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ALMOST SURE INVARIANCE PRINCIPLE FOR DYNAMICAL
SYSTEMS BY SPECTRAL METHODS

BY SÉBASTIEN GOUËZEL

IRMAR, Université de Rennes 1

We prove the almost sure invariance principle for stationary R
d -valued

random processes (with very precise dimension-independent error terms),
solely under a strong assumption concerning the characteristic functions of
these processes. This assumption is easy to check for large classes of dynam-
ical systems or Markov chains using strong or weak spectral perturbation
arguments.

The almost sure invariance principle is a very strong reinforcement of the central
limit theorem: it ensures that the trajectories of a process can be matched with
the trajectories of a Brownian motion in such a way that almost surely the error
between the trajectories is negligible compared to the size of the trajectory (the
result can be more or less precise, depending on the specific error term one can
obtain). These kinds of results have a lot of consequences (see, e.g., Melbourne
and Nicol [16] and references therein).

Such results are well known for one-dimensional processes, either independent
or weakly dependent (see, among many others, Denker and Philipp [6], Hofbauer
and Keller [13]), and for independent higher-dimensional processes [7, 25]. How-
ever, for weakly dependent higher-dimensional processes, difficulties arise since
the techniques relying on the Skorokhod representation theorem do not work effi-
ciently. In this direction, an approximation argument introduced by Berkes and
Philipp [4] was recently generalized to a large class of weakly dependent se-
quences in Melbourne and Nicol [16]. Their results give explicit error terms in
the vector-valued almost sure invariance principle and are applicable when the
variables under consideration can be well approximated with respect to a suitably
chosen filtration. In particular, these results apply to a large range of dynamical
systems when they have some Markovian behavior and sufficient hyperbolicity.

Unfortunately, it is quite common to encounter dynamical systems for which
there is no natural well-behaved filtration. It is, nevertheless, often easy to prove
classical limit theorems, by using another class of arguments relying on spectral
theory. These arguments automatically yield a very precise description of the char-
acteristic functions of the process under consideration, thereby implying limit re-
sults. It is therefore desirable to develop an abstract argument, showing that suf-
ficient control on the characteristic functions of a process implies the almost sure

Received July 2009; revised January 2010.
AMS 2000 subject classifications. 60F17, 37C30.
Key words and phrases. Almost sure invariance principle, coupling, transfer operator.

1639

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/10-AOP525
http://www.imstat.org
http://www.ams.org/msc/


1640 S. GOUËZEL

invariance principle for vector-valued observables. This is our goal in this paper.
Berkes and Philipp [4], Theorem 5, gives such a result, but its assumptions are too
strong for the applications we have in mind. Moreover, even when the previous
approaches are applicable, our method gives much sharper error terms.

We will state our main probabilistic result, Theorem 1.2, in the next section and
describe applications to dynamical systems and Markov chains in Section 2. The
remaining sections are devoted to the proof of the main theorem.

1. Statement of the main result. For d > 0, let us consider an R
d -valued

process (A0,A1, . . .), bounded in Lp for some p > 2. Under suitable assumptions
to be introduced below, we wish to show that it can be almost surely approximated
by a Brownian motion.

DEFINITION 1.1. For λ ∈ (0,1/2] and �2 a (possibly degenerate) symmetric
semi-positive-definite d ×d matrix, we say that an R

d -valued process (A0,A1, . . .)

satisfies an almost sure invariance principle with error exponent λ and limiting
covariance �2 if there exist a probability space � and two processes (A∗

0,A
∗
1, . . .)

and (B0,B1, . . .) on � such that:

1. the processes (A0,A1, . . .) and (A∗
0,A

∗
1, . . .) have the same distribution;

2. the random variables B0,B1, . . . are independent and distributed as N (0,�2);
3. almost surely in �, ∣∣∣∣∣

n−1∑
�=0

A∗
� −

n−1∑
�=0

B�

∣∣∣∣∣ = o(nλ).(1.1)

A Brownian motion at integer times coincides with a sum of i.i.d. Gaussian vari-
ables, hence this definition can also be formulated as an almost sure approximation
by a Brownian motion, with error o(nλ).

Under some assumptions on the characteristic function of (A0,A1, . . .), we will
prove that this process satisfies an almost sure invariance principle. To simplify
notation, for t ∈ R

d and x ∈ R
d , we will write eitx instead of ei〈t,x〉.

Let us state our main assumption (H), ensuring that the process we consider
is close enough to an independent process: there exist ε0 > 0 and C,c > 0 such
that for any n,m > 0, b1 < b2 < · · · < bn+m+1, k > 0 and t1, . . . , tn+m ∈ R

d with
|tj | ≤ ε0, we have

∣∣E(
e
i
∑n

j=1 tj (
∑bj+1−1

�=bj
A�)+i

∑n+m
j=n+1 tj (

∑bj+1+k−1
�=bj +k A�))

− E
(
e
i
∑n

j=1 tj (
∑bj+1−1

�=bj
A�)) · E(

e
i
∑n+m

j=n+1 tj (
∑bj+1+k−1

�=bj +k A�))∣∣(H)

≤ C(1 + max|bj+1 − bj |)C(n+m)e−ck.

This assumption says that if one groups the random variables into n+m blocks,
then a gap of size k between two blocks gives characteristic functions which are



INVARIANCE PRINCIPLE VIA SPECTRAL METHODS 1641

exponentially close (in terms of k) to independent characteristic functions, with an
error which is, for each block, polynomial in terms of the size of the block. This
control is only required for Fourier parameters tj close to 0.

Of course, the assumption is trivially satisfied for independent random variables.
The interesting feature of this assumption is that it is also very easy to check for
dynamical systems when the Fourier transfer operators are well understood; see
Theorem 2.1 below.

Our main theorem follows.

THEOREM 1.2. Let (A0,A1, . . .) be a centered R
d -valued stationary process,

in Lp for some p > 2, satisfying (H). Then:

1. the covariance matrix cov(
∑n−1

�=0 A�)/n converges to a matrix �2;
2. the sequence

∑n−1
�=0 A�/

√
n converges in distribution to N (0,�2);

3. the process (A0,A1, . . .) satisfies an almost sure invariance principle with lim-
iting covariance �2, for any error exponent

λ >
p

4p − 4
= 1

4
+ 1

(4p − 4)
.(1.2)

When p = ∞, the condition on the error becomes λ > 1/4, which is quite good
and independent of the dimension. This condition λ > 1/4 had previously been
obtained only for very specific classes of dynamical systems (in particular, closed
under time reversal) for real-valued observables (see, e.g., Field, Melbourne and
Török [8], Melbourne and Török [18]).

If the process is not stationary, then we need an additional assumption to ensure
the (fast enough) convergence to a normal distribution.

THEOREM 1.3. Let (A0,A1, . . .) be an R
d -valued process, bounded in Lp for

some p > 2, satisfying (H). Assume, moreover, that
∑|E(A�)| < ∞ and that there

exists a matrix �2 such that, for any α > 0,∣∣∣∣∣cov

(
m+n−1∑

�=m

A�

)
− n�2

∣∣∣∣∣ ≤ Cnα,(1.3)

uniformly in m,n. The sequence
∑n−1

�=0 A�/
√

n then converges in distribution to
N (0,�2). Moreover, the process (A0,A1, . . .) satisfies an almost sure invariance
principle, with limiting covariance �2, for any error exponent λ > p/(4p − 4).

Theorem 1.2 is, in fact, a consequence of Theorem 1.3 since we will prove in
Lemma 2.7 that a stationary process satisfying (H) always satisfies (1.3) (more-
over, this inequality holds with α = 0).

Contrary to the results of Berkes and Philipp [4], our results are dimension-
independent for i.i.d. random variables (but they are not optimal in this case—see
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Einmahl [7], Zaı̆tsev [25, 26]—for i.i.d. sequences in Lp , 2 < p < ∞, the almost
sure invariance principle holds for any error exponent λ ≥ 1/p).

In this paper, C will denote a positive constant whose precise value is irrelevant
and may change from line to line.

2. Applications.

2.1. Coding characteristic functions. Let us first consider a very simple exam-
ple: let T (x) = 2x mod 1 on the circle S1 = R/Z and consider a Lipschitz function
f :S1 → R

d of vanishing average for Lebesgue measure. We would like to prove
an almost sure invariance principle for the process (f (x), f (T x), f (T 2x), . . .),
where x is distributed on S1 according to Lebesgue measure. Define an operator
Lt on Lipschitz functions by Ltu(x) = ∑

T (y)=x eitf (y)u(y)/2. It is then easy to
check that for any t0, . . . , tn−1 in R

d ,

E(ei
∑n−1

�=0 t�f ◦T �

) =
∫

Ltn−1 · · · Lt01(x) dx.(2.1)

Using the good spectral properties of the operators Lt , it is not very hard to show
that this implies (H).

In more complicated situations, it is often possible to encode in the same way
the characteristic functions of the process under consideration into a family of
operators. However, these operators may act on complicated Banach spaces (of
distributions or measures). It is therefore desirable to introduce a more abstract
setting that encompasses the essential properties of such a coding, as follows.

Consider an R
d -valued process (A0,A1, . . .). Let B be a Banach space and let

Lt (for t ∈ R
d , |t | ≤ ε0) be linear operators acting continuously on B. Assume that

there exist u0 ∈ B and ξ0 ∈ B′ (the dual of B) such that for any t0, . . . , tn−1 ∈ R
d

with |tj | ≤ ε0,

E(ei
∑n−1

�=0 t�A�) = 〈ξ0, Ltn−1 Ltn−2 · · · Lt1 Lt0u0〉.(2.2)

In this case, we say that the characteristic function of (A0,A1, . . .) is coded by
(B, (Lt )|t |≤ε0, u0, ξ0).

We claim that the assumption (H) follows from suitable assumptions on the
operators Lt , which we now describe.

(I1) One can write L0 = 	 + Q, where 	 is a one-dimensional projection and
Q is an operator on B, with Q	 = 	Q = 0 and ‖Qn‖B→B ≤ Cκn for some
κ < 1.

(I2) There exists C > 0 such that ‖Ln
t ‖B→B ≤ C for all n ∈ N and all small

enough t .

We will denote this set of conditions by (I).
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THEOREM 2.1. Let (A�) be a process whose characteristic function is coded
by a family of operators (Lt ) and which is bounded in Lp for some p > 2.
Assume that (I) holds. There then exist a ∈ R

d and a matrix �2 such that
(
∑n−1

�=0 A� − na)/
√

n converges to N (0,�2). Moreover, the process (A� − a)�∈N

satisfies an almost sure invariance principle with limiting covariance �2 for any
error exponent larger than p/(4p − 4).

The proof will exhibit a as the limit of E(A�), give a formula for �2 and derive
the theorem from Theorem 1.3 since (H) and (1.3) follow from (I). Even better,
under the assumptions of Theorem 2.1, we have∣∣∣∣∣cov

(
m+n−1∑

�=m

A�

)
− n�2

∣∣∣∣∣ ≤ C.(2.3)

This is proved in Lemma 2.7 below.

REMARK 2.2. Let us stress that the assumptions of this theorem are signifi-
cantly weaker than those of similar results in the literature: we do not require that a
perturbed eigenvalue has a good asymptotic expansion, or even that such an eigen-
value exists. In particular, to the best of the author’s knowledge, the central limit
theorem was not known under the assumptions of Theorem 2.1.

Before we prove Theorem 2.1 at the end of this section, let us describe some
applications. We will explain how to check (I) in several practical situations. Let
T :X → X be a dynamical system, let μ be a probability measure (invariant or
not) and let f :X → R

d . We want to study the process (f, f ◦ T ,f ◦ T 2, . . .).

2.2. Strong continuity. Assume that the characteristic function of the process
(f, f ◦T ,f ◦T 2, . . .) can be coded by a family of operators Lt on a Banach space

B and that the operator L0 satisfies (I1), that is, it has a simple eigenvalue at 1, the
rest of its spectrum being contained in a disk of radius κ < 1 (such an operator is
said to be quasicompact).

PROPOSITION 2.3. If the family Lt : B → B depends continuously on the pa-
rameter t at t = 0, then (I2) is satisfied.

PROOF. By classical perturbation theory, the spectral picture for L0 persists
for small t : we can write Lt = λ(t)	t + Qt , where λ(t) ∈ C, 	t is a one-
dimensional projection and ‖Qn

t ‖ ≤ Cκn for some κ < 1, uniformly for small t . If
|λ(t)| ≤ 1 for small t , then we obtain (I2).

For small t , we have

E(eit
∑n−1

�=0 f ◦T �

) = 〈ξ0, Ln
t u0〉 = λ(t)n〈ξ0,	tu0〉 + 〈ξ0,Q

n
t u0〉

(2.4)
= λ(t)n〈ξ0,	tu0〉 + O(κn).
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When t → 0, by continuity, the quantity 〈ξ0,	tu0〉 converges to 〈ξ0,	u0〉 = 1;
see (2.8) below. In particular, for small enough t , 〈ξ0,	tu0〉 �= 0. Since the right-
hand side of (2.4) is bounded by 1, this gives |λ(t)| ≤ 1, completing the proof.

�

Let us be more specific. Let T be an irreducible aperiodic subshift of finite
type, let m be a Gibbs measure and let f :X → R

d be Hölder continuous with∫
f dm = 0. Let L be the transfer operator associated with T , defined, by duality,

by
∫

u · v ◦ T dm = ∫
Lu · v dm and define perturbed operators Lt by Lt (u) =

L(eitf u). These operators code the characteristic function of the process (f, f ◦
T , . . .) and depend analytically on t [this follows from the series expansion eix =∑

(ix)n/n! and the fact that the Hölder functions form a Banach algebra]. The
condition (I) is checked in, for example, Guivarc’h and Hardy [11], Parry and
Pollicott [19]. Hence, Theorem 2.1 gives an almost sure invariance principle for
any error exponent greater than 1/4. This result is not new: it is already given in
Melbourne and Nicol [16], although with a weaker error term.

If T is an Anosov or Axiom A map and f :X → R
d is Hölder continuous,

then the same result follows using symbolic dynamics. One can also avoid it and
directly apply Theorem 2.1 to the transfer operator acting on a Banach space B of
distributions or distribution-like objects, as in Baladi and Tsujii [2], Gouëzel and
Liverani [10].

Now, let T :X → X be a piecewise expanding map and assume that the expan-
sion dominates the complexity (in the sense of Saussol [22], Lemma 2.2). This
setting includes, in particular, all piecewise expanding maps of the interval since
the complexity control is automatic in one dimension. Let f :X → R

d be β-Hölder
continuous for some β ∈ (0,1]. The perturbed transfer operator Lt then acts con-
tinuously on the Banach space B = Vβ introduced in Saussol [22] and depends
analytically on t (since B is a Banach algebra). With Theorem 2.1, we get an al-
most sure invariance principle for any error exponent greater than 1/4. This result
was only known for dim(X) = 1 and d = 1, thanks to Hofbauer and Keller [13].

This result also applies to coupled map lattices since Bardet, Gouëzel and Keller
[3] shows (I) for such maps. We should point out that the Banach space B here is
not a Banach space of functions or distributions, but this is of no importance in our
abstract setting.

Assume, now, that T is the time-one map of a contact Anosov flow. Tsujii [24]
constructs a Banach space of distributions on which the transfer operator L acts
with a spectral gap. If f is smooth enough, then Lt := L(eitf ·) depends analyt-
ically on t . We therefore obtain an almost sure invariance principle for any error
exponent greater than 1/4. This result was known for real-valued observables [17],
but is new for R

d -valued observables. However, our method does not apply to the
whole class of rapid-mixing hyperbolic flows, contrary to the martingale argu-
ments of Melbourne and Török [17].
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Finally, assume that T :X → X is a mixing Gibbs–Markov map with invariant
measure m, that is, it is Markov for a partition α with infinitely many symbols and
has the big image property and Hölder distortion (this is a generalization of the
notion of a subshift of finite type to infinite alphabets, see, e.g., Melbourne and
Nicol [16], Section 3.1, for precise definitions). For f :X → R

d and a ∈ α, let
Df (a) denote the best Lipschitz constant of f on a. Consider f of zero average
such that

∑
a∈α m(a)Df (a)ρ < ∞ for some ρ ∈ (0,1] (this class of observables is

very large, containing, in particular, all of the weighted Lipschitz observables of
Melbourne and Nicol [16], Section 3.2).

THEOREM 2.4. If f ∈ Lp for some p > 2, then the process (f, f ◦ T , . . .)

satisfies an almost sure invariance principle for any error exponent > p/(4p − 4).

This follows from Gouëzel ([9], Section 3.1), where a Banach space B satisfying
the assumptions of Proposition 2.3 is constructed.

It should be mentioned that the almost sure invariance principle is invariant
under the process of inducing, that is, going from a small dynamical system to a
larger one. Many hyperbolic dynamical systems can be obtained by inducing from
Gibbs–Markov maps and the previous theorem implies an almost sure invariance
principle for all of them (see Melbourne and Nicol [16] for several examples).

REMARK 2.5. In such dynamical contexts (when the measure is invariant and
ergodic), the matrix �2 is degenerate if and only if f is an L2 coboundary in some
direction. Indeed, if �2 is degenerate, then it follows from (2.3) that there is a
nonzero direction t such that 〈t, Snf 〉 is bounded in L2. By Leonov’s theorem (see,
e.g., Aaronson and Weiss [1]), this implies that 〈t, f 〉 is an L2 coboundary, that is,
there exists u ∈ L2 such that 〈t, f 〉 = u − u ◦ T almost everywhere. Conversely,
this condition implies that �2 is degenerate.

2.3. Weak continuity. In several situations, the strong continuity assumptions
of the previous subsection are not satisfied, while a weaker form of continuity
holds. We describe such a setting in this subsection.

Again, assume that the characteristic function of a process (f, f ◦T ,f ◦T 2, . . .)

is coded by a family of operators Lt on a Banach space B and that the operator L0
satisfies (I1), that is, it is quasicompact with a simple dominating eigenvalue at 1.

We do not assume that the map t �→ Lt is continuous from a neighborhood
of 0 to the set of linear operators on B, hence classical perturbation theory does
not apply. Let C be a Banach space containing B on which the operators Lt act
continuously and assume that there exist M ≥ 1, κ < 1 and C > 0 such that:

1. for all n ∈ N and |t | ≤ ε0, we have ‖Ln
t ‖C→C ≤ CMn;

2. for all n ∈ N, all |t | ≤ ε0 and all u ∈ B, we have ‖Ln
t u‖B ≤ Cκn‖u‖B +

CMn‖u‖C ;



1646 S. GOUËZEL

3. the quantity ‖Lt − L0‖B→C tends to 0 when t → 0.

Then Keller and Liverani [14], Liverani [15] show that, for small enough t , the
operator Lt acting on B has a simple eigenvalue λ(t) close to 1 and Lt can be
written as λ(t)	t + Qt , where 	t is a one-dimensional projection and, for some
C > 0 and κ̃ < 1,

‖	t‖B→B ≤ C, ‖Qn
t ‖B→B ≤ Cκ̃n,

‖	t − 	‖B→C → 0 when t → 0.

Therefore, (I2) follows from the arguments in the proof of Proposition 2.3 if we
can prove that 〈ξ0,	tu0〉 → 〈ξ0,	u0〉 when t → 0. By the last estimate in the
previous equation, this is true if ξ0 belongs not only to B′, but also to C′, which is
usually the case.

2.4. Markov chains. Consider a Markov chain X0,X1, . . . (with an initial
measure μ and a stationary measure m, possibly different from μ) on a state
space X . Also, let f : X → R with Em(f ) = 0. We want to study the process
A� = f (X�).

Denote by P the Markov operator associated with the Markov chain and define
a perturbed operator Pt(u) = P(eitf u). Then

Eμ(ei
∑n−1

�=0 t�A�) = Eμ

(
ei

∑n−2
�=0 t�f (X�) · E(

eitn−1f (Xn−1)|Xn−2
))

= Eμ

(
ei

∑n−2
�=0 t�f (X�)Ptn−11(Xn−2)

)
.

By induction, we obtain

Eμ(ei
∑n−1

�=0 t�A�) =
∫

Pt0Pt1 · · ·Ptn−11dμ.(2.5)

This is very similar to the coding property introduced in (2.2), the (minor) differ-
ence being that the composition is made in the reverse direction. In particular, the
proof of Theorem 2.1 still works in this context. We obtain the following result.

PROPOSITION 2.6. Let B be a Banach space of functions on X such that
1 ∈ B and integration with respect to μ is continuous on B. If the operators Pt

satisfy the condition (I) on B, then the process f (X�) satisfies (H). If f (X�) is
bounded in Lp for some p > 2, then it follows that the process (f (X�)) satisfies
an almost sure invariant principle for any error exponent λ > p/(4p − 4).

To check condition (I), the arguments of Sections 2.2 or 2.3 can be applied
(if the Banach space B is carefully chosen, depending on the properties of the
random walk under consideration). In particular, we refer the reader to the arti-
cle [12], where several examples are studied, including uniformly ergodic chains,
geometrically ergodic chains and iterated random Lipschitz models. In particular,
it is shown in this article that the weak continuity arguments of Section 2.3 are
very powerful in some situations where the strong continuity of Section 2.2 does
not hold.
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2.5. Proof of Theorem 2.1 assuming Theorem 1.3.
Step 1: there exists u1 ∈ B such that, for t0, . . . , tn−1 ∈ B(0, ε0),

	(Ltn−1 · · · Lt0u0) = 〈ξ0, Ltn−1 · · · Lt0u0〉u1.(2.6)

Since 	 is a rank-one projection, we can write 	(u) = 〈ξ2, u〉u2 for some u2 ∈
B and ξ2 ∈ B′ with 〈ξ2, u2〉 = 1. The trivial equality

E(ei
∑n−1

�=0 t�A�) = E(ei
∑n−1

�=0 t�A�+∑n+N−1
�=n 0·A�)

gives, using the coding by the operators Lt ,

〈ξ0, Ltn−1 · · · Lt0u0〉 = 〈ξ0, LN
0 Ltn−1 · · · Lt0u0〉.

Let u = Ltn−1 · · · Lt0u0. When N tends to infinity, LN
0 tends to 	. Hence, letting

N tend to infinity in the previous equality, we get

〈ξ0, u〉 = 〈ξ0,	u〉 = 〈ξ0, u2〉 · 〈ξ2, u〉.(2.7)

Moreover,

〈ξ0, u0〉 = 〈ξ0,	u0〉 = lim〈ξ0, LN
0 u0〉

(2.8)
= limE(ei

∑N−1
�=0 0·A�) = 1.

Taking u = u0 in (2.7), this implies, in particular, that 〈ξ0, u2〉 �= 0. Finally,

	(u) = 〈ξ2, u〉u2 = 〈ξ0, u〉u2/〈ξ0, u2〉.
We thus obtain (2.6) for u1 = u2/〈ξ0, u2〉.

Step 2: (H) holds.
Consider b1 < · · · < bn+m+1, as well as t1, . . . , tn+m ∈ B(0, ε0) and k > 0. Then

E
(
e
i
∑n

j=1 tj (
∑bj+1−1

�=bj
A�)+i

∑n+m
j=n+1 tj (

∑bj+1+k−1
�=bj +k A�))

= 〈ξ0, Lbn+m+1−bn+m
tn+m

· · · Lbn+2−bn+1
tn+1

Lk
0 Lbn+1−bn

tn · · · Lb2−b1
t1

Lb1
0 u0〉

(2.9)
= 〈ξ0, Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
(Lk

0 − 	)Lbn+1−bn
tn · · · Lb2−b1

t1
Lb1

0 u0〉
+ 〈ξ0, Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
	Lbn+1−bn

tn · · · Lb2−b1
t1

Lb1
0 u0〉.

All of the operators Lti satisfy ‖Lj
ti
‖B→B ≤ C. Since ‖Lk

0 − 	‖B→B ≤ Cκk for
some κ < 1, it follows that the term on the penultimate line in (2.9) is bounded by
Cn+mκk . Moreover, by (2.6), the term on the last line is

〈ξ0, Lbn+m+1−bn+m
tn+m

· · · Lbn+2−bn+1
tn+1

u1〉 · 〈ξ0, Lbn+1−bn
tn · · · Lb2−b1

t1
Lb1

0 u0〉.
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The second factor in this equation is simply E(e
i
∑n

j=1 tj (
∑bj+1−1

�=bj
A�)

). Moreover,

E
(
e
i
∑n+m

j=n+1 tj (
∑bj+1+k−1

�=bj +k A�))
= 〈ξ0, Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
Lbn+1+k

0 u0〉
= 〈ξ0, Lbn+m+1−bn+m

tn+m
· · · Lbn+2−bn+1

tn+1
	u0〉 + O(Cmκbn+1+k)

= 〈ξ0, Lbn+m+1−bn+m
tn+m

· · · Lbn+2−bn+1
tn+1

u1〉 + O(Cmκbn+1+k).

Therefore, the last line of (2.9) is equal to

E
(
e
i
∑n

j=1 tj (
∑bj+1−1

�=bj
A�)) · E(

e
i
∑n+m

j=n+1 tj (
∑bj+1+k−1

�=bj +k A�)) + O(Cmκbn+1+k).

We have proven that the difference to be estimated to check (H) is bounded by
Cn+mκk +Cmκbn+1+k for some C > 1 and κ < 1. If we write C = 2C′

and κ = e−c

for some c,C′ > 0, then this is error is at most

2 · 2C′(n+m)e−ck ≤ 2 · (1 + max|bj+1 − bj |)C′(n+m)e−ck.

This proves (H).
Step 3: there exist a ∈ R

d and C,δ > 0 such that |E(A�) − a| ≤ Ce−δ�.
Working component by component, we can, without loss of generality, work

with one-dimensional random variables.
Enriching the probability space if necessary, we can construct a centered ran-

dom variable V , independent of all the A� and belonging to Lp , whose character-
istic function is supported in B(0, ε0) (see Proposition 3.8 for the existence of V ).
Also, let T > 0. Then

E(A�) = E(A� + V ) = E
(
(A� + V )1|A�+V |≥T

) +
∫
|x|<T

x dPA�+V .

The first term is bounded by ‖A� + V ‖L2‖1|A�+V |≥T ‖L2 ≤ CP(|A� + V | >

T )1/2 ≤ C/T 1/2. Let φ�(t) = E(eitA�)E(eitV ) be the characteristic function of
A� +V . Let gT be the Fourier transform of x1|x|<T . Since the Fourier transform on
R is an isometry up to a constant factor c1, we have

∫
|x|<T x dPA�+V = c1

∫
gT φ�,

hence E(A�) = c1
∫

gT φ� + O(T −1/2).
We have

φ�(t) = 〈ξ0, Lt L�
0u0〉E(eitV )

= 〈ξ0, Lt	u0〉E(eitV ) + 〈ξ0, Lt (L�
0 − 	)u0〉E(eitV ) =: ψ(t) + r�(t).

The function ψ is independent of �, while the function r�(t) depends on �, is
bounded by Cκ� and is supported in {|t | ≤ ε0}. We obtain

E(A�) = c1

∫
gT ψ + c1

∫
gT r� + O(T −1/2)

= c1

∫
gT ψ + O(‖gT ‖L2‖r�‖L2) + O(T −1/2).
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The L2-norm of gT is equal to C‖x1|x|<T ‖L2 = CT 3/2, therefore we obtain

E(A�) = c1

∫
gT ψ + O(κ�T 3/2) + O(T −1/2).

Now, consider k, � ∈ N. Taking T = κ−min(k,�)/3, we obtain, for some δ > 0,

|E(A�) − E(Ak)| ≤ Ce−δ min(k,�).

This shows that the sequence E(A�) is Cauchy, so it converges to a limit a. More-
over, letting k → ∞, it also yields |E(A�) − a| ≤ Ce−δ�, as desired.

Step 4: conclusion of the proof.
We claim that for any m ∈ N, there exists a matrix sm such that, uniformly in

�,m,

|cov(A�,A�+m) − sm| ≤ Ce−δ�.(2.10)

Since the proof is almost identical to the third step, it will be omitted.

LEMMA 2.7. Let (A�) be a process bounded in Lp for some p > 2, satisfying
(H) and satisfying (2.10) for some sequence of matrices sm. The series �2 = s0 +∑∞

m=1(sm + s∗
m) then converges in norm and, uniformly in m,n,∣∣∣∣∣cov

(
m+n−1∑

�=m

A�

)
− n�2

∣∣∣∣∣ ≤ C.(2.11)

Let us temporarily accept this lemma. The process (A� −a) then satisfies all the
assumptions of Theorem 1.3. Theorem 2.1 follows from this theorem.

PROOF OF LEMMA 2.7. Let us first prove that for some δ > 0,

|cov(A�,A�+m)| ≤ Ce−δm.(2.12)

To simplify notation, we will assume that d = 1. Although the estimate (2.12)
follows easily from the techniques we will develop later in this paper, we will now
give a direct elementary proof. Let V,V ′ be two independent random variables, as
in the third step of the previous proof. Then

E(A�A�+m) = E
(
(A� + V )(A�+m + V ′)

) =
∫

xy dP (x, y),

where P is the distribution of (A� + V,A�+m + V ′). For T > 0, we have∫
|xy|1|x|>T dP (x, y) = E

(|A� + V ||A�+m + V ′|1|A�+V |>T

)
≤ ‖A� + V ‖Lp‖A�+m + V ′‖L2

∥∥1|A�+V |>T

∥∥
Lq ,

where q > 1 is chosen so that 1/p + 1/2 + 1/q = 1. Moreover, ‖1|A�+V |>T ‖Lq =
P(|A� + V | > T )1/q ≤ CT −1/q . We have proven that for some ρ > 0, we have
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∫ |xy|1|x|>T dP (x, y) ≤ CT −ρ . In the same way,
∫ |xy|1|y|>T dP (x, y) ≤ CT −ρ .

Therefore,

E(A�A�+m) =
∫

xy1|x|,|y|≤T dP (x, y) + O(T −ρ).

The characteristic function φ of (A� + V,A�+m + V ′) is given by

φ(t, u) = E(eitA�+iuA�+m)E(eitV )E(eiuV ′
).

It is therefore supported in {|t |, |u| ≤ ε0}. Denoting by hT the Fourier transform
of the function xy1|x|,|y|≤T and using the fact that the Fourier transform is an
isometry up to a constant factor c2 = c2

1, we get

E(A�A�+m) = c2

∫
hT φ + O(T −ρ).

Letting ψ(t, u) = E(eitA�)E(eiuA�+m)E(eitV )E(eiuV ′
), a similar computation

shows that

E(A�)E(A�+m) = c2

∫
hT ψ + O(T −ρ).

Therefore,

|E(A�A�+m) − E(A�)E(A�+m)| = c2

∣∣∣∣
∫

hT (φ − ψ)

∣∣∣∣ + O(T −ρ)

≤ C‖hT ‖L2‖φ − ψ‖L2 + O(T −ρ).

The function φ −ψ is supported in {|t |, |u| ≤ ε0} and (H) implies that it is bounded
by Ce−cm for some c > 0. Moreover, ‖hT ‖L2 = C‖xy1|x|,|y|≤T ‖L2 ≤ CT 3. Fi-
nally, we obtain

|E(A�A�+m) − E(A�)E(A�+m)| ≤ Ce−cmT 3 + CT −ρ.

Choosing T = ecm/4, this gives (2.12).
When � → ∞, cov(A�,A�+m) tends to sm, by assumption. Therefore, letting �

tend to infinity in (2.12), we get |sm| ≤ Ce−δm. From (2.10), we obtain

|cov(A�,A�+m) − sm| ≤ C min(e−δ�, e−δm).(2.13)

We have

cov

(
m+n−1∑

�=m

A�

)
=

n−1∑
i=0

cov(Ai+m)

+ ∑
0≤i<j≤n−1

(
cov(Ai+m,Aj+m) + cov(Ai+m,Aj+m)∗

)
.
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With (2.13), we get∣∣∣∣∣cov

(
m+n−1∑

�=m

A�

)
−

n−1∑
i=0

s0 − ∑
0≤i<j≤n−1

(sj−i + s∗
j−i)

∣∣∣∣∣
≤ C

n−1∑
i=0

e−δ(i+m) + C
∑

0≤i<j≤n−1

min
(
e−δ(i+m), e−δ(j−i)).

Up to a multiplicative constant C, this is bounded by

∞∑
i=0

e−δi +
∞∑
i=0

2i∑
j=i+1

e−δi +
∞∑
i=0

∞∑
j=2i+1

e−δ(j−i) < ∞.

We have proven that∣∣∣∣∣cov

(
m+n−1∑

�=m

A�

)
− ns0 −

n∑
k=1

(n − k)(sk + s∗
k )

∣∣∣∣∣ ≤ C.

Since
∑

k|sk + s∗
k | < ∞, this proves (2.11). �

3. Probabilistic tools.

3.1. Coupling. As in Berkes and Philipp [4], the notion of coupling is central
to our argument. In this subsection, we introduce this notion.

If Z1 :�1 → E1 and Z2 :�2 → E2 are two random variables on two (possi-
bly different) probability spaces, then a coupling between Z1 and Z2 is a way to
associate those random variables, usually so that this association shows that Z1
and Z2 are close in some suitable sense. Formally, a coupling between Z1 and
Z2 is a probability space �′, together with two random variables Z′

1 :� → E1
and Z′

2 :� → E2 such that Z′
i is distributed as Zi . Considering the distribution

of (Z′
1,Z

′
2) in E1 × E2, it follows that one may take, without loss of generality,

� = E1 × E2, where Z′
1 and Z′

2 are the first and second projections.
The following lemma, also known as the Berkes–Philipp lemma, is Lemma A.1

of Berkes and Philipp [4]. It makes precise and justifies the intuition that, given a
coupling between two random variables Z1 and Z2, and a coupling between Z2
and another random variable Z3, it is possible to ensure that those couplings live
on the same probability space, giving a coupling between Z1, Z2 and Z3.

LEMMA 3.1. Let Ei , i = 1,2,3, be separable Banach spaces. Let F be a
distribution on E1 × E2 and let G be a distribution on E2 × E3 such that the
second marginal of F equals the first marginal of G. There then exist a probability
space and three random variables Z1,Z2,Z3 defined on this space such that the
joint distribution of Z1 and Z2 is F and the joint distribution of Z2 and Z3 is G.
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As an application of this lemma, assume that two processes (X1, . . . ,Xn) and
(Y1, . . . , Yn) are given and that a good coupling exists between variables X and Y

distributed, respectively, like
∑

Xi and
∑

Yi . There then exists a coupling between
(X1, . . . ,Xn) and (Y1, . . . , Yn) which realizes this coupling between

∑
Xi and∑

Yi . It is sufficient to build, simultaneously:

• the trivial coupling between (X1, . . . ,Xn) and X such that X = ∑
Xi almost

surely;
• the given coupling between X and Y ;
• the trivial coupling between Y and (Y1, . . . , Yn) such that Y = ∑

Yi almost
surely.

This kind of argument will be used several times below, without further details.
We will need the following lemma. It ensures that, to obtain a coupling with

good properties between two infinite processes (Z1,Z2, . . .) and (Z′
1,Z

′
2, . . .), it is

sufficient to do so for finite subsequences of these processes.

LEMMA 3.2. Let un, vn be two real sequences. Let Zn :� → En and
Z′

n :�′ → En (n ≥ 1) be two sequences of random variables, taking values in
separable Banach spaces. Assume that for any N there exists a coupling between
(Z1, . . . ,ZN) and (Z′

1, . . . ,Z
′
N) with

P(|Zn − Z′
n| ≥ un) ≤ vn(3.1)

for any 1 ≤ n ≤ N . There then exists a coupling between (Z1,Z2, . . .) and
(Z′

1,Z
′
2, . . .) such that (3.1) holds for any n ∈ N.

PROOF. For all N ∈ N, there exists a probability measure PN on (E1 × · · · ×
EN)2, the respective marginals of which are the distributions of (Z1, . . . ,ZN) and
(Z′

1, . . . ,Z
′
N), such that PN(|zn − z′

n| ≥ un) ≤ vn for 1 ≤ n ≤ N , where zn and z′
n

denote the coordinates in the first and second En factors. Let us arbitrarily extend
this measure to a probability measure P̃N on E2, where E = E1 × E2 × · · ·. The
sequence P̃N is tight and any of its weak limits satisfies the required property. �

3.2. Prokhorov distance.

DEFINITION 3.3. If P,Q are two probability distributions on a metric space,
define their Prokhorov distance π(P,Q) as the smallest ε > 0 such that P(B) ≤
ε + Q(Bε) for any Borelian set B , where Bε denotes the open ε-neighborhood
of B .

This distance makes it possible to construct good couplings, thanks to the fol-
lowing result, known as the Strassen–Dudley theorem [5], Theorem 6.9.
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THEOREM 3.4. Let X,Y be two random variables taking values in a metric
space with respective distributions PX and PY . If π(PX,PY ) < c, then there exists
a coupling between X and Y such that P(d(X,Y ) > c) < c.

We now turn to the estimation of the Prokhorov distance for processes taking
values in R

d . Let d > 0 and N > 0. We consider R
dN with the norm

|(x1, . . . , xN)|N = sup
1≤i≤N

|xi |,

where |x| denotes the Euclidean norm of a point x ∈ R
d .

LEMMA 3.5. There exists a constant C(d) with the following property. Let
F and G be two probability distributions on R

dN with characteristic functions φ

and γ . For any T ′ > 0,

π(F,G) ≤
N∑

j=1

F(|xj | ≥ T ′) + (C(d)T ′d/2)N
[∫

RdN
|φ − γ |2

]1/2

.(3.2)

PROOF. After an approximation argument, we can assume, without loss of
generality, that F and G have respective densities f and g. Then, for any measur-
able set A,

F(A) − G(A) ≤ F(A ∩ max|xj | ≤ T ′) + F(max|xj | > T ′)

− G(A ∩ max|xj | ≤ T ′)

≤
∫
|x1|,...,|xN |≤T ′

|f − g| +
N∑

j=1

F(|xj | > T ′).

Therefore, π(F,G) is bounded by last line of this equation. To conclude, we have
to estimate

∫
|x1|,...,|xN |≤T ′ |f − g|. We have

∫
|x1|,...,|xN |≤T ′

|f − g| ≤ ‖f − g‖L2
∥∥1|x1|,...,|xN |≤T ′

∥∥
L2 = ‖φ − γ ‖L2(CT ′)dN/2

since the Fourier transform is an isometry on L2 up to a factor (2π)dN/2. This
completes the proof. �

3.3. Classical tools. Let us recall two classical results of probability theory
that we will need later. The first is Rosenthal’s inequality [21] and the second is a
weak version of the Gal–Koksma strong law of large numbers [20], Theorem A1,
which will be sufficient for our purposes.
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PROPOSITION 3.6. Let X1, . . . ,Xn be independent centered real random
variables and let p > 2. There exists a constant C(p) such that∥∥∥∥∥

n∑
j=1

Xj

∥∥∥∥∥
Lp

≤ C(p)

(
n∑

j=1

E(X2
j )

)1/2

+ C(p)

(
n∑

j=1

E(|Xj |p)

)1/p

.(3.3)

PROPOSITION 3.7. Let X1,X2, . . . be centered real random variables and
assume that for some q ≥ 1 and some C > 0, for all m,n,

E

∣∣∣∣∣
m+n−1∑
j=m

Xj

∣∣∣∣∣
2

≤ Cnq.(3.4)

For any α > 0, the sequence
∑N

j=1 Xj/N
q/2+α then tends almost surely to 0.

The following proposition will be used in several forthcoming constructions.

PROPOSITION 3.8. There exists a symmetric random variable V on R
d , be-

longing to Lq for any q > 1, whose characteristic function is supported in the set
{|t | ≤ ε0}.

PROOF. We start with a C∞ function φ supported in {|t | ≤ ε0/2} and consider
its inverse Fourier transform f = F −1(φ) (which is C∞ and rapidly decreasing).
Let g = |f |2 = F −1(φ � φ̃), where φ̃(t) = φ(−t). Finally, let h = g/

∫
g. This is

nonnegative, has integral 1 and its Fourier transform is proportional to φ � φ̃, hence
it is supported in {|t | ≤ ε0}. If we let W and W ′ be independent random variables
with density h, then V = W − W ′ satisfies the conclusion of the proposition. �

4. Lp bounds. Our goal in this section is to show the following bound.

PROPOSITION 4.1. Let (A0,A1, . . .) be a centered process, bounded in Lp

(p > 2) and satisfying (H). For any η > 0, there exists C > 0 such that, for all
m,n ≥ 0, ∥∥∥∥∥

m+n−1∑
�=m

A�

∥∥∥∥∥
Lp−η

≤ Cn1/2.(4.1)

This kind of bound is classical for a large class of weakly dependent sequences.
The main point of this proposition is that these bounds are established here solely
under the assumption (H) on the characteristic function of the process.

For the proof, we will approximate the process (A0,A1, . . .) by an indepen-
dent process, using (H). Estimating the Lp−η-norm of this process via Rosenthal’s
inequality (Proposition 3.6), this will yield the desired estimate.
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LEMMA 4.2. Let (A0,A1, . . .) be a centered process, bounded in Lp for some
p > 2 and satisfying (H). Let un = maxm∈N‖∑m+n−1

�=m A�‖2
L2 . For any α > 0, there

exists C > 0 such that ua+b ≤ ua + ub + C(1 + aα + bα)(1 + u
1/2
a + u

1/2
b ) for any

a, b ≥ 1.

PROOF. Let m ∈ N and a ≤ b. Write

X1 =
m+a−1∑

�=m

A� and X2 =
m+a+b−1∑

�=m+a+�bα�
A�.

Also, let X̃1 = X1 + V1 and X̃2 = X2 + V2, where V1 and V2 are independent
random variables distributed like V (constructed in Proposition 3.8). Finally, let Ỹ1
and Ỹ2 be independent random variables, distributed like X̃1 and X̃2, respectively.

Let us prove that for some δ = δ(α) > 0,

π((X̃1, X̃2), (Ỹ1, Ỹ2)) < Ce−bδ

.(4.2)

Let φ and γ denote, respectively, the characteristic functions of (X1,X2) and
(Y1, Y2), where Y1 and Y2 are independent copies of X1 and X2. Since there
is a gap of size bα between X1 and X2, (H) ensures that for Fourier parame-
ters less than or equal to ε0, |φ − γ | ≤ C(1 + b)Ce−cbα ≤ Ce−c′bα

. We have
φ̃ − γ̃ = (φ − γ )E(ei(t1V1+t2V2)). Since the characteristic function of V is sup-
ported in {|t | ≤ ε0}, this shows that the characteristic functions φ̃ and γ̃ of
(X̃1, X̃2) and (Ỹ1, Ỹ2), respectively, satisfy |φ̃ − γ̃ | ≤ Ce−c′bα

and are supported in
{|t | ≤ ε0}. Applying Lemma 3.5 with N = 2 and T ′ = ebα/2

, we obtain (4.2) [since
the first terms in (3.2) are bounded by E(|X̃i |)/T ′ ≤ Cb/ebα/2

, while the second
term is at most CT ′de−c′bα

].
By (4.2) and Theorem 3.4, we can construct a coupling between (X̃1, X̃2) and

(Ỹ1, Ỹ2) such that, outside a set O of measure at most Ce−bδ
, we have |X̃i − Ỹi | ≤

Ce−bδ
. Then ‖X̃1 + X̃2‖L2 is bounded by

‖1O(X̃1 + X̃2)‖L2 + ‖1Oc(X̃1 − Ỹ1 + X̃2 − Ỹ2)‖L2 + ‖Ỹ1 + Ỹ2‖L2 .

The first term is bounded by ‖1O‖Lq ‖X̃1 + X̃2‖Lp , where q is chosen so that
1/p + 1/q = 1/2. Hence, it is at most Ce−bδ/qb ≤ C. The second term is bounded
by Ce−bδ ≤ C. Finally, since Ỹ1 and Ỹ2 are independent and centered, the last term
is equal to (E(Ỹ 2

1 ) + E(Ỹ 2
2 ))1/2.

Since ‖V ‖L2 is finite, we finally obtain

‖X1 + X2‖2
L2 ≤ C + E(Y 2

1 ) + E(Y 2
2 ) = C + E(X2

1) + E(X2
2).

Taking into account the missing block
∑m+a+�bα�−1

�=m+a A� (whose L2-norm is at
most Cbα) and using the trivial inequality ‖U + V ‖2

L2 ≤ ‖U‖2
L2 + ‖V ‖2

L2 +
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2‖U‖L2‖V ‖L2 , we finally obtain∥∥∥∥∥
m+a+b−1∑

�=m

A�

∥∥∥∥∥
2

L2

≤
∥∥∥∥∥
m+a−1∑

�=m

A�

∥∥∥∥∥
2

L2

+
∥∥∥∥∥
m+a+b−1∑
�=m+a

A�

∥∥∥∥∥
2

L2

+ Cb2α + Cbα

(∥∥∥∥∥
m+a−1∑

�=m

A�

∥∥∥∥∥
L2

+
∥∥∥∥∥
m+a+b−1∑

�=m+a

A�

∥∥∥∥∥
L2

)
.

This proves the lemma. �

LEMMA 4.3. Let un ≥ 0 satisfy

ua+b ≤ ua + ub + C(1 + aα + bα)(1 + u1/2
a + u

1/2
b )(4.3)

for all a, b ≥ 1 and some C > 0, α ∈ (0,1/2). Then un = O(n).

PROOF. For any ε > 0 and x, y ≥ 0, we have xy ≤ εx2 + ε−1y2. From the
assumption, we therefore obtain

ua+b ≤ (1 + ε)(ua + ub) + Cε−1 max(a2α, b2α).

Let vk = max0≤n<2k+1 un. It follows from the previous equation that

vk+1 ≤ (2 + 2ε)vk + Cε−122αk.

In particular, we have

vk+1

(2 + 2ε)k+1 ≤ vk

(2 + 2ε)k
+ Cε−1 22αk

(2 + 2ε)k+1 .

It follows inductively that vk/(2 + 2ε)k ≤ v0 + Cε−1 ∑
j

22αj

(2+2ε)j+1 < ∞. Hence,

for any ε > 0, vk = O((2 + 2ε)k), that is, for any ρ > 1, un = O(nρ). Choosing
ρ close enough to 1, we get, from (4.3), that ua+b ≤ ua + ub + Caβ + Cbβ for
some β < 1. Therefore, vk+1 ≤ 2vk + C2βk . As above, we deduce that vk/2k is
bounded, that is, un = O(n). �

PROOF OF PROPOSITION 4.1. Lemmas 4.2 and 4.3 show that a centered
process in Lp satisfying (H) satisfies the following bound in L2:∥∥∥∥∥

m+n−1∑
�=m

A�

∥∥∥∥∥
L2

≤ Cn1/2.(4.4)

Let us now show that the same bound holds in Lp−η for any η > 0.
Let α = 1/10. For n ∈ N, let a = �n1−α� and b = �nα�. Fixing m ∈ N, we

decompose the interval [m,m+n) as the union of the intervals Ij = [m+ ja,m+
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(j + 1)a − b2) and I ′
j = [m + (j + 1)a − b2,m + (j + 1)a) for 0 ≤ j < b, and a

final interval J = [m + ba,m + n).
Write Xj = ∑

�∈Ij
A� and X̃j = Xj + Vj , where the Vj are independent and

distributed like V constructed in Proposition 3.8. Finally, let Ỹ0, . . . , Ỹb−1 be inde-
pendent random variables such that Ỹj is distributed like X̃j . We claim, for some
δ > 0 and any j ≤ b, that

π((X̃0, . . . , X̃j−1), (X̃0, . . . , X̃j−2, Ỹj−1)) < Ce−nδ

.(4.5)

Indeed, the X̃j are blocks, each of length at most n, and there are at most nα

blocks. Since there is a gap of length b2 = n2α between Xj−2 and Xj−1, (H) shows
that the difference between the characteristic functions of the members of (4.5) is
at most CnCnα · e−cn2α ≤ Ce−c′n2α

(the terms Vj ensure that it is sufficient to
consider Fourier parameters bounded by ε0). The estimate (4.5) then follows from
Lemma 3.5 by taking T ′ = enα

and N = j .
Summing the estimate in (4.5) over j , we obtain

π((X̃0, . . . , X̃b−1), (Ỹ0, . . . , Ỹb−1)) < Ce−nδ/2.(4.6)

By the Strassen–Dudley Theorem 3.4, we can therefore construct a coupling be-
tween those processes such that, outside a set O of measure at most Ce−nδ/2, we
have |X̃i − Ỹi | ≤ Ce−nδ/2 for 0 ≤ i ≤ b − 1. As in the proof of Lemma 4.2, this
gives

∥∥∥∥∥
b−1∑
j=0

X̃j

∥∥∥∥∥
Lp−η

≤ C +
∥∥∥∥∥
b−1∑
j=0

Ỹj

∥∥∥∥∥
Lp−η

.

Since the Ỹj are independent and centered, Rosenthal’s inequality (Proposi-
tion 3.6) applies. Let us write vk = maxt∈N‖∑t+k−1

�=t A�‖Lp−η . The Ỹj are bounded
in L2 by a1/2 [by (4.4)] and in Lp−η by C + va−b2 ≤ Cva−b2 . Hence,

∥∥∥∥∥
b−1∑
j=0

Ỹj

∥∥∥∥∥
Lp−η

≤ C

(
b−1∑
j=0

a

)1/2

+ C

(
b−1∑
j=0

v
p−η

a−b2

)1/(p−η)

≤ Cn1/2 + Cva−b2b
1/(p−η).

Since X̃j = Xj + Vj and Vj is bounded by C in Lp−η, we get, from the two
previous equations, that

∥∥∥∥∥
b−1∑
j=0

Xj

∥∥∥∥∥
Lp−η

≤ Cn1/2 + Cva−b2b
1/(p−η).
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Finally,∥∥∥∥∥
m+n−1∑

�=m

A�

∥∥∥∥∥
Lp−η

≤
∥∥∥∥∥
b−1∑
j=0

Xj

∥∥∥∥∥
Lp−η

+
b−1∑
j=0

∑
�∈I ′

j

‖A�‖Lp−η +
∥∥∥∥∥

m+n−1∑
�=m+ab

A�

∥∥∥∥∥
Lp−η

≤ Cn1/2 + Cva−b2b
1/(p−η) + Cn3α + vn−ab.

Therefore, since 3α < 1/2, we have

vn ≤ Cn1/2 + Cva−b2b
1/(p−η) + vn−ab.

Moreover, a ≤ n1−α , b ≤ nα and n−ab ≤ a+b+1 ≤ Cn1−α . If vn = O(nr), then
this gives vn = O(ns) for s = s(r) = max(1/2, (1 − α)r + α/(p − η)). Starting
from the trivial estimate vn = O(n), we get vn = O(ns(1)), then vn = O(ns(s(1)))

and so on. Since p − η > 2, this gives, in finitely many steps, that vn = O(n1/2).
�

5. Proof of the main theorem for nondegenerate covariance matrices. In
this section, we consider a process (A0,A1, . . .) satisfying the assumptions of The-
orem 1.3 and such that the matrix �2 is nondegenerate. We will prove that this
process satisfies the conclusions of Theorem 1.3. Replacing, without loss of gen-
erality, A� by A� − E(A�), we can assume that A� is centered. If K is a finite
subset of N, then we denote its cardinality by |K|.

The strategy of the proof is very classical: we subdivide the integers into blocks
with gaps between them, make the sums over the different blocks independent us-
ing the gaps and (H), use approximation results for sums of independent random
variables to handle the (now independent) sums over the different blocks and, fi-
nally, show that the fluctuations inside the blocks and the terms in the gaps do not
contribute much to the asymptotics.

The interesting feature of our approach is the choice of the blocks. First, we
subdivide N into the intervals [2n,2n+1) and we then cut each of these intervals
following a triadic Cantor-like approach: we put a relatively large gap in the mid-
dle, then we put slightly smaller gaps in the middle of each half and we continue
on in this way. This procedure gives better results than the classical arguments tak-
ing blocks along a polynomial progression: this would give an error p/(3p − 2) in
the theorem, while we obtain the better error term p/(4p − 4) with the Cantor-like
decomposition. The reason is that, to create n manageable blocks, the classical ar-
guments require gaps whose union is of order n2, while the triadic decomposition
only uses gaps whose union is of order n.

We will now describe the triadic procedure more precisely. Fix β ∈ (0,1) and
ε ∈ (0,1 − β). Let f = f (n) = �βn�. We decompose [2n,2n+1) as a union of
F = 2f intervals (In,j )0≤j<F of the same length, and F gaps (Jn,j )0≤j<F between
them, used to ensure sufficient independence. Good intervals and gaps are placed
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alternatively, and in increasing order, as follows: [2n,2n+1) = Jn,0 ∪ In,0 ∪ Jn,1 ∪
In,1 · · · ∪ Jn,F−1 ∪ In,F−1.

The lengths of the gaps Jn,j are chosen as follows. The middle interval Jn,F/2
has length 2�εn�2f −1. It cuts the interval [2n,2n+1) into two parts. The middle
intervals of each of these parts, that is, Jn,F/4 and Jn,3F/4, have length 2�εn�2f −2.
The middle intervals of the remaining four parts have length 2�εn�2f −3, and so on.
More formally, for 1 ≤ j < F , we write j = ∑f −1

k=0 αk(j)2k , where αk(j) ∈ {0,1},
and consider the smallest number r with αr(j) �= 0. The length of Jn,j is then
2�εn�2r . We say that this interval is of rank r . This defines the length of all the
intervals Jn,j , except for j = 0. We let |Jn,0| = 2�εn�2f and say that this interval
has rank f .

Since there are 2f −1−r intervals of rank r for r < f , with length 2�εn�2r , the
lengths of the intervals (Jn,j )0≤j<F add up to

|Jn,0| +
f −1∑
r=0

2�εn�2r · 2f −1−r = 2�εn�2f −1(f + 2).(5.1)

Let |In,j | = 2n−f − (f + 2)2�εn�−1. This is a positive integer if n is large enough
and

∑|In,j | + ∑|Jn,j | = 2n, that is, those intervals exactly fill [2n,2n+1). We will
denote by in,j the smallest element of In,j .

We will use the lexicographical order ≺ on the set {(n, j) | n ∈ N,0 ≤ j <

F(n)}. It can also be described as follows: (n, j) ≺ (n′, j ′) if the interval In,j is to
the left of In′,j ′ . A sequence (nk, jk) tends to infinity for this order if and only if
nk → ∞.

Let Xn,j = ∑
�∈In,j

A� for n ∈ N and 0 ≤ j < F(n). Finally, write I = ⋃
n,j In,j

and J = ⋃
n,j Jn,j . The main steps of the proof are the following:

1. there exists a coupling between (Xn,j ) and a sequence of independent random
variables (Yn,j ), with Yn,j distributed like Xn,j , such that almost surely when
(n, j) → ∞, ∣∣∣∣ ∑

(n′,j ′)≺(n,j)

Xn′,j ′ − Yn′,j ′
∣∣∣∣ = o

(
2(β+ε)n/2);

2. there exists a coupling between (Yn,j ) and a sequence of independent Gaussian
random variables Zn,j , with cov(Zn,j ) = |In,j |�2, such that almost surely
when (n, j) → ∞,∣∣∣∣ ∑

(n′,j ′)≺(n,j)

Yn′,j ′ − Zn′,j ′
∣∣∣∣ = o

(
2(β+ε)n/2 + 2((1−β)/2+β/p+ε)n);

3. coupling the Xn,j with the Zn,j , by virtue of the first two steps, and writing
Zn,j as the sum of |In,j | Gaussian random variables N (0,�2), we obtain (using
Lemma 3.1 and the example that follows it) a coupling between (A�)�∈I and



1660 S. GOUËZEL

(B�)�∈I , where the B� are i.i.d. and distributed like N (0,�2), such that, when
(n, j) tends to infinity, we have∣∣∣∣ ∑

�<in,j ,�∈I
A� − B�

∣∣∣∣ = o
(
2(β+ε)n/2 + 2((1−β)/2+β/p+ε)n);

4. we check that almost surely when (n, j) → ∞,

max
m<|In,j |

∣∣∣∣∣
in,j+m∑
�=in,j

A�

∣∣∣∣∣ = o
(
2((1−β)/2+β/p+ε)n)

and, moreover, that a similar estimate holds for the B�’s;
5. combining the last two steps, we get that when k tends to infinity,∣∣∣∣ ∑

�<k,�∈I
A� − B�

∣∣∣∣ = o
(
k(β+ε)/2 + k(1−β)/2+β/p+ε);

6. finally, we prove that the gaps can be neglected, that is, almost surely∑
�<k,�∈J

A� = o(kβ/2+ε)(5.2)

and a similar estimate holds for the B�’s.

Altogether, this gives a coupling for which almost surely∣∣∣∣∑
�<k

A� − B�

∣∣∣∣ = o
(
kβ/2+ε + k(1−β)/2+β/p+ε).

Let us choose β such that the two error terms are equal, that is, β = p/(2p − 2).
We obtain an almost sure invariance principle with error term p/(4p − 4) + ε

for any ε > 0. Since the almost sure invariance principle implies the central limit
theorem, this proves Theorem 1.3, under the assumption that �2 is nondegenerate.

It remains to justify Steps 1, 2, 4 and 6 since Steps 3 and 5 are trivial. This is
done in the following subsections.

5.1. Step 1: Coupling with independent random variables. In this subsection,
we justify the first step of the proof of Theorem 1.3 with the following proposition.

PROPOSITION 5.1. There exists a coupling between (Xn,j ) and (Yn,j ) such
that, almost surely, when (n, j) tends to infinity,∣∣∣∣ ∑

(n′,j ′)≺(n,j)

Xn′,j ′ − Yn′,j ′
∣∣∣∣ = o

(
2(β+ε)n/2)

.
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The rest of this subsection is devoted to the proof of this proposition.
Let Vn,j , for n, j ∈ N, be independent copies of V (constructed in Proposi-

tion 3.8), independent of everything else (we may need to enlarge the space to
ensure their existence). Let X̃n,j = Xn,j + Vn,j .

We will write Xn = (Xn,j )0≤j<F(n) and X̃n = (X̃n,j )0≤j<F(n). The proof of
Proposition 5.1 has two parts: first, we make the different X̃n independent of each
other, using the gaps Jn,0; then, inside each block X̃n, we make the variables X̃n,j

independent by using the smaller gaps Jn,j .

LEMMA 5.2. Let Q̃n be a random variable distributed like X̃n, but indepen-
dent of (X̃1, . . . , X̃n−1). We have

π((X̃1, . . . , X̃n−1, X̃n), (X̃1, . . . , X̃n−1, Q̃n)) < C4−n.(5.3)

PROOF. The random process (X1, . . . ,Xn) takes its values in R
dD for D =∑n

m=1 F(m) ≤ ∑n
m=1 2βm ≤ C2βn. Moreover, each component in R

d of this
process is one of the Xn,j , hence it is a sum of at most 2n consecutive variables A�.
On the other hand, the interval Jn,0 is a gap between (Xj )j<n and Xn, and its
length k is C±12εn+βn. Let φ and γ : RdD → C denote the respective characteris-
tic functions of (X1, . . . ,Xn−1,Xn) and (X1, . . . ,Xn−1,Qn), where Qn is distrib-
uted like Xn and is independent of (X1, . . . ,Xn−1). The assumption (H) ensures
that for Fourier parameters tm,j all bounded by ε0, we have

|φ − γ | ≤ C(1 + 2n)CDe−ck ≤ C2nC2βn

e−c2βn+εn ≤ Ce−c′2βn+εn

,

if n is large enough.
Let φ̃ and γ̃ be the characteristic functions of, respectively, (X̃1, . . . , X̃n) and

(X̃1, . . . , Q̃n): they are obtained by multiplying φ and γ by the characteristic func-
tion of V in each variable. Since this function is supported in {|t | ≤ ε0}, we obtain,
in particular, that

|φ̃ − γ̃ | ≤ Ce−c2βn+εn

.(5.4)

We then use Lemma 3.5 with N = D and T ′ = e2εn/2
to get

π((X̃1, . . . , X̃n), (X̃1, . . . , X̃n−1, Q̃n))

≤ ∑
m≤n

∑
j<F(m)

P (|X̃m,j | ≥ e2εn/2
) + eCD2εn/2

e−c2βn+εn

.

The second term is, again, bounded by e−c′2βn+εn
, while each term in the first sum

is bounded by e−2εn/2
E(|X̃m,j |) ≤ e−2εn/2 ·C2n. Summing over m and j , we obtain

a bound of the form Ce−2δn
, which is stronger than (5.3). �



1662 S. GOUËZEL

COROLLARY 5.3. Let R̃n = (R̃n,j )j<F(n) be distributed like X̃n and such that
the R̃n are independent of each other. There then exist C > 0 and a coupling be-
tween (X̃1, X̃2, . . .) and (R̃1, R̃2, . . .) such that for all (n, j),

P(|X̃n,j − R̃n,j | ≥ C4−n) ≤ C4−n.(5.5)

PROOF. By Lemma 3.2, it is enough to build such a coupling between
(X̃1, . . . , X̃N) and (R̃1, . . . , R̃N) for fixed N (we just have to ensure that the con-
stant C we obtain is independent of N , of course).

We use Lemma 5.2 to get a good coupling that makes X̃N independent of the
other variables, then again use this lemma to make X̃N−1 independent of the other
ones and so on. In the end, this yields the desired coupling between X̃ and R̃.

Let us be more formal. For n ≤ N , we denote by (R̃n
1 , . . . , R̃n

n) a process dis-
tributed like (X̃1, . . . , X̃n). Also, let R̃n be distributed like X̃n, independent of
everything else. Lemma 5.2 and the Strassen–Dudley Theorem 3.4 give a good
coupling between (R̃n

1 , . . . , R̃n
n) and (R̃n−1

1 , . . . , R̃n−1
n−1, R̃n). Putting all those cou-

plings together on a single space (by Lemma 3.1), we obtain a space on which
live, in particular, (R̃N

1 , . . . , R̃N
N ) and (R̃1, . . . , R̃N), which are the processes we

are trying to couple. Moreover,

|R̃N
n − R̃n| ≤

N∑
j=n+1

|R̃j
n − R̃j−1

n | + |R̃n
n − R̃n|.

If |R̃j
n − R̃

j−1
n | ≤ C4−j for j ∈ [n + 1,N] and |R̃n

n − R̃n| ≤ C4−n, then we get
|R̃N

n − R̃n| ≤ C′4−n for some constant C′ independent of n and N . In particular,
P(|R̃N

n − R̃n| > C′4−n) is bounded by

N∑
j=n+1

P(|R̃j
n − R̃j−1

n | > C4−j ) + P(|R̃n
n − R̃n| > C4−n)

≤
N∑

j=n

C4−j ≤ C′4−n.
�

LEMMA 5.4. For any n ∈ N, we have

π
(
(R̃n,j )0≤j<F(n), (Ỹn,j )0≤j<F(n)

)
< C4−n,(5.6)

where Ỹn,j = Yn,j + Vn,j .

PROOF. Let f = f (n) = �βn� and F = 2f . We will first make the variables
(R̃n,j )j<F/2 independent of the variables (R̃n,j )F/2≤j<F by using the large gap
Jn,F/2, then proceed in each remaining half using the gap in the middle of this half
and so on.
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We define Ỹ i
n,j for 0 ≤ i ≤ f as follows: for 0 ≤ k < 2f −i , the random vari-

able Ỹ i
n,k := (Ỹ i

n,j )k2i≤j<(k+1)2i is distributed like (X̃n,j )k2i≤j<(k+1)2i , and Ỹ i
n,k

is independent of Ỹ i
n,k′ if k �= k′. Hence, the process (Ỹ

f
n,j )0≤j<F coincides with

(R̃n,j )0≤j<F , while (Ỹ 0
n,j )0≤j<F coincides with (Ỹn,j )0≤j<F .

Writing Ỹ i = (Ỹ i
n,j )j<F , let us estimate π(Ỹ i, Ỹ i−1) for 1 ≤ i ≤ f . Since the

variables Ỹ i
n,k are already independent of one another for 0 ≤ k < 2f −i , we have

π(Ỹ i, Ỹ i−1) ≤
2f −i−1∑

k=0

π(Ỹ i
n,k, (Ỹ i−1

n,2k, Ỹ i−1
n,2k+1)).(5.7)

Moreover, Ỹ i
n,k is made of 2i sums of variables A� along blocks, each of these

blocks has length at most 2n−f and there is a gap Jn,k2i+2i−1 of size C±12εn+i in
the middle. Therefore, (H) ensures that the difference between the characteristic
functions of Ỹ i

n,k and (Ỹ i−1
n,2k, Ỹ i−1

n,2k+1) is at most

C(1 + 2n−f )C2i

e−c2εn+i ≤ CeCn2i−c2εn+i ≤ Ce−c′2εn+i

,

if n is large enough. Taking N = 2i and T ′ = e2εn/2
in Lemma 3.5, we obtain (with

computations very similar to those in the proof of Lemma 5.2)

π(Ỹ i
n,k, (Ỹ i−1

n,2k, Ỹ i−1
n,2k+1)) ≤ Ce−2δn

for some δ > 0. Summing over k in (5.7) and then over i, we obtain

π(Ỹ f , Ỹ 0) ≤
f∑

i=1

π(Ỹ i, Ỹ i−1) ≤ f 2f Ce−2δn ≤ Ce−2δn/2.

This gives, in particular, (5.6). �

PROOF OF PROPOSITION 5.1. We combine the coupling constructed in Corol-
lary 5.3 with the couplings constructed in Lemma 5.4 for each n, using the
Strassen–Dudley Theorem 3.4. We obtain a coupling between (X̃n,j ) and (Ỹn,j )

such that P(|X̃n,j − Ỹn,j | ≥ C4−n) ≤ C4−n. Since
∑

n,j 4−n < ∞, the Borel–
Cantelli lemma ensures that almost surely

sup
(n,j)

∣∣∣∣ ∑
(n′,j ′)≺(n,j)

X̃n′,j ′ − Ỹn′,j ′
∣∣∣∣ < ∞.(5.8)

Moreover, X̃n,j = Xn,j + Vn,j , where the random variables Vn,j are centered, in-
dependent and in L2. By the law of the iterated logarithm, almost surely, for any
α > 0, ∣∣∣∣ ∑

(n′,j ′)≺(n,j)

Vn′,j ′
∣∣∣∣ = o

(
Card{(n′, j ′) | (n′, j ′) ≺ (n, j)}1/2+α)

.
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Moreover, Card{(n′, j ′) | (n′, j ′) ≺ (n, j)} ≤ ∑n
n′=1

∑
j ′<F(n′) 1 ≤ C2βn. We ob-

tain almost surely ∣∣∣∣ ∑
(n′,j ′)≺(n,j)

Xn′,j ′ − X̃n′,j ′
∣∣∣∣ = o

(
2βn(1/2+α)).

A similar estimate holds for Yn,j − Ỹn,j . With (5.8), this proves the proposition.
�

5.2. Step 2: Coupling with Gaussian random vectors. We are going to use
Corollary 3 of Zaı̆tsev [26]. Let us recall it here, for the convenience of the reader,
in a form that is suitable for us (it is obtained from the statement of Zaı̆tsev by
taking r = 10/e, γ = q , Lγ = Mq , n = b and z′ = Mz/5).

PROPOSITION 5.5. Let Y0, . . . , Yb−1 be independent centered R
d -valued ran-

dom vectors. Let q ≥ 2 and M = (
∑b−1

j=0 E|Yj |q)1/q . Assume that there exists a
sequence 0 = m0 < m1 < · · · < ms = b satisfying the following condition. Letting
ζk = Ymk

+ · · · + Ymk+1−1 and Bk = cov ζk , we assume that

100M2|v|2 ≤ 〈Bkv, v〉 ≤ 100CM2|v|2(5.9)

for all v ∈ R
d , all 0 ≤ k < s and some constant C ≥ 1. There then exists a coupling

between (Y0, . . . , Yb−1) and a sequence of independent Gaussian random vectors
(S0, . . . , Sb−1) such that covSj = covYj and, moreover,

P

(
max

1≤i≤b

∣∣∣∣∣
i−1∑
j=0

Yj − Sj

∣∣∣∣∣ ≥ Mz

)
≤ C′z−q + exp(−C′z)(5.10)

for all z ≥ C′ logn. Here, C′ is a positive quantity depending only on C, the di-
mension d and the integrability exponent q .

The following lemma easily follows from the previous proposition.

LEMMA 5.6. For n ∈ N, there exists a coupling between (Yn,0, . . . , Yn,F (n)−1)

and (Sn,0, . . . , Sn,F (n)−1), where the Sn,j are independent centered Gaussian vec-
tors with covSn,j = covYn,j , such that

∑
n

P

(
max

1≤i≤F(n)

∣∣∣∣∣
i−1∑
j=0

Yn,j − Sn,j

∣∣∣∣∣ ≥ 2((1−β)/2+β/p+ε/2)n

)
< ∞.(5.11)

PROOF. Let q ∈ (2,p) and n ∈ N. We want to apply Proposition 5.5 to the
independent vectors (Yn,j )0≤j<F , where F = F(n) = 2�βn�.
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By Proposition 4.1, we have ‖Yn,j‖Lq ≤ C2(1−β)n/2. This implies that M :=
(
∑F−1

j=0 E|Yn,j |q)1/q satisfies

M ≤ C2βn/q · 2(1−β)n/2.(5.12)

By the assumptions of Theorem 1.3, covYn,j = |In,j |�2 + o(|In,j |α) for any
α > 0. In particular,

covYn,j = 2(1−β)n�2(
1 + o(1)

)
.(5.13)

Moreover, we assume that the matrix �2 is nondegenerate. Therefore, there exists
a constant C0 such that for any large enough n, any 0 ≤ m < m′ < F(n) and any
vector v, we have

C−1
0 (m′ − m)2(1−β)n|v|2 ≤

〈
m′−1∑
j=m

covYn,j v, v

〉
≤ C0(m

′ − m)2(1−β)n|v|2.

For m = 0 and m′ = F , the quantity (m′ − m)2(1−β)n = 2�βn� · 2(1−β)n is much
larger than M2, by (5.12). On the other hand, each individual term (for m′ = m+1)
is bounded by

|covYn,j ||v|2 ≤ ‖Yn,j‖2
L2 |v|2 ≤ ‖Yn,j‖2

Lq |v|2 ≤ M2|v|2.
Therefore, we can group the Yn,j into consecutive blocks so that (5.9) is satisfied
for some constant C.

Applying Proposition 5.5, we get a coupling between (Yn,0, . . . , Yn,F−1) and
(Sn,0, . . . , Sn,F−1) such that

P

(
max

1≤i≤F

∣∣∣∣∣
i−1∑
j=0

Yn,j − Sn,j

∣∣∣∣∣ ≥ 2εn/3M

)
≤ C2−qεn/3(5.14)

by (5.10), for z = 2εn/3. This quantity is summable in n. Since 2εn/3M ≤
2((1−β)/2+β/p+ε/2)n if q is close enough to p and n is large enough, this completes
the proof of the lemma. �

LEMMA 5.7. Let Zn,j be independent Gaussian random vectors such that
covZn,j = |In,j |�2. There then exists a coupling between (Sn,j ) and (Zn,j ) such
that almost surely ∑

(n′,j ′)≺(n,j)

Sn′,j ′ − Zn′,j ′ = o
(
2(β+ε)n/2)

.(5.15)

PROOF. Let α > 0. Let En,j = N (0, |In,j |�2 + 2αnId), where Id is the iden-
tity matrix of dimension d . By assumption, covSn,j = |In,j |�2 +o(2αn). In partic-
ular, if n is large enough, we can write |In,j |�2 + 2αnId = covSn,j +Mn,j , where
the matrix Mn,j is positive definite and |Mn,j | ≤ C2αn. Therefore, En,j is the sum
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of Sn,j and an independent random variable distributed like N (0,Mn,j ). In the
same way, En,j is the sum of Zn,j and of an independent Gaussian N (0,2αnId).
Putting those decompositions on a single space, using Lemma 3.1, we obtain a
coupling between (Sn,j ) and (Zn,j ) such that the difference Dn,j = Sn,j − Zn,j is
centered and where ‖Dn,j‖L2 ≤ C2αn/2.

We claim that this coupling satisfies the conclusion of the lemma if α < ε/2.
Indeed, by Etemadi’s inequality ([5], Paragraph M19), we have, for any n,

P

(
max

1≤i≤F(n)

∣∣∣∣∣
i−1∑
j=0

Dn,j

∣∣∣∣∣ > 2(β+ε/2)n/2

)

≤ C max
1≤i≤F(n)

P

(∣∣∣∣∣
i−1∑
j=0

Dn,j

∣∣∣∣∣ > 2(β+ε/2)n/2/3

)

≤ C max
1≤i≤F(n)

E

(∣∣∣∣∣
i−1∑
j=0

Dn,j

∣∣∣∣∣
2)/

2(β+ε/2)n

≤ C

F(n)−1∑
j=0

E(|Dn,j |2)/2(β+ε/2)n ≤ C2βn2αn/2(β+ε/2)n.

This is summable. Therefore, almost surely for large enough n and for 1 ≤ i ≤
F(n), we have |∑i−1

j=0 Dn,j | ≤ 2(β+ε/2)n/2. The estimate (5.15) follows. �

Putting together the couplings constructed in Lemmas 5.6 and 5.7, we obtain a
coupling satisfying the conclusions of Step 2.

5.3. Step 4: Handling the maxima. We recall that in,j is the smallest element
of the interval In,j .

LEMMA 5.8. Almost surely when (n, j) → ∞,

max
m<|In,j |

∣∣∣∣∣
in,j+m∑
�=in,j

A�

∣∣∣∣∣ = o
(
2((1−β)/2+β/p+ε)n)

.

PROOF. Let q ∈ (2,p). In Lq , the partial sums
∑b−1

�=a A� are bounded by
C(b − a)1/2, by Proposition 4.1. Let Mb

a = maxa≤n≤b|∑n−1
�=a A�|. Corollary B1

in Serfling [23] then also shows that

‖Mb
a‖Lq ≤ C(b − a)1/2(5.16)

for a different constant C. In particular, if ν = (1 − β)/2 + β/p + ε/2, then

P
(
M

in,j+|In,j |
in,j

≥ 2νn) ≤ E
((

M
in,j+|In,j |
in,j

)q)
/2νnq

≤ C|In,j |q/2/2νnq .
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Moreover, ∑
n,j

|In,j |q/2/2νnq ≤ ∑
n

2βn · 2(1−β)nq/2−νnq .

This sum is finite if q is close enough to p. The Borel–Cantelli lemma gives the
desired result. �

5.4. Step 6: The gaps. Recall that J is the union of the gaps Jn,j . In this
subsection, we prove the following lemma.

LEMMA 5.9. For any α > 0, there exists C > 0 such that for any interval
J ⊂ N,

E

∣∣∣∣ ∑
�∈J∩J

A�

∣∣∣∣2 ≤ C|J ∩ J |1+α.

Together with the Gal–Koksma strong law of large numbers (Proposition 3.7)
applied with q = 1 + α, this shows that for every α > 0, almost surely∑

�<k,�∈J
A� = o(|J ∩ [0, k]|1/2+α).

Moreover, for k ∈ [2n,2n+1), we have [by (5.1)]

|J ∩ [0, k]| ≤
n∑

m=1

F(m)−1∑
j=0

|Jm,j | ≤ C

n∑
m=1

m2εm+βm ≤ Cn2εn+βn ≤ Ckβ+3ε/2.

With the previous equation, we obtain (if α is small enough)∑
�<k,�∈J

A� = o(kβ/2+ε).

This is (5.2), as desired.

PROOF OF LEMMA 5.9. We will freely use the convexity inequality

(a1 + · · · + ak)
2 ≤ k(a2

1 + · · · + a2
k ).(5.17)

Let J ⊂ N be an interval. We decompose J ∩ J as J0 ∪ J1 ∪ J2, where J0 and J2
are, respectively, the first and the last interval of J ∩ J , and J1 is the remaining
part (it is therefore a union of full intervals of J ). Then

∣∣∣∣ ∑
�∈J∩J

A�

∣∣∣∣
2

≤ 3
∣∣∣∣ ∑
�∈J0

A�

∣∣∣∣
2

+ 3
∣∣∣∣ ∑
�∈J1

A�

∣∣∣∣
2

+ 3
∣∣∣∣ ∑
�∈J2

A�

∣∣∣∣
2

.
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The set J0 is an interval, hence Proposition 4.1 gives E|∑�∈J0
A�|2 ≤ C|J0|.

A similar inequality holds for J2. To conclude the proof, it is therefore sufficient
to prove that

E

∣∣∣∣ ∑
�∈J1

A�

∣∣∣∣
2

≤ C|J1|1+α.(5.18)

Since J1 is not always an interval, this does not follow directly from Proposi-
tion 4.1. However, this is trivial if J1 is empty. Otherwise, let N be such that
maxJ1 ∈ [2N,2N+1). Since the last interval in J1 is contained in [2N,2N+1), its
length is 2�εN�+r for some r ∈ [0, f (N)]. In particular, N ≤ Clog|J1|.

We defined the notion of rank of an interval Jn,j in the paragraph before equa-
tion (5.1): such an interval has rank r ∈ [0, f (n)] if its length is 2�εn�+r . There are
2f (n)−1−r intervals of rank r in [2n,2n+1) for r < f (n) and one interval of rank
f (n).

For n ∈ N and 0 ≤ r ≤ f (n), let J (n,r) denote the union of the intervals
Jn,j which are of rank r . The number of sets J (n,r) intersecting J1 is at most∑N

n=0(f (n) + 1) ≤ CN2. Hence, by the convexity inequality (5.17),∣∣∣∣∑
�∈J1

A�

∣∣∣∣
2

≤ CN2
∑
n,r

∣∣∣∣ ∑
�∈J1∩J (n,r)

A�

∣∣∣∣
2

.(5.19)

Let us fix some (n, r) and enumerate the intervals of J (n,r) as K1, . . . ,Kt for
t = 2f (n)−1−r if r < f (n) [or t = 1 if r = f (n)]. Let Ts = ∑

�∈Ks
A�. We claim

that for any subset S of {1, . . . , t},

E

∣∣∣∣∑
s∈S

Ts

∣∣∣∣
2

≤ C
∑
s∈S

E|Ts |2 + C|S|.(5.20)

Let us show how this completes the proof. By Proposition 4.1, we have E|Ts |2 ≤
C|Ks |. Therefore, for any set K which is a union of intervals in J (n,r), we obtain
E|∑�∈K A�|2 ≤ C|K|. This applies, in particular, to K = J1 ∩ J (n,r). Therefore,
(5.19) gives

E

∣∣∣∣ ∑
�∈J1

A�

∣∣∣∣
2

≤ CN2
∑
n,r

∣∣J1 ∩ J (n,r)
∣∣ = CN2|J1|.

Together with the inequality N ≤ C log |J1|, this proves (5.18), as desired.
It remains to prove (5.20). We first make the Ts independent, as follows. Let

(U1, . . . ,Ut ) be independent random variables such that Us is distributed like Ts .
Also, let V1, . . . , Vt ,V

′
1, . . . , V

′
t be independent random variables distributed like

V (constructed in Proposition 3.8) and write T̃s = Ts + Vs , Ũs = Us + V ′
s . We

claim that for some δ > 0 and C > 0,

π((T̃1, . . . , T̃t ), (Ũ1, . . . , Ũt )) < Ce−2δn

.(5.21)
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To prove this estimate, we use the intervals of rank greater than r as gaps: we
first make T̃1, . . . , T̃t/2 independent of T̃t/2+1, . . . , T̃t using the gap Jn,F/2, then
proceed in each half using the central gaps Jn,F/4 and Jn,3F/4, and so on. The
details of the argument are exactly the same as in the proof of Lemma 5.4.

Thanks to this estimate and the Strassen–Dudley Theorem 3.4, we can construct
a coupling between (T̃j )1≤j≤t and (Ũj )1≤j≤t such that, outside a set O of measure

at most Ce−2δn
, we have |T̃j − Ũj | ≤ Ce−2δn

for 1 ≤ j ≤ t . For any subset S of
{1, . . . , t}, we obtain (as in the proof of Lemma 4.2)∥∥∥∥∑

s∈S

T̃s

∥∥∥∥
L2

≤
∥∥∥∥1O

∑
s∈S

T̃s

∥∥∥∥
L2

+
∥∥∥∥1Oc

∑
s∈S

T̃s − Ũs

∥∥∥∥
L2

+
∥∥∥∥∑
s∈S

Ũs

∥∥∥∥
L2

.

The first term is bounded by ‖1O‖Lq ‖∑
s∈S T̃s‖Lp , where q is chosen such that

1/p + 1/q = 1/2. Hence, it is at most Ce−2δn/q2n ≤ C. The second term is
bounded by Cte−2δn ≤ C. Therefore, ‖∑

s∈S Ts‖L2 is bounded by∥∥∥∥∑
s∈S

T̃s

∥∥∥∥
L2

+
∥∥∥∥∑
s∈S

Vs

∥∥∥∥
L2

≤ C +
∥∥∥∥∑
s∈S

Us

∥∥∥∥
L2

+
∥∥∥∥∑
s∈S

Vs

∥∥∥∥
L2

+
∥∥∥∥∑
s∈S

V ′
s

∥∥∥∥
L2

.

Since the Us are centered independent random variables, ‖∑
s∈S Us‖L2 =

(
∑

E(U2
s ))1/2 = (

∑
E(T 2

s ))1/2. In the same way, we have ‖∑
s∈S Vs‖L2 =

‖∑
s∈S V ′

s‖L2 = C|S|1/2. We get ‖∑
s∈S Ts‖L2 ≤ C + (

∑
E(T 2

s ))1/2 + C|S|1/2,
which implies (5.20). �

6. Completing the proof of the main theorems. In this section, we first fin-
ish the proof of Theorem 1.3 when the matrix �2 is degenerate and then derive
Theorem 1.2 from Theorem 1.3.

LEMMA 6.1. Let (A0,A1, . . .) be a process satisfying the assumptions of
Theorem 1.3 for �2 = 0. Then almost surely

∑n−1
�=0 A� = o(nλ) for any λ >

p/(4p − 4).

PROOF. Let β > 0 and ε > 0. Define a sequence of intervals In = [nβ+1, (n+
1)β+1) ∩ N and denote by in = �nβ+1� the smallest element of In. We claim that
almost surely ∣∣∣∣∣

in−1∑
�=0

A�

∣∣∣∣∣ = O(n1/2+ε)(6.1)

and

max
i∈In

∣∣∣∣∣
i∑

�=in

A�

∣∣∣∣∣ = O(nβ/2+1/p+ε).(6.2)
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Taking β = (p − 2)/p to equate the error terms, we get |∑�≤k A�| = O(n1/2+ε),
where n = n(k) is the index of the interval In containing k. Since n ≤ Ck1/(1+β),
we finally obtain an error term O(kλ+2λε) for

λ = 1

2
· 1

1 + (p − 2)/p
= p

4p − 4
.

This concludes the proof. It remains to establish (6.1) and (6.2).
By (1.3), ‖∑in−1

�=0 A�‖L2 = O(nα/2) for any α > 0. Therefore,

P

(
in−1∑
�=0

A� ≥ n1/2+ε

)
≤

∥∥∥∥∥
in−1∑
�=0

A�

∥∥∥∥∥
2

L2

/
n1+2ε ≤ Cnα/n1+2ε.

Taking α = ε, this quantity is summable. Equation (6.1) follows.
Let Mb

a = maxa≤n≤b|∑n−1
�=a A�|. For q < p, we have

P

(
max
i∈In

∣∣∣∣∣
i∑

�=in

A�

∣∣∣∣∣ ≥ nβ/2+1/p+ε

)
= P(M

in+1
in

≥ nβ/2+1/p+ε)

≤ ‖Min+1
in

‖q
Lq /nq(β/2+1/p+ε).

By (5.16), ‖Min+1
in

‖Lq ≤ C(in+1 − in)
1/2 ≤ Cnβ/2. Therefore, the last equation is

bounded by C/nq(1/p+ε). This is summable if q is close enough to p. The estimate
(6.2) follows. �

Let (A0,A1, . . .) be a process satisfying the assumptions of Theorem 1.3 for
some matrix �2. Replacing A� by A� − E(A�), we can assume that this process
is centered. We decompose R

d as an orthogonal sum E ⊕ F , where �2 is nonde-
generate on E and vanishes on F . The almost sure invariance principle along E is
proved in Section 5, while Lemma 6.1 handles F . This proves Theorem 1.3.

Finally, Theorem 1.2 follows directly from Lemma 2.7 and Theorem 1.3.
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