
discontinuity of T0 during the next n iterates of T0, and with ϕ+(x) = ϕ+(y) = n, then

|f (x)− f (y)| � Cnd(x, y)α (5)

for some α > 0. In the same way, if x and y are on a local unstable manifold which is
not cut during the next n iterates of T0, and ϕ+(x) = ϕ+(y) = n, then |f (x)− f (y)| �
Cnd(T x, T y)α . Moreover, the property (P1) implies that f is bounded on the set of
points sliding along the semicircles.

LetXn ⊂ X be the set of points bouncing exactly n times between the segments. Note
that µ(Xn) ∼ �2

4n3 . On Xn, the function f can be interpreted by means of a Riemann
sum approximating the integral of f over the set of points bouncing perpendicularly
to the segments of the stadium, with better and better precision as n increases. Thus
the function f is equivalent to nI on Xn (where I is defined in (1)). Since I �= 0 by
assumption, we obtain

µ{x | |f (x)| � n} ∼
∞∑
n/|I |

�2

4k3 ∼ I 2�2

8n2 . (6)

Hence, the distribution of f is in the nonstandard domain of attraction of the Gaussian
law (see Paragraph 3.1).

Define a function f̄ on �̄ by f̄ = f ◦πX. It would be easy to go finally from �̄ to�
if f̄ were constant along the local stable leaves in �̄ (which would mean that f̄ would
induce a function on the quotient �). This is in general not the case, but we will prove
that f̄ is cohomologous to such a function, using the usual cohomology trick.

For every rectangle in �̄, choose a definite unstable leaf. Define a projection π :
�̄ → �̄ by sliding along stable manifolds to this specific unstable manifold. We define
a function ū(x) =∑∞

k=0

[
f̄ (Ū kx)− f̄ (Ū kπx)

]
. Note that, despite the fact that T con-

tracts stable manifolds uniformly, the function ū(x) may not seem well-defined at first
sight, as f̄ and its Hölder constant are unbounded. Nevertheless, whenever f̄ is large,
T contracts stable manifolds strongly, and the Hölder constant can be regained by going
down the tower. This is the essence of the following lemma.

Lemma 2.5. The function ū is well defined and bounded on �̄.

Proof. In this proof the positive constants C do depend on the Hölder exponent α, but
this has no significance. Let K ∈ N be such that αK > 1. Consider first x which is at
height � K in the tower. Let y = πx. Let x′ = Ū−Kx and y′ = Ū−Ky. We will prove
that

∀k ∈ N, |f̄ (Ū kx)− f̄ (Ū ky)| � Cd(πXŪ
kx′, πXŪky′)α. (7)

Namely, if ϕ+(πXŪkx) = n, then

|f̄ (Ū kx)− f̄ (Ū ky)| � Cnd(πXŪ
kx, πXŪ

ky)α

= Cnd(πXŪ
k+Kx′, πXŪk+Ky′)α (8)

by (5). If n = ϕ+(πXŪkx) is bounded, the conclusion is trivial. If n is large and πXŪkx
is a sliding point, the conclusion is also trivial by (P1).
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Hence, assume that n is large and that πXŪkx is a bouncing point. Proposition 2.3
implies that, for 0 � i < K , ϕ+(πXŪk+ix′) � n/4K−i � n/4K . Once again by
Proposition 2.3, we get

d(πXŪ
k+i+1x′, πXŪk+i+1y′) � C

n
d(πXŪ

k+ix′, πXŪk+iy′).

Hence,

d(πXŪ
k+Kx′, πXŪk+Ky′) � C

nK
d(πXŪ

kx′, πXŪky′).

Together with (8) and the inequality Kα > 1, this implies (7).
Since πXx′ and πXy′ are on a local stable manifold, d(πXŪkx′, πXŪky′) goes expo-

nentially fast to zero. Hence, the series
∑ |f̄ (Ū kx)− f̄ (Ū ky)| is summable, and ū(x)

is well defined.
Suppose now that x is at height < K . Let y = πx. Applying the previous argument

to x′ = x and y′ = y, we get that
∑∞
k=K |f̄ (Ū kx) − f̄ (Ū ky)| is bounded. Moreover,

during the firstK iterates, x and y remain at a bounded height in the tower, which implies
that f̄ (Ū kx) and f̄ (Ū ky) remain uniformly bounded. This concludes the proof. ��

Let ḡ(x) = f̄ (x)− ū(x)+ ū(Ūx). Then

ḡ(x) = f̄ (πx)+
∞∑
k=0

[
f̄ (Ū k(Ūπx))− f̄ (Ū k(πŪπx))

]
.

Hence, ḡ(x) depends only on πx, i.e., ḡ is constant along the stable manifolds in the
rectangles. Consequently, there exists a function g : � → R such that ḡ = g ◦ π�.

It will be important that g is regular enough on �, to use functional analytic tech-
niques. For x1, x2 ∈ �, let s(x1, x2) be their separation time, i.e., the number of returns
to the basis before x1 and x2 get into different elements of the partition. To obtain the
following lemma, we will use several times the same argument as in Lemma 2.5, but
sometimes along unstable manifolds instead of stable ones.

Lemma 2.6. There existC > 0 and τ < 1 such that, for every x1, x2 in the same element
of partition of �,

|g(x1)− g(x2)| � Cτs(x1,x2).

Proof. Let us first prove that, if x1, x2 belong to the same unstable leaf in a rectangle of
�̄, then

ḡ(x1)− ḡ(x2) is uniformly bounded. (9)

The same argument as in the proof of Lemma 2.5 shows that
∑∞
k=0

[
f̄ (Ū k(Ūπx)) −

f̄ (Ū k(πŪπx))
]

is bounded. Hence, it is sufficient to prove that f̄ (πx1) − f̄ (πx2) is
bounded. Let K be as in the proof of Lemma 2.5. If x1 (and x2) return to the basis of
�̄ before time K , then ϕ+(x1) = ϕ+(x2) is bounded, which implies that f̄ (πx1) and
f̄ (πx2) are bounded. If x1 (and x2) are sliding points, then the conclusion is also a con-
sequence of (P1). Otherwise, x1 and x2 are bouncing points. We show as in the proof
of Lemma 2.5 (but along the unstable leaf containing πx1 and πx2) that |f̄ (πx1) −
f̄ (πx2)| � Cd(πXŪ

Kπx1, πXŪ
Kπx2)

α . Since this quantity is uniformly bounded,
this concludes the proof of (9).



Limit Theorems in the Stadium Billiard 471

Take x1, x2 ∈ �̄ on the same unstable leaf, and let s = s(π�(x1), π�(x2)). We will
prove that

|ḡ(x1)− ḡ(x2)| � Cλαs/2 (10)

for some C > 0, where λ < 1 is larger than the contraction coefficient of T along stable
manifolds, and the contraction coefficient of T −1 along unstable manifolds.

By (9), this is trivial if s < 2K . Hence, we can assume s � 2K . Let N = ⌊ s2⌋ � K ,
then

ḡ(x1)− ḡ(x2) = f̄ (πx1)− f̄ (πx2)

+
N−1∑
k=0

[
f̄ (Ū k(Ūπx1))− f̄ (Ū k(Ūπx2))

]

+
N−1∑
k=0

[
f̄ (Ū k(πŪπx2))− f̄ (Ū k(πŪπx1))

]

+
∞∑
k=N

[
f̄ (Ū k(Ūπx1))− f̄ (Ū k(πŪπx1))

]

+
∞∑
k=N

[
f̄ (Ū k(πŪπx2))− f̄ (Ū k(Ūπx2))

]
. (11)

Since N +K � s, we have for any k < N ,∣∣∣f̄ (Ū k(Ūπx1))− f̄ (Ū k(Ūπx2))

∣∣∣ � Cd(πXŪ
k+K(Ūπx1), πXŪ

k+K(Ūπx2))
α

� Cλα(s−(k+K+1))d(πXŪ
sπx1, πXŪ

sπx2)
α

� Cλα(s−k).

Summing over k, we obtain∣∣∣∣∣
N−1∑
k=0

[
f̄ (Ū k(Ūπx1))− f̄ (Ū k(Ūπx2))

]∣∣∣∣∣ � Cλα(s−N) � Cλαs/2.

The term on the third line of (11) can be estimated in the same way, as well as the term
on the first line of (11).

Since N � K , we also have for any k � N ,∣∣∣f̄ (Ū k(Ūπx1))− f̄ (Ū k(πŪπx1))

∣∣∣ � Cd(πXŪ
k−K(Ūπx1), πXŪ

k−K(πŪπx1))
α

� Cλα(k−K)d(πX(Ūπx1), πX(πŪπx1))
α

� Cλαk.

Summing over k, we obtain∣∣∣∣∣
∞∑
k=N

[
f̄ (Ū k(Ūπx1))− f̄ (Ū k(πŪπx1))

]∣∣∣∣∣ � CλαN � Cλαs/2.

The term on the fifth line of (11) is handled in the same way. ��
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3. Limit Theorems in Young Towers

3.1. A result by Aaronson and Denker. A function f : R
∗+ → R

∗+ is slowly varying if,
for all λ > 0, f (λx)/f (x) tends to 1 when x → ∞.

By classical probabilistic results, a real random variable Z is in the nonstandard
domain of attraction of the Gaussian distribution N (0, 1) if and only if it satisfies one
of the following equivalent conditions:

– The function L(x) := E(Z21|Z|�x) is unbounded and slowly varying.
– P(|Z| > x) ∼ x−2l(x) for some function l such that L̃(x) := 2

∫ x
1
l(u)
u

du is
unbounded and slowly varying.

Remark 3.1. In this case, L̃(x) ∼ L(x)when x → ∞, and l(x) = o(L(x)). It is possible,
however, that l is not slowly varying and that these conditions hold anyway.

Such a random variable belongs toLp for all 1 � p < 2, but not toL2. We will say that l
andL are the tail functions ofZ. They are defined up to asymptotic equivalence. Choose
a sequence Bn → ∞ such that n

B2
n
L(Bn) → 1. Then, if Z0, Z1, . . . is a sequence of

independent random variables distributed as Z, then

Z0 + · · · + Zn−1 − nE(Z)

Bn
→ N (0, 1).

More generally, if n
B2
n
L(Bn) → C > 0, then the previous sequence converges to

N (0, C).
In [AD01], Aaronson and Denker have proved the same kind of limit theorem when

the sequenceZ0, Z1, . . . is not independent. More precisely, considerU a mixing Gibbs-
Markov map (as defined in [Aar97]) on a space�, preserving a probability measureµ�,
and let g : � → R be a function which is locally Hölder and whose distribution with
respect to µ� is in the nonstandard domain of attraction of N (0, 1) as above. Then they
prove that

g + g ◦ U + · · · + g ◦ Un−1 − n
∫
g

Bn
→ N (0, 1)

as above.
The proof goes as follows: let Û be the transfer operator associated to U , and Ût its

perturbation given by Ûtu = Û (eitgu). These operators satisfy a Lasota-Yorke inequal-
ity on the space of Hölder functions, and

∥∥Ût − Û
∥∥ = O(t). Hence, the eigenvalue

λt of Ût close to 1 satisfies |λt − 1| = O(t), and the corresponding eigenfunction wt
(normalized so that

∫
wt = 1) is such that ‖wt − 1‖ = O(t).

Then they prove the abstract lemma below, which has nothing to do with dynamics
and could be stated on any probability space whenever g has the appropriate distribution.

Lemma 3.2. For any bounded measurable function w on �,

∫
(eitg − 1 − itg)w = − t

2

2

∫
1|g|�1/|t |g2w + ‖w‖∞ o(t2L(1/|t |)).

Here, the o(t2L(1/|t |)) is uniform in w.
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Applying this lemma to wt , one gets

λt − 1 − it

∫
gwt =

∫
(eitg − 1 − itg)wt = − t

2

2

∫
1|g|�1/|t |g2wt + o(t2L(1/|t |))

(where we have used the fact that wt is bounded). Since ‖wt − 1‖∞ = o(1),

t2

2

∫
1|g|�1/|t |g2wt = t2

2
L(1/|t |)(1 + o(1)).

Hence,

λt = 1 + it

∫
gwt − t2

2
L(1/|t |)(1 + o(1)). (12)

Finally,
∫
gwt = ∫ g +O(t) since ‖wt − 1‖∞ = O(t). So we get

λt = 1 + it

∫
g − t2

2
L(1/|t |)(1 + o(1)).

This expansion is sufficient to get the required limit theorem.

3.2. The result in Young towers. Let (�,µ�) be a probability space and U : � → � a
probability preserving map. We say that (�,U) is an expanding Young tower ([You99])
if there exist integers rp ∈ N

∗ and a partition {�k,p}p∈N,k∈{0,...,rp−1} of � such that

1. For all p and k < rp−1,U is a measurable isomorphism between�k,p and�k+1,p,
preserving µ�.

2. For all p, U is a measurable isomorphism between �rp−1,p and �0 :=⋃m �0,m.
3. Let U0 be the first return map induced by U on �0. For x, y ∈ �0, define their

separation time s(x, y) = inf{n ∈ N | Un0 (x) and Un0 (y) are not in the same �0,p}.
We extend this separation time to the whole tower in the following way: if x, y are
not in the same element of partition, set s(x, y) = 0. Otherwise, x, y ∈ �k,p. Let
x′, y′ ∈ �0,p be such that x = Ukx′ and y = Uky′, and set s(x, y) = s(x′, y′).
For x ∈ �, let J (x) be the inverse of the jacobian of U at x. We assume that there
exist β < 1 and C > 0 such that, for all x, y in the same element of partition,

∣∣∣∣1 − J (x)

J (y)

∣∣∣∣ � Cβs(Ux,Uy). (13)

Remark 3.3. Note that the definition of separation time in [You98] is in terms of the num-
ber of all iterations of U , while we follow the convention of [You99] when we define
separation in terms of returns to the basis. Hence, our setting is more general than that
of [You98], but it will make the proof of the spectral gap more complicated.

Let �n =⋃�n,p. This is the set of points at height n in the tower. We will say that
(U,�) is an expanding Young tower with exponentially small tail if there exists ρ < 1
such that µ�(�n) = O(ρn).

Let J (n) be the inverse of the jacobian of Un. It is standard that (13) implies that the
distortion of the iterates of U is uniformly bounded, in the following sense: there exists
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C > 0 such that, for all points x, y such that Ukx and Uky remain in the same elements
of the partition for 0 � k < n,∣∣∣∣∣1 − J (n)(x)

J (n)(y)

∣∣∣∣∣ � Cβs(U
nx,Uny). (14)

A function g : � → R is locally Hölder if there exist C > 0 and τ < 1 such that
|g(x)−g(y)| � Cτs(x,y) for all x, y in the same element of the partition. This is exactly
the type of functions that arise from the stadium billiard, cf. Lemma 2.6. Note that g can
very well be unbounded. Without loss of generality, we can assume τ � β.

Let ω(x) be the height of the point x, i.e., ω(x) = n if x ∈ �n. Let π0 : � → �0 be
the projection to the basis, and define a functionG on� byG(x) =∑ω(x)−1

k=0 g(Ukπ0x).
In this setting, we get the following extension of the theorem proved by Aaronson and
Denker:

Theorem 3.4. Let U : � → � be an expanding Young tower with exponentially small
tail, and let g : � → R be locally Hölder continuous. Assume that the distribution of g is
in the nonstandard domain of attraction of N (0, 1), with tail functions l and L. Assume
moreover that l andL are slowly varying, and l(x ln x)/ l(x) → 1,L(x ln x)/L(x) → 1
when x → ∞. Finally, assume that there exists a real number a �= −1/2 such that∫

g(eitG − 1) = (a + o(1))itL(1/|t |)) when t → 0. (15)

Write L1(x) = (2a+ 1)L(x), and choose a sequence Bn → ∞ such that n
B2
n
L1(Bn) →

1. Then

Sng − n
∫
g

Bn
→ N (0, 1).

The additional assumption on l and L is satisfied in most natural cases (for example
when l = 1 and L = ln, which will be the case for the stadium billiard).

When a = 0, we get the same asymptotics as in Aaronson-Denker’s Theorem. How-
ever, when a �= 0, then there is an additional effect due to the presence of the tower.
Theorem 3.4 discusses the case when the two effects are of the same order of magni-
tude. The constant a reflects the proportion of the two effects: its value is intrinsic and
does not change, for example, when the function g is multiplied by a constant factor. In
principle one could imagine a = −1/2 which could result in the two effects cancelling
out, however, a negative a is not very likely to be realizable in a dynamical situation –
this would mean that the value of g high up in the tower and its sum for the levels below
the level considered are negatively correlated.

The proof will follow the same lines as Aaronson-Denker’s proof: it is possible to
construct a good space on which the transfer operator Û has a spectral gap. The perturbed
operator Ût also has a spectral gap, which gives an eigenvalue λt and an eigenfunction
wt . The main problem is that

∥∥Ût − Û∥∥ can not beO(t) in general: it is easy to construct

examples where t = o
(∥∥(Ût − Û )1

∥∥
L2

)
, whence t = o

(∥∥Ût − Û
∥∥) as soon as the

good space has a norm stronger than the L2 norm, and contains the function 1.
Using abstract arguments by Keller and Liverani, we can nevertheless prove that

|λt − 1| = O(|t |1/10) and ‖wt − 1‖L1 = O(|t |1/10). This is (essentially) sufficient to

applyAaronson and Denker’s argument and getλt = 1+it ∫ gwt− t2

2

∫
1|g|�1/|t |g2wt+
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o(t2L(1/|t |)) as in (12). The main difficulty is then to make the function wt disap-
pear in this expression, to get something more tractable. We will namely show that∫

1|g|�1/|t |g2wt ∼ L(1/|t |) and
∫
gwt = ∫ geitG + o(tL(1/|t |)), which will conclude

the proof.
To do this, we need to know thatwt −1 = O(t) in some sense. To prove such an esti-

mate, we use a roundabout technical argument relying on the fact that the induced map
on the basis of the tower is uniformly expanding, to prove that

∥∥1�0(wt − 1)
∥∥∞ = O(t),

and then we propagate this information up in the tower, using the information we have
already proved on λt . This propagation requires the Birkhoff sums of g to be small
enough. To ensure this on a set of large measure, we use the information on the tails of
g. This is the only point where the additional information on l and L is used.

3.3. Proof of Theorem 3.4. We will first prove Theorem 3.4 assuming that
∫
g = 0. In

Paragraph 3.3.5, we will show that this implies the theorem in full generality. Hence,
until the end of Paragraph 3.3.4, we will assume that

∫
g = 0.

3.3.1. Construction of the functional spaces and the transfer operators. Since the tails
of the tower are exponentially small by assumption, there exists ρ < 1 such that
µ�(�n) � Cρn. Denote the return time to the basis from itself by ϕ. Take ε > 0
such that e6ερ < 1.

For u : � → C, write

‖u‖m = inf{C | ∀n ∈ N, for almost every x ∈ �n, |u(x)| � Ceεn}
and

‖u‖l = inf{C | for almost every x, y in the same element of the partition at height n,

|u(x)− u(y)| � Ceεnτ s(x,y)}.
Denote by H the space of measurable functions u on� for which ‖u‖ := ‖u‖m+‖u‖l <
+∞. It is a Banach space included in L1 (and even in L6 because of the condition
e6ερ < 1). This inclusion is compact.

The following proposition is similar to a result of Young:

Proposition 3.5. There exist C > 0 and θ < 1 such that, for any u ∈ H, for any n ∈ N,∥∥Ûnu∥∥ � Cθn ‖u‖ + C ‖u‖L1 .

Note that our definition of separation time is not the same as in [You98], and that Young
uses the fact that the return to the basis only occur after a large time N . This gives her a
strong expansion, sufficient to get rid of constants easily. This is not true in our setting.
Hence, the proof of the proposition will be more involved than Young’s.

Proof. Take x ∈ �0. Then Ûnu(x) = ∑
J (n)(xp)u(xp), where the set {xp}p∈N is the

set of all preimages of x underUn. LetAp containing xp be such thatUn : Ap → �0 is
an isomorphism. Then J (n)(xp) � Cµ�(Ap) since the distortion is bounded, by (14).
Let ωp be the height of the setAp and rp the number of returns ofAp to the basis before
time n.

For y ∈ Ap, s(xp, y) � rp, whence

|u(xp)− u(y)| � τ rpeεωp ‖u‖l .
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Hence,

|u(xp)| � τ rpeεωp ‖u‖l +
1

µ�(Ap)

∫
Ap

|u|. (16)

We get

|Ûnu(x)| � C
∑

µ�(Ap)τ
rpeεωp ‖u‖l + C

∫
|u|. (17)

Let ω : � → N be the function “height”, and let �n(x) be the number of returns of x
to the basis between time 1 and n. Then (17) implies that

|Ûnu(x)| � C ‖u‖l
∫
U−n�0

τ�neεω + C ‖u‖L1 . (18)

We will use the following technical lemma, which will be proved in the Appendix.

Lemma 3.6. There exist C > 0 and θ < 1 such that, for any n ∈ N,
∫
U−n�0

τ�neεω � Cθn. (19)

Increasing θ if necessary, we can assume that e−ε � θ .
This lemma, together with (18), implies that, for any x ∈ �0,

|Ûnu(x)| � Cθn ‖u‖l + C ‖u‖L1 . (20)

Consider now x ∈ � such that ω(x) = k < n. Let x′ be its projection in the basis. Then
Ûnu(x) = Ûn−ku(x′), whence

e−εk|Ûnu(x)| = e−εk|Ûn−ku(x′)|
� e−εkCθn−k ‖u‖l + Ce−εk ‖u‖L1 � Cθn ‖u‖l + C ‖u‖L1 . (21)

Assume finally that ω(x) = k � n. Let x′ = U−n(x); it satisfies ω(x′) = k − n. Then

e−εk|Ûnu(x)| = e−εne−ε(k−n)|u(x′)| � e−εn ‖u‖m . (22)

These equations prove that
∥∥Ûnu∥∥

m
� Cθn ‖u‖ + C ‖u‖L1 .

We still have to handle the Hölder norm. Consider two points x, y in the same element
of partition of the basis�0. Let xp and yp be their preimages, in setsAp as above. Then

|Ûnu(x)− Ûnu(y)| �
∑

|J (n)(xp)u(xp)− J (n)(yp)u(yp)|
�
∑

|J (n)(xp)||u(xp)− u(yp)|

+
∑

|J (n)(xp)|
∣∣∣∣∣1 − J (n)(yp)

J (n)(xp)

∣∣∣∣∣ |u(yp)|.
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In the first sum, |J (n)(xp)| � Cµ�(Ap) and |u(xp) − u(yp)| � τ s(x,y)+rp eεωp ‖u‖l .
Hence,

∑
|J (n)(xp)||u(xp)− u(yp)| � Cτs(x,y) ‖u‖l

∫
U−n�0

τ�neεω � Cθnτ s(x,y) ‖u‖l

by Lemma 3.6.

In the second sum, |J (n)(xp)| � Cµ�(Ap) and
∣∣∣1 − J (n)(yp)

J (n)(xp)

∣∣∣ � Cτs(x,y) by (14).

Moreover, |u(yp)| is bounded by (16). Using these inequalities, we get

∑
|J (n)(xp)|

∣∣∣∣∣1 − J (n)(yp)

J (n)(xp)

∣∣∣∣∣ |u(yp)|

�
∑

Cµ�(Ap)τ
s(x,y)

[
τ rpeεωp ‖u‖l +

1

µ�(Ap)

∫
Ap

|u|
]

� Cτs(x,y) ‖u‖l
∫
U−n�0

τ�neεω + Cτs(x,y)
∫

|u|

� Cθnτ s(x,y) ‖u‖l + Cτs(x,y) ‖u‖L1

by Lemma 3.6.
To sum up, we have proved that, when x and y belong to the same partition element

of the basis,

|Ûnu(x)− Ûnu(y)|
τ s(x,y)

� Cθn ‖u‖l + C ‖u‖L1 .

Let now x and y belong to the same element of the partition, with k = ω(x) < n. Let
x′ and y′ be their projections in the basis. Then

e−εk
|Ûnu(x)− Ûnu(y)|

τ s(x,y)
= e−εk

|Ûn−ku(x′)− Ûn−ku(y′)|
τ s(x

′,y′)

� e−εk
[
Cθn−k ‖u‖l + C ‖u‖L1

]
� Cθn ‖u‖l + C ‖u‖L1 .

Assume finally that k � n. Let x′ = U−nx and y′ = U−ny. Then

e−εk
|Ûnu(x)− Ûnu(y)|

τ s(x,y)
= e−εne−ε(k−n)

|u(x′)− u(y′)|
τ s(x

′,y′) � θn ‖u‖l .

Summing up these equations, we get
∥∥Ûnu∥∥

l
� Cθn ‖u‖l + C ‖u‖L1 . This concludes

the proof of the proposition. ��
Let g be the locally Hölder function for which we want to prove a limit theorem. It is
possible that g �∈ H, since ‖g‖m is not necessarily finite.

Define a perturbed transfer operator, à la Nagaev, by Ût (u) = Û (eitgu).

Proposition 3.7. There exist constants C > 0 and θ < 1 such that, for all t ∈ [−1, 1],
for all u ∈ H, for all n ∈ N,∥∥Ûnt u∥∥ � Cθn ‖u‖ + C ‖u‖L1 .
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This proposition contains Proposition 3.5 as a special case, for t = 0.

Proof. Let x ∈ �. Then Ûnt u(x) =∑Uny=x eitSng(y)J (n)(y)u(y), whence |Ûnt u(x)| �
Ûn|u|(x). The bound on

∥∥Ûn|u|∥∥
m

thus implies the required bound on
∥∥Ûnt u∥∥m.

For the Hölder norm, take x and y two points in the same element of partition. Then,
with the notations of the proof of Proposition 3.5,

∣∣Ûnt u(x)− Ûnt u(y)
∣∣ =

∣∣∣∑ eitSng(xp)J (n)(xp)u(xp)− eitSng(yp)J (n)(yp)u(yp)

∣∣∣
�
∑

|J (n)(xp)u(xp)− J (n)(yp)u(yp)|
+
∑

|eitSng(xp) − eitSng(yp)|J (n)(xp)|u(xp)|.

The first sum has already been estimated in the proof of Proposition 3.5. For the second
one, |eitSng(xp) − eitSng(yp)| � nCτs(x,y). Hence, Proposition 3.5 implies that

∥∥Ûnt u∥∥ � C(n+ 1)θn ‖u‖ + C(n+ 1) ‖u‖L1 .

Choose N > 0 such that θ̄ := C(N + 1)θN < 1. Iterating the equation
∥∥ÛNt u∥∥ �

θ̄ ‖u‖ + C ‖u‖L1 (and using the fact that
∥∥ÛNt u∥∥L1 � ‖u‖L1 ), we get

∥∥ÛnNt u
∥∥ � θ̄ n ‖u‖ + C

1 − θ̄
‖u‖L1 .

This implies the conclusion of the proposition, for the constant θ̄1/N < 1. ��
Lemma 3.8. When t → 0, ‖Ût − Û‖H→L3 = O(|t |1/6).
Proof. For u ∈ H, (Ût−Û )u = Û ((eitg−1)u). The transfer operator Û is a contraction
in every Lp space, and in particular in L3. Hence,

∥∥(Ût − Û )u
∥∥
L3 �

∥∥∥(eitg − 1)u
∥∥∥
L3

�
∥∥∥eitg − 1

∥∥∥
L6

‖u‖L6 .

Note that ‖u‖L6 � C ‖u‖. Hence, ‖Ût − Û‖H→L3 = O(
∥∥eitg − 1

∥∥
L6). To estimate

this quantity, choose C > 0 such that, for all x ∈ R, |eix − 1| � C|x|1/6. Then∫ |eitg − 1|6 � C
∫ |tg| = O(|t |). Hence,

∥∥eitg − 1
∥∥
L6 = O(|t |1/6). ��

3.3.2. Definition of λt , first estimates. By Proposition 3.5 and Hennion’s Theorem
[Hen93], the operator Û : H → H is quasicompact: outside of the disk {|z| � θ},
its spectrum is composed of discrete eigenvalues of finite multiplicity. In particular,
by ergodicity, 1 is a simple isolated eigenvalue of Û , with multiplicity one (and the
corresponding eigenfunction is the constant function 1).

Lemma 3.8 is not a continuity statement in H. However, the operators Û and Ût sat-
isfy a uniform Lasota-Yorke inequality between H and L3, by Proposition 3.7 (and the
fact that ‖u‖L1 � ‖u‖L3 ). Hence, we can apply the abstract results of [KL99, Corollary
1] (following ideas of [BY93]). We get the following:

For small enough t , Ût has a unique eigenvalue λt close to 1, and it satisfies |λt−1| =
O(|t |1/10). Let Pt be the corresponding eigenprojection. Then ‖Pt‖H→H is bounded
when t → 0. Moreover, ‖Pt − P0‖H→L3 = O(|t |1/10).
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Remark 3.9. Here, 1/10 could be replaced by any exponent < 1/6, but any positive
exponent would be sufficient for our purposes.

Let w̄t := Pt1, and write wt = w̄t∫
w̄t

. Then wt is bounded in H and

‖wt − 1‖L3 = O(|t |1/10). (23)

Lemma 3.10. When t → 0,

λt = 1 − t2

2

∫
1|g|�1/|t |g2wt + it

∫
gwt + o(t2L(1/|t |)). (24)

Proof. By definition, Ût (wt ) = λtwt . Integrating, we get

λt =
∫
eitgwt . (25)

We want to use Lemma 3.2 to estimate this integral. However, this lemma applies only
to bounded functions. Hence, we will have to modify wt .

Take x ∈ �withω(x) > 0, and let x′ = U−1(x). The equation Ûtwt = λtwt implies
that eitg(x

′)wt (x′) = λtwt (x). Hence, |wt(x)| = |λt |−1|wt(x′)|. Since wt is uniformly
bounded on the basis of the tower (since it is bounded in H), we get

|wt(x)| � C|λt |−ω(x). (26)

Define a function w′
t by w′

t (x) = wt(x) if ω(x) � |t |−1/10 and w′
t (x) = 0 otherwise. It

belongs to H, with
∥∥w′

t

∥∥ � ‖wt‖. Since λt = 1 +O(|t |1/10), (26) implies that
∥∥w′

t

∥∥∞ � C(1 + C|t |1/10)|t |
−1/10 � C′.

Lemma 3.2 applied to w′
t gives∫

(eitg − 1 − itg)w′
t = − t

2

2

∫
1|g|�1/|t |g2w′

t + o(t2L(1/|t |)). (27)

Let us show that this equation is also satisfied by w′′
t := wt − w′

t . First,∣∣∣∣
∫
(eitg − 1)w′′

t

∣∣∣∣ � 2
∫
ω�|t |−1/10

|wt |

� 2
∫
ω�|t |−1/10

(1 + C|t |1/10)ω � C

∞∑
n=|t |−1/10

ρn(1 + C|t |1/10)n.

When t is small enough, ρ(1 + C|t |1/10) <
√
ρ < 1. Hence, | ∫ (eitg − 1)w′′

t | �
Cρ|t |−1/10/2 = o(t2L(1/|t |)). In the same way,

∣∣∫ gw′′
t

∣∣ � ‖g‖L3/2

∥∥w′′
t

∥∥
L3 and

∥∥w′′
t

∥∥
L3

decays stretched exponentially, whence it is o(t2L(1/|t |)). Finally,∣∣∣∣
∫

1|g|�1/|t |g2w′′
t

∣∣∣∣ � 1

|t |2
∫

|w′′
t | = O(ρ|t |−1/10/2/t2) = o(t2L(1/|t |)).

Hence, (27) holds also for w′′
t . We get∫

(eitg − 1 − itg)wt = − t
2

2

∫
1|g|�1/|t |g2wt + o(t2L(1/|t |)).

Since
∫
eitgwt = λt and

∫
wt = 1, this gives the conclusion of the lemma. ��
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Corollary 3.11. We have λt = 1 +O(|t |11/10).

Proof. In the proof of the previous lemma, we have proved that
∫
ω>|t |−1/101|g|�1/|t |g2wt=

O(t). Moreover, on {ω � |t |−1/10}, the function wt is uniformly bounded. Hence,∫
ω�|t |−1/10 1|g|�1/|t |g2wt � C

∫
1|g|�1/|t |g2 ∼ CL(1/|t |). Hence,

∫
1|g|�1/|t |g2wt = O(L(1/|t |)).

Moreover, by (23) and our assumption
∫
g = 0,

∣∣∣∣
∫
gwt

∣∣∣∣ =
∣∣∣∣
∫
g(wt − 1)

∣∣∣∣ � ‖g‖L3/2 ‖wt − 1‖L3 = O(|t |1/10).

This proves that, in (24), the right side is 1 +O(|t |11/10). ��

3.3.3. Estimates on the basis. To proceed, we will need to know that wt is constant on
the basis up to O(t). We already know that ‖wt − 1‖L3 = O(|t |1/10), but this is not
sufficient to estimate precisely the terms in (24). To get such an estimate, we will need
real continuity, and not only the weak continuity given by Keller-Liverani’s theorem.
This will be achieved by working directly on the basis. The goal of this paragraph is to
prove Lemma 3.15.

Let U0 be the map induced by U on the basis �0 of the tower. Denote by ϕ the first
return time to the basis, so that U0(x) = Uϕ(x)(x).

Let us consider the space H0 of Hölder functions u : �0 → C on the basis, and
define an operator Rn : H0 → H0 by Rnu(x) = ∑

J (n)(y)u(y), where the sum
is restricted to those y ∈ �0 with return time ϕ(y) = n, and Un(y) = x. Set also
Rn(t)(u) = Rn(e

itSngu).

Lemma 3.12. There exist C > 0 and θ < 1 such that, for all n ∈ N and all t ∈ [−1, 1],
‖Rn(t)‖ � Cθn and ‖Rn(t)− Rn‖ � Cθn|t |.
Proof. The map U0 is Gibbs-Markov on �0. Hence, [Gou04, Lemma 3.2] proves that
‖Rn‖ � Cµ�(ϕ = n) and [Gou04, Lemma 3.5] yields ‖Rn(t)− Rn‖ � C|t |nµ�(ϕ =
n)+ C

∫
{ϕ=n} |eitSng − 1|.

Since µ�(ϕ = n) = O(ρn), we get in particular ‖Rn‖ � Cρn, which decays
exponentially. Moreover, on {ϕ = n}, |Sng|3/2 � n1/2∑n−1

k=0 |g ◦ Uk|3/2, whence∫
{ϕ=n} |Sng|3/2 � n1/2

∫
�

|g|3/2 = O(n1/2). Consequently,

‖Rn(t)− Rn‖ � C|t |nρn + C

∫
1ϕ=n|t ||Sng|

� C|t |nρn + C|t | ∥∥1ϕ=nSng
∥∥
L3/2

∥∥1ϕ=n
∥∥
L3 ,

which decays also exponentially. ��
For |z| < θ−1, it is possible to define R(z, t) := ∑

znRn(t). The operator R(1, 0) is
the transfer operator associated to U0. It has a simple isolated eigenvalue at 1, and the
corresponding eigenfunction is the constant function 1. Hence, for (z, t) close enough
to (1, 0), R(z, t) has a unique eigenvalue λ(z, t) close to 1.
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Lemma 3.13. There exists C > 0 such that, for all z ∈ C with |z| � θ−1/2 and all
t ∈ [−1, 1], we have ‖R(z, t)− R(1, 0)‖ � C(|t | + |z− 1|).
Proof. We have R(z, t) − R(1, t) = ∑

(zn − 1)Rn(t). Moreover, if |z| � θ−1/2,
|zn − 1| � |z− 1|∑n−1

k=0 |z|k � C|z− 1|θ−n/2. Hence,

‖R(z, t)− R(1, t)‖ �
∞∑
n=0

|zn − 1| ‖Rn(t)‖

� C|z− 1|
∞∑
n=0

θ−n/2θn � C

1 − θ1/2 |z− 1|.

Moreover,

‖R(1, t)− R(1, 0)‖ �
∞∑
n=0

‖Rn(t)− Rn‖ �
∞∑
n=0

C|t |θn � C

1 − θ
|t |. ��

Lemma 3.14. For small enough t , R(λ−1
t , t)(1�0wt) = 1�0wt .

Proof. Let x ∈ �0, let {xp} be the set of its preimages under U , at respective heights
ωp, and let x′

p be the projection of xp in the basis. Since Ûtwt = λtwt , we have

λtwt (x) = ∑
eitg(xp)J (xp)wt (xp). Moreover, for any y ∈ � with ω(y) > 0, we have

λtwt (y) = eitg(U
−1y)wt (U

−1y). Hence, λ
ωp
t wt (xp) = eitSωp g(x

′
p)wt (x

′
p). We get

wt(x) =
∑

λ
−ωp−1
t J (ωp+1)(x′

p)e
itSωp+1g(x

′
p)wt (x

′
p). (28)

The points x′
p are exactly the preimages of x under U0, and the corresponding return

time for U is ωp + 1. Hence, (28) gives the conclusion of the lemma. ��
We have all the necessary tools to prove the main result of this paragraph:

Lemma 3.15. For t ∈ [−1, 1], there exists c(t) ∈ C such that
∥∥1�0(wt − c(t))

∥∥∞ =
O(t). Moreover, c(t) → 1 when t → 0.

Proof. Lemma 3.14 proves that, for small enough t , λ(λ−1
t , t) = 1, and the correspond-

ing eigenfunction is 1�0wt . Let Qt be the eigenprojection of R(λ−1
t , t) corresponding

to the eigenvalue 1. It satisfies

‖Qt −Q0‖ = O(

∥∥∥R(λ−1
t , t)− R(1, 0)

∥∥∥) = O(|λ−1
t − 1| + |t |) = O(|t |)

by Lemma 3.13 and Corollary 3.11. Let bt = Qt1�0 . As b0 = 1�0 , bt satisfies∥∥bt − 1�0

∥∥ = O(t). In particular, bt → 1�0 in L1.
The function bt is proportional to wt on the basis �0. Hence, there exists a scalar

c(t) such that 1�0wt = c(t)bt . Since wt goes to 1 in L1 when t → 0, we get

c(t) =
∫

1�0wt∫
bt

→ µ�(�0)∫
b0

= 1.

Finally, ∥∥1�0(wt − c(t))
∥∥∞ = |c(t)| ‖bt − b0‖∞ = O(t). ��
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3.3.4. Proof of Theorem 3.4 when
∫
g = 0. Let the function G be given by G(x) =∑ω(x)−1

k=0 g(Ukπ0x), as in Theorem 3.4.

Lemma 3.16. When t → 0,

λt = 1 − (1 + o(1))
t2

2

∫
1|g|�1/|t |g2eitG + it (1 + o(1))

∫
geitG + o(t2L(1/|t |)). (29)

Proof. We will start from (24) and show that we can replace wt by eitG.
We havewt(x) = λ

−ω(x)
t eitG(x)wt (π0x). Hence, by Corollary 3.11 and Lemma 3.15,

|wt(x)− c(t)eitG(x)| = |λ−ω(x)
t wt (π0x)− c(t)|

� |λ−ω(x)
t − 1||wt(π0x)| + |wt(π0x)− c(t)|

�
[
(1 + C|t |11/10)ω(x) − 1

]
C + C|t |

� ω(x)C|t |11/10(1 + C|t |11/10)ω(x) + C|t |.
Fix b > 0 large enough. Forω(x) � b log(1/|t |), we obtain |wt(x)−c(t)eitG(x)| � C|t |.
For ω(x) � b log(1/|t |) and small enough t , we also get |wt(x) − c(t)eitG(x)| �
ρ−ω(x)/4.

Hence,∫
ω�b log(1/|t |)

1|g|�1/|t |g2|wt − c(t)eitG| �
∫
ω�b log(1/|t |)

1

|t |2 ρ
−ω(x)/4

� 1

|t |2C
∞∑

n=b log(1/|t |)
ρnρ−n/4 = o(1)

if b is large enough. Moreover,∫
ω�b log(1/|t |)

1|g|�1/|t |g2|wt − c(t)eitG| � C|t |
∫

1|g|�1/|t |g2 = C|t |L(1/|t |).

Hence, ∫
1|g|�1/|t |g2wt = c(t)

∫
1|g|�1/|t |g2eitG + o(1)

= (1 + o(1))
∫

1|g|�1/|t |g2eitG + o(1). (30)

In the same way,∫
ω�b log(1/|t |)

|g||wt − c(t)eitG| � ‖g‖3/2

∥∥∥1ω�b log(1/|t |)|wt − c(t)eitG|
∥∥∥
L3

= O(t)

if b is large enough. Moreover,∫
ω�b log(1/|t |)

|g||wt − c(t)eitG| �
∫

|g|C|t | = O(t).
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We get
∫
gwt = c(t)

∫
geitG +O(t) = (1 + o(1))

∫
geitG +O(t). (31)

Equations (30) and (31) together with (24) imply (29). ��
Remark 3.17. The proof of the lemma also shows that, in (29), it is sufficient to integrate
on {ω(x) � b log(1/|t |)} if b is large enough, since the remaining part is in o(t2L(1/|t |)).
The following lemma will use the additional assumptions that l is slowly varying and
l(x ln x) ∼ l(x), L(x ln x) ∼ L(x).

Lemma 3.18. We have∫
1|g|�1/|t |g2eitG = L(1/|t |)(1 + o(1)). (32)

Proof. It is sufficient to prove (32) on {ω � b log(1/|t |)}, since the remaining part can
be ignored.

Take some ε > 0, we will prove that
∫
ω�b log(1/|t |)

1|g|�1/|t |g2|eitG − 1| � 2εL(1/|t |) (33)

when t is small enough. This will be sufficient to conclude the proof.
Let At := {x | ω(x) � b log(1/|t |), |G(x)| � ε/|t |}. If x ∈ At , there exists y below

x in the tower such that |g(y)| � ε
|t |b log(1/|t |) . Let B = {x | |g(x)| � ε

|t |b log(1/|t |) }, we
get µ�(At ) � b log(1/|t |)µ�(B).

Let Z be a random variable on R with the distribution of g. Then

P

(
1

|t | log(1/|t |)2 � |Z| � 1/|t |
)

= |t |2 log(1/|t |)4l
(

1

|t | log(1/|t |)2
)

−|t |2l(1/|t |)
= |t |2 log(1/|t |)4l(1/|t |)(1 + o(1))

and

b log(1/|t |)P
(

|Z| � ε

|t |b log(1/|t |)
)

= b log(1/|t |) |t |
2b2 log(1/|t |)2

ε2

× l
(

ε

|t |b log(1/|t |)
)

= |t |2b3 log(1/|t |)3
ε2 l(1/|t |)(1 + o(1)).

Hence, if t is small enough, µ�(At ) � P
(

1
|t | log(1/|t |)2 � |Z| � 1/|t |

)
.

We would like to estimate
∫
At

1|g|�1/|t |g2. Now

∫
At

1|g|�1/|t |g2 =
∫
At

1 1
|t | log(1/|t |)2 <|g|�1/|t |g

2 +
∫
At

1|g|� 1
|t | log(1/|t |)2

g2.
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On the one hand ∫
At

1 1
|t | log(1/|t |)2 <|g|�1/|t |g

2 �
∫ 1/|t |

1
|t | log(1/|t |)2

x2 dP(x),

and on the other hand, by applying the above bounds we get∫
At

1|g|� 1
|t | log(1/|t |)2

g2 � 1

|t |2 log(1/|t |)4µ�(At )

� 1

|t |2 log(1/|t |)4P
(

1

|t | log(1/|t |)2 � |Z| � 1/|t |
)

�
∫ 1/|t |

1
|t | log(1/|t |)2

x2 dP(x).

Thus we need to deal with the integral
∫ 1/|t |

1
|t | log(1/|t |)2

x2 dP(x),

which is equal to

L(1/|t |)− L

(
1

|t | log(1/|t |)2
)

= L(1/|t |)− L(1/|t |)(1 + o(1)) = o(L(1/|t |)).

Hence, for small enough t , we get∫
At

1|g|�1/|t |g2|eitG − 1| � εL(1/|t |).

On Bt := {x | ω(x) � b log(1/|t |), x �∈ At }, we have |eitG(x) − 1| � |t ||G(x)| � ε.
Hence, ∫

Bt

1|g|�1/|t |g2|eitG − 1| � ε

∫
1|g|�1/|t |g2 = εL(1/|t |).

These two equations imply (33). This concludes the proof. ��
Since

∫
g = 0, Lemma 3.16 gives

λt = 1 − t2

2
L(1/|t |)(1 + o(1))+ (1 + o(1))it

∫
geitG

= 1 − t2

2
L(1/|t |)(1 + o(1))+ (1 + o(1))it

∫
g(eitG − 1)

= 1 − t2

2
L1(1/|t |)(1 + o(1)),

since
∫
g(eitG − 1) = i(a + o(1))tL(1/|t |) by assumption.

This asymptotic expansion readily implies the conclusion of Theorem 3.4, for g such
that

∫
g = 0.
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3.3.5. Proof of Theorem 3.4 in the general case. Let g : � → R belong to Lp(�) for
any p < 2 (this is in particular the case if g satisfies the assumptions of Theorem 3.4).
Set G(x) =∑ω(x)−1

k=0 g(Ukπ0x).

Lemma 3.19. For any p < 2, the function G belongs to Lp(�).

Proof. For x ∈ �, let ϕ(x) be its return time to the basis. Set also ψ(x) = ϕ(π0x),
where π0 is the projection on the basis of the tower.

We have

|G(x)|p =
∣∣∣∣∣∣
ω(x)−1∑
k=0

g(Ukπ0x)

∣∣∣∣∣∣
p

� ω(x)p−1
ω(x)−1∑
k=0

|g(Ukπ0x)|p.

Changing variables, we get

∫
|G(x)|p �

∫
|g(y)|p

ϕ(y)−1∑
k=1

ω(Uky)p−1 �
∫

|g(y)|pψ(y)p.

Since the tower has an exponentially small tail, the function ψ belongs to Lq for any
q < ∞. Using the Hölder inequality with a sufficiently large q, we obtain

∫ |G(x)|p <
∞. ��

Let g′ be another function on �. Define also G′(x) =∑ω(x)−1
k=0 g′(Ukπ0x).

Lemma 3.20. If g − g′ is bounded, then

∫
g(eitG − 1) =

∫
g′(eitG

′ − 1)+O(t)

when t → 0.

Proof. We have

∫
g(eitG − 1)−

∫
g′(eitG

′ − 1) =
∫
(g − g′)(eitG

′ − 1)+
∫
g(eitG − eitG

′
).

Since g − g′ is bounded, the first integral satisfies

∣∣∣∣
∫
(g − g′)(eitG

′ − 1)

∣∣∣∣ � C|t |
∫

|G′|,

which is O(t) since G′ is integrable by Lemma 3.19. For the second integral, |G(x)−
G′(x)| � Cω(x). Hence,

∣∣∣∣
∫
g(eitG − eitG

′
)

∣∣∣∣ �
∫

|g|C|t |ω � C|t | ‖g‖L3/2 ‖ω‖L3 = O(t). ��
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Proof (Proof of Theorem 3.4). Let g satisfy the assumptions of Theorem 3.4. Write
g′ = g− ∫ g. Then g′ is still in the nonstandard domain of attraction of the normal law,
and its tail functions l′ and L′ satisfy l′ ∼ l and L′ ∼ L. Moreover,∫

g′(eitG
′ − 1) = (a + o(1))itL(1/|t |)),

since g satisfies the same estimate and Lemma 3.20 applies.
We have already proved Theorem 3.4 for functions of zero integral. This applies to

g′, and gives Sng
′

Bn
→ N (0, 1). Since Sng′ = Sng− n ∫ g, this concludes the proof. ��

Remark 3.21. Lemmas 3.19 and 3.20 do not involve the dynamics of the returns to the
basis. Hence, they also hold in hyperbolic Young towers.

4. Estimate of the Integral in the Stadium Billiard

Let us turn back to the study of the stadium. We will use the notations of the first two
sections. In particular, starting from a fixed function f0 : X0 → R satisfying (P1), we
have obtained a function g : � → R. According to Theorem 3.4, if we want to obtain
a limit theorem for g, the quantity to be estimated is

∫
g(eitG − 1). The main result of

this section is the following proposition.

Proposition 4.1. Let y = 1
1− 3

4 log 3
, and recall the definition of I from (1). We have

∫
�

g(eitG − 1) dµ� = i
I 2(y − 1)�2

4
t log(1/|t |)+ o(t log(1/|t |)).

Our proof approximates the left-hand side with an integral explicitly given in the phase
space of the stadium. This later integral can be estimated with sufficient precision due
to the geometric properties of the billiard map.

4.1. Preliminary estimates. First we show that the relevant expression can be pulled
back to the hyperbolic Young tower. Let ω(x) be the height of the point x in �̄, and let
π̄0 : �̄ → �̄0 be the projection on the basis. We define two functions F̄ and Ḡ on �̄ by
F̄ (x) =∑ω(x)−1

k=0 f̄ (Ū kπ̄0x) and Ḡ(x) =∑ω(x)−1
k=0 ḡ(Ū kπ̄0x).

Lemma 4.2. We have∫
�

g(eitG − 1) =
∫
�̄

f̄ (eitF̄ − 1)+O(t).

Proof. As (π�)∗(µ�̄) = µ�,
∫
�
g(eitG− 1) = ∫

�̄
ḡ(eitḠ− 1) automatically. As ḡ− f̄

is bounded by Lemma 2.5, Lemma 3.20 implies the statement. ��
Note that F̄ is essentially a Birkhoff sum of f for the inverse map T −1. Thus, if we
switch from T to T −1, we may investigate our integral by dynamical tools.

For all x ∈ X, let h(x) = f (T −1x). Introduce h̄ = h◦πX. For x ∈ �̄withω(x) > 0,
let H̄ (x) = ∑ω(x)−1

k=1 h̄(Ū−kx), or equivalently, H̄ (x) = F̄ (Ū−1x). We fix H̄ (x) = 0
on �0.
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Lemma 4.3. We have

∫
f̄ (eitF̄ − 1) =

∫
h̄(eitH̄ − 1)+O(t).

Proof. We have h̄ ◦ Ū = f̄ , and, apart from Ū−1(�̄0), H̄ ◦ Ū = F̄ . Thus,

∫
h̄(eitH̄ − 1)−

∫
f̄ (eitF̄ − 1) =

∫
h̄ ◦ Ū (eitH̄◦Ū − 1)−

∫
f̄ (eitF̄ − 1)

=
∫
Ū−1(�̄0)

[
h̄ ◦ Ū (eitH̄◦Ū − 1)− f̄ (eitF̄ − 1)

]
.

As ϕ+ is bounded on the rectangle R that defines the basis of the tower, the functions
h̄ ◦ Ū and f̄ are bounded on Ū−1(�̄0). By Lemma 3.19 F̄ and H̄ are both integrable.
This completes the proof. ��

We will consider T −1 as the first return map of T −1
0 to the subspace X. The return

time is ϕ− = ϕ+ ◦ T −1.

4.2. Geometric properties of T −1 in the vicinity of its singularities. The behavior of∫
h̄(eitH̄ −1) is governed by the dynamical properties of T −1 at those parts of the phase

space where it is equivalent to a long series of bounces between the parallel segments
of the boundary. These sets have the following structure: the points for which T −1 acts
as n consecutive bounces on the segments form two stripes of slope approximately −1.
T −1 maps these two cells onto two stripes of positive slope.

The figure below describes this geometrical situation. On this figure the relevant
part of the cylinder-shaped phase spaceX0 is magnified: the horizontal coordinate is the
position r , and the vertical is the angle θ . Recall thatX is the union of two parallelograms
in X0. The origin on the figure corresponds to a corner of one of these parallelograms:
a phase point with position on the junction of the segment and the semi-circle, and with
velocity perpendicular to the wall (θ = 0). The negatively sloped stripes terminating on
the two sides of the parallelogram that meet at the origin are the regions where one appli-
cation of T −1 consists of n applications of T −1

0 . Each of these is mapped by T −1 onto
two positively sloped stripes. Both structures accumulate with increasing n at the origin,
as this is the phase point in X that corresponds to infinitely long bouncing between the
segments.
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Actually, this figure appears four times in X (twice in both of the parallelograms that
define X). The transformation T −1 jumps from one such region to another, however,
they play the same dynamical role. Thus, to simplify matters, we pretend as if we had
only one of them.

Convention 4.4. Given this geometry, we will refer to these regions as “corners of par-
allelograms”.

Besides the above described four, there are four further corners of the two parallelograms.
These further corners are the accumulation points for the other type of singularities, cor-
responding to trajectories sliding along the semi-circles. We shall see later on that they
do not play any role in the leading term behavior of

∫
h̄(eitH̄ − 1).

Remark 4.5. We need to study the map T −1 and not T . These two are not isomorphic,
as X is the set of points on a semi-circle for which the previous collision is not on that
semi-circle. This definition introduces an asymmetry of past and future. The map T −1 is,
however, isomorphic to the map induced on the set of points on a semi-circle for which
the next collision is on another semi-circle. This later induced map has been studied
by Markarian in [Mar04], where he, in particular, has shown that it satisfies Chernov’s
axioms from [Che99].

We fix some further conventions, to be used throughout Subsect. 4.2.

Convention 4.6. Recall that ϕ− = ϕ+ ◦ T −1 is the return time of T −1
0 to X. As a further

notational simplification we ignore that there are two stripes on which {ϕ− = n}. Let
Mn stand for the stripe {ϕ− = n}, which will be also referred to as the set of points of
return time n. Unless otherwise stated, throughout Subsect. 4.2 return time is understood
in this sense.

Convention 4.7. Fix ρ < 1 such that the tails of the original Young tower are bounded
by cρn, and K > 0 such that K log(ρ−1) > 4.

In what follows we essentially consider curves with tangent vectors in the unstable cone
of T −1 (u-curves of T −1 for short). The two components of the boundary of the stripe
Mn that separate it from Mn−1 and Mn+1 will be referred to as the long sides of Mn.
The slopes of the long sides are approximately −1, with better and better precision as n
increases.

Definition 4.8. Consider the stripeMn and its two long sides. A good curve C of return
time n is a C1 curve that connects these two sides. We put further requirements on the
slope of C: it should belong to the interval [1/4, 4] for all points and it should be constant
up to 1/

√
n precision (i.e., for all points x and y in C, the slopes of C at x and y, s(x)

and s(y), should satisfy |s(x)− s(y)| � 1√
n

).

Remark 4.9. Note that our requirement on the slope is weaker than a bound on the cur-
vature of the good curve. Stated in this form, it is not hard to see that good curves tend
to have more and more constant slopes when iterated by T −1. To see this consider a
good curve with large return time n and iterate it backwards by the billiard flow. Just
before collision it corresponds to a dispersing wavefront. To calculate the curvature of
this wavefront we may use a well-known formula from billiard theory (see e.g. [Che99]):

B− = 1

cos θ

(
dθ

dr
− K

)
,



Limit Theorems in the Stadium Billiard 489

where dθ
dr is the slope of the curve on the phase space, B− is the curvature of the corre-

sponding wavefront just before collision and K is the curvature of the wall at the collision
point. In our case K = −1 as we have a semicircular focusing wall of radius 1, while
the slope dθ

dr is bounded from below, see Definition 4.8. Thus B− is uniformly bounded
from below and thus the dispersing wavefront, when iterated backwards by the flow,
defocuses within finite time. The resulting convergent wavefront, when iterated further
backwards, while experiencing many bounces with the straight walls, loses most of its
curvature. As the length of this neutral flight is of order n, at the time moment just after
the previous collision on the other semi-circle, this wavefront is flat up to 1/n. Thus,
any subcurve C′ ⊂ T −1C is automatically a good curve if it connects the two long sides
of a stripe.

Definition 4.10. A standard curve is defined as a good curve of constant slope 1. In
particular, it is a segment.

The choice of 1 as the slope for standard curves is arbitrary. More important is the fact
that the standard curves of return time n give a fixed foliation for (most of) the stripe
Mn.

If C is a good curve of return time n, any point of T −1(C) has return time at least
n/3−C1 and at most 3n+C1 for some constantC1. Furthermore, there exists a constant
C2 ∈ N such that for any i ∈ [n/3 +C2, 3n−C2], the set T −1(C)∩ {ϕ− = i} is a good
curve of return time i (see Remark 4.9). Let us denote Ci = {x ∈ C | ϕ−(T −1x) = i}.
We also have

Leb
(
C\⋃i∈[n/3+C2,3n−C2] Ci

)
Leb(C) � C

n
(34)

for a universal constant C. We will say that the set C\⋃i∈[n/3+C2,3n−C2] Ci is thrown
away at the first iterate of C. Formula (34) shows that the points which are thrown away
have negligible measure.

Remark 4.11. In addition to the above observations, it is possible to estimate the tran-
sition probabilities from one stripe to the other in the following sense. There exists a
sequence εn that tends to 0 as n → ∞, such that for any good curve C of return time n,
and for any i ∈ [n/3 + C2, 3n− C2],

(1 − εn)
3n

8i2
� Leb{x ∈ C | ϕ−(T −1(x)) = i}

Leb(C) � 3n

8i2
(1 + εn). (35)

This can be verified by direct calculation. In other words, we go fromn to i asymptotically
with probability 3n

8i2
(note that

∑3n−C2
i=n/3+C2

3n
8i2

→ 1).

Applying the above process several times, we may iterate the good curves by T −1 and
obtain finer and finer partitions of C. A sequence of integers n0, n1, . . . , nk is referred
to as admissible if, for all i < k, ni+1 ∈ [ni/3 + C2, 3ni − C2]. Given a good curve of
return time n0, C, and an admissible sequence n0, . . . , nk , let

Cn0,...,nk = {x ∈ C | ∀i � k, ϕ−(T −ix) = ni}.

This is a subcurve of C mapped by T −k onto a good curve of return time nk .
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Lemma 4.12. There exists a constant C > 0 such that, for any pair of good curves of
the same return time n0, C and C′, and for any fixed admissible sequence n0, . . . , nk , we
have

C−1 � Leb(Cn0,...,nk )

Leb(C′
n0,...,nk

)
� C.

Proof. This follows from the uniform expansion and the bounded distortion properties
of T −1 along its u-curves. ��

In what follows, when we talk about iterating a good curve, we will always mean the
above process of refinement, along with throwing away some part at each step. How-
ever, the number of iterations may depend on the point of C we are considering. This is
formulated in the following definition.

Definition 4.13. Let C be a good curve of return time n. Let furthermore A be a subset
of C and τ : C\A → N. Then (A, τ) is a stopping time on C if

– There exists p ∈ N such that 3p+1 < n0, with the following property: all the con-
nected components of C\A are of the form Cn0,...,nk , where n0 = n, the sequence
n0, . . . , nk is admissible, and nk ∈ [3p, 3p+1 − 1]. Furthermore, τ is uniformly
equal to k on such a component.

– We have Leb(A)/Leb(C) � 1/2.

Here typically 3p � n, thus we stop at the first occasion when the return time decreases
below a certain level.

Remark 4.14. If (A, τ) is a stopping time on C, then

1

2
� Leb(C\A)

Leb(C) � 1.

Thus in our estimates Leb(C\A) and Leb(C) may be replaced with each other. We will
often use this without giving further details.

Let us define, in particular, the standard stopping time for a good curve C of return
time n. Let p be the integer for which 3p � n1/4 < 3p+1. We partition C, iterate T −1

and throw away the negligible parts according to the process described above. We go on
iterating until either the return time of the image belongs to the interval [3p, 3p+1 − 1],
or the number of iterates exceedsK log n (hereK is the constant from Convention 4.7).
Thus we put into A, on the one hand, the points thrown away during this process, and,
on the other hand, the intervals for which the return time does not reach [3p, 3p+1 − 1]
before K log n iterations. On all other intervals we define τ as the first occasion when
the return time belongs to [3p, 3p+1 − 1].

Proposition 4.15. The standard stopping time (A, τ) defined this way is indeed a stop-
ping time if n is large enough. Furthermore, Leb(A)/Leb(C) � n−1/5.

Proof. The only non-trivial condition to be verified is Leb(A)/Leb(C) � n−1/5.
Let us first estimate the measure of points thrown away during the refinement process.

We will denote this set by A0(⊂ A ⊂ C).
No matter which phase of the iteration we consider, the return time is � n1/4, thus,

according to (34), the points thrown away occupy at most a Cn−1/4 proportion of the
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considered interval. Hence, by bounded distortion, the proportion of A0 in C is at most
Cn−1/4K log n � n−1/5 for n large enough.

It remains to be shown that the overall measure of the intervals that do not reach
[3p, 3p+1 − 1] before K log n iterations is small. We have C = A0 ∪⋃ Ci , where each
Ci is of the form Cn0,...,nk for some admissible sequence n0, . . . , nk , with k � K log n,
and nk < 3p+1 whenever k < �K log n�. Thus it is enough to estimate the measure of
Ci-s with τCi = k = �K log n�. Let C′ be one of our standard curves of return time n.
We apply the same construction to C′, and get a similar decomposition C′ = A′

0 ∪⋃ C′
i .

Furthermore, by Lemma 4.12, Leb Ci
Leb C′

i

� C.

Recall that the standard curves of return time n foliate the major part M ′
n of the

stripeMn (where µ(M ′
n)/µ(Mn) = 1+O(1/n)). For a fixed i = (n0, . . . , nk) consider

Bi the subset of the stripe Mn that corresponds to the union of such C′
i-s for all the

standard curves of return time n. As the density of µ on Mn is bounded away from 0,
we get Leb(Ci )

Leb(C) � C
µ(Bi)
µ(M ′

n)
. Fix B as the union of all Bi-s with τi = �K log n�. When

pulled back to the Young tower, the preimages of the points of B are all at height at least
K log n. As π∗

X(µ�̄) = µ, we get µ(B) � CρK log n = O(1/n4) by our choice of K
(see Convention 4.7). As µ(M ′

n) ∼ C/n3, we may put all these estimates together to
conclude that ∑

τi=�K log n� Leb(Ci )
Leb(C) = O(1/n).

This completes the proof of the proposition. ��
In the next proposition we consider standard curves C and use the notation (AC, τC) for

their standard stopping times. We define a subset of the phase space, a suitable union of
subcurves of standard curves, asY =⋃C(C\AC).We also consider the Birkhoff sum ofh

with respect to T −1 up to standard stopping time, i.e., we fixH(x) =∑τC(x)−1
k=1 h(T −kx)

for x ∈ Y .

Remark 4.16. At first sight the measurability of the set Y may seem questionable. Let us
show that, for n fixed, the set Y ∩Mn is measurable. Consider the standard curves inMn,
all having the same return time n. Whether a point of such a curve falls into the thrown
away set depends only on its past history up to the firstK log n backward iterations. The
singularity manifolds for the first K log n applications of T −1 give a finite measurable
partition of Mn. By the above observation, Y ∩Mn is a union of full elements of this
partition, intersected with M ′

n. Hence, it is measurable.

Proposition 4.17. We have∫
�̄

h̄(eitH̄ − 1) =
∫
Y

h(eitH − 1)+O(t).

This proposition plays a central role as it allows us to investigate, instead of
∫
�̄
h̄(eitH̄−1)

(a quantity that depends a priori on the choice of theYoung tower), an expression which
is much easier to handle, as it is completely explicitly given in terms of the phase space
geometry.

Proof. Let us show first that∫
�̄

h̄(eitH̄ − 1) =
∫
π−1
X (Y )

h̄(eitH̄ − 1)+O(t). (36)
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Consider A = X\Y . The set A consists of two parts. It contains, on the one hand, the
points that are not covered by standard curves and, on the other hand, those contained
in AC for some standard curve C. These two sets will be referred to as A1 and A2,
respectively.

We cover the setA1 ∩{ϕ− = n} by two further sets. The first one contains points that
slide along a semi-circle, with return time n. This set is of measure O(1/n4) as cos θ ,
the density of the invariant measure, isO(1/n) on it. The other component in this cover
is the part of Mn not covered by standard curves, which has measure O(1/n4) as well.
Altogether we have µ(A1 ∩ {ϕ− = n}) = O(1/n4).

According to Proposition 4.15, we have Leb(AC)/Leb(C) � n−1/5 whenever n, the
return time for C, is large enough. Integrating on the relevant standard curves we obtain
µ(A2 ∩ {ϕ− = n}) = O(1/n3+1/5).

Altogether we have

µ(A ∩ {ϕ− = n}) = O(1/n3+1/5). (37)

For any 1/p + 1/q = 1 we have

∣∣∣∣∣
∫
π−1
X (A)

h̄(eitH̄ − 1)

∣∣∣∣∣ �
∫

1
π−1
X (A)

|h̄|t |H̄ | � |t |
(∫

(1
π−1
X (A)

|h̄|)p
)1/p (∫

|H̄ |q
)1/q

.

Recall from Lemma 3.19 that the function H̄ belongs to Lq for any q < 2, while (37)
implies that

∫
(1
π−1
X (A)

|h̄|)p, being equal to
∫
X

1A|h|p, is finite for p < 2 + 1/5. We can

thus take p = 2 + 1/10 and q = (1 − 1/p)−1, to obtain (36).
Now, to complete the proof, we need to show that

∫
π−1
X (Y )

h̄(eitH̄ − 1) =
∫
π−1
X (Y )

h̄(eitH◦πX − 1)+O(t). (38)

Consider Ci , a connected component of C\AC , where C is a standard curve of return
time n. Then the stopping time on Ci is an integer τi < K log n such that Di = T −τi (Ci )
is a good curve, with return time in the interval [n1/4/3, 3n1/4]. In the next lemma, as
throughout the subsection, we use the expression “return time” in the sense of Conven-
tion 4.6.

Lemma 4.18. There exists a constant C such that, for any large enough integer n, given
any good curve D of return time ∈ [n1/4/3, 3n1/4], the points for which the return time
increases above n1/2 withinK log n iterations of T −1 occupy relative measure less than
Cn−1/4 in D.

Proof. The map T −1 satisfies Chernov’s axioms, by [Mar04]. Consequently, we can use
[Che99, Theorem 3.1], with δ = Z[D,D, 0]−1/σ /n1/σ . This theorem is in fact stated
for local unstable manifolds, but its proof can be straightforwardly adapted to deal with
manifolds close to the unstable direction.

We obtain a decreasing sequenceW 1
0 ⊃ W 1

1 ⊃ · · · ⊃ W 1
�K log n� of subsets of D such

that, if we denote by Sing the set of singularities of T −1,

∀c > 0,∀0 � p � K log n, Leb{x ∈ W 1
p | dist(T −px, Sing) � cn−1} � Ccn−1 (39)
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(by Eq. (3.3) in [Che99]), and

∀0 � p � K log n, Leb(W 1
p\W 1

p+1) � C

n
Leb(D) (40)

(by (iv), (3.5) in [Che99] and our choice of δ).
Note that the results of [Che99] imply that (39) holds for the distance measured in the

p-metric. However, we are in a region ofX where cos θ is bounded away from 0, and the
stable and unstable cones are bounded away from the vertical direction by Proposition
2.1. Hence, it is equivalent to have (39) for the p-distance or for the usual distance.

If T −p(x) has a return time � n1/2, then T −px is at a distance at mostCn−1 of Sing.
Hence, the point x belongs to one of the sets whose measure is bounded in (39) and
(40). This gives a measure at most C log n n−1. Since Leb(D) � Cn−1/2, this proves
the lemma. ��

This lemma applies to Di . Let us write Ci = C1
i ∪ C2

i , where C2
i corresponds to points

which go to Di , and then reach a return time > n1/2 in a time shorter than K log n. It
satisfies Leb(C2

i )/Leb(Ci ) � Cn−1/4 by Lemma 4.18.
Let Y1 =⋃ C1

i and Y2 =⋃ C2
i (see Remark 4.16 on the measurability of these sets).

Since µ(Y2 ∩ {ϕ− = n}) = O(1/n3+1/4), the proof of (36) applies and gives

∫
π−1
X (Y2)

h̄(eitH̄ − 1) = O(t);
∫
π−1
X (Y2)

h̄(eitH◦πX − 1) = O(t).

Remark 4.19. Note that H ◦ πX belongs to Lq for any q < 2 as it is smaller than a
function to which Lemma 3.19 applies.

Hence, it is sufficient to prove (38) on π−1
X (Y1). Let us write π−1

X (Y1) = Z1 ∪Z2, where

Z1 = {x ∈ π−1
X (Y1) | ω(x) < K log(ϕ−(πXx))}

and Z2 = π−1
X (Y1)\Z1. For n > 0,

µ�̄{x ∈ Z2 | ϕ−(πXx) = n} � µ�̄{x ∈ �̄, ω(x) � K log n} = O(1/n4).

Hence, we get once again
∫
Z2
h̄(eitH̄ − 1) = O(t) and

∫
Z2
h̄(eitH◦πX − 1) = O(t).

OnZ1 ∩{ϕ−◦πX = n}, the functions H̄ andH ◦πX differ by at most ‖f0‖∞K log n
n1/2 (corresponding to at most K log n iterations with a return time < n1/2). Hence,

∣∣∣∣
∫
Z1

h̄(eitH̄ − 1)− h̄(eitH◦πX − 1)

∣∣∣∣
� |t |

∫
Z1

|h̄||H̄ −H ◦ πX| � C|t |
∑
n

µ{ϕ− = n}n log n n1/2 � C|t |

since µ{ϕ− = n} = O(1/n3). This proves (38), and concludes the proof of Proposition
4.17. ��
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4.3. An upper bound on H . The aim of this subsection is to estimate the average of the
function H on a good curve C of return time n. We obtain the following upper bound:

Proposition 4.20. Let s ∈ [1, 2). Consider a good curve C of return time n0, and a
stopping time (A, τ) on C. Then∫

C\A
∑τ(x)−1
k=0 |h(T −kx)|s
Leb(C\A) � C(s)ns0,

where the constant C(s) depends only on s.

Let us fix some notation first. There is an integer p0 such that the return time n0 for our
good curve C belongs to [3p0 , 3p0+1−1]. By the definition of stopping times, there exists
another integer p1 < p0 such that, for any x ∈ C\A, ϕ−(T −τ(x)(x)) ∈ [3p1 , 3p1+1 −1].
Now consider an intermediate p, p1 < p ≤ p0. In the course of the proof first we
investigate, in a series of lemmas, what happens while the return time descends from
[3p, 3p+1 − 1] to [3p−1, 3p − 1]. Then we sum up for p1 < p ≤ p0. In the first part of
the proof the value of p is fixed and n ≈ 3p, while in the second part p varies from p1
to p0. The value of s ∈ [1, 2) is fixed throughout the subsection.

According to this plan, let us fix p ∈ N large enough. Given x ∈ X, we define τp(x)

as the first time k � 1 for which ϕ−(T −kx) < 3p, and�p(x) =∑τp(x)−1
k=0 |ϕ−(T −kx)|s .

Since |h| � Cϕ−, it is sufficient to prove Proposition 4.20 for h = ϕ− to conclude.
Define R ⊂ X as the union of all standard curves with return time from the interval

[3p/2, 3p − 1].

Lemma 4.21. There exists a constant C such that∫
R

�p � Cµ(R)3ps.

Proof. Let R1 = {x ∈ R | ϕ−(T −1x) < 3p} and R2 = {x ∈ R | ϕ−(T −1x) � 3p}. On
R1 we have �p(x) = |ϕ−(x)|s , thus∫

R1

�p � Cµ(R1)3
ps.

Let us define ϕ′(x) = ϕ−(x) for x with ϕ−(x) � 3p−1 and ϕ′(x) = 0 otherwise. Note

that �p(x) =∑τp(x)−1
k=0 |ϕ′(T −kx)|s for x ∈ R2.

Consider Z ⊂ X, Z := {3p−1 −C1 � ϕ− < 3p}, and define τZ : Z → N as the first
return time to Z. By Kac’s formula,

∫
Z

τZ(x)−1∑
k=0

|ϕ′(T −kx)|s =
∫
X

|ϕ′|s � C
∑

k�3p−1

µ(ϕ− = k)|k|s

� C
∑

k�3p−1

1

k3 k
s � C

3ps

32p .

Now R2 ⊂ Z and for x ∈ R2 we have τZ(x) = τp(x). Thus

∫
R2

�p =
∫
R2

τZ(x)−1∑
k=0

|ϕ′(T −kx)|s �
∫
Z

τZ(x)−1∑
k=0

|ϕ′(T −kx)|s .

By Remark 4.11, 1
32p = O(µ(R2)). This completes the proof. ��
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If C is a good curve of return time n ∈ [3p, 3p+2 − 1], τp defines a stopping time
on C, with the corresponding thrown-away set that we denote by Ap. To see that it is
indeed a stopping time we only need to show that Leb(Ap) � Leb(C)/2. Now con-
sider the standard stopping time τC with its thrown away set AC . Then Ap ⊂ AC while
Leb(AC) � n−1/5 Leb(C) by Proposition 4.15, which gives the claim.

The first step in the proof of Proposition 4.20 is the estimate∫
C\Ap �p

Leb(C\Ap) � C3ps (41)

for a good curve C with return time n ∈ [3p, 3p+1 − 1]. To show this, we will relate the
average of �p on C to its average on R.

Consider B =⋃(C\Ap), where the union is taken over all standard curves of return
time from the interval [3p, 3p+2 − 1].

Lemma 4.22. There is a constant C such that, for any good curve C of return time
n ∈ [3p, 3p+1 − 1], ∫

C\Ap �p
Leb(C\Ap) � C

∫
B
�p

µ(B)
+ C3ps. (42)

Proof. Let U = {x ∈ C | ϕ−(T −1x) � 3p}. On C, we have �p(x) = |ϕ−(x)|s +
1U(x)�p(T −1x). To prove (42), it is enough to show

∫
U∩(C\Ap)

�p ◦ T −1 � C

∫
B
�p

µ(B)
Leb(C\Ap).

By bounded distortion, this can be further reduced to∫
T −1(C\Ap)∩{ϕ−�3p}�p

Leb(T −1(C\Ap) ∩ {ϕ− � 3p}) � C

∫
B
�p

µ(B)
. (43)

Let q be the maximal possible return time the points of T −1(C\Ap) have. It satisfies
3p+2 > q � 3p+1 − C2. By Lemma 4.12∫

T −1(C\Ap)∩{ϕ−�3p}�p
Leb(T −1(C\Ap) ∩ {ϕ− � 3p}) � C

∫
B∩{3p�ϕ−�q}�p

µ(B ∩ {3p � ϕ− � q}) .

As q � 3p+1 − C2, by Remark 4.11 µ(B) � Cµ(B ∩ {3p � ϕ− � q}). This implies
(43) and completes the proof. ��
Now B is not exactly R, we need to “widen up” the estimate of Lemma 4.21 from R to
B to obtain (41).

Let B1 = B ∩ {3p � ϕ− < 3p+1/2}, B2 = B ∩ {3p+1/2 � ϕ− < 3p+1}, B3 =
B ∩ {3p+1 � ϕ− < 3p+2/2} and B4 = B ∩ {3p+2/2 � ϕ− < 3p+2}.
Lemma 4.23. There exists a constant C such that, for any good curve C of return time
n ∈ [3p, 3p+1/2), ∫

B1
�p

µ(B1)
� C

∫
C\Ap �p

Leb(C\Ap) .
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Proof. The curve T −1(C) crosses all stripes of return time between 3p and 3p+1/2. This
allows us to apply the argument of Lemma 4.22 with reversed inequalities. ��
Lemma 4.24. There exists a constant C such that∫

B1
�p

µ(B1)
� C3ps.

Proof. Let C be a standard curve of return time n ∈ [3p/2, 3p−1]. For i ∈ [3p, 3p+1/2),
put Ci = {x ∈ C, ϕ−(T −1x) = i} and let Di be its image by T −1. This is a good curve
of return time i and, by bounded distortion,

∫
Di
�p

Leb(Di )
� C

∫
Ci �p

Leb(Ci ) .

Furthermore, applying Lemma 4.23 to Di ,we get

Leb(Ci )
∫
B1
�p

µ(B1)
� C

∫
Ci
�p.

As by Remark 4.11 the good curves Ci occupy a fixed proportion of C, we may sum up

Leb(C)
∫
B1
�p

µ(B1)
� C

∫
C
�p.

Integrating over all standard curves of return time ∈ [3p/2, 3p − 1], we obtain

µ(R)

∫
B1
�p

µ(B1)
� C

∫
R

�p.

We may conclude by Lemma 4.21. ��
Lemma 4.25. There is a constant C such that for any l = 2, 3, 4,

∫
Bl
�p

µ(Bl)
� C3ps.

Proof. As the three cases are essentially identical we give the argument only for one
of them, for l = 3, say. The proof is analogous to that of the previous lemma, we only
need to apply a bit more iterations. Let C be a standard curve with return time from
[3p/2, 3p − 1]. Given i ∈ [3p, 3p+1/2), let Ci be the set of points in C the images of
which have return time i. For j ∈ [3p+1/2, 3p+1), let Cij be the set of points in Ci the
T −2-images of which have return time j . Finally, for k ∈ [3p+1, 3p+2/2), we define
Cijk analogously.

By Remark 4.11, at each step we keep a fixed proportion of the previous set. Thus,
there exists a constant C such that

Leb(C) � C
∑
i,j,k

Leb(Cijk).



Limit Theorems in the Stadium Billiard 497

Following the lines of the proof of Lemma 4.23 we may show that given any good curve

D of return time from the interval [3p+1, 3p+2/2), we have
∫
B3
�p

µ(B3)
� C

∫
D �p

Leb(D) . This

applies, in particular, to D = T −3(Cijk) and gives

∫
B3
�p

µ(B3)
� C

∫
T −3Cijk �p

Leb(T −3Cijk) � C

∫
Cijk �p

Leb(Cijk) ,

by bounded distortion. We may apply Lemma 4.21, just as we did in the proof of
Lemma 4.24, to get the desired conclusion. ��

Lemmas 4.24, 4.25 and 4.22 altogether imply the bound (41) for any good curve of
return time n ∈ [3p, 3p+1 − 1]. We apply this bound in the second (much easier) step
of the proof of Proposition 4.20.

Proof of Proposition 4.20. Recall the notations from the beginning of the subsection: C
is a good curve of return time n0 ∈ [3p0 , 3p0+1 −1], for some large p0, and the stopping
time τ is related to another integer p1 (p0 > p1): ϕ−(T −τ(x)(x)) ∈ [3p1 , 3p1+1 − 1] for
all x ∈ C\A.

To simplify notation in this proof we define τp0+1(x) = 0 for x ∈ C\A. For x ∈ C\A
we have

τ(x)−1∑
k=0

|ϕ−(T −kx)|s =
p0∑

p=p1+1

�p(T
−τp+1(x)x).

Let p1 + 1 � p � p0 and x ∈ C\A. Then there is a subcurve Ci ⊂ C that contains x
and for which T −τp+1(x)(Ci ), to be denoted by Di , is a good curve of return time from
[3p, 3p+1 − 1]. By bounded distortion

∫
Ci\A �p(T

−τp+1y)

Leb(Ci ) � C

∫
T

−τp+1 (Ci\A) �p
Leb(Di )

� C

∫
Di\Ap �p
Leb(Di )

.

Now according to (41) this final quantity is bounded from above by C3ps . Summing up
for all intervals Ci we obtain

∫
C\A

�p(T
−τp+1(y)y) � C3ps Leb(C).

Summation on p from p1 + 1 to p0 implies the statement. ��
Corollary 4.26. We have

∫
Y

h(eitH − 1) = it

∫
Y

h1ϕ−�1/|t |H + o(t log(1/|t |)).

Proof. We have

∣∣∣∣
∫
Y

h1ϕ−�1/|t |(eitH − 1 − itH)

∣∣∣∣ � C

∫
Y

|h|1ϕ−�1/|t ||t |3/2|H |3/2.
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We may estimate |H(x)|3/2 as

|H(x)|3/2 �


τ(x)−1∑

1

|h(T −kx)|



3/2

� τ(x)1/2
τ(x)−1∑

0

|h(T −kx)|3/2.

Now put �(x) = ∑τ(x)−1
0 |h(T −kx)|3/2. Then for x ∈ Y of return time n we get

|H(x)|3/2 � (K log n)1/2�(x), as the standard stopping time satisfies τ(x) � K log n.
By Proposition 4.20 the average of the function � on Y ∩ {ϕ− = n} is less than

Cn3/2. Putting these estimates together,

∫
Y

|h|1ϕ−�1/|t ||t |3/2|H |3/2 � C|t |3/2
1/|t |∑
n=1

µ(ϕ− = n)n
√

log n n3/2

� C|t |3/2
√

log(1/|t |)|t |−1/2 = o(|t | log(1/|t |)),
while∣∣∣∣
∫
Y

h1ϕ−>1/|t |(eitH − 1)

∣∣∣∣ � C

∫
ϕ−1ϕ−>1/|t | � C

∑
n>1/|t |

µ(ϕ− = n)n = O(t)

as µ(ϕ− = n) = O(1/n3). ��

4.4. Exact asymptotics for H . Recall the value of I from (1), and the fact that on
Y ∩ {ϕ− = n} the function h is equivalent to nI .

Lemma 4.27. Let y = 1
1− 3

4 log 3
. For any ε > 0 there exists N0 ∈ N such that, for all

n � N0, for all good curves C with return time n,∣∣∣∣∣
∫
C\AC H

Leb(C\AC)
− n(y − 1)I

∣∣∣∣∣ � εn.

Proof. Recall the asymptotic expressions for the transition probabilities from
Remark 4.11. These allow us to regard the map T −1 as a Markov chain. Then the
statement of the lemma can be guessed by the expectation value with respect to the
invariant distribution of this chain.

The rigorous proof is inductive. Note that first we fix ε > 0, that will correspond to
the required precision in the asymptotics, and then we may choose n arbitrarily large.
Let L ∈ N be an integer for which (9/10)L � ε. This integer L is the number of induc-
tive steps needed to obtain ε-precision. More precisely, if n0, . . . , nL is an admissible
sequence (here n0 = n), then nL is typically much smaller than n0. The Birkhoff sum of
h for the times between nL and the stopping time can be estimated by the upper bound
coming from Lemma 4.20, which roughly means that we only need to take care of the
sum for the first L steps. This estimate will be the starting point of our induction. Then
we place our standard curve “high enough” (i.e., choose n large enough) to ensure that
the transition probabilities of Remark 4.11 are accurate with very good precision. These
transition probabilities are responsible for the appearance of y as we decrease the length
of the admissible sequence n0, . . . , ni from i = L to i = 0 in the induction.
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Let C be a standard curve of return time n with the standard stopping time (AC, τC)
on it. If n0, . . . , ni is admissible with n0 = n and i � L, the set Cn0,...,ni is not empty,
and we may consider C′

n0,... ,ni
= Cn0,... ,ni ∩ (C\AC). For D = T −i (Cn0,... ,ni ), define

A = D\T −i (C′
n0,... ,ni

) and τ(T −ix) = τC(x) − i. Then, for large enough n, (A, τ) is
a stopping time on D. To see this we note that Leb(A) � Leb(D)/2 as the number of
iterations is bounded from above by L while Leb(AC)/Leb(C) → 0 as n → +∞.

By increasing n if necessary, we may assume that for any p > n/3L, and for any x
with ϕ−(x) = p we have |h(x)− pI | � p/(L3L). Thus for x ∈ C′

n0,...,nL
we have

|H(x)− (n1 + · · · + nL−1)I | �
L−1∑
k=1

|h(T −kx)− nkI | +
τC(x)−1∑
k=L

|h(T −k(x)|, (44)

where the first term satisfies

L−1∑
k=1

|h(T −kx)− nkI | �
L−1∑
k=1

nk/(L3L) � nL,

as nk � 3LnL. On the other hand if we integrate the second term in (44), we may use
the upper bound of Lemma 4.20. We get, for some constant C3:

∣∣∣∣∣∣
∫
C′
n0,...,nL

H − (n1 + · · · + nL−1)I

Leb(C′
n0,...,nL

)

∣∣∣∣∣∣ � C3nL. (45)

Choose n large enough to ensure that (i) all the εp from Remark 4.11 are less than ε
whenever p > n/3L, and that (ii) the distortion of any T −i |Cn0,...,ni

, i ≤ L, is bounded
from above by ε.

As y 3
4 log 3 − y + 1 = 0 we have, for n large enough,

∣∣∣∣∣∣y
3p−C2∑
p/3+C2

3

8k
− y + 1

∣∣∣∣∣∣ < ε (46)

whenever p > n/3L.
To simplify notation we introduce α = 9

10 and another positive number β > 2 log 3
which is, however, not too big so that 3

8β < α. By further increasing n, if necessary, we

may also assume that
∑3p
p/3

1
k

� β whenever p > n/3L.
Now, by induction on decreasing i we show the following bound:

∣∣∣∣∣∣
∫
C′
n0,...,ni

H − (n1 + · · · + ni−1)I

ni Leb(C′
n0,...,ni

)
− yI

∣∣∣∣∣∣ � αL−i (C3 + y|I |)+ C4

L−1∑
k=i

εαk−i , (47)

where C4 is some constant. Note that for i = 0, when the sum n1 + · · · + ni−1 is to be
interpreted as −n0, this bound implies the statement of Lemma 4.27. On the other hand,
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the case i = L is already established in (45). So let us assume (47) holds for i, and show
it for i − 1. We have

∫
C′
n0,...,ni−1

H − (n1 + · · · + ni−2)I

ni−1 Leb(C′
n0,...,ni−1

)
− yI

=
∫
C′
n0,...,ni−1

H − (n1 + · · · + ni−1)I

ni−1 Leb(C′
n0,...,ni−1

)
− yI + I

=
3ni−1−C2∑

ni=ni−1/3+C2

∫
C′
n0,...,ni

H − (n1 + · · · + ni−1)I

ni−1 Leb(C′
n0,...,ni−1

)
− yI + I

=
3ni−1−C2∑

ni=ni−1/3+C2



∫
C′
n0,...,ni

H − (n1 + · · · + ni−1)I

ni Leb(C′
n0,...,ni

)

× ni Leb(C′
n0,...,ni

)

ni−1 Leb(C′
n0,...,ni−1

)
− 3

8ni
yI

)

+

y

3ni−1−C2∑
ni=ni−1/3+C2

3

8ni
− y + 1


 I.

Note that as n0, . . . , nL is admissible, C′
n0,...,ni

has positive length for any i ≤ L, thus
the denominators are never zero in these expressions. The choice of a large enough n
ensures that even ni is large enough so that (46) applies:

∣∣∣∣∣∣y
3ni−1−C2∑

ni=ni−1/3+C2

3

8ni
− y + 1

∣∣∣∣∣∣ � ε.

Now we will use the transition probabilities (35) on the curve T −(i−1)(Cn0,...,ni−1). We
will also use that the distortions of T −(i−1), when restricted to this curve, are bounded
from above by ε. Note furthermore that C′

n0,...,ni−1
occupies at least (1 − ε)-proportion

of Cn0,...,ni−1 if n is large enough (we may apply Proposition 4.15). The same holds for
C′
n0,...,ni

in Cn0,...,ni . These observations allow us to obtain (note ni−1/ni ≤ 3):

∣∣∣∣∣
Leb(Cn0,...,ni )

Leb(Cn0,...,ni−1)
− Leb(C′

n0,...,ni
)

Leb(C′
n0,...,ni−1

)

∣∣∣∣∣ � 2ε
Leb(Cn0,...,ni )

Leb(Cn0,...,ni−1)
� Cε

ni
.

One more reference to Remark 4.11 and to the fact that the distortions can be made
smaller than ε if n is large enough implies

∣∣∣∣∣
ni Leb(C′

n0,...,ni
)

ni−1 Leb(C′
n0,...,ni−1

)
− 3

8ni

∣∣∣∣∣ �
C5ε

ni
.
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By the triangular inequality,

∣∣∣∣
∫
C′
n0,...,ni

H − (n1 + · · · + ni−1)I

ni Leb(C′
n0,...,ni

)

ni Leb(C′
n0,...,ni

)

ni−1 Leb(C′
n0,...,ni−1

)
− 3

8ni
yI

∣∣∣∣

�

∣∣∣∣∣∣
∫
C′
n0,...,ni

H − (n1 + · · · + ni−1)I

ni Leb(C′
n0,...,ni

)
− yI

∣∣∣∣∣∣
3

8ni

+
∣∣∣∣∣∣
∫
C′
n0,...,ni

H − (n1 + · · · + ni−1)I

ni Leb(C′
n0,...,ni

)

∣∣∣∣∣∣
∣∣∣∣∣
ni Leb(C′

n0,...,ni
)

ni−1 Leb(C′
n0,...,ni−1

)
− 3

8ni

∣∣∣∣∣ .

Let Bi be the bound at step i of the induction. Then the first term is bounded from above
by 3Bi

8ni
, and the second term is bounded from above by (Bi+y|I |)C5ε

ni
.

Recall the definitions of α and β, we have
∑3p
p/3

1
k

� β and, if ε is small enough,

( 3
8 + C5ε)β < α.

Putting our estimates together we get

Bi−1 = ε|I | +
3ni−C2∑

ni−1/3+C2

[
3Bi
8ni

+ (Bi + y|I |)C5ε

ni

]

� ε|I | +
(

3Bi
8

+ (Bi + y|I |)C5ε

)
β

� (|I | + C5y|I |β)ε + αBi.

Now if (47) holds for i with C4 = |I | + C5y|I |β, it holds for i − 1 with the same
constants.

Taking i = 0 we get

1

n

∣∣∣∣∣
∫
C\AC H

Leb(C\AC)
− n(y − 1)I

∣∣∣∣∣ � CαL + Cε � Cε

by the choice ofL. Note that the constantC depends only on I , thus it can be “swallowed”
by ε. This completes the proof of the lemma. ��
Proposition 4.28. We have

∫
Y

h1ϕ−�1/|t |H =
(
I 2(y − 1)�2

4
+ o(1)

)
log(1/|t |).

Proof. First let us show that∫
Y

(h− ϕ−I )1ϕ−�1/|t |H = o(log(1/|t |)). (48)

Fix ε > 0. If N is large enough we have |h − ϕ−I | � εϕ− for ϕ− � N . Thus we get
(note that H is integrable, cf. Remark 4.19)∣∣∣∣

∫
Y

(h− ϕ−I )1ϕ−�1/|t |H
∣∣∣∣ � O(1)+

∑
N�n�1/|t |

εn

∫
Y∩{ϕ−=n}

|H |.
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We may apply Proposition 4.20 with s = 1 to show
∫
Y∩{ϕ−=n} |H | � Cnµ(ϕ− = n) =

O(1/n2). Thus we get

∣∣∣∣
∫
Y

(h− ϕ−I )1ϕ−�1/|t |H
∣∣∣∣ � O(1)+ Cε log(1/|t |) � C′ε log(1/|t |).

As the above inequality is true for any fixed ε > 0, we get (48).
Now we estimate

∫
Y

ϕ−I1ϕ−�1/|t |H =
1/|t |∑
n=1

nI

∫
Y∩{ϕ−=n}

H.

Since the estimate of Lemma 4.27 is uniform in the curve C, it can be integrated and we
have

∫
Y∩{ϕ−=n}H ∼ (y−1)Inµ(ϕ− = n) ∼ (y−1)In �2

4n3 .Actually, the measure of the
set {ϕ− = n} can be estimated by direct geometric arguments. Up to negligible terms,
it is equivalent to �2

16n3 in all relevant zones of X which are “corners of parallelograms”
(see Convention 4.4). As there are 4 such relevant zones we obtain the above formula.

Finally we get

∫
Y

ϕ−I1ϕ−�1/|t |H ∼
1/|t |∑
n=1

nI 2(y − 1)n
�2

4n3 ∼ I 2(y − 1)�2

4
log(1/|t |),

which completes the proof. ��

Proposition 4.1 follows from the combination of Proposition 4.28, Corollary 4.26,
Proposition 4.17 and Lemmas 4.3, 4.2.

5. Proof of the Main Theorems

In this section, we prove Theorems 1.1 and 1.4. The main tool will be an abstract the-
orem showing that, if an induced map satisfies a limit theorem, then the original map
satisfies the same limit theorem. Such a result has been proved in the case of flows by
[MT04], and extended to the discrete time case (and to non-polynomial normalizations)
in [Gou03]. For the convenience of the reader, we state here the result we will use.

If Y is a subset of a probability space (X,m), T : X → X, and TY is the induced
map on Y , we will write SYn g = ∑n−1

k=0 g ◦ T kY : this is the Birkhoff sum of g, for the

transformation TY . We will also write EY (g) =
∫
Y g

m[Y ] . Finally, for t ∈ R, �t� denotes the
integer part of t .

Theorem 5.1. Let T : X → X be an ergodic endomorphism of a probability space
(X,m), and f : X → R an integrable function with vanishing integral. Let Y ⊂ X

have positive measure. For y ∈ Y , write ϕ(y) = inf{n > 0 | T n(y) ∈ Y } and fY (y) =∑ϕ(y)−1
k=0 f (T ky).
We assume the following properties:
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1. There exists a sequence Bn → +∞, with infr�n BrBn > 0, such that fY satisfies a
limit theorem for the normalization Bn: there exists a random variable Z such that,
for every t ∈ R,

EY

(
e
it
SY�nm(Y )�fY

Bn

)
→ E

(
eitZ

)
. (49)

2. There exists b > 0 such that, in the natural extension of TY , 1
Nb

∑N−1
0 fY (T

k
Y y)

tends almost everywhere to 0 when N → ±∞.

3. There exists B ′
n = O(B

1/b
n ) such that S

Y
n ϕ−nEY (ϕ)

B ′
n

converges in distribution.

Then the function f satisfies also a limit theorem:

E
(
e
it
Snf
Bn

)
→ E(eitZ),

i.e., Snf
Bn

tends in distribution to Z.

The first assumption is apparently different from the first assumption in [Gou03, Theorem
A.1]. However, they are equivalent by [Eag76] (see also [MT04]).

Remark 5.2. An analogous theorem holds in the case of flows, when Y is a Poincaré
section of the flow and ϕ is the return time to this Poincaré section, with the same
proof. Since a Poincaré section has usually zero measure, it has to be formulated slightly
differently: EY will be the expectation with respect to the probability measure induced
by m on Y , and in (49) m(Y) should be replaced with 1/EY (ϕ). Finally, the sums (in
the definition of fY , and in the definition of the Birkhoff sums of f ) should be replaced
with integrals, and correspondingly, the normalizing sequencesBn (B ′

n) with appropriate
functions B(T ) (B ′(T )), B : R+ → R+.

5.1. Proof of Theorem 1.1 for functions satisfying (P1). Let f0 : X0 → R be Hölder
continuous and satisfy (P1). In particular, I �= 0. Define as in Sect. 2 functions f, f̄ , ḡ
and g. Since f satisfies (6) and ḡ − f̄ is bounded, we obtain µ�(|g| > x) ∼ x−2l(x),
where

l(x) = I 2�2

8
.

By Paragraph 3.1, the function g is in the nonstandard domain of attraction of the normal
law. More precisely, set

L(x) = I 2�2

4
log(x) ∼ 2

∫ x

1

l(u)

u
.

The functions l and L are the tail functions of g, as defined in Paragraph 3.1.
Proposition 4.1 gives

∫
g(eitG − 1) = (y − 1)itL(1/|t |)+ o(tL(1/|t |)),
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where y = 1
1− 3

4 log 3
. Moreover, the function g is locally Hölder on �, by (10). Hence,

all the assumptions of Theorem 3.4 are satisfied, for a = y − 1 > 0. Let

Bn =
√
n log n

(2y − 1)I 2�2

8
;

it satisfies n
B2
n
(2a+1)L(Bn) → 1. Hence, by Theorem 3.4, we obtain that

∑n−1
k=0 g◦Uk
Bn

→
N (0, 1) in distribution with respect to µ�. This is equivalent to the same convergence
for ḡ, with respect to µ�̄, since ḡ = g ◦ π� and µ� = (π�)∗(µ�̄). Since f̄ is coho-
mologous to ḡ, we get the same convergence for f̄ . Finally, since f̄ = f ◦ πX and
µ = (πX)∗(µ�̄), we get that

∑n−1
k=0 f ◦ T k
Bn

→ N (0, 1)

on X, with respect to µ.

The same argument applies to ϕ+ − ∫ ϕ+, and we get that
∑n−1
k=0 ϕ+◦T k−n ∫ ϕ+

Bn
con-

verges in distribution. Hence, Theorem 5.1 applies, with b = 1.
Set B ′

n = B�nµ0(X)�. Since µ0(X) = 2
π+� by (4), we get

B ′
n ∼

√
n log n

(2y − 1)I 2�2

4(π + �)
.

Theorem 5.1 yields
∑n−1
k=0 f0 ◦ T k0
B ′
n

→ N (0, 1).

This concludes the proof of Theorem 1.1.

5.2. Proof of Theorem 1.4. Let f0 : X0 → R be Hölder continuous with
∫
f0 = 0 and

I = 0. In this case, we can not use the cohomology trick any more, since the proofs of
Lemmas 2.5 and 2.6 relied heavily on the property (P1). The argument will be to induce
on the basis of the tower �̄, prove a central limit theorem here (using Gordin’s martingale
argument), and then get back to the original space by using Theorem 5.1 twice. The main
difference in the inducing process with the previous paragraph is that we can no more
apply Theorem 5.1 with b = 1. Hence, we will need to prove that 1

|n|b
∑n−1
k=0 f ◦ T k

converges almost everywhere to 0, for some b < 1. Many arguments of this paragraph
are strongly inspired by [You98], with additional technical complications due to the fact
that our functions are not bounded.

Let �̄0 be the basis of the tower �̄, and let Ū0 be the induced map on �̄0 (with a
return time ϕ). Define a new function f̄0 on �̄0, by f̄0(x) =∑ϕ(x)−1

k=0 f̄ (Ū kx).

Lemma 5.3. There exists σ 2
0 � 0 such that
∑n−1
k=0 f̄0 ◦ Ū k0√

n
→ N (0, σ 2

0 ).
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Proof. Since I = 0, it is not hard to check that there exists α1 < 1 such that |f | � nα1

on the set of points bouncing n times between the segments of the stadium. This implies
that there exists ε1 > 0 such that f ∈ L2+ε1(X). Hence, f̄ ∈ L2+ε1(�̄). Since the return
time ϕ belongs to Lp for all p < ∞, we get f̄0 ∈ L2+ε2(�̄0) for some ε2 > 0.

Let�0 be obtained by identifying the points on the same stable leaf. It is the basis of
the expanding Young tower �. Let π0 : �̄0 → �0 be the canonical projection, and U0
the dynamics induced by Ū0 on�0. Let B0 be the σ -algebra on �̄0 obtained by pulling
by π0 the σ -algebra on�0. A measurable subsetB of �̄0 is B0-measurable if, for almost
all x ∈ B, the stable leaf through x is contained in B.

We will prove
∑
n�0

∥∥E(f̄0 | Ūn0 B0)− f̄0
∥∥
L2 < ∞ (50)

and ∑
n�0

∥∥E(f̄0 | Ū−n
0 B0)

∥∥
L2 < ∞. (51)

By Gordin’s Theorem [Gor69], this will imply the conclusion of the lemma.
The basis �̄0 corresponds to a rectangleR for the dynamics T , which is naturally par-

titioned asR =⋃Ri , whereRi is an s-subrectangle ofR. Let �̄0,i be the corresponding
subset of �̄0, so that {�̄0,i} gives a partition of �̄0. Define a function A : �̄0 → R by
A(x) = ∑ϕ(x)−1

k=0 ϕ+(πXŪkx). It is constant on each set �̄0,i , and corresponds to the
number of times the original map T0 is to be applied to Ri so that this s-subrectangle
makes a full (Markov) return to the base R. Since ϕ belongs to every Lp(�̄0) for p � 1
and ϕ+ ∈ Lp(X) for 1 � p < 2, the function A belongs to Lp(�̄0) for 1 � p < 2. If
x, y are on the same unstable leaf in a rectangle �̄0,i , we have

|f̄0(x)− f̄0(y)| � CA(x)τ s(x,y) (52)

for some constant C > 0 and some constant τ < 1. Here, s(x, y) is the separation time
of x and y. Moreover, if x, y are on the same stable leaf in a rectangle �̄0,i ,

|f̄0(x)− f̄0(y)| � CA(x)d(πXx, πXy)
α (53)

for some α > 0.
Since the stable leaves are contracted at each iteration by at least λ < 1, the atoms

of the σ -algebra Ūn0 B0 have a diameter at most Cλn. By (53), we get
∣∣f̄0(x)− E(f̄0 | Ūn0 B0)(x)

∣∣ � CA(x)λαn. (54)

Unfortunately, A does not belong to L2, so a further argument is required to get (50).
Let p > 0 be such that 1

p
+ 1

2+ε2
= 1

2 . By (54),

1A�n2p

∣∣f̄0(x)− E(f̄0 | Ūn0 B0)(x)
∣∣ � Cn2pλαn.

Hence, this series is summable in L2. Moreover,

∥∥1A>n2p f̄0
∥∥
L2 �

∥∥1A>n2p

∥∥
Lp

∥∥f̄0
∥∥
L2+ε2 �

(∫
A
)1/p
n2

∥∥f̄0
∥∥
L2+ε2 .
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The function E(f̄0 | Ūn0 B0) is bounded in L2+ε2 by
∥∥f̄0
∥∥
L2+ε2 . Hence, we obtain

∥∥1A>n2p

∣∣f̄0 − E(f̄0 | Ūn0 B0)
∣∣∥∥
L2 = O(1/n2),

which is summable. This proves (50).
Let h̄ = E(f̄0 | B0). This function is constant along the stable leaves, and has zero

integral (since f̄0 also has zero integral). Hence, it induces a function h on the quotient
�0. Since f̄0 ∈ L2, it satisfies h ∈ L2(�0). The following lemma is an easy consequence
of the Hölder properties of the invariant measure and (52), see [You98, Sublemma, p.
612] for details.

Lemma 5.4. There exist constants C > 0 and τ < 1 such that, for all x, y in the same
unstable leaf of a set �̄0,i ,

|h̄(x)− h̄(y)| � CA(x)τ s(x.y).

The function A is integrable. Hence, by [Gou04, Lemma 3.4], this implies that the
function Û0h is Hölder continuous on �0. By [Gou04, Corollary 3.3], we get:

Ûn0 h tends exponentially fast to 0

in the space of Hölder continuous functions on �0. (55)

A computation gives

∥∥E(f̄0 | Ū−n
0 B0)

∥∥2
L2 =

∫
h · (Ûn0 h) ◦ Un0 � ‖h‖L2

∥∥(Ûn0 h) ◦ Un0
∥∥
L2

= ‖h‖L2

∥∥Ûn0 h∥∥L2 .

Hence, this term is exponentially small. This proves (51) and concludes the proof of
Lemma 5.3. ��

The return time ϕ also satisfies a central limit theorem, by the same argument. Hence,
by Theorem 5.1 (applied with b = 1), there exists σ 2

1 � 0 such that
∑n−1
k=0 f̄ ◦ Ū k√

n
→ N (0, σ 2

1 ).

Going from �̄ to X, it implies that
∑n−1
k=0 f ◦ T k√

n
→ N (0, σ 2

1 ). (56)

Moreover, the return time ϕ+ : X → N satisfies a limit theorem with normalization√
n log n. Since

√
n = o(

√
n log n), we can unfortunately not apply Theorem 5.1 with

b = 1. However, if we can prove the following lemma, then this theorem applies with
b < 1.

Lemma 5.5. For all b > 1/2,

1

|n|b
n−1∑
k=0

f ◦ T k → 0 (57)

almost everywhere in X when n → ±∞.
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Proof. We first estimate the decay of correlations of f̄0 for Ū0. We will use the notations
of the proof of Lemma 5.3. We have∫

f̄0 · f̄0 ◦ Ū2n
0 =

∫
f̄0 · E(f̄0 ◦ Ūn0 | B0) ◦ Ūn0

+
∫
f̄0 ·

(
f̄0 ◦ Ū2n

0 − E(f̄0 ◦ Ūn0 | B0) ◦ Ūn0
)
. (58)

The contraction properties of Ū0 along stable manifolds and (53) give |f̄0 ◦ Ūn0 (x) −
E(f̄0 ◦ Ūn0 | B0)(x)| � CA(Ūn0 x)λ

αn. Hence, the second integral in (58) is at most∫
|f̄0| · A ◦ Ū2n

0 λαn �
∥∥f̄0
∥∥
L2+ε2 ‖A‖Lp λαn,

where p<2 is chosen so that 1
2+ε2

+ 1
p

=1. Hence, this term decays exponentially fast.

In the first integral of (58), the function E(f̄0 ◦ Ūn0 | B0) ◦ Ūn0 is B0-measurable (i.e.,
constant along stable leaves). Hence, this integral is equal to∫

h̄ · E(f̄0 ◦ Ūn0 | B0) ◦ Ūn0 . (59)

Let h̄n = E(f̄0 ◦ Ūn0 | B0), it is B0-measurable and defines a function hn on the quotient
�0. The integral (59) is then equal to∫

�0

h · hn ◦ Un0 =
∫
Ûn0 h · hn. (60)

The L2-norm of hn is bounded independently of n. By (55), (60) is exponentially small.
This proves that

∫
f̄0 · f̄0 ◦ Ū2n

0 decays exponentially. In the same way,
∫
f̄0 · f̄0 ◦ Ū2n+1

0
decays exponentially.

Since the correlations of f̄0 decay exponentially fast and f̄0 ∈ L2, [Kac96, Theorem
16] implies that 1

nb

∑n−1
k=0 f̄0 ◦ Ū k0 tends to zero almost everywhere when n → +∞, for

all b > 1/2.
Now to see that 1

nb

∑n−1
k=0 f̄ ◦ Ū k tends to zero almost everywhere in �̄ when n →

+∞, for all b > 1/2, we use [MT04, Lemma 2.1 (a)] which gives this convergence on
�̄0. However, by the ergodicity of Ū , the set on which this convergence holds must have
either full or zero measure. As �̄0 has positive measure, we get this convergence almost
everywhere on �̄. Finally, this implies the same for f in X. We have proved (57) for
any b > 1/2 when n → +∞.

To deal with n → −∞, we go to the natural extension. It is sufficient to prove the
result for f̄0 in �̄0, since the previous reasoning still applies (using the fact that the
natural extension is functorial, i.e., the natural extension commutes with induction and
projections). In the natural extension �̄′

0 of �̄0, we have
∫
f̄ ′

0 ·f̄ ′
0◦Ū ′

0
−n = ∫ f̄0◦Ūn0 ·f̄0,

which is exponentially small. Hence, [Kac96, Theorem 16] still applies and gives the
desired result. ��
Remark 5.6. As µ0(X) > 0, we may apply [MT04, Lemma 2.1 (a)] just as we did in the
proof above to see that Lemma 5.5 implies

1

|n|b
n−1∑
k=0

f0 ◦ T k0 → 0

almost everywhere when n → ±∞, for any b > 1/2.
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Proof of Theorem 1.4. The convergence (56), together with Lemma 5.5 and Theorem
5.1, implies (2).

We still have to prove the zero variance statement. If f0 = χ − χ ◦ T0 for some
measurable function χ , then Snf0/

√
n = (χ − χ ◦ T n0 )/

√
n tends in probability to 0,

which implies σ = 0. Conversely, assume that σ = 0. The function f̄0 on the basis
�̄0 of the Young tower satisfies a central limit theorem with zero variance. The proof
of Gordin’s theorem then ensures the existence of a measurable function χ̄0 such that
f̄0 = χ̄0 − χ̄0 ◦ Ū0, i.e., f̄0 is a coboundary on �̄0. This implies that f̄ is a coboundary
on �̄, as follows: let π̄0 : �̄ → �̄0 be the projection on the basis of the tower. Defining
χ̄ : �̄ → R by

χ̄(x) = χ̄0(π̄0x)−
ω(x)−1∑
k=0

f̄ (Ū kπ̄0x), (61)

we have f̄ = χ̄ − χ̄ ◦ Ū .
Since the function f̄ = f ◦πX is a coboundary, general results on coboundaries (see

e.g. [Gou05a, Theorem 1.4]) ensure that f also is a coboundary onX for T . Finally, this
implies that f0 is a coboundary on X0 for T0, using a formula similar to (61). ��

5.3. Proof of Proposition 1.5. We work in the stadium billiard with � = �∗, for which
the free flight τ0 satisfies a usual central limit theorem. Define a function τ : X → R

by τ(x) =∑ϕ+(x)−1
k=0 τ ∗

0 (T
k
0 x). Since the function τ ∗

0 does not satisfy (P1), Lemma 2.5
does a priori not apply. Nevertheless, due to the geometric properties of the free flight,
the function τ satisfies the following inequality: if x, y ∈ X are two points sliding n
times along the semicircles, then |τ(x) − τ(y)| � C(d(x, y) + d(T x, T y)). This esti-
mate is sufficient to carry out the proofs of Lemmas 2.5 and 2.6. Hence, there exist two
functions ū : �̄ → R and g : � → R such that τ ◦ πX = g ◦ π� + ū − ū ◦ Ū on �̄,
ū is bounded on �̄ and g is Hölder continuous on �. Let �0 be the basis of the tower
�, and let g0 be the function induced by g on�0 (given by g0(x) =∑ϕ0(x)−1

k=0 g(Ukx),
where ϕ0 is the return time from �0 to itself).

Assume that σ = 0. By Theorem 1.4, this implies that τ ∗
0 is a coboundary. In turn,

arguments similar to the end of the proof of Theorem 1.4 show that g0 itself is a coboun-
dary. Since g is Hölder continuous, g0 satisfies the assumptions of [Gou05b, Theorem
1.1]. This theorem implies that the function g0 is essentially bounded.

Let us show that this is not the case. The function τ is bounded from above: since
E(τ0) = 2, the function τ is O(1) on the set of points bouncing n times between the
segments. Moreover, on the set of points sliding n times along the circles, the function
τ is equal to −2n +O(1). Since ū is bounded, this implies that there exists a constant
C1 such that g � C1, and that g = −2n+O(1) on a set of measure at least C/n4.

Let An ⊂ � be the set of points in the tower where ϕ0(π0x) � n/(2C1) (where π0 :
� → �0 is the projection on the basis) and g � −n. Since µ�{ϕ0(π0x) > n/(2C1)} is
exponentially small in n, while µ�{g � −n} � C/n4, the set An has nonzero measure
for n large enough.

If y ∈ π0(An), then g0(y) � −n+∑ϕ0(y)−1
k=0 C1 � −n/2. Since π0(An) has positive

measure, this shows that the function g0 is not bounded from below. This contradiction
concludes the proof. ��
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A. Proof of Lemma 3.6

Let U0 be the map induced by U on the basis �0 of the tower. Denote by ϕ the first
return time on the basis, so that U0(x) = Uϕ(x)(x). Note that ϕ(x) can also be defined
for x ∈ � \�0 as the first hitting time of the basis.

Let F be a finite subset of N. Let (ni)i∈F be positive integers. Let

K(F, ni) = {x ∈ �0 | ∀i ∈ F, ϕ(Ui0x) = ni}.
Lemma A.1. There exists a constant C such that, for all F and ni as above,

µ�(K(F, ni)) �
∏
i∈F
(Cρni ).

Proof. The proof is by induction on maxF , and the result is trivial when F = ∅.
Write F ′ = {i − 1 | i ∈ F, i � 1} and, for i ∈ F ′, set n′

i = ni+1. If 0 �∈ F ,
K(F, ni) = U−1

0 (K(F ′, n′
i )). Since U0 preserves µ� and maxF ′ < maxF , we get the

result. Otherwise, 0 ∈ F . Then K(F, ni) = U−1
0 (K(F ′, n′

i )) ∩ {x ∈ �0, ϕ(x) = n0}.
By bounded distortion, we get

µ�(K(F, ni)) � Cµ�(K(F
′, n′

i ))µ�{x ∈ �0, ϕ(x) = n0}
� Cµ�(K(F

′, n′
i ))ρ

n0 . ��
Lemma A.2. There exist C > 0 and θ < 1 such that, for all n ∈ N,

∫
U−n�0

τ�n � Cθn.

Proof. Let κ > 0 be very small (how small will be specified later in the proof). Then

U−n�0 ⊂ {x ∈ � | �n(x) � κn} ∪ {x ∈ � | ϕ(x) � n/2}
∪ {x ∈ � | ϕ(x) < n/2, �n(x) < κn}.

On the first of these sets, τ�n � τκn, whence the integral of τ�n is exponentially small.
The second of these sets has exponentially small measure. Finally, the last of these sets
is contained in

⋃n/2
i=0 U

−i�n, where

�n = {x ∈ �0 |
∑

0�i�κn
ϕ(Ui0x) � n/2}.

To conclude the proof of the lemma, it is sufficient to prove that the measure of �n is
exponentially small.
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Take L ∈ N such that ∀n � L, (Cρ)n � ρn/2, where C is the constant given by
Lemma A.1. For x ∈ �n, let F(x) := {0 � i � κn | ϕ(Ui0x) � L}. Then

∑
i∈F(x)

ϕ(Ui0x) � n

2
−
∑
i �∈F(x)

L � (1/2 − Lκ)n.

This implies that

�n ⊂
⋃

F⊂[0,�κn�]

⋃
ni�L∑

i∈F ni�(1/2−Lκ)n

K(F, ni).

By Lemma A.1, we get

µ�(�n) �
∑

F⊂[0,�κn�]

∑
ni�L∑

i∈F ni�(1/2−Lκ)n

∏
i∈F
(Cρni )

�
�κn�∑
k=0

(�κn�
k

) ∑
n0,...,nk−1�L∑
ni�(1/2−Lκ)n

(Cρn0) . . . (Cρnk−1)

� 2κn
∑

0�k�κn

∑
n0,...,nk−1�L∑
ni�(1/2−Lκ)n

ρ
∑
ni/2 � 2κn

∑
0�k�κn

∑
n0,...,nk−1∈N∑
ni�(1/2−Lκ)n

ρ
∑
ni/2.

For r ∈ N, ∑
n0+···+nk−1=r

ρ
∑
ni/2 = ρr/2 Card{n0, . . . , nk−1 |

∑
ni = r} = ρr/2

(
r + k

k

)
� ρr/2

(r + k)k

k!
.

Hence,

µ�(�n) � 2κn
∑

0�k�κn

∑
r�(1/2−Lκ)n

ρr/2
(r + k)k

k!
.

The sequence ur = ρr/2
(r+k)k
k! satisfies ur+1

ur
� ρ′ := ρ1/2e

κ
1/2−Lκ for all r � (1/2 −

Lκ)n and k � κn. If κ is small enough, ρ′ < 1, and we get

µ�(�n) � 2κn
∑

0�k�κn
ρ(1/2−Lκ)n/2

(
(1/2 − Lκ)n+ κn

)k
k!

1

1 − ρ′

� 2κn

1 − ρ′ ρ
(1/2−Lκ)n/2 ∑

0�k�κn

nk

k!
.

The sequence nk

k! is increasing for k � n. Hence, we finally get

µ�(�n) � 2κn

1 − ρ′ ρ
(1/2−Lκ)n/2(κn+ 1)

n�κn�

�κn�!
.
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Using Stirling’s Formula, it is easy to check that this expression is exponentially small
if κ is small enough. This concludes the proof. ��
Proof of Lemma 3.6. Let θ be given by Lemma A.2. Choose α > 0 so that eεαθ < 1.
Then

U−n�0 ⊂ {x ∈ � | ω(x) � αn} ∪
[
{x ∈ � | ω(x) < αn} ∩ U−n�0

]
.

Hence, ∫
U−n�0

eεωτ�n �
∫
ω�αn

eεω + eεαn
∫
U−n�0

τ�n.

The first term is exponentially small since eερ < 1. Lemma A.2 and the definition of α
also imply that the second term is exponentially small. ��
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