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IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
(e-mail: sebastien.gouezel@univ-rennes1.fr)

(Received 9 November 2004 and accepted in final form 7 March 2006)

Abstract. We study a skew product with a curve of neutral points. We show that there
exists a unique absolutely continuous invariant probability measure, and that the Birkhoff
averages of a sufficiently smooth observable converge to a normal law or a stable law,
depending on the average of the observable along the neutral curve.

1. Introduction
Let T : M → M be a map on a compact manifold. While uniformly hyperbolic or
uniformly expanding dynamics are well understood, problems arise when there are neutral
fixed points (where the differential of T has an eigenvalue equal to 1). The one-dimensional
case has been thoroughly studied, particularly when T has only one neutral fixed point
(see [LSV99] and references therein). The normal form at the fixed point dictates the
asymptotics of the dynamics and, in particular, the speed of mixing and the convergence
of Birkhoff sums to limit laws [Gou04, Zwe03].

In this article, we study the same type of phenomenon, but in higher dimension.
In contrast to [Hu01, PY01] (where the case of isolated fixed points is considered), our
models admit a whole invariant neutral curve. We show that the one-dimensional results
remain essentially true.

More precisely, for α > 0, define a map Tα on [0, 1] by

Tα(x) =
{
x(1 + 2αxα) if 0 � x � 1

2 ,

2x − 1 if 1
2 < x � 1.

It has a neutral fixed point at 0, behaving like x(1 + xα). This map admits an absolutely
continuous invariant measure, which is of finite mass if and only if α < 1. To mix different
such behaviours, we consider a skew product, similar to the Alves–Viana map [Via97]
but where the unimodal maps are replaced by Tα. Let α : S1 → (0,∞) be a map with
minimum αmin and maximum αmax. Assume that:
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(1) α is C2;
(2) 0 < αmin < αmax < 1;
(3) α takes the value αmin at a unique point ω0 ∈ S1, with α′′(ω0) > 0;
(4) αmax <

3
2 αmin (which implies αmax < αmin + 1

2 ).
These conditions are, for example, satisfied by α(ω) = αmin +ε(1 + sin(2πω)) where
αmin ∈ (0, 1) and ε is small enough.

We define a map T on S1 × [0, 1] by

T (ω, x) = (F (ω), Tα(ω)(x)) (1)

where F(ω) = 4ω.
The qualitative behaviour of T can be described as follows. In a compact set disjoint

from S1 × {0}, say S1 × [ 1
10 , 1], T is uniformly expanding. Hence, the interesting points

are the points x = (ω, ε) with small ε. Such a point takes a long time to reach S1 × [ 1
10 , 1]

since each map Tα(ω′) has a neutral fixed point at 0. The iterates of x will feel the strongest
expansion essentially when they are of the form (ω′, ε′) with ω′ close to ω0 (where the
neutral point is the least neutral). Therefore, the precise behaviour of the map T will
depend on a strong way on the behaviour of α(ω′) for ω′ close to ω0, and on the value of
αmin. This explains the conditions αmin < 1 and α′′(ω0) > 0, which are really important
for our analysis. On the other hand, the other conditions αmax < 1 and αmax <

3
2 αmin are

merely technical. They could probably be removed at the expense of greater technicalities
in the proofs.

In the following, we will generalize the one-dimensional results on the maps Tα to
this skew product T . First of all, in §2, we prove that there exists a unique absolutely
continuous invariant probability measurem, whose density h is, in fact, Lipschitz on every
compact subset of S1 × (0, 1] (Theorem 2.10). In §3, we prove limit theorems for abstract
Markov maps (using a method essentially due to [MT04] and recalled in Appendix A,
and estimates of [AD01b] and [Gou04]). Finally, in §§4 and 5, we study the limit laws
of Birkhoff sums for the skew product T , and we obtain the convergence to a normal
law or a stable law, depending on the value of αmin. We obtain the following theorem
(see Theorem 5.1 for more details).

THEOREM 1.1. Set

A = 1

4(α3/2
min

√
π/2α′′(x0))1/ αmin

∫
S1×{1/2}

h d Leb, (2)

where h is the density of the absolutely continuous invariant probability measure.
Let f be a Lipschitz function on S1 × [0, 1], with

∫
f dm = 0. Write c =∫

S1×{0} f d Leb and Snf = ∑n−1
k=0 f ◦ T k . Then:

• if αmin <
1
2 , there exists σ 2 � 0 such that (1/

√
n)Snf → N (0, σ 2);

• if 1
2 � αmin < 1 and c = 0, then there exists σ 2 � 0 such that (1/

√
n)Snf →

N (0, σ 2);
• if αmin = 1

2 and c �= 0, then Snf /
√
(c2A/4)n(ln n)2 → N (0, 1);

• if 1
2 < αmin < 1 and c �= 0, then Snf /nαmin

√
αmin ln n → Z, where the random

variable Z has an explicit stable distribution.



Statistical properties of a skew product 125

An interesting feature of this example is that its study involves the sophisticated mixing
properties of F , particularly a multiple decorrelation property, proved in Appendix B
using [Pèn02].

Remark. Theorems of [Gou04] could be used instead of the method of [MT04] to get the
limit laws. However, the proof of [Gou04] is much more complicated than the elementary
method of [MT04], and less versatile. Among others, an advantage of this new method is
that it can easily be extended to stable laws of index 1, in contrast to [Gou04].

In fact, the previous results remain true for a much larger family of maps. Although we
will only give the proofs for the previous maps for the sake of simplicity, we indicate now
the more general results that can be proved with the same arguments.

We first define the generalizations of the maps Tα. For α ∈ (0, 1), consider a map
T̄α : [0, 1] → [0, 1] such that T̄α is an increasing diffeomorphism between [0, xα) and
[0, 1) (for some 0 < xα < 1) and between [xα, 1] and [0, 1]. Assume that α 	→ xα is
C1, that the map (x, α) 	→ T̄ ′

α(x) is C1 on the sets {0 < x < xα} and {xα � x � 1},
and that T̄ ′

α(x) > 1 for all x �= 0. We also need to prescribe the behaviour of T̄α close
to 0. Let ε0 > 0. Assume that T̄α(x) = x + cαx

1+α(1 + fα(x)) for x ∈ [0, ε0], where
cα > 0 depends continuously on α, fα(0) = 0 and (x, α) 	→ fα(x) is continuous on
[0, ε0] × (0, 1). Finally, assume that T̄α is C3 on (0, ε0] with non-positive Schwarzian
derivative and that the partial derivatives of the function (x, α) 	→ T̄ ′

α(x) are bounded by
Cεx

α−1 on (0, ε0] × (ε, 1 − ε) for all ε > 0.
Let α : S1 → (0, 1) be a C1 map. Let F̄ : S1 → S1 be a C2 uniformly expanding map,

such that F̄ ′(ω) > T̄ ′
α(ω)

(x) for all ω ∈ S1 and x ∈ [0, 1]. This ensures that the map T̄

defined on S1 × [0, 1] by T̄ (ω, x) = (F̄ω, T̄α(ω)x) is partially hyperbolic. The arguments
of §2 apply to T̄ , and show that T̄ admits an absolutely continuous invariant probability
measure m̄, which is ergodic and whose density is Lipschitz on every compact subset of
S1 × (0, 1].

To obtain limit theorems, we need additional assumptions. Let αmin be the minimal
value taken by the function α, and αmax its maximal value. Assume that αmax <

3
2 αmin,

and that Leb{ω ∈ S1 | |α(ω) − αmin | < ε} ∼ Cεγ for some C > 0 and γ � 0.
This is, for example, the case when α is C2 and takes the value αmin at a unique
point ω0 with α′′(ω0) > 0 (and, in this case, γ = 1

2 ). This holds more generally if
α′(ω0), . . . , α

(p−1)(ω0) = 0 and α(p)(ω0) > 0 for some p ∈ N (and, in this case, γ =
1/p). The following analogue of Theorem 1.1 then holds. Let f be a Lipschitz function
on S1 × [0, 1]. Denote by µ the probability measure on S1 which is absolutely continuous
and F̄ -invariant. Let c = ∫

S1×{0} f dµ. If αmin <
1
2 , or 1

2 � αmin < 1 and c = 0, then

Snf /
√
n converges in distribution to a normal law N (0, σ 2) for some σ 2 � 0. On the

other hand, if αmin = 1
2 and c �= 0, then Snf /nαmin(ln n)γ+1/2 converges in distribution to

a normal law, and if αmin >
1
2 and c �= 0, then Snf /nαmin(ln n)γ converges in distribution

to a stable law, which can be explicitly given in terms of µ and of the density of m̄.

Remark. An important assumption of our arguments is the fact that the maps Tα are
Markov. This is heavily used in our computations of return times. With the present
techniques, it is unlikely that this assumption could be removed.
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In this article, a(n) ∼ b(n) means that a(n)/b(n) → 1 when n → ∞. The integral
with respect to a probability measure will sometimes be denoted by E(·). Finally, �x� will
denote the integer part of x. From this point on, we will only deal with the skew product T ,
and not its generalization T̄ .

2. Invariant measure
An important property of the map T , that will be used thoroughly in what follows, is that
it is Markov: there exists a partition of the space such that every element of this partition
is mapped by T on a union of elements of this partition. In fact, we will consider TY
(the induced map on Y = S1 × ( 1

2 , 1]), which is also Markov and expanding, contrary to
T . We will apply to TY classical results on expanding Markov maps (also called Gibbs–
Markov maps), which we recall below.

2.1. Markov maps and invariant measures. Let (Y,B,mY ) be a standard probability
space, endowed with a bounded metric d . A non-singular map TY defined on Y is said to
be a Markov map if there exists a finite or countable partition α of Y such that for all a ∈ α,
mY (a) > 0, TY (a) is a union (mod 0) of sets of α, and TY : a → TY (a) is invertible. In this
case, α is a Markov partition for TY .

A Markov map TY (with a Markov partition α) is a Gibbs–Markov map [Aar97] if:
(1) TY has the big image property: infa∈α mY (TY (a)) > 0;
(2) there exists λ > 1 such that for all a ∈ α, for all x, y ∈ a, d(TY x, TY y) � λd(x, y);
(3) let g be the inverse of the Jacobian of TY , i.e. on a set a ∈ α, g(x) =

( dmY / d(mY ◦ (TY )|a))(x), then there exists C > 0 such that for all a ∈ α, for
almost all x, y ∈ a, ∣∣∣∣1 − g(x)

g(y)

∣∣∣∣ � Cd(TY x, TY y). (3)

This definition is slightly more general than the definition of [Aar97]: the distance d = dτ

considered there is given by dτ (x, y) = τ s(x,y) where τ < 1 and s(x, y) is the separation
time of x and y, i.e.

s(x, y) = inf{n ∈ N | �a ∈ α, T nx ∈ a, T ny ∈ a}. (4)

The proof of [Aar97, Theorem 4.7.4] still works in our context, and gives the following.

THEOREM 2.1. Let TY be a transitive Gibbs–Markov map (for all a, b ∈ α, there exists
n ∈ N,mY (T

n
Y a ∩ b) > 0) such that Card(α∗) < ∞, where α∗ is the partition generated

by the images TY (a) for a ∈ α. Then TY is ergodic, and there exists a unique absolutely
continuous (with respect to mY ) invariant probability measure, denoted by µY .

Moreover, µY = hmY where the density h is bounded and bounded away from 0, and
Lipschitz on every set of α∗.

2.2. Preliminary estimates. To apply Theorem 2.1, we will construct a Markov
partition, and control the distortion of the inverse branches of TY .
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We will write T nω = Tα(Fn−1ω) ◦ · · · ◦ Tα(ω), whence T n(ω, x) = (F nω, T nω (x)).
Write also d((ω1, x1), (ω2, x2)) = |ω1 − ω2| + |x1 − x2|. A point of S1 × [0, 1] will
be denoted by x = (ω, x). Finally, set dvert((ω1, x1), (ω2, x2)) = |x2 − x1|.

Define X0(ω) = 1, X1(ω) = 1
2 , and for n � 2, Xn(ω) is the preimage in [0, 1

2 ] of
Xn−1(Fω) by Tα(ω). These Xn will be useful in the construction of a Markov partition
for T , in §2.3.

PROPOSITION 2.2. There exists C > 0 such that for all n ∈ N∗, for all ω ∈ S1,

1

Cn1/ αmin
� Xn(ω) � C

n1/ αmax
. (5)

Proof. Write Z1 = 1
2 and V (Zn+1) = Zn where V (x) = x(1 + 2αmaxxαmin). We easily

check inductively that Zn � Xn(ω) for every ω, since V (x) � Tα(ω)(x) for every ω. It is
thus sufficient to estimate Zn to get the minoration. As V (x) � x, the sequence Zn is
decreasing, and non-negative. Hence, it tends to a fixed point of V , necessarily 0.

We have

1

Z
αmin
n

= 1

Z
αmin
n+1

(1 + 2αmaxZ
αmin
n+1 )

−αmin = 1

Z
αmin
n+1

(1 − αmin 2αmaxZ
αmin
n+1 + o(Z

αmin
n+1 ))

= 1

Z
αmin
n+1

− αmin 2αmax + o(1).

A summation gives 1/Zαmin
m ∼ mαmin 2αmax , whence Zm ∼ C/m1/ αmin, which concludes

the minoration.
The majoration is similar, using a sequence Z′

n with Z′
n � Xn(ω). �

We fix once and for all a large enough constantD. The following definition is analogous
to a definition of Viana [Via97].

Definition 2.3. Let ψ : K → [0, 1], whereK is a subinterval of S1. We say that the graph
of ψ is an admissible curve if ψ is C1 with |ψ ′| � D.

PROPOSITION 2.4. Let ψ be an admissible curve, defined on K with |K| < 1
4 , and

included in K × [0, 1
2 ] or K × ( 1

2 , 1]. Then the image of ψ by T is still an admissible
curve.

Proof. Let (u, v) be a tangent vector at (ω, x) with |v| � D|u|, we have to check that its
image (u′, v′) by DT (ω, x) still satisfies |v′| � D|u′|.

Assume first that x � 1
2 , whence u′ = 4u and v′ = (1 + (2x)α(ω)(α(ω) + 1))v +

x ln(2x)α′(ω)(2x)α(ω)u. As α(ω) � αmax � 1, we get |v′| � 3|v| + C|u| for a constant C
(which depends only on ‖α′‖∞). Thus,

|v′|
|u′| � 3

4

|v|
|u| + C

4
. (6)

This will give |v′|/|u′| � D if 3
4D + C/4 � D, which is true if D is large enough.

Assume then that x > 1
2 . Then u′ = 4u and v′ = 2v, and there is nothing to prove. �

COROLLARY 2.5. Let (ω1, x1) and (ω2, x2) be two points in S1 × [0, 1
2 ] with |x1 − x2| �

D|ω1 − ω2| and |ω1 − ω2| � 1
8 . Then their images satisfy |x ′

1 − x ′
2| � D|ω′

1 − ω′
2|.
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Proof. Use a segment between the two points: it is an admissible curve. Hence, its image
is still admissible. �

2.3. The Markov partition. Set Y = S1 × ( 1
2 , 1]. For x ∈ Y , set ϕY (x) = inf{n >

0 | T n(x) ∈ Y }: this is the first return time to Y , everywhere finite. The map
TY (x) := T ϕY (x)(x) is the map induced by T on Y . We will show that TY is a Gibbs–
Markov map, by constructing an appropriate Markov partition.

If I is an interval of S1, we will abusively write I ×[Xn+1,Xn] for {(ω, x) | ω ∈ I, x ∈
[Xn+1(ω),Xn(ω)]}.

Set In(ω) = [Xn+1(ω),Xn(ω)] (or {ω}×[Xn+1(ω),Xn(ω)], depending on the context).
By definition of Xn, T maps {ω} × In(ω) bijectively on {Fω} × In−1(Fω). Thus, the
interval In(ω) returns to [ 1

2 , 1] in exactly n steps.
Let Yn(ω) be the preimage in [ 1

2 , 1] of Xn−1(Fω) under Tα(ω). Thus, the interval
Jn(ω) = [Yn+1(ω), Yn(ω)] returns to [ 1

2 , 1] in n steps.
We fix once and for all 0 < ε0 <

1
8 , small enough so that Dε0 is less than the length of

every interval I1(ω). (This condition will be useful in distortion estimates.)
Let q be large enough so that 1/4q < ε0, and consider As,n =

[s/4q+n, (s + 1)/4q+n] × Jn, for n ∈ N∗ and 0 � s � 4q+n − 1: this set is mapped by T n

on [s/4q, (s + 1)/4q ] × [ 1
2 , 1]. LetK0, . . . ,K4q−1 be the sets [i/4q, (i + 1)/4q] × [ 1

2 , 1].
Then the map TY is an isomorphism between each As,n and some Ki . Consequently, the
map TY is Markov for the partition {As,n}, and it has the big image property.

To apply Theorem 2.1, we need expansion (for (2) in the definition of Gibbs–Markov
maps) and distortion control (for (3)). The expansion is given by the next proposition, and
the distortion is estimated in §2.4.

On the intervals [X3(ω),X1(ω)], the derivative of Tα(ω) is greater than 1, whence
greater than a constant 2 > λ > 1, independent of ω.

For (ω1, x1) and (ω2, x2) ∈ S1 × [0, 1], set

d ′((ω1, x1), (ω2, x2)) = a|x1 − x2| + |ω1 − ω2| (7)

where a = (1 − λ/4)/D.

PROPOSITION 2.6. On each As,n, the map T n is expanding by at least λ for the
distance d ′.

Proof. For n = 1 (the points return directly to S1 × [ 1
2 , 1]), everything is linear and the

result is clear. Assume that n � 2. Take (ω1, x1) and (ω2, x2) ∈ As,n, with, for example,
x2 � x1.

Since (ω1, x1) ∈ As,n, this point returns to S1 × [ 1
2 , 1] after exactly n iterations.

Since x1 � x2 and (ω2, x2) returns to S1 × [ 1
2 , 1] after exactly n iterations, the point

(ω2, x1) takes at least n iterations to come back to S1 × [ 1
2 ]. Therefore, we can apply

Corollary 2.5 n− 1 times to (ω1, x1) and (ω2, x1). We get that in vertical distance,

dvert(T
n(ω1, x1), T

n(ω2, x1)) � D|Fnω1 − Fnω2|. (8)

In particular, T nω2
(x1) � T nω1

(x1)−Dε0 � 1
2 −Dε0. Thus, by the definition of ε0,

T n(ω2, x1) ∈ Ii(F nω2) for i = 0 or 1. (9)
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Taking the preimage under T , this implies that T n−1(ω2, x1) ∈ [X3(F
n−1ω2),

X1(F
n−1ω2)]. Moreover, T n−1(ω2, x2) ∈ [X2(F

n−1ω2),X1(F
n−1ω2)] ⊂ [X3(F

n−1ω2),

X1(F
n−1ω2)]. Since each map Tα is expanding, we also have dvert(T

n−1(ω2, x1),

T n−1(ω2, x2)) � |x1 − x2|. We apply once more T , which expands at least by λ on
[X3(F

n−1ω2),X1(F
n−1ω2)] by definition of λ, and get

dvert(T
n(ω2, x1), T

n(ω2, x2)) � λ|x1 − x2|. (10)

Finally,

d ′(T n(ω1, x1), T
n(ω2, x2))

= advert(T
n(ω1, x1), T

n(ω2, x2))+ |Fnω1 − Fnω2|
� advert(T

n(ω2, x1), T
n(ω2, x2))− advert(T

n(ω1, x1), T
n(ω2, x1))

+ |Fnω1 − Fnω2|
� aλ|x1 − x2| − aD|Fnω1 − Fnω2| + |Fnω1 − Fnω2|.

The proposition will be proved if (1 −aD)|Fnω1 −Fnω2| � λ|ω1 −ω2|. Indeed, we have

(1−aD)|Fnω1−Fnω2| = (1−aD)4n|ω1−ω2| � (1−aD)4|ω1−ω2| = λ|ω1−ω2|. �

2.4. Distortion bounds.

LEMMA 2.7. There exists a constant E > 0 such that for all n > 0, for all ω1, ω2 ∈ S1

with |ω1 − ω2| � ε0/4n, for all x1 ∈ Jn(ω1) with T n−1
ω2

x1 � 1
2 ,

|ln(T nω1
)′(x1)− ln(T nω2

)′(x1)| � E|Fnω1 − Fnω2|. (11)

Proof. We use Corollary 2.5 n times and get for 0 � k � n that |T kω1
x1 − T kω2

x1| �
D|Fkω1 − Fkω2|.

In particular, for k = n, |T nω1
x1| � 1

2 , whence |T nω2
x1| � 1

2 − Dε0. Consequently,
T n(ω2, x1) ∈ Ii(F

nω2) for some i ∈ {0, 1}, by definition of ε0. Applying T −k , we get
T n−k(ω2, x1) ∈ Ii+k(F n−kω2).

For x � 1
2 and ω ∈ S1, write G(ω, x) = ln T ′

α(ω)(x) = ln(1 + (α(ω) + 1)(2x)α(ω)).
Then

∂G

∂x
(ω, x) = (α(ω)+ 1)α(ω)2α(ω)xα(ω)−1

1 + (α(ω)+ 1)(2x)α(ω)
� Cxαmin −1

and ∣∣∣∣∂G∂ω (ω, x)
∣∣∣∣ =

∣∣∣∣α′(ω)(2x)α(ω) + (α(ω)+ 1)α′(ω) ln(2x)(2x)α(ω)

1 + (α(ω)+ 1)(2x)α(ω)

∣∣∣∣ � C.

Note that T k(ω1, x1) ∈ In−k(F kω1) and T k(ω2, x1) ∈ In−k+i (F kω2) with i � 1. Hence,
Proposition 2.2 shows that the second coordinates of T k(ω1, x1) and T k(ω2, x1) are at
least 1/C(n− k + 1)1/ αmin. On the set of points (ω, x) with x � 1/C(n− k + 1)1/ αmin,
the estimates on the partial derivatives ofG show that this function is C(n−k+1)1/ αmin −1-
Lipschitz. Therefore,

|G(T k(ω1, x1))−G(T k(ω2, x1))| � C(n− k + 1)1/ αmin −1d(T k(ω1, x1), T
k(ω2, x1))

� C(n− k + 1)1/ αmin −1(1 +D)|Fkω1 − Fkω2|
� C(n− k + 1)1/ αmin −1(1 +D)4k|ω1 − ω2|.
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Finally,

|ln(T nω1
)′(x1)− ln(T nω2

)′(x1)| �
n−1∑
k=0

|G(T k(ω1, x1))−G(T k(ω2, x1))|

� C4n|ω1 − ω2|
n−1∑
k=0

(n− k + 1)1/ αmin −14k−n

� C|Fnω1 − Fnω2|
∞∑
l=1

(l + 1)1/ αmin −14−l .

The last sum is finite, which concludes the proof. �

For n � 2, write J+
n (ω) = [Yn+2(ω), Yn(ω)]. Thus, if n � 1, J+

n+1(ω) is the preimage
of I+

n (Fω), defined by I+
n (Fω) = [Xn+2(Fω),Xn(Fω)]. These intervals will appear

naturally in distortion controls, since we have seen in the proof of Lemma 2.7 that, if we
move away horizontally from a point in Jn(ω1), we find a point in Jn+i (ω2) for i ∈ {0, 1},
i.e. in J+

n (ω2).

LEMMA 2.8. There exists a constant C such that for all n > 0, for all ω ∈ S1, for all
x, y ∈ J+

n (ω),
|ln(T nω )′(x)− ln(T nω )

′(y)| � C|T nω (x)− T nω (y)|.
Proof. Recall that the Schwarzian derivative of an increasing diffeomorphism g of class
C3 is

Sg(x) = g′′′(x)
g′(x) − 3

2

(
g′′(x)
g′(x)

)2

.

The composition of two functions with non-positive Schwarzian derivative still has a non-
positive Schwarzian derivative.

For τ > 0, the Koebe principle [dMvS93, Theorem IV.1.2] states that, if Sg � 0
and J ⊂ J ′ are two intervals such that g(J ′) contains a τ -scaled neighbourhood of g(J )
(i.e. the intervals on the left and on the right of g(J ) in g(J ′) have length at least τ |g(J )|),
then there exists a constant K(τ) such that

|ln g′(x)− ln g′(y)| � K(τ)
|x − y|

|J | , ∀x, y ∈ J. (12)

This implies that the distortion of g is bounded on J . Hence it is possible to replace the
bound on the right-hand side with K ′(τ )(|g(x)− g(y)|/|g(J )|).

In our case, if 0 < α < 1, the left branch of Tα has non-positive Schwarzian derivative,
since T ′′′

α < 0 and T ′
α > 0. In particular, let g be the composition of the (analytic extensions

to (0,+∞) of the) left branches of Tα(Fn−1ω), . . . , Tα(Fω), and of the right branch of Tα(ω).

Then, on J+
n , we have T nω = g, and g : ( 1

2 ,+∞) → (0,+∞) has non-positive Schwarzian
derivative.

We want to see that |ln(T nω )′(x)− ln(T nω )
′(y)| � C|T nω (x)− T nω (y)|. For this, we apply

the Koebe principle to J = J+
n and J ′ = [ 1

2 + δ, 2] for δ very small. Then g(J ) = [X2, 1]
while g(J ′) contains [δ′, 2], where δ′ > 0 is arbitrarily small if δ is small enough. As the
X2 are uniformly bounded away from 0, there exists τ > 0 (independent of ω and n) such
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that g(J ′) contains a τ -scaled neighbourhood of g(J ). The Koebe principle then gives the
desired result. �

PROPOSITION 2.9. There exists a constant C such that, for every As,n, for every (ω1, x1)

and (ω2, x2) ∈ As,n,∣∣∣∣detDT n(ω1, x1)

detDT n(ω2, x2)
− 1

∣∣∣∣ � Cd(T n(ω1, x1), T
n(ω2, x2)). (13)

Proof. The matrix DT n(ω, x) is upper triangular, with 4n in the upper left corner. Thus,
we have to show that

|ln(T nω1
)′(x1)− ln(T nω2

)′(x2)| � Cd(T n(ω1, x1), T
n(ω2, x2)). (14)

Assume, for example, that x2 � x1, which implies that T kω2
(x1) � 1

2 for k = 0, . . . , n− 1.
Lemma 2.7 can be applied to x1, ω1 and ω2. Moreover, (9) implies that x1 ∈ J+

n (ω2).
Write

|ln(T nω2
)′(x2)− ln(T nω1

)′(x1)| � |ln(T nω2
)′(x2)− ln(T nω2

)′(x1)|
+ |ln(T nω2

)′(x1)− ln(T nω1
)′(x1)|

� Cd(T n(ω2, x2), T
n(ω2, x1))+ E|Fnω2 − Fnω1|

by Lemmas 2.8 and 2.7. For the first term,

d(T n(ω2, x2), T
n(ω2, x1)) � d(T n(ω2, x2), T

n(ω1, x1))+ d(T n(ω1, x1), T
n(ω2, x1))

� d(T n(ω2, x2), T
n(ω1, x1))+ (D + 1)|Fnω1 − Fnω2|

using admissible curves.
As |Fnω1 − Fnω2| � d(T n(ω1, x1), T

n(ω2, x2)), we get the conclusion. �

2.5. Construction of the invariant measure. The previous estimates and Theorem 2.1
easily give that TY admits an invariant measure, with Lipschitz density. Inducing gives an
invariant measure for T , whose density is Lipschitz on each set S1×(Xn+1,Xn). However,
this does not exclude discontinuities on S1 ×Xn, which is not surprising since T itself has
a discontinuity on S1 × { 1

2 }, and T n is discontinuous on S1 ×Xn.
However, in the one-dimensional case, Liverani et al. [LSV99] have proved that the

density is really continuous everywhere, since they constructed it as an element of a cone
of continuous functions. This fact remains true here, as shown in the following.

THEOREM 2.10. The map T admits a unique absolutely continuous invariant probability
measure dm. Moreover, this measure is ergodic. Finally, the density h = dm/d Leb is
Lipschitz on every compact subset of S1 × (0, 1].
Proof. Consider the map TY induced by T on Y = S1×( 1

2 , 1]. It is Markov for the partition
α = {As,n}, and transitive for this partition since T 2

Y (a) = Y for all a ∈ α. Moreover, it is
expanding for d ′ on each set of the partition (Proposition 2.6) and its distortion is Lipschitz
(Proposition 2.9, and d equivalent to d ′).

Theorem 2.1 shows that TY admits a unique absolutely continuous invariant probability
measure dmY = h d Leb, which is ergodic. Moreover, the density h is Lipschitz
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(for the distance d ′, whence for the usual one) on each element of the partition α∗ generated
by the sets TY (a), i.e. on the sets Ki .

To construct an invariant measure for the initial map T , we use the classical induction
process [Aar97, §1.1.5]: let ϕY be the return time to Y under T , then µ = ∑∞

n=0 T
n∗ (mY |

ϕY > n) is invariant. To check that the new measure has finite mass, we have to see that∑
mY (ϕY > n) < ∞. As dmY and d Leb are equivalent, we check it for d Leb. We have

Leb(ϕY > n) = Leb

(
S1 ×

[
1

2
, Yn+1

])
= 1

2
Leb(S1 × [0,Xn]) � 1

2

C

n1/ αmax
,

using Proposition 2.2. As αmax < 1, this is summable.
We know that h is Lipschitz on the sets [s/4q, (s + 1)/4q] × [ 1

2 , 1], we have to prove
the continuity on {s/4q} × [ 1

2 , 1], which is not hard: these numbers s/4q are artificial,
since they depend on the arbitrary choice of a Markov partition on S1. We can do the same
construction using sets other than the As,n. For example, set A′

s,n = [ 1
3 + s/4q+n, 1

3 +
(s + 1)/4q+n] × Jn, and K ′

i = [ 1
3 + i/4q, 1

3 + (i + 1)/4q ]. Since 1
3 is a fixed point of F ,

the map TY is Markov for the partition {A′
s,n}, and each of these sets is mapped on a

set K ′
i . Thus, the same arguments as above apply, and prove that h is Lipschitz on each

setK ′
i . Since the boundaries of the setsKi andK ′

i are different, this shows that h is, in fact,
Lipschitz on S1 × [ 1

2 , 1].
We show now that h is Lipschitz on S1 ×[X2, 1]. Note that it is slightly incorrect to say

that h is Lipschitz, since h is defined only almost everywhere. Nevertheless, if we prove
that |h(x)− h(y)| � Cd(x, y) for almost all x and y, then there will exist a unique version
of h that really is Lipschitz. Thus, all of the equalities we will write until the end of this
proof will be true only almost everywhere.

Let A+
s,n = [s/4q+n, (s + 1)/4q+n] × J+

n : T n is a diffeomorphism between A+
s,n and

K+
i = [i/4q, (i + 1)/4q] × [X2, 1]. We fix some K+ = K+

i = I × [X2, 1], and we show
that h is Lipschitz on K+. Let us denote by A+

s1,n1
, A+

s2,n2
, . . . the sets A+

s,n whose image
under T n is K+, and by Uj : K+ → A+

sj ,nj
the inverse of the restriction of T nj to A+

sj ,nj
.

Let TY be the map induced by T on Y = S1 × [ 1
2 , 1]. Then h d Leb|Y is invariant under

TY . This implies that, for each x ∈ I × [ 1
2 , 1],

h(x) =
∑

JUj (x)h(Ujx) (15)

where JUj is the Jacobian of Uj .
Let Z = S1 × [X2, 1], and TZ be the map induced by T on Z. Since h d Leb|Z is also

invariant under TZ , we have the same kind of equation as above. For x ∈ I × [X2,
1
2 ], all

its preimages under TZ are in S1 × [ 1
2 , 1], and the invariance gives that

h(x) =
∑

JUj(x)h(Ujx). (16)

We have shown that, for every x ∈ S1 × [X2, 1],
h(x) =

∑
JUj(x)h(Ujx). (17)

This means that h is invariant under some kind of transfer operator, even though it is not a
genuine transfer operator since the images of the maps Uj are not disjoint, and since they
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do not cover the space. In particular, the images of the Uj are included in S1 × [ 1
2 , 1], and

we already know that h is Lipschitz on this set.
The bounds of the previous sections still apply to the distortion of the Uj , and their

expansion. In particular, |1 − JUj (y)/JUj(x)| � Cd(x, y) for a constant C independent
of j , and |h(Ujx) − h(Ujy)| � Cd(Ujx, Ujy) � C′d(x, y) (since h is Lipschitz on the
image of Uj ). Thus,

|h(x)− h(y)| �
∑

|JUj (x)h(Ujx)− JUj (y)h(Ujy)|
�

∑
|JUj (x)|

∣∣∣∣1 − JUj (y)
JUj (x)

∣∣∣∣|h(Ujx)| +
∑

|JUj(y)||h(Ujx)− h(Ujy)|

� Cd(x, y)
∑

|JUj(x)| + C′d(x, y)
∑

|JUj(y)|.
It remains to prove that

∑ |JUj (x)| is bounded. The bound on distortion gives JUj (x) �
Leb(ImUj), whence

∑
JUj (x) � C

∑
Leb(ImUj), which is finite since every point of

S1 × [ 1
2 , 1] is in the image of at most two maps Uj .

We have proved that h is Lipschitz on S1 × [X2, 1], except maybe on {s/4q} × [X2, 1].
As above, using another Markov partition, we exclude the possibility of discontinuities
there. Thus, h is Lipschitz on S1 × [X2, 1].

To prove that h is Lipschitz on S1 × [Xk, 1], we do exactly the same thing, except
that we consider [Yn+k, Yn] instead of J+

n = [Yn+2, Yn]. As above, writing U1, U2, . . .

for the inverse branches of T n defined on a set [s/4n+q, (s + 1)/4n+q ] × [Yn+k, Yn]
and whose image is K ′ = [i/4q, (i + 1)/4q] × [Xk, 1] = I × [Xk, 1], we show that
h(x) = ∑

JUj (x)h(Ujx) for x ∈ K ′. In fact, for x ∈ I×[Xl,Xl−1], we use the invariance
of h d Leb under the map induced by T on S1 ×[Xl, 1] to prove this equality. We conclude
finally as above, using the fact that h is Lipschitz on S1 ×[ 1

2 , 1], which contains the images
of the Uj .

This concludes the proof, since every compact subset of S1 × (0, 1] is contained in
S1 × [Xk, 1] for large enough k. �

3. Limit theorems for Markov maps
We want to establish limit theorems for Birkhoff sums. In this direction, we give in this
section an abstract result, valid for a map that induces a Gibbs–Markov map on a subset of
the space (which is the case of our skew product). Related limit theorems have been proved
in [Gou04], but we will show here a slightly different result, which requires more control
on the return time ϕ but is more elementary, using Theorem A.1 proved in Appendix A and
inspired by results of Melbourne and Török [MT04] for flows.

If Z0, . . . , Zn−1, . . . are independent identically distributed random variables with zero
mean, the sums Bn−1 ∑n−1

k=0 Zk (where Bn is a real sequence) converge to a non-trivial
limit distribution in the following cases: if Zk ∈ L2, there is convergence to a normal
law for Bn = √

n. There is also convergence to a normal law, but with a different
normalization, if P(|Zk| > x) = x−2l(x) with L(x) := 2

∫ x
1 (l(u)/u) du unbounded

and slowly varying (i.e. L : (0,∞) → (0,∞) satisfies limx→∞ L(ax)/L(x) = 1
for all a > 0); this is, in particular, true when l itself is slowly varying. Finally, if
P(Zk > x) = (c1 + o(1))x−pL(x) and P(Zk < −x) = (c2 + o(1))x−pL(x), where L is
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slowly varying and p ∈ (0, 2), we have convergence (for a good choice ofBn) to a limit law
called stable law. It is a remarkable fact that, in this probabilistic setting, these sufficient
conditions for convergence are also necessary (see, e.g., [Fel66, Theorem XVII.5.1a]).

In the dynamical setting, we will prove the same kind of limit theorems, still with three
possible cases: L2, normal non-standard and stable. The normalizations will, moreover, be
the same as in the probabilistic setting. However, we will only give sufficient conditions
for convergence, the converse seems definitely out of reach.

THEOREM 3.1. Let T : X → X be an ergodic transformation preserving a probability
measure m. Assume that there exists a subset Y of X with m(Y ) > 0 and a countable
partition α of Y , such that the first return map TY (x) = T ϕ(x)(x) (where ϕ(x) = inf{n >
0 | T n(x) ∈ Y }) is Gibbs–Markov for the measure m|Y and the partition α. Assume,
moreover, that ϕ is constant on each element of α.

Let f : X → R be an integrable map with
∫
f = 0, such that fY (y) :=∑ϕ(y)−1

n=0 f (T ny) satisfies ∑
a∈α

m(a)DfY (a) < ∞ (18)

where
DfY (a) = inf{C > 0 | ∀x, y ∈ a, |fY (x)− fY (y)| � Cd(x, y)}. (19)

Then we have the following.
• Assume that fY ∈ L2. Assume, moreover, that ϕ satisfies one of the following

hypotheses:
– ϕ ∈ L2;
– m(ϕ > x) = x−pL(x) where L is slowly varying and p ∈ (1, 2].
Then there exists σ 2 � 0 such that (1/

√
n)Snf → N (0, σ 2).

• Assume thatm(|fY | > x) = x−2l(x), with L(x) := 2
∫ x

1 (l(u)/u) du unbounded and
slowly varying. Assume, moreover, that m(ϕ > x) = (c + o(1))x−2l(x) with c > 0.
Let Bn → ∞ satisfy nL(Bn) = B2

n . Then Bn−1Snf → N (0, 1).
• Assume that m(fY > x) = (c1 + o(1))x−pL(x) and m(fY < −x) = (c2 +

o(1))x−pL(x) where L is a slowly varying function, p ∈ (1, 2), and c1, c2 � 0
with c1 + c2 > 0. Assume also that m(ϕ > x) = (c3 + o(1))x−pL(x) with c3 > 0.
Let Bn → ∞ satisfy nL(Bn) = B

p
n . Then Bn−1Snf → Z where the random

variable Z has a characteristic function given by

E(eitZ) = e−c|t |p(1−iβ sgn(t) tan(pπ/2)) (20)

with c = (c1 + c2)�(1 − p) cos(pπ/2) and β = (c1 − c2)/(c1 + c2).

In the second case of the theorem, when l itself is slowly varying, then L is
automatically slowly varying.

Proof. The idea is to use Theorem A.1: we have to check all of its hypotheses. We will
use the notation of this theorem and, in particular, write EY (u) = ∫

Y u dm/m(Y ).
We first treat the third case (stable law), using the results of [AD01b] (and the

generalizations of [Gou04]). Let s(x, y) be the separation time of x and y defined in
(4), τ = 1/λ and dτ = τ s the corresponding metric. Since every iteration of TY expands
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by at least λ, we get d(x, y) � Cdτ (x, y). In particular, we can assume without loss of
generality that d = dτ , which is the setting of [AD01b] and [Gou04].

Let P be the transfer operator associated to TY (it is defined by
∫
u·v◦TY = ∫

P(u)·v),
and let Pt (u) = P(eitfY u). Let L be the space of bounded Lipschitz functions (i.e.,
such that there exists C such that |g(x) − g(y)| � Cd(x, y) for all a ∈ α, for all
x, y ∈ a). Since

∑
m(a)DfY (a) < ∞, [Gou04, Theorem 3.8] (which is a strengthening of

Theorem 5.1 in [AD01b]) ensures that, for small enough t , Pt acting on L has an eigenvalue
λ(t) = e−(c/m(Y ))|t |p(1−iβ sgn(t) tan(pπ/2))L(|t |−1)(1+o(1)) close to 1, and the remaining part of
the spectrum of Pt is uniformly bounded away from 1.

We will use this information to estimate EY (ϕe
i(t/Bn)S

Y�nm(Y )�fY ). Since ϕ is Lipschitz
and integrable, Pϕ ∈ L by [AD01b, Proposition 1.4]. Let k(n) = �nm(Y )� − 1. Then

EY (ϕe
i(t/Bn)S

Y
k(n)

fY ◦TY ) = EY (Pϕ · ei(t/Bn)SYk(n)fY ) = EY (P
k(n)
t/Bn

Pϕ)

= EY (ϕ)λ(t/Bn)
k(n) + o(1).

The slow variation of L implies that, for all t �= 0,

k(n)
1

m(Y )

∣∣∣∣ tBn
∣∣∣∣pL(Bn/|t|) ∼ |t|p n

B
p
n

L(Bn) → |t|p. (21)

Hence, we get

λ

(
t

Bn

)k(n)
→ e−c|t |p(1−iβ sgn(t) tan(pπ/2)). (22)

This shows that EY (ϕe
i(t/Bn)S

Y
k(n)

fY ◦TY ) → EY (Z)E(e
itZ), where the random variable Z

is as in the statement of the theorem. Hence,

EY (ϕe
i(t/Bn)(S

Y�nm(Y )�fY−fY )) → EY (Z)E(e
itZ). (23)

Moreover, the difference between this term and EY (ϕe
i(t/Bn)S

Y�nm(Y )�fY ) is bounded by
EY (ϕ|e−i(t/Bn)fY − 1|), which tends to 0 by dominated convergence. Thus,

EY (ϕe
i(t/Bn)S

Y�nm(Y )�fY ) → EY (ϕ)E(e
itZ). (24)

This is (52). Moreover, since L is slowly varying, the equation nL(Bn) = B
p
n implies that

infr�n(Br/Bn) > 0 (using for example the Potter bounds [BGT87, Theorem 1.5.6]).
Hypothesis 2 of Theorem A.1 is satisfied for b = 1, according to Birkhoff’s theorem

applied to ϕ−EY (ϕ) (and because TY is ergodic, which is a consequence of the ergodicity
of T ). Finally, the hypothesis on the distribution of ϕ ensures, by [AD01b, Theorem 6.1],
that (SY�nm(Y )�ϕ − nm(Y )EY (ϕ))/Bn converges in distribution. Thus, (53′) is satisfied.
We can use Theorem A.1, and get that Snf /Bn → Z. This concludes the proof of the third
case of Theorem 3.1.

The proof of the second case of Theorem 3.1 is exactly the same, using Theorem 3.1
in [AD01a] instead of Theorem 5.1 in [AD01b] to show the convergence in distribution of
SY�nm(Y )�fY /Bn and (SY�nm(Y )�ϕ − nm(Y )EY (ϕ))/Bn.

In the first case (fY ∈ L2), the proof is again identical when ϕ ∈ L2, with Bn = √
n:

indeed, in [GH88] it was proved that the Birkhoff sums of fY and ϕ satisfy a classical
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central limit theorem. However, when m(ϕ > x) = x−pL(x), we have to check in a
different way the hypotheses 2 and 3 of Theorem A.1. Theorem 6.1 of [AD01b] ensures
that, if B ′

n is given by
nL(B ′

n) = (B ′
n)
p, (25)

then (SYn ϕ − nEY (ϕ))/B
′
n converges in distribution. Assume for the moment that, in the

natural extension of TY , for all b > 1
2 , for almost all x ∈ Y ,

1

|N |b
N−1∑
k=0

fY (T
k
Y x) → 0 (26)

when N → ±∞. Then hypothesis 2 of Theorem A.1 is satisfied for any b > 1
2 . Let κ > 0

be very small. As L is slowly varying, L(B ′
n) = O((B ′

n)
κ), whence Equation (25) gives

B ′
n = O(n1/(p−κ)). Thus, if b < p/2, we have B ′

n = O(B
1/b
n ), which implies (53′).

Hence, to conclude the proof, we just have to check (26). In [Gou04, Lemma 3.4]
it was proved that PfY ∈ L, and has a vanishing integral. If TY is mixing, then 1 is
the only eigenvalue of P of modulus 1, and P has a spectral gap, whence PnfY → 0
exponentially fast. In particular,

∫
fY ◦ T nY · fY = ∫

(P nfY ) · fY = O((1 − δ)n) for
some 0 < δ < 1. Thus, as fY ∈ L2, [Kac96, Theorem 16] gives that, for every
b > 1

2 , (1/Nb)
∑N−1
k=0 fY (T

k
Y x) → 0 almost everywhere when N → ∞. In the

natural extension,
∫
fY ◦ T −n

Y · fY = ∫
fY · fY ◦ T nY decays also exponentially fast,

whence the same argument gives that (1/|N |b)∑N−1
k=0 fY (T

k
Y x) → 0 when N → −∞.

Hence, (26) is satisfied if TY is mixing. In the general case, there exists a decomposition
Y = Y1 ∪ · · · ∪ Yd such that TY maps Yi to Yi+1 for 1 � i � d − 1, and Yd to Y1, and
such that T dY is mixing on each Yi (with m(Yi) = 1/d for 1 � i � d) (see [Aar97]).
In particular, set g = d

∑d
i=1(

∫
Yi
fY )1Yi and h = fY − g: this function satisfies

Pdnh = O((1 − δ)dn), using the same argument as above on each Yi , since
∫
Yi
h = 0

for all i. Hence, Pnh = O((1 − δ)n). In particular, (1/|N |b)∑N−1
k=0 h(T

k
Y x) → 0 when

N → ±∞, as above. Moreover,
∑d
i=1(

∫
Yi
fY ) = ∫

fY = 0, whence
∑N−1
k=0 g(T

k
Y x) is

uniformly bounded. This implies that (1/|N |b)∑N−1
k=0 fY (T

k
Y x) → 0 almost everywhere

when N → ±∞. �

4. Asymptotic behaviour of Xn
We return to the study of the skew product (1). To prove limit theorems using Theorem 3.1,
we will need to estimate m(ϕY > n), which is directly related to the speed of convergence
of Xn to 0. This section will be devoted to the proof of the following theorem.

THEOREM 4.1. When n → +∞,(
n√
ln n

)1/ αmin

Xn → 1

(2αmin αmin
3/2

√
π/2α′′(x0))1/ αmin

(27)

almost everywhere and in L1.

The proof of this theorem is a quite involved computation, which relies on the following
lemma.
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LEMMA 4.2. We have

E(e−(α−αmin)w) ∼
√

π

2α′′(x0)

1√
w

when w → ∞. (28)

Proof. Write β = α − αmin, and f (b) = Leb{ω | β(ω) ∈ [0, b)}. In a neighbourhood of
ω0 (the unique point where α takes its minimal value αmin), α behaves like the parabola
αmin +(α′′(ω0)/2)(ω − ω0)

2, whence f (b) ∼ √
2/α′′(x0)

√
b when b → 0.

Writing Pβ for the distribution of β, an integration by parts gives

E(e−(α−αmin)w) =
∫ ∞

0
e−bw dPβ(b) = w

∫ ∞

0
e−bwf (b) db =

∫ ∞

0
e−uf (u/w) du

= 1√
w

∫ ∞

0
e−u(

√
wf (u/w)) du.

However e−u(
√
wf (u/w)) → e−u

√
2/α′′(x0)

√
u when w → ∞. There exists a constant

E such that f (u) � E
√
u (this is clear in a neighbourhood of 0, and elsewhere since f is

bounded), whence e−u(
√
wf (u/w)) � Ee−u

√
u integrable. By dominated convergence,∫ ∞

0
e−u(

√
wf (u/w)) du →

√
2

α′′(x0)

∫ ∞

0
e−u

√
u du =

√
2

α′′(x0)

√
π

2
. �

Proof of Theorem 4.1. As in the proof of Proposition 2.2, we write

1

Xn(Fω)αmin
= 1

Xn+1(ω)αmin
− αmin 2αmin(2Xn+1(ω))

α(ω)−αmin +O(Xn+1(ω)
2α(ω)−αmin).

(29)
Proposition 2.2 gives

Xn+1(ω)
2α(ω)−αmin � Xn+1(ω)

αmin � C

(n+ 1)αmin / αmax
� C√

n+ 1
(30)

as αmin / αmax � 1
2 by hypothesis. Thus,

1

Xn+1(ω)αmin
− 1

Xn(Fω)αmin
= 2αmin αmin(2Xn+1(ω))

α(ω)−αmin +O(1/
√
n).

Summing from 1 to n, we get a constant P (independent of ω) such that

1

Xn(ω)αmin
� 2αmin αmin

[ n∑
k=1

(2Xk(F
n−kω))α(Fn−kω)−αmin − P

√
n

]
(31)

1

Xn(ω)αmin
� 2αmin αmin

[ n∑
k=1

(2Xk(Fn−kω))α(F
n−kω)−αmin + P

√
n

]
. (32)

Equation (31) and Proposition 2.2 imply that

√
lnn

n

1

2αmin αminXn(ω)αmin
�

√
ln n

n

n∑
k=1

(
2C−1

k1/ αmin

)α(Fn−kω)−αmin

− P

√
ln n

n
=: An(ω).

(33)
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We first study the convergence of An. The functions α and α ◦ Fn−k have the same
distribution since F preserves Lebesgue measure. Thus, by Lemma 4.2,

E

((
2C−1

k1/ αmin

)α◦Fn−k−αmin
)

∼
√

π

2α′′(x0)

1√
ln(k1/ αmin)− ln(2C−1)

∼
√
π αmin

2α′′(x0)

1√
ln k

.

Summing, we get that

E(An) → C1 :=
√
π αmin

2α′′(x0)
, (34)

since
∑n
k=2(1/

√
ln k) ∼ n/

√
lnn.

We will need Lp estimates, for p � 1. To get them, we use a result of Pène [Pèn02],
recalled in Appendix B. Let us denote by ‖g‖ the Lipschitz norm of a function g : S1 → R,
i.e. ‖g‖ = supx∈S1 |g(x)| + supx �=y |g(x)− g(y)|/|x − y|.

We define fk(ω) = (2C−1/k1/ αmin)α(ω)−αmin , and gk = fk − E(fk). Thus, An =
(
√

lnn/n)
∑n
k=1 fk ◦ Fn−k − P

√
ln n/n. As g′

k = ln(2C−1/k1/ αmin)α′fk , there exists a
constant L such that, for k � n, ‖gk‖ � L lnn. As a consequence, Theorem B.1 applied
to gk/(L ln n) gives

‖An − E(An)‖p =
√

ln n

n
L lnn

∥∥∥∥ n∑
k=1

gk ◦ Fn−k/(L ln n)

∥∥∥∥
p

�
√

ln n

n
L lnnKp

√
n,

i.e.

‖An − E(An)‖p � Lp

√
ln3 n

n
. (35)

This implies, in particular, that An converges almost everywhere to C1. Namely, if δ > 0,

Leb{|An − E(An)| > δ} �
∫ |An − E(An)|4

δ4 �
L4

4

δ4

(
ln3 n

n

)4/2

(36)

which is summable, and E(An) → C1.
We have

An(ω) �
√

lnn

n

[ n∑
k=1

(
2C−1

k1/ αmin

)αmax −αmin

− P
√
n

]
�

√
ln n

n
[Kn2−αmax / αmin − P

√
n]

� K ′
√

lnn

n
n2−αmax / αmin

since αmax / αmin <
3
2 . Thus, ∥∥∥∥ 1

An

∥∥∥∥∞
� K ′′ nαmax / αmin −1

√
ln n

. (37)

Note that E(An) tends to C1 �= 0, whence 1/E(An) is bounded. Thus,∥∥∥∥ 1

An
− 1

E(An)

∥∥∥∥
p

�
∥∥∥∥ 1

An

∥∥∥∥∞
1

E(An)
‖An − E(An)‖p � K ′′′ nαmax / αmin −1

√
ln n

Lp

√
ln3 n

n

= Mp
ln n

nκ
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where κ = 3
2 − αmax / αmin > 0. In particular, 1/An tends to 1/C1 in every Lp.

Equation (33) shows that(
n√
lnn

)1/ αmin

Xn � 1

(2αmin αminAn)1/ αmin
. (38)

The right-hand side tends to

C2 := 1

(2αmin αmin
3/2

√
π/2α′′(x0))1/ αmin

(39)

in every Lp and, in particular, in L1. Thus,

limE

((
n√
ln n

)1/ αmin

Xn

)
� C2. (40)

Moreover, An converges almost everywhere to C1, whence (38) yields that, almost
everywhere,

lim

(
n√
ln n

)1/ αmin

Xn(ω) � C2. (41)

Set Q = supn(1/E(An))+ 1, we estimate Leb{1/An � Q}. If p � 1,

Leb

{
1

An
� Q

}
� Leb

{∣∣∣∣ 1

An
− 1

E(An)

∣∣∣∣ � 1

}
� E

(∣∣∣∣ 1

An
− 1

E(An)

∣∣∣∣p) �
(
Mp

lnn

nκ

)p
.

In particular, choosing p large enough gives

Leb

{
1

An
� Q

}
� M

n5 . (42)

Setting Q′ = Q/2αmin αmin, (38) thus yields that

Leb

{
Xn �

(
Q′√lnn

n

)1/ αmin
}

� M

n5
. (43)

Consequently,

Un :=
{
ω

∣∣∣∣ ∃√
n � k � n with Xk(Fn−kω) �

(
Q′√ln k

k

)1/ αmin
}

has a measure at most
∑n√

n
(M/k5) � M ′/n2 (since Leb is invariant underFn−k). Finally,

Borel–Cantelli ensures that there is a full measure subset of S1 on which ω �∈ Un for large
enough n.

Set

A′
n(ω) =

√
lnn

n

[ n∑
k=1

(
2(Q′√ln k)1/ αmin

k1/ αmin

)α(Fn−kω)−αmin

+ (P + 1)
√
n

]
. (44)

As for An, we show that A′
n → C1 in every Lp and almost everywhere.
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Let ω be such that ω �∈ Un for large enough n, and A′
n(ω) → C1 (these properties

are true almost everywhere). Then, for large enough n, equation (32) and the fact that
Xk(F

n−kω) � (Q′√ln k/k)1/ αmin for
√
n � k � n, yield that

1

2αmin αminXn(ω)αmin
�

[ √
n∑

k=1

1 +
n∑

k=√
n

(
2(Q′√ln k)1/ αmin

k1/ αmin

)α(Fn−kω)−αmin

+ P
√
n

]
� n√

lnn
A′
n(ω) ∼ n√

lnn
C1.

Therefore,

lim

(
n√
ln n

)1/ αmin

Xn(ω) � C2. (45)

Equations (41) and (45) prove that (n/
√

ln n)1/ αminXn tends almost everywhere to C2.
We get the convergence in L1 from the inequality (40) and the following elementary
lemma. �

LEMMA 4.3. Let fn be non-negative functions on a probability space, with fn → f

almost everywhere, and limE(fn) � E(f ) < ∞. Then fn → f in L1.

Proof. Write gn = fn + f − |f − fn| � 0. Fatou’s lemma gives E(lim gn) � limE(gn).
Therefore,

2E(f ) � limE(fn)+ E(f )− limE(|f − fn|).
Consequently, the hypotheses imply that limE(|f − fn|) � 0. �

5. Limit theorems
Set

A = 1

4(αmin
3/2

√
π/2α′′(x0))1/ αmin

∫
S1×{1/2}

h d Leb, (46)

where h is the density of m with respect to Leb.
In this section, we prove the following theorem.

THEOREM 5.1. Let f be a Hölder function on S1 × [0, 1], with
∫
f dm = 0. Write

c = ∫
S1×{0} f d Leb. Then:

• if αmin <
1
2 , there exists σ 2 � 0 such that (1/

√
n)Snf → N (0, σ 2);

• if 1
2 � αmin < 1 and c = 0, assume also that there exists γ >

(αmax / αmin)(αmin − 1
2 ) such that |f (ω, x) − f (ω, 0)| � Cxγ ; then there exists

σ 2 � 0 such that (1/
√
n)Snf → N (0, σ 2);

• if αmin = 1
2 and c �= 0, then Snf/

√
(c2A/4)n(lnn)2 → N (0, 1);

• if 1
2 < αmin < 1 and c �= 0, then Snf/nαmin

√
αmin ln n → Z, where the random

variable Z has a characteristic function given by

E(eitZ) = e−A|c|1/αmin�(1−1/ αmin) cos(π/2 αmin)|t |1/αmin (1−i sgn(ct) tan(π/2 αmin)). (47)

The random variable Z in the last case has a so-called stable distribution of
exponent 1/ αmin and parameters A|c|1/ αmin�(1 − 1/ αmin) cos(π/2 αmin) and sgn(c)
(see, e.g., [Fel66, Ch. XVII] for general background on stable laws).
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To prove this theorem, we will use Theorem 3.1. For this, we need a control of
m(ϕY > n) which comes from the asymptotic behaviour of Xn proved in Theorem 4.1.
It will also be necessary to estimate m(fY > x), through the study of the integrability of
fY (Lemmas 5.3 and 5.4).

In the rest of this section, f will be a Hölder function on S1 × [0, 1], fixed once
and for all. Recall that fY (y) = ∑ϕY (y)−1

k=0 f (T ky), where ϕY is the first return time to
Y = S1 × ( 1

2 , 1].

5.1. Estimates on measures.

LEMMA 5.2. We have

m(ϕY > n) ∼
(√

lnn

n

)1/ αmin

A (48)

where A is given by (46).

Proof. We have

m(ϕY > n)

=
∫
S1

∫ Yn+1(ω)

1/2
h(ω, u) du dω =

∫
S1

∫ Xn(Fω)/2

0
h

(
ω,

1

2
+ u

)
du dω

=
∫
S1

Xn(Fω)

2
h

(
ω,

1

2

)
dω +

∫
S1

∫ Xn(Fω)/2

0

[
h

(
ω,

1

2
+ u

)
− h

(
ω,

1

2

)]
du dω

= I + II.

As (
n√
ln n

)1/ αmin

Xn(Fω) → 1

(2αmin αmin
3/2

√
π/2α′′(x0))1/ αmin

in L1 and almost everywhere (Theorem 4.1) and h(ω, 1
2 ) is bounded, we get that I ∼

(
√

lnn/n)1/ αminA. Moreover, for large enough n, |h(ω, 1
2 + u) − h(ω, 1

2 )| � ε, whence
II = o(

√
ln n/n)1/ αmin. �

LEMMA 5.3. If αmin <
1
2 , then fY ∈ L2(Y, dm).

Proof. We have∫
f 2
Y dm � C

∑
m(ϕY = n)n2 = C

∑
(m(ϕY > n− 1)−m(ϕY > n))n

2

� C
∑

m(ϕY > n)n

which is summable since m(ϕY > n) ∼ A(
√

ln n/n)1/ αmin with 1/ αmin > 2. �

LEMMA 5.4. Assume that
∫
S1×{0} f = 0. Let γ ∈ (0, αmax) be such that |f (ω, x) −

f (ω, 0)| � Cxγ . If 1 < p < min(2/αmin, 1/ αmin(1 − γ / αmax)), then fY ∈ Lp(Y, dm).
Proof. As h is bounded on Y , it is sufficient to prove that fY ∈ Lp(Y, d Leb).

Assume first that f ≡ 0 on S1 × {0}. Then, if x = (ω, x) satisfies ϕY (x) = n,
we have fY (x) = ∑n−1

0 f (T kx). If k � 1, T kω (x) � Xn−k(F kω) � C/(n − k)1/ αmax,
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whence |f (T kx)| � C/(n−k)γ/ αmax, and a summation yields that |fY (x)| � Cn1−γ / αmax .
This bound tends to infinity when n → ∞, but sufficiently slowly so that fY still belongs
to Lp. More precisely,∫

|fY |p � C
∑

m(ϕY = n)np(1−γ / αmax)

� C
∑

m(ϕY > n)np(1−γ / αmax)−1.

As m(ϕY > n) ∼ A(
√

ln n/n)1/ αmin, this last series is summable as soon as

− 1

αmin
+ p

(
1 − γ

αmax

)
− 1 < −1, (49)

which is the case by assumption on p.
Assume now that f has a vanishing integral on S1. Let g(ω, x) = f (ω, 0). The function

f − g vanishes on S1 × {0}, whence fY − gY ∈ Lp according to the first part of this
proof. Consequently, it is sufficient to prove that gY ∈ Lp. Write χ(ω) = f (ω, 0) and
Snχ(ω) = ∑n−1

k=0 χ(F
kω): then gY (ω, x) = SϕY (ω,x)χ(ω).

Let Mnχ(ω) = maxk�n |Skχ(ω)|. Let δ > 0, and l = (1 + δ)/δ, so that
1/l + 1/(1 + δ) = 1. We have∫

{ϕY�2}
|gY |p =

∞∑
n=2

∫
S1

∫ 1/2+Xn−1(Fω)/2

1/2+Xn(Fω)/2
|Snχ(ω)|p du dω

�
∞∑
k=1

∫
S1

∫ 1/2+X2k−1 (Fω)/2

1/2+X2k (Fω)/2
|M2kχ(ω)|p du dω

�
∞∑
k=1

∫
S1
X2k−1(Fω)|M2kχ(ω)|p dω �

∞∑
k=1

‖X2k−1 ◦ F‖1+δ‖M2kχ‖plp,

where the last inequality is Hölder inequality. If δ is small enough, lp > 2, whence
Corollary B.4 yields that ‖M2k χ‖lp � Ck(lp−1)/ lp

√
2k. Moreover,

‖X2k−1 ◦ F‖1+δ = ‖X2k−1‖1+δ �
(∫

X2k−1

)1/(1+δ)
∼ C

(√
ln(2k−1)

2k−1

)1/(1+δ) αmin

by Theorem 4.1. Thus,
∫ |gY |p < ∞ if 1/(1 + δ) αmin > p/2, and it is possible to choose

δ such that this inequality is true, since 1/ αmin > p/2 by hypothesis. �

5.2. Proof of Theorem 5.1. To apply Theorem 3.1, we first check the condition (18).
Let θ be the Hölder exponent of f . We will work with the distance dλ−θ (x, y) = λ−θs(x,y).
For this distance, TY is a Gibbs–Markov map.

FACT. If f is θ -Hölder on S1 × [0, 1], then∑
m[As,n]DfY (As,n) < ∞. (50)

Recall that DfY (As,n) (defined in Theorem 3.1) is the best Lipschitz constant of fY on
As,n, here for the distance dλ−θ .
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Proof of the fact. Take (ω1, x1) and (ω2, x2) ∈ As,n with, for example, x2 � x1. Then (9)
implies that x1 ∈ J+

n (ω2), and Corollary 2.5 applied n−1 times proves that, for 0 � k � n,
d(T k(ω1, x1), T

k(ω2, x1)) � D|Fkω1 − Fkω2|. Moreover, d(T k(ω2, x1), T
k(ω2, x2)) �

d(T n(ω2, x1), T
n(ω2, x2)) (since each map Tα(ω) is expanding).

Thus, for 0 � k � n,

d(T k(ω1, x1), T
k(ω2, x2)) � d(T k(ω1, x1), T

k(ω2, x1))+ d(T k(ω2, x1), T
k(ω2, x2))

� D|Fkω1 − Fkω2| + d(T n(ω2, x1), T
n(ω2, x2))

� D|Fnω1 − Fnω2| + d(T n(ω1, x1), T
n(ω2, x1))

+ d(T n(ω1, x1), T
n(ω2, x2))

� D|Fnω1 − Fnω2| +D|Fnω1 − Fnω2|
+ d(T n(ω1, x1), T

n(ω2, x2))

� (1 + 2D)d(T n(ω1, x1), T
n(ω2, x2)).

We deduce that

|fY (ω1, x1)− fY (ω2, x2)| �
n−1∑
k=0

|f (T k(ω1, x1))− f (T k(ω2, x2))|

�
n−1∑
k=0

Cd(T k(ω1, x1), T
k(ω2, x2))

θ

� C′nd(T n(ω1, x1), T
n(ω2, x2))

θ .

As TY is expanding for the distance d ′ (defined in (7), and equivalent to d), we have

d(T n(ω1, x1), T
n(ω2, x2)) � Cdλ−1(T

n(ω1, x1), T
n(ω2, x2))

= Cλdλ−1((ω1, x1), (ω2, x2)),

whence d(T n(ω1, x1), T
n(ω2, x2))

θ � Cdλ−θ ((ω1, x1), (ω2, x2)).
Thus, DfY (As,n) � Cn, and∑

m(As,n)DfY (As,n) � C
∑

m(ϕY = n)n = C < +∞, (51)

by Kac’s formula. �

Proof of Theorem 5.1. In the case αmin <
1
2 , Lemma 5.3 gives that fY ∈ L2. Moreover,

ϕ ∈ L2 (since ϕ = gY for g ≡ 1, whence Lemma 5.3 also applies). We have already
checked the condition (18), so we can apply (the first case of) Theorem 3.1. This yields
the central limit theorem for f .

Assume now that 1
2 � αmin < 1 and that c = 0. Under the assumptions of the theorem,

we can apply Lemma 5.4 with p = 2, and get that fY ∈ L2. Moreover, Lemma 5.2 shows
that m[ϕY > x] ∼ (

√
ln x/x)1/ αminA. We have checked all of the hypotheses of the first

case of Theorem 3.1. Applying this theorem, we conclude the proof of the second case.
The third and fourth cases are analogous. Let us prove, for example, the fourth case,

i.e. 1
2 < αmin < 1 and c �= 0. Assume, for example, that c > 0. We estimate m(fY > x).

FACT. We have

m(fY > x) ∼
(
c
√

ln x

x

)1/ αmin

A and m(fY < −x) = o

(√
ln x

x

)1/ αmin

.
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Proof. We prove the estimate on m(fY > x), the other being similar.
Let g ≡ c on S1 × [0, 1]. Then gY = nc on [ϕY = n], which implies that

m(gY > nc) = m(ϕY > n) ∼ (
√

ln n/n)1/ αminA by Lemma 5.2.
In the general case, consider j = f − g, and let us prove that m(|jY | > x) =

o(
√

ln x/x)1/ αmin. As fY = gY + jY , it will give

m(gY > x(1 + ε))−m(|jY | > xε) � m(fY > x) � m(gY > x(1 − ε))+m(|jY | > xε),

which gives the conclusion.
Let γ > 0 with γ < min(θ, αmax) (where θ is the Hölder coefficient of f ). Lemma 5.4

gives that jY ∈ Lp if p < min(2/ αmin, 1/ αmin(1 − γ / αmax)). We can, in particular,
choose p > 1/ αmin. Then m(|jY | > x) �

∫
(|jY |/x)p = O(x−p), which concludes the

proof of the fact. �

The same fact holds for ϕY , with the same proof. Therefore, the assumptions of the
third case of Theorem 3.1 are satisfied. This implies the desired result. �

A. Appendix. Induced maps and limit theorems
The aim of this section is to prove very general results stating that, if a function satisfies a
limit theorem for an induced map, it also satisfies one for the initial map. Similar theorems
have been proved in [Gou04], by spectral methods, under strong technical assumptions.
We will describe here a more elementary method, essentially due to Melbourne and Török
for flows [MT04]. Zweimüller has also used the same kind of arguments to study limit laws
in dimension 1, see [Zwe03]. This new method does not imply all the results of [Gou04],
but it can be used in settings where [Gou04] can not be applied.

If Y is a subset of a probability space (X,m), T : X → X, and TY is the induced
map on Y , we will write SYn g = ∑n−1

k=0 g ◦ T kY : this is the Birkhoff sum of g, for the
transformation TY . We will also write EY (g) = ∫

Y g/m[Y ]. Finally, for t ∈ R, �t�
denotes the integer part of t .

THEOREM A.1. Let T : X → X be an ergodic endomorphism of a probability space
(X,m), and f : X → R an integrable function with vanishing integral. Let Y ⊂ X

have positive measure. For y ∈ Y , write ϕ(y) = inf{n > 0 | T n(y) ∈ Y } and
fY (y) = ∑ϕ(y)−1

k=0 f (T ky).
We assume the following properties.

(1) There exists a sequence Bn → +∞, with infr�n(Br/Bn) > 0, such that (fY , ϕ)
satisfies a mixing limit theorem for the normalization Bn: there exists a random
variable Z such that, for every t ∈ R,

EY (ϕe
itSY�nm(Y )�fY /Bn) → EY (ϕ)E(e

itZ). (52)

(2) There exists b > 0 such that, in the natural extension of TY , (1/Nb)
∑N−1

0 fY (T
k
Y y)

tends almost everywhere to 0 when N → ±∞.
(3) The sequence (SYn ϕ−nEY (ϕ))/B1/b

n is tight, in the following sense: for every ε > 0,
there exists A > 0 and N0 such that, for every n � N0,

m

{
y ∈ Y

∣∣∣∣ ∣∣∣∣SYn ϕ − nEY (ϕ)

B
1/b
n

∣∣∣∣ � A

}
� ε. (53)



Statistical properties of a skew product 145

Then the function f also satisfies a limit theorem:

E(eitSnf/Bn) → E(eitZ), (54)

i.e. Snf/Bn tends in distribution to Z.

The hypotheses of the theorem are tailor-made so that the following proof works, but
they are, in fact, often satisfied in natural cases. Let us comment on these three hypotheses.
(1) The convergence (52) is very often satisfied when fY satisfies a limit theorem.

Namely, the martingale proofs or spectral proofs of limit theorems automatically
give this kind of convergence†.

(2) The natural extension is useful so that we can let N tend to −∞, and consider T −1
Y

in the proof. Generally, Birkhoff’s theorem yields that this assumption is satisfied
for b = 1. This is often sufficient. However, sometimes, it is important to have
better estimates. It is then possible to use [Kac96, Theorem 16], for example: this
theorem ensures that, if the correlations of fY ∈ L2 decay at least like O(1/n),
then the hypothesis is satisfied for any b > 1

2 (for N → −∞, use the fact that∫
fY · fY ◦ T nY = ∫

fY ◦ T −n
Y · fY , and apply the result to T −1

Y ).
(3) The third assumption is weaker than

∃B ′
n = O(B

1/b
n ) such that

SYn ϕ − nEY (ϕ)

B ′
n

converges in distribution. (53′)

Moreover, ϕ is often simpler than fY . Since fY satisfies a limit theorem (this is more
or less the first hypothesis), this is also often the case of ϕ, which implies (53′). Thus,
(53′), and hence (53), are satisfied quite generally.

Proof of Theorem A.1. We can assume that m(Y ) < 1.
Without loss of generality, we can replace T by its natural extension and assume that

T is invertible. We will identify X with {(y, i) | y ∈ Y, i ∈ {0, . . . , ϕ(y) − 1}}. In this
notation, for i < ϕ(y) − 1, T (y, i) = (y, i + 1), while T (y, ϕ(y) − 1) = (TY (y), 0).
Note that EY (ϕ) = 1/m(Y ) by Kac’s formula. Let π be the projection from X to Y , given
by π(y, i) = y.

In this proof, we will write Stf (x), even when t is not an integer, for S�t�f (x). In the
same way, T t should be understood as T �t�. We also extend Bn to R+, setting Bt := B�t�.

As T is ergodic, TY is also ergodic [Aar97, Proposition 1.5.2]. Birkhoff’s theorem gives
that

SYn ϕ = n

m(Y )
+ o(n) (55)

almost everywhere on Y . For y ∈ Y and N ∈ N, let n(y,N) be the greatest integer n
such that SYn ϕ(y) � N . If y is such that SYn ϕ(y) = n/m(Y )+ o(n) (which is true almost
everywhere), then n(y,N) is finite for every N , and n(y,N)/m(Y ) ∼ N , i.e.

n(y,N)

Nm(Y )
→ 1. (56)

† In fact, Zweimüller pointed out that the distributional convergence of SY�nm(Y)�fY /Bn to Z always implies (52):
this is a consequence of the proof of [Aar97, Proposition 3.6.1].
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Since
∫
X
eit (S

Y
NfY )◦π = ∫

Y
ϕeitS

Y
NfY , (52) yields that

(SYNm(Y )fY ) ◦ π
BN

→ Z (57)

in distribution on X. The idea of the proof will be to see that (SYNm(Y )fY ) ◦ π and SNf
are close (this is not surprising, since one iteration of TY corresponds roughly to 1/m(Y )
iterations of T ). This will give that SNf/BN tends to Z.

We write

SNf (y, i) = (SNf (y, i)− SNf (y, 0))+ (SNf (y, 0)− SYn(y,N)fY (y))

+ (SYn(y,N)fY (y)− SYNm(Y )fY (y))+ SYNm(Y )fY (y).

The last term, equal to (SYNm(Y )fY ) ◦ π , satisfies a limit theorem by (57). To conclude the
proof, we will see that the three other terms, divided by BN , tend to 0 in probability.

The second and third terms depend only on y. Thus, the following lemma will be useful
to prove that they tend to 0 on X.

LEMMA A.2. Let fn be a sequence of functions on Y , tending to 0 in probability on Y .
Then fn ◦ π tends to 0 in probability on X.

Proof. Take ε > 0. As fn → 0 in probability, the measure of En := {y ∈ Y | |fn(y)| � ε}
tends to 0. As ϕ ∈ L1, dominated convergence yields that

∫
En
ϕ → 0, i.e. the measure of

π−1(En) tends to 0. However, π−1(En) is exactly the set where |fn ◦ π | � ε. �

FACT. B−1
N (SNf (y, i)− SNf (y, 0)) tends to 0 in probability on X.

Proof. Set VN(y) = ∑ϕ(y)−1
i=0 |f ◦ T N(y, i)| on Y . Then ‖VN‖L1(Y ) = ‖f ◦ T N‖L1(X) =

‖f ‖L1(X) since T preserves the measure. Thus, VN/BN tends to 0 in L1(Y ), and in

probability. Lemma A.2 yields that B−1
N VN ◦ π tends to 0 in probability on X.

As SNf (y, i) − SNf (y, 0) = ∑N+i−1
N f (T k(y, 0)) − ∑i−1

0 f (T k(y, 0)), we get
|SNf (y, i)−SNf (y, 0)| � VN(y)+V0(y). Thus,B−1

N (SNf (y, i)−SNf (y, 0)) is bounded
by a function going to 0 in probability. �

FACT. B−1
N (SNf (y, 0)− SY

n(y,N)
fY (y)) tends to 0 in probability on X.

Proof. By Lemma A.2, it is sufficient to prove it on Y . Set H(y, i) = ∣∣∑i−1
j=0 f (y, j)

∣∣.
Then

|SNf (y, 0)− SYn(y,N)fY (y)| = H ◦ T N(y, 0). (58)

Since T preserves the measurem, for any a > 0,

m

{
y ∈ Y

∣∣∣∣ 1

BN
H ◦ T N(y, 0) � a

}
� m

{
x ∈ X

∣∣∣∣ 1

BN
H ◦ T N(x) � a

}
= m

{
x ∈ X

∣∣∣∣ 1

BN
H(x) � a

}
.

Since H is measurable and BN → ∞, this measure tends to 0 when N → ∞. �

FACT. B−1
N (SYn(y,N)fY − SYNm(Y )fY ) tends to 0 in probability on X when N → ∞.
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Proof. By Lemma A.2, it is sufficient to prove it on Y .
For n < 0, write SYn fY = ∑|n|

1 fY ◦ T −j
Y . Then, setting ν(y,N) = n(y,N)− Nm(Y ),

SYn(y,N)fY (y)− SYNm(Y )fY (y) = SYν(y,N)fY (T
Nm(Y )
Y (y)). (59)

Let A > 0 and N ∈ N, we will estimate the measure of {y | ν(y,N) � AB
1/b
N }. Take

α > 0 such that m(Y )+ α < 1. Assume first that AB1/b
N > αN . Then,

{y | ν(y,N) � AB
1/b
N } ⊂ {y | n(y,N) � (m(Y )+ α)N}. (60)

By (55), the measure of this set tends to 0 whenN → ∞. Assume next that AB1/b
N � αN .

Since EY (ϕ) = 1/m(Y ), we get

{y | ν(y,N) � AB
1/b
N } = {n(y,N) � AB1/b

N + Nm(Y )} = {SY
AB1/b

N +Nm(Y )
ϕ � N}

=
{SY

AB1/b
N +Nm(Y )

ϕ − (AB1/b
N + Nm(Y ))EY (ϕ)

(B
pAB1/b

N +Nm(Y )
)1/b

� − A

m(Y )

(
BN

B
AB1/b

N +Nm(Y )

)1/b}
.

Moreover, AB1/b
N +Nm(Y ) � (m(Y )+α)N � N . By assumption, there exists c > 0 such

that, for all n � r , Br/Bn � c. In particular, BN/BAB1/b
N +Nm(Y )

� c. Hence,

{y | ν(y,N) � AB1/b
N } ⊂

{SY
AB1/b

N +Nm(Y )
ϕ − (AB1/b

N + Nm(Y ))EY (ϕ)

(B
AB1/b

N +Nm(Y )
)1/b

� −Ac1/b

m(Y )

}
.

Consequently, if A is large enough, assumption 3 yields that m{y | ν(y,N) � AB1/b
N } � ε

for large enoughN . We handle in the same way the set of points where ν(y,N) � −AB1/b
N .

We have thus proved

∀ε > 0, ∃A > 0, ∃N0 > 0,∀N � N0, m{y | |ν(y,N)| � AB1/b
N } � ε. (61)

Set WN(y) = B−1
N Sν(y,N)fY (T

Nm(Y )
Y (y)), we will show that it tends to 0 in distribution,

which will conclude the proof, by (59). Take a > 0, we will show that m(|WN | > a) → 0
when N → ∞.

Let ε > 0. Assumption 2 ensures that there exists Ỹ withm(Ỹ ) � m(Y )−ε andN1 such
that (1/|N |b)|SYNfY | � ε on Ỹ , for every |N | � N1. Define Y ′

N = {y ∈ Y | |ν(y,N)| <
N1} and Y ′′

N = {y ∈ Y | |ν(y,N)| � N1}. We estimate first the contribution of Y ′
N .

Set ψ(y) = ∑N1−1
−N1

|fY ◦ T jY (y)|. If y ∈ Y ′
N , then |WN(y)| � ψ(T

Nm(Y )
Y (y))/BN .

Therefore,

m{y ∈ Y ′
N | |WN(y)| � a} � m{y ∈ Y ′

N | |ψ(T Nm(Y )
Y y)| � aBN }

= m{y ∈ Y ′
N | |ψ(y)| � aBN }.

Since ψ is measurable, this quantity tends to 0 when N → ∞. In particular, if N is large
enough, it is at most ε.

We then estimate the contribution of Y ′′
N . Set Ỹ ′′

N = Y ′′
N ∩ T

−Nm(Y)
Y (Ỹ ), it satisfies

m(Ỹ ′′
N) � m(Y ′′

N)− ε. Thus,

m(|WN | � a) � m{y ∈ Ỹ ′′
N | |WN(y)| � a} + 2ε. (62)
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On Ỹ ′′
N , |ν(y,N)| � N1, whence (1/|ν(y,N)|b)|SYν(y,N)fY (T Nm(Y )

Y y)| � ε. Thus,

|WN(y)| � ε
|ν(y,N)|b

BN
= ε

( |ν(y,N)|
B

1/b
N

)b
.

Consequently,

m(|WN | � a) � m

( |ν(y,N)|
B

1/b
N

�
(
a

ε

)1/b)
+ 2ε. (63)

This equation together with (61) implies that m(|WN | � a) → 0 when N → ∞. �

The three facts we have just proved imply that SNf (y, i)/BN −SYNm(Y )fY (y)/BN → 0

in distribution on X. As SYNm(Y )fY (y)/BN → Z in distribution on X, by (57), this
concludes the proof. �

B. Appendix. Multiple decorrelations and Lp-boundedness
The following theorem has been useful in this paper.

THEOREM B.1. Let F : ω → 4ω on the circle S1. Then, for every p ∈ [1,∞), there
exists a constantKp such that, for every n ∈ N, for every f0, . . . , fn−1 : S1 → R bounded
by 1, of zero average and 1-Lipschitz,∥∥∥∥n−1∑

k=0

fk ◦ Fk
∥∥∥∥
p

� Kp
√
n. (64)

This result has essentially been proved by Pène in [Pèn02], in a much broader context.
Her proof depends on a property of multiple decorrelations, which is implied by the
spectral gap of the transfer operator.

LEMMA B.2. Let ‖f ‖ be the Lipschitz norm of the function f on the circle S1. Then,
for every m,m′ ∈ N, there exist C > 0 and δ < 1 such that, for every N ∈ N, for
every increasing sequences (k1, . . . , km) and (l1, . . . , lm′), for every Lipschitz functions
G1, . . . ,Gm,H1, . . . , Hm′ ,∣∣∣∣Cov

( m∏
i=1

Gi ◦ Fki ,
m′∏
j=1

Hj ◦ FN+lj
)∣∣∣∣ � C

( m∏
i=1

‖Gi‖
)( m′∏

j=1

‖Hj‖
)
δN−km . (65)

Here Cov(u, v) = ∫
uv − ∫

u
∫
v.

Proof. Let F̂ be the transfer operator associated to F , and acting on Lipschitz functions.
It is known that it admits a spectral gap and that its iterates are bounded, i.e. there exist
constants M > 0 and δ < 1 such that ‖F̂ nf ‖ � M‖f ‖, and ‖F̂ nf ‖ � Mδn‖f ‖ if∫
f = 0.
We can assume that N � km (otherwise δN−km � 1, and the inequality (65) becomes

trivial). Then, writing ϕ = ∏m
i=1Gi ◦ Fki and ψ = ∏m′

j=1Hj ◦ F lj , we get

|Cov(ϕ,ψ ◦ FN)| =
∣∣∣∣∫ (

ϕ −
∫
ϕ

)
ψ ◦ FN

∣∣∣∣ =
∣∣∣∣∫ F̂ N

(
ϕ −

∫
ϕ

)
ψ

∣∣∣∣
�

∥∥∥∥F̂ N(
ϕ −

∫
ϕ

)∥∥∥∥‖ψ‖∞.
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However,

F̂ N (ϕ) = F̂ N
(∏

Gi ◦ Fki
)

= F̂ N−km(GmF̂ km−km−1(Gm−1F̂
km−1−km−2(. . . F̂ k2−k1(G1)) . . .)

=: F̂ N−km(χ).

As the iterates of F̂ are bounded on Lipschitz functions, we get a bound on the Lipschitz
norm of χ : ‖χ‖ � Mm−1 ∏ ‖Gi‖. Moreover,

∫
χ = ∫

ϕ, whence∥∥∥∥F̂ N(
ϕ −

∫
ϕ

)∥∥∥∥ =
∥∥∥∥F̂ N−km

(
χ −

∫
χ

)∥∥∥∥ � MδN−km
∥∥∥∥χ −

∫
χ

∥∥∥∥
� MδN−kmMm−1

∏
‖Gi‖. �

When p is an even integer, Theorem B.1 is then a consequence of [Pèn02,
Lemma 2.3.4]. The Hölder inequality gives the general case.

Remark. The same result holds for Hölder functions instead of Lipschitz functions, with
the same proof.

We will also need the following result.

THEOREM B.3. Let T be a measure preserving transformation on a space X. Let
f : X → R and p > 2 be such that

∃C > 0,∀n ∈ N∗, ‖Snf ‖p � C
√
n. (66)

Write Mnf (x) = sup1�k�n |Skf (x)|. Then there exists a constantK such that

∀n � 2, ‖Mnf ‖p � K(lnn)(p−1)/p√n. (67)

Proof. Let n ∈ N∗. Let k < 2n, and write its binary decomposition k = ∑n−1
j=0 εj2j ,

with εj ∈ {0, 1}. Set qj = ∑n−1
l=j εl2l (in particular, q0 = k and qn = 0). Then

Skf = ∑n−1
j=0(Sqj f−Sqj+1f ). Consequently, the convexity inequality (a0+· · ·+an−1)

p �
np−1(a

p

0 + · · · + a
p

n−1) gives

|Skf |p � np−1
n−1∑
j=0

|Sqj f − Sqj+1f |p. (68)

Note that qj+1 is of the form λ2j+1 with 0 � λ � 2n−j−1 − 1, and qj is equal to qj+1 or
qj+1 + 2j . Thus,

|Skf |p � np−1
n−1∑
j=0

(2n−j−1−1∑
λ=0

|Sλ2j+1+2j f − Sλ2j+1f |p
)
. (69)

The right-hand term is independent of k, and gives a bound on |M2n−1f |p. Moreover,∫
|Sλ2j+1+2j f − Sλ2j+1f |p =

∫
|S2j f |p � Cp

√
2j
p
. (70)
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Therefore, we get∫
|M2n−1f |p � np−1

n−1∑
j=0

2n−j−1Cp2pj/2 � Knp−12n2(p/2−1)n = Knp−1
√

2n
p
.

For times of the form 2n−1, this is a bound of the form ‖Mt‖p � K(ln t)(p−1)/p√t . To get
the same estimate for an arbitrary time t , it is sufficient to choose n with 2n−1 � t < 2n,
and to note that Mt � M2n−1. �

COROLLARY B.4. Let F : ω → 4ω on the circle S1, let χ : S1 → R be a Hölder function
with 0 average, and let p > 2. Write Mnχ(x) = sup1�k�n |Skχ(x)|. Then there exists a
constantK such that

‖Mnχ‖p � K(lnn)(p−1)/p√n, ∀n � 2. (71)

Proof. Theorem B.1 (or rather the remark following it, for the Hölder case) shows that
‖Snχ‖p � C

√
n. Consequently, Theorem B.3 gives the conclusion. �
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