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Abstract. We study a skew product with a curve of neutral points. We show that there
exists a unique absolutely continuous invariant probability measure, and that the Birkhoff
averages of a sufficiently smooth observable converge to a normal law or a stable law,
depending on the average of the observable along the neutral curve.

1. Introduction

Let T : M — M be a map on a compact manifold. While uniformly hyperbolic or
uniformly expanding dynamics are well understood, problems arise when there are neutral
fixed points (where the differential of 7" has an eigenvalue equal to 1). The one-dimensional
case has been thoroughly studied, particularly when 7' has only one neutral fixed point
(see [LSV99] and references therein). The normal form at the fixed point dictates the
asymptotics of the dynamics and, in particular, the speed of mixing and the convergence
of Birkhoff sums to limit laws [Gou04, Zwe03].

In this article, we study the same type of phenomenon, but in higher dimension.
In contrast to [Hu01, PY01] (where the case of isolated fixed points is considered), our
models admit a whole invariant neutral curve. We show that the one-dimensional results
remain essentially true.

More precisely, for « > 0, define a map T, on [0, 1] by

’

x(1+2%%) if0<x <
<x <

e 1
2x — 1 lfi

[ S

X

Ta(x) = {

It has a neutral fixed point at 0, behaving like x (1 4+ x%). This map admits an absolutely
continuous invariant measure, which is of finite mass if and only if « < 1. To mix different
such behaviours, we consider a skew product, similar to the Alves—Viana map [Via97]
but where the unimodal maps are replaced by 7,,. Leta : S' — (0, o) be a map with
minimum ¢j, and maximum omax. Assume that:
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(1) aisC?
(2) 0 < omin < max < 1;
(3) o takes the value apiy at a unique point wy € S L with o’ (wg) > 0;
4)  omax < % Qmin (Which implies omax < @min +%).
These conditions are, for example, satisfied by a(w) = omin +&(1 + sin(2rw)) where
min € (0, 1) and ¢ is small enough.
We define amap 7 on S x [0, 1] by

T'(w,x) = (F(®), Tu(w) (X)) 1)

where F(w) = 4w.

The qualitative behaviour of T can be described as follows. In a compact set disjoint
from S' x {0}, say S' x [{5, 11, T is uniformly expanding. Hence, the interesting points
are the points X = (w, ¢) with small €. Such a point takes a long time to reach st x [11—0, 1]
since each map T} .y has a neutral fixed point at 0. The iterates of x will feel the strongest
expansion essentially when they are of the form («’, ¢”) with o’ close to wy (where the
neutral point is the least neutral). Therefore, the precise behaviour of the map 7' will
depend on a strong way on the behaviour of a(w’) for ' close to wgp, and on the value of
Qmin. This explains the conditions omin < 1 and a”(wp) > 0, which are really important
for our analysis. On the other hand, the other conditions omax < 1 and apmax < % Omin are
merely technical. They could probably be removed at the expense of greater technicalities
in the proofs.

In the following, we will generalize the one-dimensional results on the maps 7y to
this skew product T. First of all, in §2, we prove that there exists a unique absolutely
continuous invariant probability measure m, whose density £ is, in fact, Lipschitz on every
compact subset of S 1'% (0, 1] (Theorem 2.10). In §3, we prove limit theorems for abstract
Markov maps (using a method essentially due to [MTO04] and recalled in Appendix A,
and estimates of [AD01b] and [Gou04]). Finally, in §§4 and 5, we study the limit laws
of Birkhoff sums for the skew product T, and we obtain the convergence to a normal
law or a stable law, depending on the value of omiy. We obtain the following theorem
(see Theorem 5.1 for more details).

THEOREM 1.1. Set

A= 3 : : / h dLeb, 2)
Ao /7 /20" (x0)) 1/ min J ST x(1/2)

where h is the density of the absolutely continuous invariant probability measure.

Let f be a Lipschitz function on S' x [0, 1], with f fdm = 0. Write ¢ =

Ssixqoy [ dLeband S, f = 33Zg f o TX. Then:

. if Amin < % there exists 0 > 0 such that (1//n)S, f — N (0, 62);

° lf% < omin < 1 and ¢ = 0, then there exists o2 > 0 such that (1//n)Spf —
N(0, 0%);

. if Otmin = % andc # 0, then S, f /v/(c2A/4)n(Inn)2 — N(O, 1);

° zf% < omin < 1 and ¢ # 0, then Sy, f /n®in /ominInn — Z, where the random
variable Z has an explicit stable distribution.



Statistical properties of a skew product 125

An interesting feature of this example is that its study involves the sophisticated mixing
properties of F, particularly a multiple decorrelation property, proved in Appendix B
using [Pen02].

Remark. Theorems of [Gou04] could be used instead of the method of [MT04] to get the
limit laws. However, the proof of [Gou04] is much more complicated than the elementary
method of [MT04], and less versatile. Among others, an advantage of this new method is
that it can easily be extended to stable laws of index 1, in contrast to [Gou04].

In fact, the previous results remain true for a much larger family of maps. Although we
will only give the proofs for the previous maps for the sake of simplicity, we indicate now
the more general results that can be proved with the same arguments.

We first define the generalizations of the maps 7. For ¢ € (0, 1), consider a map
T, : [0,1] — [0, 1] such that 7, is an increasing diffeomorphism between [0, x,) and
[0, 1) (for some 0 < x, < 1) and between [x,, 1] and [0, 1]. Assume that o +— x, is
C!, that the map (x,a) — Y_"D;(x) is C! on the sets {0 < x < xo} and {x, < x < 1},
and that TOQ (x) > 1 for all x # 0. We also need to prescribe the behaviour of T, close
to 0. Let &g > 0. Assume that Ta(x) = x 4 cex!T*(1 + fa(x)) for x € [0, &9], where
co > 0 depends continuously on «, fy(0) = 0 and (x, @) + fy(x) is continuous on
[0, &0] x (0, 1). Finally, assume that Ta is C3 on (0, &p] with non-positive Schwarzian
derivative and that the partial derivatives of the function (x, o) + TDZ (x) are bounded by
Cex®Yon (0, g0] x (6,1 —¢) forall e > 0.

Leta : S — (0, 1) bea C! map. Let F : S' — S! be a C? uniformly expanding map,
such that F'(w) > To,z(w) (x) for all w € S! and x € [0, 1]. This ensures that the map T
defined on S' x [0, 1]1by T (w, x) = (Fo, Ta(w)x) is partially hyperbolic. The arguments
of §2 apply to T, and show that 7 admits an absolutely continuous invariant probability
measure m, which is ergodic and whose density is Lipschitz on every compact subset of
St x (0, 1].

To obtain limit theorems, we need additional assumptions. Let api, be the minimal
value taken by the function «, and oy its maximal value. Assume that omax < % Olmin,
and that Leb{w € s! | la(w) — amin| < &} ~ Ce¥ for some C > 0 and y > O.
This is, for example, the case when « is C? and takes the value Qmin at a unique
point wy with o”(wp) > 0 (and, in this case, y = %). This holds more generally if
o (o), ..., a? " D(wg) = 0 and «'P (wg) > 0 for some p € N (and, in this case, y =
1/p). The following analogue of Theorem 1.1 then holds. Let f be a Lipschitz function
on S' x [0, 1]. Denote by u the probability measure on S! which is absolutely continuous
and F-invariant. Let ¢ = fslx{()} fdu. If amin < %, or % < Omin < 1 and ¢ = 0, then
Sy f/+/n converges in distribution to a normal law N (0, o2) for some 62 > 0. On the
other hand, if opiy = % and ¢ # 0, then S, f /n%min(In n)yt1/2 converges in distribution to
a normal law, and if oy > % and ¢ # 0, then S, f/n“min(Inn)¥ converges in distribution
to a stable law, which can be explicitly given in terms of u and of the density of m.

Remark. An important assumption of our arguments is the fact that the maps T, are
Markov. This is heavily used in our computations of return times. With the present
techniques, it is unlikely that this assumption could be removed.
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In this article, a(n) ~ b(n) means that a(n)/b(n) — 1 when n — oo. The integral
with respect to a probability measure will sometimes be denoted by E(-). Finally, |x | will
denote the integer part of x. From this point on, we will only deal with the skew product T,
and not its generalization 7.

2. Invariant measure

An important property of the map 7', that will be used thoroughly in what follows, is that
it is Markov: there exists a partition of the space such that every element of this partition
is mapped by T on a union of elements of this partition. In fact, we will consider Ty
(the induced map on ¥ = §' x (%, 1]), which is also Markov and expanding, contrary to
T. We will apply to Ty classical results on expanding Markov maps (also called Gibbs—
Markov maps), which we recall below.

2.1. Markov maps and invariant measures. Let (Y, B, my) be a standard probability
space, endowed with a bounded metric d. A non-singular map Ty defined on Y is said to
be a Markov map if there exists a finite or countable partition o of ¥ such that foralla € «,
my (a) > 0, Ty(a) is a union (mod 0) of sets of &, and Ty : a — Ty (a) is invertible. In this
case, « is a Markov partition for Ty.
A Markov map Ty (with a Markov partition «) is a Gibbs—Markov map [Aar97] if:
(1) Ty has the big image property: inf,e my (Ty (a)) > 0;
(2) there exists A > 1 such thatforalla € o, forall x, y € a,d(Tyx, Tyy) > Ad(x, y);
(3) let g be the inverse of the Jacobian of Ty, ie. on a set a € «, g(x) =
(dmy/d(my o (Ty)a))(x), then there exists C > 0 such that for all a € «, for
almostall x, y € a,
‘1 — @ < Cd(Tyx, Tyy). 3)
g8(y)

This definition is slightly more general than the definition of [Aar97]: the distance d = d-
considered there is given by d; (x, y) = t¥®) where T < 1 and s(x, y) is the separation
time of x and y, i.e.

s(x,y)=inf[n e N|Fa e o, T"x € a, T"y € a}. 4)
The proof of [Aar97, Theorem 4.7.4] still works in our context, and gives the following.

THEOREM 2.1. Let Ty be a transitive Gibbs—Markov map (for all a, b € «, there exists
neN, my(T;a N b) > 0) such that Card(oe,.) < 00, where oy is the partition generated
by the images Ty (a) for a € «. Then Ty is ergodic, and there exists a unique absolutely
continuous (with respect to my ) invariant probability measure, denoted by uy.

Moreover, iy = hmy where the density h is bounded and bounded away from 0, and
Lipschitz on every set of o.

2.2. Preliminary estimates. To apply Theorem 2.1, we will construct a Markov
partition, and control the distortion of the inverse branches of Ty.
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We will write T,] = T,pn-1,) © - 0 Ty(w), Whence T"(w,x) = (F'o, T,(x)).
Write also d((w1, x1), (@2, x2)) = |w1 — w2| + |x1 — x2|. A point of St x [0, 1] will
be denoted by x = (w, x). Finally, set dyert (w1, x1), (w2, X2)) = |x2 — x1].

Define Xo(w) = 1, X1(w) = % and for n > 2, X, (w) is the preimage in [0, %] of
Xn—1(Fw) by Ty (). These X, will be useful in the construction of a Markov partition
for T, in §2.3.

PROPOSITION 2.2. There exists C > 0 such that for all n € N*, forall w € S,

1 C

i/ @i < Xp(w) < (5)

nl/amax ’

Proof. Write Z; = % and V(Z,41) = Z, where V(x) = x(1 4 2%maxx*min)  We easily
check inductively that Z, < X, (w) for every w, since V(x) = Ty(y)(x) for every w. Itis
thus sufficient to estimate Z, to get the minoration. As V(x) > x, the sequence Z, is
decreasing, and non-negative. Hence, it tends to a fixed point of V, necessarily 0.

We have

1 1 3 min\ — i 1 2 min min
Zamin = Zamin (1 + 20[““”‘ Zfll-i-l) min = ZDlmin (1 — ®min 20[““”‘ ZZ[-‘,-I + O(ZZ[-‘,-[ ))
n n+1 n+1
1 o
= i Cmin 2™ + o(1).
n+1

A summation gives 1/ Zpmin ~ i 2%M2% whence Z,, ~ C/ m!/ e@min_wwhich concludes
the minoration.
The majoration is similar, using a sequence Z,, with Z, > X, (w). a

We fix once and for all a large enough constant D. The following definition is analogous
to a definition of Viana [Via97].

Definition 2.3. Let  : K — [0, 1], where K is a subinterval of S'. We say that the graph
of Y is an admissible curve if v is C' with || < D.

PROPOSITION 2.4. Let v be an admissible curve, defined on K with |K| < %, and
included in K x [0, %] or K x (%, 1]. Then the image of W by T is still an admissible
curve.

Proof. Let (u, v) be a tangent vector at (w, x) with |v| < DJu|, we have to check that its
image (u’, v') by DT (w, x) still satisfies |v'| < D|u’|.
Assume first that x < %, whence ' = 4u and v = (1 + 2x)*@ (a(w) + D)v +
x In(2x)e’ () (2x)*@u. As a(w) < amax < 1, we get [v| < 3|v| + C|u| for a constant C
(which depends only on ||a’||). Thus,
Wi 3  C
— < -—+4+—. 6
Wl S a3 ©
This will give |v'|/|u’| < D if %D + C/4 < D, which is true if D is large enough.
Assume then that x > % Then u’ = 4u and v' = 2v, and there is nothing to prove. O

COROLLARY 2.5. Let (w1, x1) and (w2, x2) be two points in St x [0, %] with |x1 — x2| <
D|wi — wz| and |w1 — wa| < % Then their images satisfy |x| — x| < D|w] — &}
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Proof. Use a segment between the two points: it is an admissible curve. Hence, its image
is still admissible. a

2.3. The Markov partition. SetY = st x (%, 1]. Forx € Y, set py(x) = inf{n >
0 | T"(x) € Y}: this is the first return time to Y, everywhere finite. The map
Ty(x) := T#*®(x) is the map induced by 7 on Y. We will show that Ty is a Gibbs—
Markov map, by constructing an appropriate Markov partition.

If I is an interval of S', we will abusively write I X [X,,4+1, X,] for {(w,x) |w e I,x €
[Xn41(@), X (@)]}.

Set I (w) = [Xp+1(w), X, (w)] (or {w} x [Xp+1(w), X, (w)], depending on the context).
By definition of X,, T maps {w} x I,(w) bijectively on {Fw} x I,_1(Fw). Thus, the
interval I, (w) returns to [%, 1] in exactly n steps.

Let Y, (w) be the preimage in [%, 1] of X;—1(Fw) under Ty(y,). Thus, the interval
Jn(w) = [Yp+1(w), Yy (w)] returns to [%, 1] in n steps.

We fix once and for all 0 < g9 < %, small enough so that Deg is less than the length of
every interval I (w). (This condition will be useful in distortion estimates.)

Let q be large enough so that 1/49 < &y, and consider As;, =
[s/4977 (s 4+ 1)/491"] x J,, forn € N* and 0 < s < 491" — 1: this set is mapped by T
on [s/49, (s +1)/49] x [%, 1]. Let Ko, ..., Kga_1 be the sets [i /49, (i +1)/49] x [, 1].
Then the map Ty is an isomorphism between each Ay, and some K;. Consequently, the
map Ty is Markov for the partition {As ,}, and it has the big image property.

To apply Theorem 2.1, we need expansion (for (2) in the definition of Gibbs—Markov
maps) and distortion control (for (3)). The expansion is given by the next proposition, and
the distortion is estimated in §2.4.

On the intervals [X3(w), X1(w)], the derivative of Ty (,) is greater than 1, whence
greater than a constant 2 > A > 1, independent of w.

For (w1, x1) and (w2, x2) € S x [0, 1], set

d' (w1, x1), (@2, x2)) = alx; — x2| + |1 — w2l @)
wherea = (1 — A/4)/D.

PROPOSITION 2.6. On each A, the map T" is expanding by at least A for the
distance d'.

Proof. For n = 1 (the points return directly to S' x [%, 1]), everything is linear and the
result is clear. Assume that n > 2. Take (w1, x1) and (wy, x2) € A, With, for example,
X2 = X].

Since (w1, x1) € As.n, this point returns to St x [%, 1] after exactly n iterations.
Since x;1 < xp and (w», xp) returns to S I [%, 1] after exactly n iterations, the point
(w2, x1) takes at least n iterations to come back to S I x [%]. Therefore, we can apply
Corollary 2.5 n — 1 times to (w1, x1) and (w2, x1). We get that in vertical distance,

dyer(T" (w1, x1), T" (w2, x1)) < D|F" w1 — F"w2]. (8
In particular, Ta')’2 (x1) > Ta’}l (x1) — Dgg > % — Degg. Thus, by the definition of &,

T"(wy,x1) € ;(F'wy) fori =0orl. 9)
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Taking the preimage under 7', this implies that T" Y(wy, x1) € [X3(F" lwn),
X1(F"'w)]. Moreover, T" (w2, x2) € [X2(F"'w2), X1 (F" 'w2)] C [X3(F" o),
X1(F"'w,)].  Since each map 7, is expanding, we also have dyert (T Yy, x1),
T" Y(wa, x2)) > |x1 — x2|. We apply once more T, which expands at least by A on
[X3(F" '), X1 (F" 'w,)] by definition of A, and get
dvert(T" (w2, x1), T" (w2, x2)) > Alx1 — x2]. (10)
Finally,
d'(T" (w1, x1), T" (w2, x2))
= adyer(T" (w1, x1), T" (w2, X2)) + | F" w1 — F" ;|
> adyen(T" (w2, x1), T" (@2, x2)) — adyer(T" (w1, x1), T" (@2, x1))
+ |F'w1 — F" ;|
> allx; —x2| —aD|F"w; — F'ws| + |F"w1 — F"w>)|.
The proposition will be proved if (1 —aD)|F"w; — F"wy| > A|w; — w2|. Indeed, we have
(1—aD)|F"w1—F"w| = (1—aD)4"|wi—w2| > (1—aD)4|lwi—w2| = Mo —w2|. O

2.4. Distortion bounds.

LEMMA 2.7. There exists a constant E > 0 such that for all n > 0, for all w1, w, € S'
with |w1 — wp| < &9/4", for all x| € J,(wy) with Ta’};1x1 < %

(T2 Y (x1) = In(T2) (x1)| < E|F"op — F'on). (an
Proof. We use Corollary 2.5 n times and get for 0 < k < n that |Ta]j|x1 — Ta]fz
D|F*w, — FrFw,|.

In particular, for k = n, |Ta’f]x1| > % whence |Ta’f2x1| > % — Dgg. Consequently,
T" (w2, x1) € I;(F"wy) for some i € {0, 1}, by definition of &9. Applying 7%, we get
T" K (wa, x1) € Lk (F"*an).

Forx < jand w € S', write G(w, x) = In T}, (x) = In(1 + (¢(@) + 1)(2x)*@).
Then

xi] <

a(w) o(w)—1
G o @@+ Da@2©x < Gyt
9x 1+ (a(@) + D(2x)e@
and
g_G(w’ x)‘ _ o (0)(20)*@ + (a(w) + D' (w) In(2x) (2x)* @) e
)

1+ (a(w) + 1H(2x)*@
Note that T (wy, x1) € Li—x(F¥w) and T¥(wy, x1) € In—jti (F¥wy) with i < 1. Hence,
Proposition 2.2 shows that the second coordinates of Tk(a)l,xl) and Tk(a)z, x1) are at

least 1/C(n — k 4 1)1/ @min_ On the set of points (w, x) with x > 1/C(n — k + 1)/ @min,
the estimates on the partial derivatives of G show that this function is C (n —k + 1)1/ @min =1

Lipschitz. Therefore,

IG(T* (w1, x1)) — G(TX (w2, x1))| < Cn — k + DY @min =1q(TX(wy, x1), T (w2, x1))
C(n—k+ D/ emin=1(1 4 D)|Fro; — Fran|
c

(n —k + DY emin =11 4 D)4k o) — wy|.

NN N
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Finally,

n—1
(7)) (x1) = In(T}5) en)| < D IG(T (@1, x1) — G(TH (@2, x1))|
k=0
n—1
< C4"wr —wn| Y (n — k+ 1)/ omin=lgkon
k=0

o0
< C|F"w1 — F'an| Y (L + 1)/ omin =141,
=1

The last sum is finite, which concludes the proof. O

For n > 2, write J,f(a)) = [Yp42(®), Yy (w)]. Thus,ifn > 1, J;Zrl (w) is the preimage
of I,/ (Fw), defined by I} (Fw) = [X,42(Fw), X,(Fw)]. These intervals will appear
naturally in distortion controls, since we have seen in the proof of Lemma 2.7 that, if we
move away horizontally from a point in J, (w1), we find a point in J,,4+; (w2) fori € {0, 1},
ie. in JM (02).

LEMMA 2.8. There exists a constant C such that for all n > 0, for all o € S', for all
X,y € J,j‘(a)),
(7)) (x) — In(T,))' (0| < CIT (x) = T,y (¥)].

Proof. Recall that the Schwarzian derivative of an increasing diffeomorphism g of class
Clis

" " 2
Setr) = & x) §(g (x)> '

Cdm 2\gw
The composition of two functions with non-positive Schwarzian derivative still has a non-
positive Schwarzian derivative.

For 7 > 0, the Koebe principle [dMvS93, Theorem IV.1.2] states that, if Sg < 0
and J C J’ are two intervals such that g(J’) contains a t-scaled neighbourhood of g(J)
(i.e. the intervals on the left and on the right of g(J) in g(J’) have length at least 7|g(J)|),
then there exists a constant K (t) such that

|x — y

IIng'(x) —Ing'(»)| < K(7) 7]

, Vx,yel. (12)

This implies that the distortion of g is bounded on J. Hence it is possible to replace the
bound on the right-hand side with K'(7)(|g(x) — g()|/1g(])]).

In our case, if 0 < o < 1, the left branch of T}, has non-positive Schwarzian derivative,
since T < 0and T, > 0. In particular, let g be the composition of the (analytic extensions
to (0, +-00) of the) left branches of T, pn-14), - - -, Tu(Fw), and of the right branch of Tg ().
Then, on J,fr, wehave T) = g,and g : (%, 400) — (0, +00) has non-positive Schwarzian
derivative.

We want to see that [In(7?) (x) — In(T") (y)| < C|T2(x) — T (y)|. For this, we apply
the Koebe principle to J = Jn+ and J' = [% + 6, 2] for § very small. Then g(J) = [X2, 1]
while g(J’) contains [, 2], where 8’ > 0 is arbitrarily small if § is small enough. As the
X5 are uniformly bounded away from O, there exists T > 0 (independent of w and n) such
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that g(J') contains a t-scaled neighbourhood of g(J). The Koebe principle then gives the
desired result. a

PROPOSITION 2.9. There exists a constant C such that, for every As ,, for every (w1, x1)
and (w3, x2) € As n,

det DT (wy, x1) _

1| < Cd(T (w1, x1), T" (w2, . 13
et DT (9. 1) (T (w1, x1), T" (w2, x2)) (13)

Proof. The matrix DT"(w, x) is upper triangular, with 4" in the upper left corner. Thus,
we have to show that

In(7,5,)" (x1) — In(T;,)" (x2)| < Cd(T" (w1, x1), T" (@2, X2)). (14)

Assume, for example, that x, > x1, which implies that TL’;2 (x1) < % fork=0,...,n—1.
Lemma 2.7 can be applied to x1, w1 and wy. Moreover, (9) implies that x| € J,f (@2).
Write

(T ) (x2) — In(T2 ) ()| < (T (x2) — In(T2 Y (x|
+ In(T2) (1) — In(T2) (x1))|
< Cd(T" (w2, x2), T" (w2, x1)) + E|F"wny — F" ;|
by Lemmas 2.8 and 2.7. For the first term,

d(T" (w2, x2), T" (w2, x1)) < d(T" (w2, x2), T" (w1, x1)) +d(T" (w1, x1), T" (w2, x1))
<d(T" (w2, x2), T" (w1, x1)) + (D + D|F"w; — F" 2]

using admissible curves.
As |F'w; — F"ap| < d(T" (w1, x1), T" (w2, x2)), we get the conclusion. O

2.5. Construction of the invariant measure. The previous estimates and Theorem 2.1
easily give that Ty admits an invariant measure, with Lipschitz density. Inducing gives an
invariant measure for 7', whose density is Lipschitz on each set S Iy (X n+1, X»). However,
this does not exclude discontinuities on S' x X,,, which is not surprising since 7 itself has
a discontinuity on §1 x {%}, and T" is discontinuous on S x X,,.

However, in the one-dimensional case, Liverani et al. [LSV99] have proved that the
density is really continuous everywhere, since they constructed it as an element of a cone
of continuous functions. This fact remains true here, as shown in the following.

THEOREM 2.10. The map T admits a unique absolutely continuous invariant probability
measure dm. Moreover, this measure is ergodic. Finally, the density h = dm/d Leb is
Lipschitz on every compact subset of S' x (0, 1].

Proof. Consider the map Ty inducedby 7 on Y = S!x (%, 1]. It is Markov for the partition
a = {As.»}, and transitive for this partition since T; (a) = Y for all a € . Moreover, it is
expanding for d’ on each set of the partition (Proposition 2.6) and its distortion is Lipschitz
(Proposition 2.9, and d equivalent to d’).

Theorem 2.1 shows that 7y admits a unique absolutely continuous invariant probability
measure dmy = h dLeb, which is ergodic. Moreover, the density A is Lipschitz
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(for the distance d’, whence for the usual one) on each element of the partition a, generated
by the sets Ty (a), i.e. on the sets K.

To construct an invariant measure for the initial map T, we use the classical induction
process [Aar97, §1.1.5]: let ¢y be the return time to Y under 7', then u = ZZOZO (my |
@y > n) is invariant. To check that the new measure has finite mass, we have to see that
> my(py > n) < co. As dmy and d Leb are equivalent, we check it for d Leb. We have

1 1 1 C
Leb(gy > n) = Leb(S‘ x [5, Yn+1D = ELeb(Sl x [0, X,]) < 5

using Proposition 2.2. As amax < 1, this is summable.

We know that A is Lipschitz on the sets [s/47, (s + 1)/49] x [%, 1], we have to prove
the continuity on {s/47} x [%, 1], which is not hard: these numbers s/49 are artificial,
since they depend on the arbitrary choice of a Markov partition on S!. We can do the same
construction using sets other than the A, ,. For example, set A;,n = [% + 5/4977, % +
(s 4+ 1)/49%"] x J,, and K| = [} +i/49, 1 + (i + 1)/49]. Since § is a fixed point of F,
the map Ty is Markov for the partition {A] ,}, and each of these sets is mapped on a
set K. Thus, the same arguments as above apply, and prove that & is Lipschitz on each
set K l’ . Since the boundaries of the sets K; and K l’ are different, this shows that 4 is, in fact,
Lipschitz on st x [%, 1].

We show now that  is Lipschitz on S! x [X3, 1]. Note that it is slightly incorrect to say
that £ is Lipschitz, since # is defined only almost everywhere. Nevertheless, if we prove
that |2 (x) — h(y)| < Cd(x,y) for almost all x and y, then there will exist a unique version
of h that really is Lipschitz. Thus, all of the equalities we will write until the end of this
proof will be true only almost everywhere.

Let A, = [s/497", (s + 1)/491"] x J;F: T" is a diffeomorphism between A}, and

s,n
K'=1[i/49, (i +1)/49] x [X2, 1]. We fix some K+ = K;* = I x [X2, 1], and we show
that h is Lipschitz on K. Let us denote by A | , AL ... thesets AT whose image

under 7" is K, and by U; : K — Af , the inverse of the restriction of 7"/ to AY ,, .

Let Ty be the map inducedby T on Y = § LIS [%, 1]. Then h dLebyy is invariant under
Ty. This implies that, for each x € I x [%, 1],

h(x) =Y JU;(X)h(U;x) (15)

where JU; is the Jacobian of U;.

Let Z = S! x [X>, 1], and T be the map induced by T on Z. Since h dLeb,z is also
invariant under 7z, we have the same kind of equation as above. For x € I x [X>, %], all
its preimages under Tz are in S Iy [%, 1], and the invariance gives that

h(x) =" JUj(0)h(U;x). (16)
We have shown that, for every x € S s X0, 1],
h(x) = Z JU;(x)h(U;x). 17)

This means that / is invariant under some kind of transfer operator, even though it is not a
genuine transfer operator since the images of the maps U; are not disjoint, and since they
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do not cover the space. In particular, the images of the U; are included in § I x [%, 1], and
we already know that & is Lipschitz on this set.

The bounds of the previous sections still apply to the distortion of the U;, and their
expansion. In particular, |1 — JU;(y)/JU;(x)| < Cd(x,y) for a constant C independent
of j, and |h(U;x) — h(U;y)| < Cd(U;x,U;y) < C'd(x,y) (since h is Lipschitz on the
image of U;). Thus,

h(x) — h(y)| < Y 1JU;(0hU;x) — JU;(Yh(U;y)]

' _JU;(y)
< Z|JU,(x)|‘1 0,0

<Cd(x,y) Y UM+ C'dxy) Y [JU;y)l.

hUL+ Y [TUWIIRU;) = h(U;y)]

It remains to prove that ) |JU;(x)| is bounded. The bound on distortion gives JU; (x) <
Leb(ImU;), whence > JU;(x) < C ) Leb(ImU;), which is finite since every point of
St x [%, 1]is in the image of at most two maps U;.

We have proved that 4 is Lipschitz on St x [X3, 1], except maybe on {s/49} x [X», 1].
As above, using another Markov partition, we exclude the possibility of discontinuities
there. Thus, A is Lipschitz on S' x [X», 1].

To prove that 4 is Lipschitz on S' x [Xj, 1], we do exactly the same thing, except
that we consider [Y;,4+«, Y, ] instead of JnJr = [Yu42, Yn]. As above, writing Uy, Us, ...
for the inverse branches of T" defined on a set [s/4"9, (s + 1)/4"T9] x [Yynix, Yl
and whose image is K’ = [i/49, (i + 1)/49] x [X, 1] = I x [Xg, 1], we show that
h(x) =) JU;(x)h(U;x) forx € K'. Infact, forx € I x[X;, X;_1], we use the invariance
of h d Leb under the map induced by 7 on S! x [X;, 1] to prove this equality. We conclude
finally as above, using the fact that / is Lipschitz on S! x [%, 1], which contains the images
of the U;.

This concludes the proof, since every compact subset of S' x (0, 1] is contained in
S' x [X, 1] for large enough k. O

3. Limit theorems for Markov maps

We want to establish limit theorems for Birkhoff sums. In this direction, we give in this
section an abstract result, valid for a map that induces a Gibbs—Markov map on a subset of
the space (which is the case of our skew product). Related limit theorems have been proved
in [Gou04], but we will show here a slightly different result, which requires more control
on the return time ¢ but is more elementary, using Theorem A.1 proved in Appendix A and
inspired by results of Melbourne and Toérok [MTO04] for flows.

IfZy,...,Z,_1, ... are independent identically distributed random variables with zero
mean, the sums B,fl Z;(l) Z (where B, is a real sequence) converge to a non-trivial
limit distribution in the following cases: if Z; € L2, there is convergence to a normal
law for B, = /n. There is also convergence to a normal law, but with a different
normalization, if P(|Zx| > x) = x 2l(x) with L(x) := foc(l(u)/u) du unbounded
and slowly varying (i.e. L : (0,00) — (0, 00) satisfies limy_ o, L(ax)/L(x) = 1
for all @ > 0); this is, in particular, true when [ itself is slowly varying. Finally, if
P(Zy > x) = (c1 +o(1))x PL(x) and P(Z; < —x) = (¢p + o(1))x~PL(x), where L is
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slowly varying and p € (0, 2), we have convergence (for a good choice of B,) to a limit law
called stable law. It is a remarkable fact that, in this probabilistic setting, these sufficient
conditions for convergence are also necessary (see, e.g., [Fel66, Theorem XVII.5.1a]).

In the dynamical setting, we will prove the same kind of limit theorems, still with three
possible cases: Lz, normal non-standard and stable. The normalizations will, moreover, be
the same as in the probabilistic setting. However, we will only give sufficient conditions
for convergence, the converse seems definitely out of reach.

THEOREM 3.1. Let T : X — X be an ergodic transformation preserving a probability
measure m. Assume that there exists a subset Y of X with m(Y) > 0 and a countable
partition o of Y, such that the first return map Ty (x) = T?™) (x) (where ¢(x) = inf{n >
0 | T"(x) € Y}) is Gibbs—Markov for the measure m|y and the partition a. Assume,
moreover, that ¢ is constant on each element of o.
Let f : X — R be an integrable map with f f = 0, such that fy(y) =
f(:y871 f(T"y) satisfies

> “m(a)Dfy(a) < oo (18)
acua
where
Dfy(a) =inf{C > 0| Vx,y €a,|fr(x) — fr(y)| < Cd(x, y)}. (19)

Then we have the following.

° Assume that fy € L2 Assume, moreover, that ¢ satisfies one of the following
hypotheses:
- el
- m(p > x) = x~PL(x) where L is slowly varying and p € (1, 2].
Then there exists o> > 0 such that (1//n)S, f — N(0, o2).

° Assume that m(| fy| > x) = xle(x), with L(x) := Zflx (I(u)/u) du unbounded and
slowly varying. Assume, moreover, that m(¢p > x) = (¢ + o(l))x’2l(x) with ¢ > 0.
Let B, — oo satisfy nL(B,) = B2. Then B, 'S, f — N(O0, 1).

° Assume that m(fy > x) = (c1 + o(1))x PL(x) and m(fy < —x) = (c2 +
o(1))x~PL(x) where L is a slowly varying function, p € (1,2), and ci,cy > 0
with c¢1 4+ ¢2 > 0. Assume also that m(p > x) = (¢3 + 0(1))x P L(x) with c3 > 0.
Let B, — oo satisfy nL(B,) = Bf. Then B,”'S,f — Z where the random
variable Z has a characteristic function given by

E(C”Z) — e—C|t|p(l—iﬁ sgn(t)tan(pn/Z)) (20)

with c = (¢c1 + c2)T'(1 — p) cos(pm/2) and B = (c1 — ¢2)/(c1 + ¢2).

In the second case of the theorem, when [ itself is slowly varying, then L is
automatically slowly varying.

Proof. The idea is to use Theorem A.1: we have to check all of its hypotheses. We will
use the notation of this theorem and, in particular, write Ey (u) = fY udm/m(Y).

We first treat the third case (stable law), using the results of [ADO1b] (and the
generalizations of [Gou04]). Let s(x, y) be the separation time of x and y defined in
(4), T = 1/Ax and d; = t° the corresponding metric. Since every iteration of Ty expands
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by at least A, we get d(x,y) < Cd(x,y). In particular, we can assume without loss of
generality that d = d, which is the setting of [ADO1b] and [Gou04].

Let P be the transfer operator associated to Ty (it is defined by f u-voly = f P(u)-v),
and let P,(u) = P(e'Yu). Let L be the space of bounded Lipschitz functions (i.e.,
such that there exists C such that |g(x) — g(¥)| < Cd(x,y) for all a € «, for all
X,y € a). Since Y_m(a)Dfy(a) < oo, [Goud4, Theorem 3.8] (which is a strengthening of
Theorem 5.1 in [AD01b]) ensures that, for small enough ¢, P, acting on £ has an eigenvalue
A(t) = e (c/mIIIP(1=ip sgn(t) tan(pr/2) L1 " (1+0(1) ¢lose to 1, and the remaining part of
the spectrum of P; is uniformly bounded away from 1.

We will use this information to estimate Ey ((pe[(t/ B)Sfamcry ¥ ). Since ¢ is Lipschitz
and integrable, Pp € L by [ADO1b, Proposition 1.4]. Let k(n) = [nm(Y)] — 1. Then

Ey(goei(t/Bn)S{(n)fYOTY) — EY(PQO A ei(t/Bn)S/:,(n)fY) — EY(Ptk/(g)P(p)

= Ey(@)A(t/B)*™ +0(1).

The slow variation of L implies that, for all ¢ # 0,

k(n) i pL(B /1t ~ 1t|? . L(Bn) — [t|? 21
n)———|— ~ t|P — — |t|P.
m(Y)| By ! Bl "
Hence, we get
£ \K®
X(—) — e—CltIP(1—ip sgn(r) tan(p7 /2)) (22)
By

. Y .
This shows that Ey((pe’(’/B")SHn)fYOTY) — Ey(Z)E(e''%), where the random variable Z
is as in the statement of the theorem. Hence,

EY(goei(t/Bn)(Sglm(y)JfY_fY)) - Ey(Z)E(eitZ). (23)

: Y
Moreover, the difference between this term and Ey((pe’(t/ Bu)S{umeryy Iy ) is bounded by

Ey ((ple_[ (/B fy _ 1]), which tends to 0 by dominated convergence. Thus,
Ey(pe'/P0Smn ) s Ey () E(7). (24)

This is (52). Moreover, since L is slowly varying, the equation nL(B,) = B} implies that
inf, >, (B;/B,) > 0 (using for example the Potter bounds [BGT87, Theorem 1.5.6]).

Hypothesis 2 of Theorem A.1 is satisfied for b = 1, according to Birkhoff’s theorem
applied to ¢ — Ey (¢) (and because Ty is ergodic, which is a consequence of the ergodicity
of T). Finally, the hypothesis on the distribution of ¢ ensures, by [ADO1b, Theorem 6.1],
that (Sf;m(mgo —nm(Y)Ey(¢))/B, converges in distribution. Thus, (53') is satisfied.
We can use Theorem A.1, and get that S, f /B, — Z. This concludes the proof of the third
case of Theorem 3.1.

The proof of the second case of Theorem 3.1 is exactly the same, using Theorem 3.1
in [ADO1a] instead of Theorem 5.1 in [ADO1b] to show the convergence in distribution of
Stumcry) Jv/ Bu and (S}, ) @ = nm(Y) Ey (9))/ By.

In the first case (fy € L?), the proof is again identical when ¢ € L2, with B, = /n:
indeed, in [GH88] it was proved that the Birkhoff sums of fy and ¢ satisfy a classical
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central limit theorem. However, when m(¢ > x) = x~PL(x), we have to check in a
different way the hypotheses 2 and 3 of Theorem A.1. Theorem 6.1 of [AD01b] ensures
that, if B; is given by

nL(B,) = (B,)”, (25)

then (Sny @ —nEy(¢))/B], converges in distribution. Assume for the moment that, in the
natural extension of Ty, for all b > %, for almostall x € Y,

1 N—1
G Z fr(TEx) =0 (26)
k=0

when N — +oo. Then hypothesis 2 of Theorem A.1 is satisfied for any b > % Letk >0
be very small. As L is slowly varying, L(B;) = O((B,)*), whence Equation (25) gives
B/ = O(n'/(P=9) Thus,if b < p/2, we have B, = O(B,'"), which implies (53').
Hence, to conclude the proof, we just have to check (26). In [Gou04, Lemma 3.4]
it was proved that Pfy € L, and has a vanishing integral. If Ty is mixing, then 1 is
the only eigenvalue of P of modulus 1, and P has a spectral gap, whence P" fy — 0
exponentially fast. In particular, [ fy o Ty - fy = [(P"fy) - fr = O((1 — §)") for
some 0 < § < 1. Thus, as fy € L?, [Kac96, Theorem 16] gives that, for every
b > %, (1/Nb) 21]2]:701 fy(T{;x) — 0 almost everywhere when N — oo. In the
natural extension, [ fy o Ty - fy = [ fy - fyr o Ty decays also exponentially fast,
whence the same argument gives that (1/|N|?) 211(\1:701 fy(T{,‘x) — 0 when N — —o0.
Hence, (26) is satisfied if Ty is mixing. In the general case, there exists a decomposition
Y =Y U---UY, such that Ty maps Y; to Y41 for 1 <i < d —1, and Y, to Y, and
such that T)il is mixing on each Y; (with m(Y;) = 1/d for 1 < i < d) (see [Aar97]).
In particular, set g = dzl‘-lzl(fyi fr)ly, and h = fy — g: this function satisfies
Pinp = O((1 — 8)4m), using the same argument as above on each Y;, since /Yf h=20
for all i. Hence, P"h = O((1 — 8)"). In particular, (1/|N|?) Y2 ' h(Tfx) — 0 when
N — =00, as above. Moreover, Zf-l:l(fyi fr) = [ fr = 0, whence Y0 ' g(Tkx) is
uniformly bounded. This implies that (1/|N &) Z,](V:_Ol fy(T}],‘x) — 0 almost everywhere
when N — +o0. O

4. Asymptotic behaviour of X,

We return to the study of the skew product (1). To prove limit theorems using Theorem 3.1,
we will need to estimate m (¢y > n), which is directly related to the speed of convergence
of X, to 0. This section will be devoted to the proof of the following theorem.

THEOREM 4.1. Whenn — 409,

1/ etmin
n 1

X, > @7
<\/ Inn ) " (omin i 3/2 J/2a” (xp)) 1/ emin

almost everywhere and in L.

The proof of this theorem is a quite involved computation, which relies on the following
lemma.
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LEMMA 4.2. We have

T 1
20 (x0) /W

Proof. Write B = o — omin, and f(b) = Leb{w | f(w) € [0, b)}. In a neighbourhood of
wo (the unique point where « takes its minimal value omin), o behaves like the parabola
otmin +(@” (w0)/2) (@ — wp)?, whence f(b) ~ /2/a’ (x0)~/b when b — 0.

Writing Pg for the distribution of 8, an integration by parts gives

E(e_(a_amin)w) ~

when w — 0. (28)

E (e~ @ ominwy — /oo e dPy(b) = w /Oo e P £ (b) db = /oo e " f(u/w) du
0 0 0
1 o
= ﬁv/(; e_“(\/ wf(u/w)) du.

However e ™ (Jw f (u/w)) — e *,/2/a” (x0)+/ut when w — oo. There exists a constant
E such that f(u) < E./u (this is clear in a neighbourhood of 0, and elsewhere since f is

bounded), whence e " (/w f (u/w)) < Ee ", /u integrable. By dominated convergence,

/Ooe_“(ﬂf(u/w)) du — L/we_“\/ﬁ du = Lﬁ
0 o”(x0) Jo o’(x0) 2

Proof of Theorem 4.1. As in the proof of Proposition 2.2, we write

1 1
— _ . Zamin 2X () —min 0 X 20 (w) —amin .
Xp(Fw)omin X, 1 (@)%min %min 2Xn+1(w)) + O (Xp+1(w) (29))

Proposition 2.2 gives

C < C
(n + l)amin/amax = m

X1 (@) 2@~ Cmin X, ()%min < (30)

as Omin / Omax = % by hypothesis. Thus,

1 1

Ko@) Xp(Fayemn 2 cmin(Xoel (@))*@~emin 4 O(1//n).

Summing from 1 to n, we get a constant P (independent of w) such that

1 n n—. .
> 0min amm[Z(zxk(F”"w»“(F o) =emin _ P\/E} 3D

Xn (a))amin =
1 . 1 n—k .
Xy S 2 amm[Z(zxk(F"—kw»“(F @)= Cmin +Pﬁ}. (32)
n k=1

Equation (31) and Proposition 2.2 imply that

Jinn I _ Vi 2”: 21\ o) —amin Y LTI
— _— = w).
n 2%min O'min X}’l (a))amin = n kl/amin n "

k=1
(33)
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We first study the convergence of A,. The functions & and « o F”"% have the same
distribution since F preserves Lebesgue measure. Thus, by Lemma 4.2,

E<< 2C71 >O(0Fnk05min) T 1 \/m 1
K1/ i 20" (x0) \/In(k!/ @min) — In(2C—1) 20" (x0) /Ink
Summing, we get that
7T Qi
E(A,) — Cy := ﬁﬁ, (34)

since Y 7_,(1/+/Ink) ~ n/+/Inn.

We will need L? estimates, for p > 1. To get them, we use a result of Pene [Pen02],
recalled in Appendix B. Let us denote by | g|| the Lipschitz norm of a function g : S' — R,
ice. llgll = supy et 18O+ supy s, 18(X) — g1/ 1x — y1.

We define fi(w) = (2C~!/k!/ eminya@—amin and g = fi — E(fi). Thus, A, =
VInn/n) Y }_| fe o F*% — P\/Inn/n. As g, = In(2C~1/k!/ ®min)a/ f, there exists a
constant L such that, for k < n, ||gr]| < Llnn. As a consequence, Theorem B.1 applied
to gr/(L1nn) gives

N n N
140 = EADIp = 2 Linn| Y geo F*/(Llnn)| < Y Linnk,/n,
n n
k=1 14
ie.
In3 n
A, — E(ADIp < Lp (35)
n

This implies, in particular, that A,, converges almost everywhere to C1. Namely, if § > 0,

A, — E(A 4 L4 1n3 4/2
Leb{|A, — E(Ay)| > 8} < f [An = ECADE  La (I (36)
54 84\ n
which is summable, and E(A,) — Cj.
‘We have
/ln n Zc—l Qmax — ¥min /11'1 ‘
Ap(w) = z [Z( o ) — Pﬁ} > P K n?emsx/ emin _ p_ /]
n =1 k / ®min n
> K/ Inn nzfamax / Omin
~ n
since omax / ¢min < % Thus,
1 Omax / Omin —1
H — | <k (37)
An 00 Inn
Note that E(A,) tends to C; # 0, whence 1/E(A,) is bounded. Thus,
1 1 1 1 ,y nmax / Cmin =1 In®n
— - S| =14 —E@DIp <K L,
Ay E(Ap) P Ay OOE(An) Inn n
Inn
= Mp

nK
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where k = % — Qmax / ®min > 0. In particular, 1/A, tends to 1/Cj in every L”.
Equation (33) shows that

n 1/ &min 1
— Xn < . 38
< In n > " (20‘min Omin Al’l) 1/ &min ( )
The right-hand side tends to

Cy =

1
= (2%min Olmin3/2 /71'/201”()60))1/““‘1“

in every L? and, in particular, in L'. Thus,

_ 1/‘7'5min
1imE<<\/lnn_> Xn> <G (40)
n

Moreover, A, converges almost everywhere to Cy, whence (38) yields that, almost
everywhere,

(39)

1/ etmin
—( n
lim X, (w) < Ca. (41)
<«/1n n) "
Set Q =sup, (1/E(A,)) + 1, we estimate Leb{1/A, > Q}. If p > 1,

1 1 1 1 1 |7 Inn\?
Lebi — > 0 <Leby|— — > 1 <E[|—— <(Mp— ).
Ay Ay E(Ap) Ay E(Ap) n*

In particular, choosing p large enough gives
Leb : >0t < M 42)
eby — > < —.
A, nd
Setting Q' = Q/2%min iy, (38) thus yields that
/ /1 1/ otmin M
Leb{Xn > (M) } <% 43)
n n

Consequently,

. <Q/m>l/amill}
- k

U, = {a) ‘ 3\/17 < k < n with Xk(Fnika))

has a measure at most Z:l/;,(M/kS) < M’/n? (since Leb is invariant under F~%). Finally,

Borel—Cantelli ensures that there is a full measure subset of S' on which w & U, for large

enough n.
Set
VI [ £ 2(0'v/in k) emin a(F"kw)—amin
A (@) = — [Z( PRy ) +(P+1>ﬁ}. (44)
k=1

As for A,, we show that A;, — Cj in every L” and almost everywhere.
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Let w be such that ¢ U, for large enough n, and A}, (w) — C; (these properties
are true almost everywhere). Then, for large enough n, equation (32) and the fact that
Xi(F" ) < (Q'vInk/k)!/ @min for \/n < k < n, yield that

N n / 1/ ami a(F"*w)—omin
1 2(Q'/Ink)/ @min ) }
< 1+ (— +Pyn
20min ot Xy (@) %min [1; kgﬁ Jel/ tmin

n

<
VInn

A;l(a)) ~ Ci.

n
VInn

Therefore,

1/ otmin
n
lim X, () > Cs. 45)
< ,_ll‘ln> n 2 (

Equations (41) and (45) prove that (n/+/In n)l/ “min X, tends almost everywhere to C».
We get the convergence in L! from the inequality (40) and the following elementary
lemma. =

LEMMA 4.3. Let f, be non-negative functions on a probability space, with f, — f
almost everywhere, and lim E(f,;,) < E(f) < oo. Then f, — f in L.

Proof. Write g, = fu + f — |f — ful = 0. Fatou’s lemma gives E(lim g,) < lim E(g,).
Therefore,
2E(f) S ImE(fy) + E(f) —lm E(|f — fal)-

Consequently, the hypotheses imply that lim E(| f — f,|) < 0. O

5. Limit theorems
Set

e
A= h dLeb, (46)
A(amin3/? /7 /20" (x0)) 1/ emin Jg1(1/2)
where % is the density of m with respect to Leb.
In this section, we prove the following theorem.

THEOREM 5.1. Let f be a Hélder function on S' x [0, 1], with ff dm = 0. Write

c = fSlx{O} f dLeb. Then:

o ifdmin < 3, there exists o > 0 such that (1//m)S, f — N0, o%);

° if % < dmin < 1 and ¢ = 0, assume also that there exists y >
(0tmax / Otmin) (@min —3) such that | f(o,x) — f(w,0)| < Cx7; then there exists
o2 > 0 such that (1/n)S, f — N (0, 0?);

° if dmin = % and c # 0, then S, f/+/ (c2A/4)n(nn)2 — N, 1);

° zf% < omin < 1 and ¢ # 0, then S, f/n%vin JominInn — Z, where the random
variable Z has a characteristic function given by

E(e?) = o~ Alel"/ “min T (1—1/ armin) c08(7/2 otmin) 1]/ ¢min (1~ sgn(cr) tan(r/2 in)) 47
The random variable Z in the last case has a so-called stable distribution of

exponent 1/ omin and parameters A|c| 1/D‘minl"(l — 1/ &min) cos(w/2 amin) and sgn(c)
(see, e.g., [Fel66, Ch. XVII] for general background on stable laws).
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To prove this theorem, we will use Theorem 3.1. For this, we need a control of
m(py > n) which comes from the asymptotic behaviour of X, proved in Theorem 4.1.
It will also be necessary to estimate m(fy > x), through the study of the integrability of
fr (Lemmas 5.3 and 5.4).

In the rest of this section, f will be a Holder function on § 1'% [0, 1], fixed once
and for all. Recall that fy(y) = fi (Oy)_l f(T*y), where gy is the first return time to
Y =S8"x (3, 11.

5.1. Estimates on measures.

LEMMA 5.2. We have

1 1/ dmin
van ) A (48)
n

m(py > n) ~ <
where A is given by (46).
Proof. We have

m(gy > n)

Yn+l(w) Xn(Fw)/z 1
=/ / h(a),u)duda):/ / h(a),—+u)duda)
st Jip2 st Jo 2
X, (Fw) 1 Xu(Fo)/2 1 1
= how, = )do+ WMo, =4+u)—hlw, =) |dudw
sl 2 2 st Jo 2 2

=1+1l
As
( n )l/aminX (F ) 1
w) —>
VInn ’ (2%min tyin/2 /1 /20" (x0)) V/ @i

in L1 and almost everywhere (Theorem 4.1) and h(w, %) is bounded, we get that I ~
(+/Inn/n)!/ @min A Moreover, for large enough n, |h(w, % +u) — h(w, %)l < ¢, whence
I = o(+/Inn/n)!/ emin, O

LEMMA 5.3. If amin < %, then fy € L*(Y, dm).
Proof. We have

/f% dm < CY mlgy =mn® =C Y (mlpy >n—1) —mpy > m)n’
<CY mlgy >nn
which is summable since m(py > n) ~ A(v/Inn/n)"/ *min with 1/ @min > 2. O

LEMMA 5.4. Assume that fSlx{O} f =0. Let y € (0, amax) be such that | f(w, x) —
f(w,0)] <CxV. If1 < p < min(2/amin, 1/ &min(1 — ¥/ &max)), then fy € LP(Y, dm).

Proof. As h is bounded on Y, it is sufficient to prove that fy € LP (Y, dLeb).
Assume first that f = 0 on S' x {0}. Then, if x = (o, x) satisfies ¢y (X) = n,
we have fy(x) = Y07 f(T*x). Itk > 1, TF(x) < Xpi(FFw) < C/(n — k)l omax,
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whence | f(T*x)| < C/(n—k)?/ % and a summation yields that | fy (x)| < Cn!~7/@max
This bound tends to infinity when n — oo, but sufficiently slowly so that fy still belongs
to LP. More precisely,

/ |fY|p < sz(wy = n)np(lf)’/amax)
g C Zm((py > n)np(lf)’/amax)*l'

As m(py > n) ~ A(v/Inn/n)!/ min_this last series is summable as soon as

_ ! +,,(1_ y )_1<_1, (49)

Qmin Qmax

which is the case by assumption on p.

Assume now that f has a vanishing integral on S'. Let g(w, x) = f(w, 0). The function
f — g vanishes on S' x {0}, whence fy — gy € L?” according to the first part of this
proof. Consequently, it is sufficient to prove that gy € LP. Write x(w) = f(w,0) and
Sax (@) = Y4Zg X (F*): then gy (@, x) = Sy (0,0 X (@).

Let Myx(w) = maxgg, [Six(w)]. Let § > 0, and I = (1 + §)/8, so that
1/1+1/(1 +6) = 1. We have

o0 1/24Xy—1(Fo)/2
/ |gy|"=2/ / |Sux (@)|” du do>
{pr >2} —Jst /i

[24+Xn(Fw)/2

o0 124X o (Fo) 2
[ My @)|? du do
= st i x ko2

o o0
< Z/l X1 (Foo) | Mai x (@)|P do> < [ X1 0 Fllags | Mo x ]
k=175 k=1

where the last inequality is Holder inequality. If 6 is small enough, Ip > 2, whence
Corollary B.4 yields that || My x ||, < CkP=D/IP/2k Moreover,

1/(1+9) /ln(zk—l) 1/(1+46) otmin
[ Xoe-1 0 Flligs = | Xopk-1ll145 < </ sz—l) ~ C( ok—T >

by Theorem 4.1. Thus, [ |gy|? < 00 if 1/(1 + 8) min > p/2, and it is possible to choose
4 such that this inequality is true, since 1/ apin > p/2 by hypothesis. a

5.2.  Proof of Theorem 5.1. To apply Theorem 3.1, we first check the condition (18).
Let § be the Holder exponent of f. We will work with the distance d; -0 (x, y) = A7),
For this distance, Ty is a Gibbs—Markov map.

FACT. If f is O-Holder on S' x [0, 1], then

Y mlA;u1Dfy (Asn) < o0. (50)

Recall that Dfy (As.,) (defined in Theorem 3.1) is the best Lipschitz constant of fy on
Ajg 5, here for the distance d; .
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Proof of the fact. Take (w1, x1) and (w2, x2) € Ay, with, for example, x2 > x1. Then (9)
implies that x| € J,j‘ (w2), and Corollary 2.5 applied n— 1 times proves that, for 0 < k < n,
d(TX(w1. x1), T*(@2. x1)) < D|F*w1 — FXw,|. Moreover, d(T* (w2, x1), TH (w2, x2)) <
d(T" (w2, x1), T" (w2, x2)) (since each map Ty () is expanding).
Thus, for0 < k < n,
d(T* (w1, x1), TH(@2, x2)) < d(TH (w1, x1), T* (@2, x1)) + d(T* (@2, x1). TH (@32, x2))
< DIFfw) — Frop| + d(T" (w2, x1), T" (@2, x2))
< DIF"w; — F'wp| +d(T" (w1, x1), T" (w2, x1))
+d(T" (w1, x1), T" (w2, x2))
< D|F'w; — F"an|+ D|F"w; — F"w;|
+d(T" (w1, x1), T" (w2, x2))
< (1 +2D)d(T" (w1, x1), T" (w2, X2)).
We deduce that

n—1
| fr (@1, x1) = fr(@2, x2)| < Y1 f (T @1, x1) = f(TH (@2, %2))]
k=0
n—1
<Y Cd(T (1, x1), TH (@2, x2))"
k=0
< C'nd(T" (w1, x1), T" (w2, x2))”.
As Ty is expanding for the distance d’ (defined in (7), and equivalent to d), we have
d(T" (w1, x1), T" (w2, x2)) < Cd, -1 (T" (w1, x1), T" (w2, x2))
= CAdy-1((w1, x1), (02, X2)),

whence d(T" (w1, x1), T" (w2, x2))? < Cd; -0 (w1, X1), (w2, X2)).
Thus, Dfy(As,,) < Cn, and

> m(A)Dfy(Asn) < C Y mpy =mn = C < +oo, (51)
by Kac’s formula. a

Proof of Theorem 5.1. In the case apmin < % Lemma 5.3 gives that fy € L2. Moreover,
¢ € L? (since ¢ = gy for g = 1, whence Lemma 5.3 also applies). We have already
checked the condition (18), so we can apply (the first case of) Theorem 3.1. This yields
the central limit theorem for f.

Assume now that % < @pin < 1 and that ¢ = 0. Under the assumptions of the theorem,
we can apply Lemma 5.4 with p = 2, and get that fy € L2. Moreover, Lemma 5.2 shows
that m[gy > x] ~ (v/Inx/x)!/®min A. We have checked all of the hypotheses of the first
case of Theorem 3.1. Applying this theorem, we conclude the proof of the second case.

The third and fourth cases are analogous. Let us prove, for example, the fourth case,
ie. % < amin < | and ¢ # 0. Assume, for example, that ¢ > 0. We estimate m( fy > x).

FACT. We have

m( fy >X)~<

c/Inx

m)l/amin

X

1/Olmin
) A and m(fy<—x)=o(
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Proof. We prove the estimate on m(fy > x), the other being similar.

Let g = c on S! x [0,1]. Then gy = nc on [py = n], which implies that
m(gy > nc) = m(py > n) ~ (v/Inn/n)'/ *min A by Lemma 5.2.

In the general case, consider j = f — g, and let us prove that m(|jy| > x) =
o(v/Inx/x)/emin As fy = gy + jy, it will give

m(gy > x(1+¢€)) —m(|jy| > x&) <m(fy >x) <m(gy > x(1 —¢&)) +m(|jy| > xe),

which gives the conclusion.

Let y > 0 with y < min(@, oemax) (Where 6 is the Holder coefficient of f). Lemma 5.4
gives that jy € LP if p < min(2/ omin, 1/ &min(1 — ¥/ &max))- We can, in particular,
choose p > 1/ amin. Then m(|jy| > x) < f(|jy|/x)p = O(x~7?), which concludes the
proof of the fact. a

The same fact holds for ¢y, with the same proof. Therefore, the assumptions of the
third case of Theorem 3.1 are satisfied. This implies the desired result. O

A. Appendix. Induced maps and limit theorems

The aim of this section is to prove very general results stating that, if a function satisfies a
limit theorem for an induced map, it also satisfies one for the initial map. Similar theorems
have been proved in [Gou04], by spectral methods, under strong technical assumptions.
We will describe here a more elementary method, essentially due to Melbourne and Torok
for flows [MT04]. Zweimiiller has also used the same kind of arguments to study limit laws
in dimension 1, see [Zwe03]. This new method does not imply all the results of [Gou04],
but it can be used in settings where [Gou04] can not be applied.

If Y is a subset of a probability space (X,m), T : X — X, and Ty is the induced
map on Y, we will write S,f g = 'k’;é go T}],‘: this is the Birkhoff sum of g, for the
transformation Ty. We will also write Ey(g) = fY g/m[Y]. Finally, for r € R, [¢]
denotes the integer part of 7.

THEOREM A.l. Let T : X — X be an ergodic endomorphism of a probability space
(X,m), and f : X — R an integrable function with vanishing integral. Let Y C X
have positive measure. For y € Y, write p(y) = infln > 0 | T"(y) € Y} and
fry) = Y007 fky).
We assume the following properties.
(1)  There exists a sequence B, — 400, with inf,>,(B,/B,) > 0, such that (fy, ¢)
satisfies a mixing limit theorem for the normalization B,: there exists a random
variable Z such that, for everyt € R,

Ey(ge'’
(2)  There exists b > 0 such that, in the natural extension of Ty, (I/Nb) Z(])V_l fy(T)/fy)
tends almost everywhere to 0 when N — +oo.
(3)  The sequence (S}[(p —nEy ((p))/B,i/b is tight, in the following sense: for every e > 0,
there exists A > 0 and Ny such that, for every n > Ny,
Y
Sn(p_lan((P)‘ > A}
B,/

St 518y s By (@) E (7). (52)

m{yEY‘ <e. (53)
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Then the function f also satisfies a limit theorem:
E(e"™ /Py — E(e''?), (54)
i.e. Sy f/ By tends in distribution to Z.

The hypotheses of the theorem are tailor-made so that the following proof works, but
they are, in fact, often satisfied in natural cases. Let us comment on these three hypotheses.
(1) The convergence (52) is very often satisfied when fy satisfies a limit theorem.

Namely, the martingale proofs or spectral proofs of limit theorems automatically
give this kind of convergence.

(2)  The natural extension is useful so that we can let N tend to —oco, and consider T}, !
in the proof. Generally, Birkhoff’s theorem yields that this assumption is satisfied
for b = 1. This is often sufficient. However, sometimes, it is important to have
better estimates. It is then possible to use [Kac96, Theorem 16], for example: this
theorem ensures that, if the correlations of fy € L? decay at least like O(1/n),
then the hypothesis is satisfied for any b > % (for N — —o0, use the fact that
[ fr-froTf = [ froTy;" - fyr,and apply the result to T, ).

(3) The third assumption is weaker than

SYe —nEy ()
/
n

EIB,/, =0 (B,l / b) such that converges in distribution.  (53')
Moreover, ¢ is often simpler than fy. Since fy satisfies a limit theorem (this is more
or less the first hypothesis), this is also often the case of ¢, which implies (53"). Thus,
(53"), and hence (53), are satisfied quite generally.

Proof of Theorem A.1. We can assume that m(Y) < 1.

Without loss of generality, we can replace T by its natural extension and assume that
T is invertible. We will identify X with {(y,i) | y € Y,i € {0,..., ¢(y) — 1}}. In this
notation, fori < ¢(y) — 1, T(y,i) = (y,i + 1), while T(y, ¢(y) — 1) = (Ty(y), 0).
Note that Ey(¢) = 1/m(Y) by Kac’s formula. Let = be the projection from X to Y, given
by w(y,i) =y.

In this proof, we will write S; f (x), even when ¢ is not an integer, for S|;) f (x). In the
same way, T should be understood as TL1. We also extend B, to Ry, setting B; := B|;].

As T isergodic, Ty is also ergodic [Aar97, Proposition 1.5.2]. Birkhoff’s theorem gives
that

V=" 55
,,(p—m(Y)+o(n) (55)

almost everywhere on Y. For y € Y and N € N, let n(y, N) be the greatest integer n
such that S}:go(y) < N. If y is such that SZ(p(y) =n/m(Y) + o(n) (which is true almost
everywhere), then n(y, N) is finite for every N, and n(y, N)/m(Y) ~ N, i.e.

n(y, N)
Nm(Y)

— 1. (56)

+ In fact, Zweimiiller pointed out that the distributional convergence of S fnm ) fy/Bn to Z always implies (52):
this is a consequence of the proof of [Aar97, Proposition 3.6.1].
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Since [ €'V — [ 4eltSNIY [ (52) yields that

Y
(SNm(Y)fY) om 7

By (57)

in distribution on X. The idea of the proof will be to see that (S}(lm ) fr) om and Sy f
are close (this is not surprising, since one iteration of 7y corresponds roughly to 1/m(Y)
iterations of T"). This will give that Sy f/ By tends to Z.

We write

SNf(, D) =N f(y, 1) = SNf(y,0) + (Snf(y,0) — S,f(y’N)fy(y))
+ (Sny(y,N)fY(y) - Sﬁmmfy(y)) + S,)\;m(y)fy .

The last term, equal to (S]{,m(y) fr) o m, satisfies a limit theorem by (57). To conclude the
proof, we will see that the three other terms, divided by By, tend to 0 in probability.

The second and third terms depend only on y. Thus, the following lemma will be useful
to prove that they tend to O on X.

LEMMA A.2. Let f, be a sequence of functions on Y, tending to O in probability on Y.
Then f, o 1 tends to O in probability on X.

Proof. Take ¢ > 0. As f,, — 0 in probability, the measure of E,, :={y € Y | | f,(¥)| = &}
tends to 0. As ¢ € L', dominated convergence yields that / g, ¢ =0, i.e. the measure of

7~ Y(E,) tends to 0. However, 7 ~1(E,) is exactly the set where | f;, o | > €. O

FACT. B;l(SNf(y, i) — Sy f(y,0)) tends to O in probability on X.

N—1 .
Proof. Set Vy(y) = Y09 | f o TN (y, i)l on Y. Then | Viyll iy = I1f o TVl p1x) =
Il fll 1 (x) since T preserves the measure. Thus, Vy/By tends to 0 in L'(Y), and in
probability. Lemma A.2 yields that 31\71 Vi o m tends to O in probability on X.

As Syf(r.1) — Snf(3.0) = SN ARy, 0) — 6T (TR, 0), we get
ISy f (3, )=Sn £ (¥, 0)] < Viy(»)+Vo(y). Thus, By (Sy f (v, i) =Sy f (v, 0)) is bounded
by a function going to 0 in probability. a

FAcCT. Bj;l Svf(y,0) — Sf:(y N) fy (y)) tends to 0 in probability on X.

Proof. By Lemma A.2, it is sufficient to prove it on Y. Set H(y,i) = |Z’];1O f(, j)|.
Then
1SN £ (3, 0) = Syiy ) Sr(N| = H o TV (y,0). (58)

Since T preserves the measure m, for any a > 0,
1 N 1 N
miyeY|—HoT"(y,0) Za; <myxeX|—HoT" "(x)>a
By By
1
:m{x € X‘—H(x) > a}.
By
Since H is measurable and By — 00, this measure tends to O when N — oo. O

FAcCT. B];l(S:(y’N) fr — S]}\l/m(Y)fy) tends to 0 in probability on X when N — oo.
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Proof. By Lemma A.2, it is sufficient to proveiton Y.
For n < 0, write S}:fy = ‘1"‘ fro TY_". Then, setting v(y, N) = n(y, N) — Nm(Y),

Y ) = SNy Sr () =S¥y Sr (@O (). (59)
Let A > O0and N € N, we will estimate the measure of {y | v(y, N) > A l/b} Take
o > O such that m(Y) + o < 1. Assume first that AB/{/b > aN. Then,
Bl/b
{yIviy.N) =2 A / }C{yIn(y,N) = m(Y) +a)N}. (60)

By (55), the measure of this set tends to 0 when N — oo. Assume next that ABl/b < aNl.
Since Ey(¢) = 1/m(Y), we get
1/b

_ l/b Y
{ylv(y,N) = A }={n(y,N) > +Nm(Y)} = {S 1/b+Nm(Y)¢ < N}
1/b
- {S B s i »? — (AB)” + Nm(Y))Ey () - A < By >1/b}
= b ~ *
(BpAB by Nm(r)) Y m(Y) AB b L Nm(Y)

Moreover, AB}V/b +Nm((Y) < (m(Y)+a)N < N. By assumption there exists ¢ > 0 such

that, forall n < r, B./B,, > c. In particular, BN/BAB‘/”+N vy = > c. Hence,

— (ABY"” + Nm(Y))Ey (¢)

Y 1/b 1/b
1/b ABy"+Nm (Y) Ac
{y|v(y,N)>ABN/}c{ /b o (Y)}
(B ABY 1 4 Nm(r)) m
Consequently, if A is large enough, assumption 3 yields that m{y | v(y, N) > A 1/b} <e
1/b

for large enough N. We handle in the same way the set of points where v(y, N) < —AB)y
We have thus proved

Ve >0,3A > 0,3Ny > 0,YN > Ny, m{y||v(y, N)| > ABY"} <e.  (61)

Set Wy (y) = B];lSu(y,N)fy(T;,vm(Y) (»)), we will show that it tends to O in distribution,
which will conclude the proof, by (59). Take a > 0, we will show that m(|Wy| > a) — 0
when N — o0.

Lete > 0. Assumption 2 ensures that there exists Y with m(Y ) =2 m(Y)—e¢ and Np such
that (1/|N| )|S frl < eon Y for every [N| > Ni. Define Yy, = {y € Y | [v(y, N)| <
Nitand Yy ={y e Y | |v(y, N)| N1}. We estimate first the contribution of Yy, .

Set y(y) = XN Ify o T DI Iy € Y, then [Wa(y)] < t/f(Tév’"(%))/BN.
Therefore,

Nm(Y
miy € Y | IWNO)] > a} <m{y € Yy |1y (1" y)| > aBy)
=m{y € Yy | 1¥(y)| > aBy}.
Since v is measurable, this quantity tends to 0 when N — oo. In particular, if N is large
enough, it is at most €.
We then estimate the contribution of Y. Set Yy = Yy N T, Nm(y)(Y ), it satisfies
m(Yy) > m(Yy) — e. Thus,

m(Wy| = a) <mly € Yy | IWy()| > a) + 2e. (62)
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On ¥}/, [v(y, N)| > Ny, whence (1/[v(y, N)[P)ISY, | v, fr (T y)| < e. Thus,
NP MY
[Wn ()] < 8|v(yB )W _ 8(|v(y1/b )|) :
N By
Consequently,
N 1/b
Wyl > 0 < (PO > (4)) 2 (63)
By €
This equation together with (61) implies that m(|Wy| > a) — 0 when N — oo. O

The three facts we have just proved imply that Sy f(y,i)/Bn — szm(y)fy (y)/By — 0O
in distribution on X. As szm(y)fy(y)/BN — Z in distribution on X, by (57), this
concludes the proof. a

B. Appendix. Multiple decorrelations and LP-boundedness
The following theorem has been useful in this paper.

THEOREM B.1. Let F : @ — 4w on the circle S'. Then, for every p € [1, 00), there

exists a constant K , such that, for everyn € N, forevery fo, ..., fn-1: ! — R bounded
by 1, of zero average and 1-Lipschitz,
n—1
ka o FF| < K, /n. (64)
k=0 P

This result has essentially been proved by Péne in [Peén02], in a much broader context.
Her proof depends on a property of multiple decorrelations, which is implied by the
spectral gap of the transfer operator.

LEMMA B.2. Let || f|| be the Lipschitz norm of the function f on the circle S'. Then,
for every m,m’ € N, there exist C > 0 and § < 1 such that, for every N € N, for
every increasing sequences (ki, ..., ky) and (I1, ..., 1), for every Lipschitz functions
Gi,...,.Gpn, Hy, ..., Hy,

m m’ m m’
COV(H GioFN []Hjo FNHJ')‘ < c(H ||G,»||> (]‘[l ||Hj||)5N—’<m. (65)
1= J=

i=1 j=1

Here Cov(u,v) = [uv — [u [v.

Proof. Let F be the transfer operator associated to F, and acting on Lipschitz functions.
It is known that it admits a spectral gap and that its iterates are bounded, i.e. there exist
constants M > 0 and § < 1 such that |[F" f|| < M| f|, and |[F" f|| < MS§"|f| if

ff:Q
We can assume that N > k,, (otherwise > 1, and the inequality (65) becomes
trivial). Then, writing ¢ = [, G; o F¥ and = []}_, H; o Fi, we get

<o orr=|f(o- oo |- oo s
e

8N*km
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However,

FNp)=FN (l_[ Gio F"f)
— FN—km (Gm i:'\km_ m—1 (Gm—lj;km_] _km_2 ( .. sz_kl (Gl)) .. )
= FN ).

As the iterates of F are bounded on Lipschitz functions, we get a bound on the Lipschitz
norm of x: ||l < M™ '] I|G;||. Moreover, [ x = [ ¢, whence
o= [

oo )| )] e

< MV M TG D

When p is an even integer, Theorem B.1 is then a consequence of [Pen02,
Lemma 2.3.4]. The Holder inequality gives the general case.

Remark. The same result holds for Holder functions instead of Lipschitz functions, with
the same proof.

We will also need the following result.

THEOREM B.3. Let T be a measure preserving transformation on a space X. Let
f:X — Rand p > 2 be such that

3C >0,Vvn e N*, 5. fl, < Cy/n. (66)
Write M, f (x) = SUP | <k |Sk f (x)|. Then there exists a constant K such that
Vi =2, IMyfll, < Knn)P~D/P/n. (67)

Proof. Letn € N*. Let k < 2", and write its binary decomposition k = Z;’;(l) 81'2-/',
with ¢; € {0,1}. Set g; = Z;’;jl &2! (in particular, go = k and ¢, = 0). Then
Sk f = ’};(l)(qu f—584;,, f)- Consequently, the convexity inequality (ao+ - -+an—1)" <
n”_l(a(l)7 4+ af_l) gives

n—1
Sk f17 <Py 1Sy, f = Sqp 17 (68)
=0
Note that g1 is of the form A2/F! with 0 < A < 2"7/=! — 1, and g is equal to gj1 or
gj+1 +2/. Thus,
n—1 2011
IS f1P < nP7! Z( Yo IS f - Smlfw). (69)
=0\ =0

The right-hand term is independent of &, and gives a bound on | M1 f|P. Moreover,

—p
/|SA2,-+|+2,-f—SA2,-+.f|P =/|Ssz|p <cral”. (70)
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Therefore, we get

n—1
/|M2,,71f|p < nP=1 Y 211 CP ol < Knp 1200270 = gur=L /o
i=0

For times of the form 2" —1, this is a bound of the form || M|, < K (In 1)(P=D/P /1. To get
the same estimate for an arbitrary time ¢, it is sufficient to choose n with =l L < 2n)
and to note that M, < M _j. O

COROLLARY B.4. Let F : w — 4w on the circle S', let x : S' — R be a Holder function
with 0 average, and let p > 2. Write M, x (x) = SUP| <k <n |Skx (x)|. Then there exists a
constant K such that

IMuxllp, < Knn)P=D/P/n, o > 2. 1)
Proof. Theorem B.1 (or rather the remark following it, for the Holder case) shows that
1Sy x 1l < Cy/n. Consequently, Theorem B.3 gives the conclusion. O
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