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Abstract
We study skew-products of the form (x, ω) �→ (T x, ω + φ(x)), where T is a nonuni-
formly expanding map on a space X, preserving a (possibly singular) probability
measure µ̃, and φ : X → S1 is a C1 function. Under mild assumptions on µ̃ and φ,
we prove that such a map is exponentially mixing and satisfies both the central limit
and local limit theorems. These results apply to a random walk related to the Farey
sequence, thereby answering a question of Guivarc’h and Raugi [GR, Section 5.3].
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1. Results
Let T be a transformation on a compact manifold. If T is uniformly expanding or
hyperbolic, the transfer operator associated to T admits a spectral gap on a well-
chosen Banach space, which makes it possible to prove virtually any limit theorem
(e.g., the local limit theorem) by using Nagaev’s method (see, e.g., [GH], [HH]). This
article is devoted to the proof of the local limit theorem for transformations of the form
T : (x, ω) �→ (T x, ω + φ(x)), where T is a nonuniformly expanding transformation
on a compact manifold X, and φ : X → S1 is a C1 function. This transformation T
is an isometry in the fibers S1, which prevents us from obtaining a spectral gap.
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Limit theorems have been obtained (in the more general setting of partially hy-
perbolic transformations) by Dolgopyat in [D3] when T is uniformly hyperbolic, and
for a measure which is absolutely continuous with respect to Lebesgue measure in the
unstable direction. However, he uses elementary arguments (moment methods) which
cannot be used to get the local limit theorem. To the best of our knowledge, the only
partially hyperbolic transformations for which a local limit theorem is proved in the
literature are the Anosov flows, found in [W] (the specific algebraic structure of flows
makes it possible to reduce the problem to the study of Axiom A maps, which are
uniformly hyperbolic). With the techniques of [Ts], it is probably possible to obtain it
also for skew-products over uniformly expanding maps for an absolutely continuous
measure. Unfortunately, the main motivating example of our study, described in Sec-
tion 1.1, is nonuniformly hyperbolic, and its invariant measure is singular. Hence, we
need to introduce a new technique, essentially based on renewal theory.

The qualitative theory of skew-products as above has been studied by Brin and
Pesin [BP]. We need more quantitative results, and to obtain them we use tools that
are mainly due to Dolgopyat [D1], [D2]. These techniques of Dolgopyat have already
proved very powerful in a variety of contexts (see [PS], [An], [St], [N], [BV1], [BV2],
[AGY]), and the present article is yet another illustration of their usefulness.

1.1. Farey sequences
Before we give the precise definition of the systems to which our results apply, let us
describe an interesting example that is, in fact, the main motivation for this article.
The following discussion is essentially taken from [CG].

If p/q and p′/q ′ are two irreducible rational numbers in [0, 1], they are adjacent if
|pq ′−p′q| = 1. We can then construct their median p′′/q ′′ = (p+p′)/(q+q ′), which
lies between p/q and p′/q ′ and is adjacent to any of them. Let F0 = {0/1, 1/1},
and define inductively Fn by enumerating the elements of Fn−1 in increasing order
(which gives a sequence of adjacent rational numbers) and by inserting the successive
medians. For example, F1 = {0/1, 1/2, 1/1} and F2 = {0/1, 1/3, 1/2, 2/3, 1/1}.
The set Fn has cardinality 2n + 1. Let also F∗

n = Fn − {0}; it has cardinality
2n. Any rational number of (0, 1] belongs to F∗

n for any large enough n. Let µn =
2−n

∑
x∈F∗

n
δx ; this sequence of measures converges exponentially fast to a measure

µ, in the following sense: for any α > 0, there exist C > 0 and θ < 1 such that, for any
function f : [0, 1] → C which is Hölder-continuous of exponent α,

∣∣∣
∫

f dµn −
∫

f dµ

∣∣∣ ≤ Cθn ‖f ‖Cα . (1.1)

The measure µ is called Minkowski’s measure. It has full support in [0, 1] and is totally
singular with respect to Lebesgue measure. It is the Stieltjes measure associated to
Minkowski’s ? function.
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To prove the exponential convergence (1.1), it is more convenient to reformulate
everything in terms of a random walk on a homogeneous space for the group SL(2, R).
Consider the two matrices A = (

1 0
1 1

)
and B = (

0 1
−1 2

)
in SL(2, R); we are interested in

the random walk in SL(2, R) going from a matrix M to AM or BM with probability
1/2. The Markov operator of this random walk is simply the convolution with the
measure ν = (δA + δB)/2. Since SL(2, R) is noncompact, this random walk does not
have interesting recurrence properties. However, whenever X is a homogeneous space
for the action of SL(2, R), the previous random walk induces a random walk on X,
going from x to A · x or B · x with probability 1/2, which can be recurrent.

For instance, let X = P(R2). Since SL(2, R) acts linearly on R2, it also acts on
the compact space X. The actions of the matrices A and B on R2 leave invariant the
cone C = {(x, y) | 0 ≤ x ≤ y}, and its projectivization P(C) is the unique closed
subset of P(R2) which is invariant and minimal for the action of the semigroup �

generated by A and B. Let us identify P(C) with the interval [0, 1] by intersecting C
with the line y = 1; we obtain an action of � on [0, 1]. The actions of the matrices A

and B are given by the transformations

hA(x) = x

1 + x
, hB(x) = 1

2 − x
. (1.2)

It can easily be checked inductively that

F∗
n = {

Mn · · · M1 · 1
∣∣Mi ∈ {A, B} for i = 1, . . . , n

}
. (1.3)

In particular, we have µn = νn�δ1. The measure µ is the unique stationary measure for
the random walk given by ν (i.e., such that ν � µ = µ). The exponential convergence
(1.1) is then proved by showing that the Markov operator associated to the random
walk has a spectral gap when it acts on the space of Hölder-continuous functions.

In [CG] (see also [GR]), Conze and Guivarc’h have considered the same random
walk, but on homogeneous spaces that are larger than P(R2). More precisely, let
us fix r > 1, and consider the quotient X of R2 − {0} by the subgroup Hr of
homotheties of ratio ±rn, n ∈ Z. This is a compact space, endowed with an action
of SL(2, R). In particular, the semigroup � acts on C̄ = C/Hr , which is a compact
extension (with fiber S1) of P(C). Let us identify C̄ with [0, 1] × R/(log r)Z by
(x, y) �→ (x/y, log y + (log r)Z). With this identification, a matrix M = (

a b
c d

)
acts

by

M · (x, ω) =
(ax + b

cx + d
, ω + log(cx + d)

)
. (1.4)

Hence, the random walk given by ν on C̄ jumps from (x, ω) to h̄A(x, ω) :=
(hA(x), ω + log(1 + x)) or h̄B(x, ω) := (hB(x), ω + log(2 − x)) with probability
1/2. Moreover, if the random walk starts from (1, 0) ∈ C̄, then the formula (1.4)
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shows that, at time n, this random walk reaches the points of the form (p/q, log q)
with p/q ∈ F∗

n, with equal probability 2−n: the random walk in C̄ given by ν and
starting from the point (1, 0) describes the rational numbers obtained by the Farey
process, as well as the logarithm of their denominators, modulo log r . In other words,
let F̄∗

n = {(p/q, log q) | p/q ∈ F∗
n} ⊂ [0, 1] × R/(log r)Z, then the measure

µ̄n := νn � δ(1,0) is the average of the Dirac masses at the points of F̄∗
n. By general

results on random walks on compact extensions, Conze and Guivarc’h [CG] and
Guivarc’h and Raugi [GR] proved that µ̄n converges weakly to µ ⊗ Leb, where Leb
denotes the normalized Lebesgue measure on R/(log r)Z. This is an equirepartition
result of the denominators modulo log r .

In this article, we are interested in more precise results for this random walk. First
of all, we prove that the previous convergence is exponentially fast.

THEOREM 1.1
For any α > 0, there exist C > 0 and θ < 1 such that for any function f : C̄ → C

which is Hölder-continuous of exponent α,

∣∣∣
∫

f dµ̄n −
∫

f d(µ ⊗ Leb)
∣∣∣ ≤ Cθn ‖f ‖Cα . (1.5)

We also obtain limit theorems for this random walk. In particular, we prove that it
satisfies the local limit theorem. This answers a question raised by Guivarc’h and
Raugi in [GR, Section 5.3]

THEOREM 1.2
Let ψ : C̄ → R be a C6 function. Assume that there does not exist a continuous
function f : C̄ → R such that ψ ◦ h̄M = f ◦ h̄M − f for M = A and B. Then the
Markov chain Xn on C̄, starting from (1, 0) and whose transition probability is given
by ν, satisfies a nondegenerate central limit theorem for the function ψ; that is, there
exists σ 2 > 0 such that, for any a ∈ R,

P
( 1√

n

n∑
k=1

ψ(Xk) < a
)

→ 1

σ
√

2π

∫ a

−∞
e−t2/(2σ 2) dt. (1.6)

Assume additionally that there do not exist constants a > 0, λ > 0, and a continuous
function f : C̄ → R/λZ such that ψ ◦ h̄M = f ◦ h̄M − f + a mod λZ for M = A

and B. Then ψ satisfies the local limit theorem: for any compact subinterval I of R

and any real sequence kn such that kn/
√

n → κ ∈ R, then

√
n P

( n∑
k=1

ψ(Xk) ∈ I + kn

)
→ Leb(I )

e−κ2/(2σ 2)

σ
√

2π
. (1.7)
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This result, as well as Theorem 1.1, in fact holds for any starting point of the random
walk; there is nothing specific about (1, 0). Note that aperiodicity conditions on ψ

are clearly necessary to get the theorem. For κ = 0, the local limit theorem can
be reformulated as follows. Consider a random walk on C̄ × R whose transition
probability is Q((x, ω, z) → (x ′, ω′, z′)) = P ((x, ω) → (x ′, ω′))1z′=z+ψ(x,ω). The
local limit theorem simply means that the measure

√
nQnδ(1,0,0) converges weakly to

an explicit multiple of the measure µ ⊗ LebR/(log r)Z ⊗ LebR.
Let us now describe the relationship between the previous random walk and

skew-products. Let T be the transformation on the interval [0, 1] given by

T (x) = x

1 − x
if x <

1

2
, T (x) = 2 − 1

x
if x ≥ 1

2
. (1.8)

Then hA and hB are the inverse branches of the transformation T . The Markov operator
corresponding to the random walk on [0, 1] is therefore the adjoint (for the measure µ)
of the composition by T (i.e., the transfer operator associated to T ). The transformation
T is topologically conjugate to the transformation x �→ 2x on [0, 1], and µ is simply
the maximal entropy measure of T (i.e., the pullback of Lebesgue measure under this
conjugacy). Note that T is not uniformly expanding, since it has neutral fixed points
at zero and 1. We can then define a transformation T on [0, 1] × R/(log r)Z whose
inverse branches are h̄A and h̄B by

T(x, ω) = (
T x, ω + φ(x)

)
, (1.9)

where φ(x) = log(1−x) if x < 1/2, and φ(x) = log(x) if x ≥ 1/2. By construction,
the Markov operator corresponding to the random walk on C̄ is the transfer operator
associated to T (for the measure µ ⊗ Leb).

We can reformulate the previous theorems in the general setting of this article: we
are going to study transformations of the form (x, ω) �→ (T x, ω+φ(x)), where T is a
nonuniformly expanding transformation of a manifold X, and φ is a C1 function from
X to the circle S1. Hence, to integrate the study of Farey sequences in our general
setting, it is important not to demand uniform expansion and to be able to deal with
measures that are singular with respect to Lebesgue measure. These two constraints
justify the forthcoming definitions, but they bring along a certain number of technical
difficulties.

1.2. Definition of nonuniformly partially hyperbolic skew-products
Definition 1.3
Let Z be a Riemannian manifold, endowed with a finite measure ν. An open subset
O of Z is said to have the weak Federer property (for the measure ν) if it satisfies the
following property. We work on O, with the induced metric, and the geodesic distance
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it defines. For any C > 1, there exist D = D(O, C) > 1 and η0 = η0(O, C) >

0 such that, for any η < η0, there exist disjoint balls B(x1, Cη), . . . , B(xk, Cη)
that are compactly included in O and sets A1, . . . , Ak contained, respectively, in
B(x1, DCη), . . . , B(xk, DCη) whose union covers a full measure subset of O and
such that, for any x ′

i ∈ B(xi, (C − 1)η), we have ν(B(x ′
i , η)) ≥ ν(Ai)/D.

A family of open subsets (On)n∈N of Z is said to uniformly have the weak Federer
property (for the measure ν) if each set On has the weak Federer property and if,
furthermore, for any C > 1, supn∈N

D(On, C) < ∞.

This is a technical covering condition. It is a kind of weakening of the classical
doubling condition having the following advantages. On the one hand, it is satisfied
in many examples (particularly for Farey sequences, where the doubling condition
does not hold). On the other hand, it is sufficient to carry out the forthcoming proofs
(essentially, it is the technical condition that is required for Dolgopyat-type arguments
to work). The main point of the definition is that D can be chosen independently of η:
in some sense, the weak Federer property is a covering lemma with built-in uniformity.

The following definition describes the class of applications T to which the results
of this article apply. It is large enough to contain the map (1.8), as we see later on.

Definition 1.4
Let T be a nonsingular transformation on a Riemannian compact manifold X (possibly
with boundary), endowed with a Borel measure µ. Let Y be a connected open subset
of X, with finite measure and finite diameter for the induced metric. We say that T

is a nonuniformly expanding transformation of base Y , with exponential tails and the
uniform weak Federer property if the following properties are satisfied.
(1) There exist a finite or countable partition (modulo 0) (Wl)l∈� of Y and times

(rl)l∈� such that, for all l ∈ �, the restriction of T rl to Wl is a diffeomorphism
between Wl and Y , satisfying κ ‖v‖ ≤ ‖DT rl (x)v‖ ≤ Cl ‖v‖ for any x ∈ Wl

and for any tangent vector v at x, for some constants κ > 1 (independent of l)
and Cl . We denote by TY : Y → Y the map which is equal to T rl on each set
Wl .

(2) Let H = H1 denote the set of inverse branches of TY and, more generally,
let Hn denote the set of inverse branches of T n

Y . Let J (x) be the inverse of the
Jacobian of TY at x with respect to µ. We assume that there exists a constant
C > 0 such that, for any inverse branch h ∈ H, ‖D((log J ) ◦ h)‖ ≤ C.

(3) There exists a constant C such that, for any l, if hl : Y → Wl denotes the
corresponding inverse branch of TY , for any k ≤ rl , then

∥∥T k ◦ hl

∥∥
C1(Y )

≤ C.
(4) Let r : Y → N be the function that is equal to rl on Wl . Then there exists

σ0 > 0 such that
∫

Y
eσ0r dµ < ∞.
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(5) Let µY denote the probability measure induced by µ on Y . Then the sets h(Y ),
for h ∈ ⋃

n∈N
Hn, uniformly have the weak Federer property (with respect to

µY ).

In this article, we only consider transformations T of this type. Hence, we simply say
that T is nonuniformly expanding with base Y .

The first four conditions above roughly mean that T is nonuniformly expanding
and that an induced map TY (which is not necessarily a first-return map) is uniformly
expanding and Markov, with exponential tails. This kind of assumption is described
in [Y1], [Y2], and is often called a Young tower structure in the literature. The fifth
condition is a covering condition. It is probably not very natural to require it uniformly
over the inverse branches of the iterates of TY , but it is satisfied in all the examples
that we consider here.

Under the first two assumptions, it is a folklore result that TY preserves a proba-
bility measure that is equivalent to µY , whose density is C1 and bounded away from
zero and ∞. Without loss of generality, we may replace µY by this measure (which
does not change the assumptions), and we therefore always assume that µY is invariant
under TY (and has mass 1). Inducing from µY (and using the fourth assumption) and
then renormalizing, we obtain a probability measure µ̃ on X which is invariant under
T and ergodic. However, the restriction of µ̃ to Y is, in general, not proportional to
µY , when the return times rl are not first-return times.

The measure µ̃ is always ergodic for T , but sometimes not for its iterates: in
general, there exist a divisor d of gcd{rl | l ∈ �} and open sets (Oi)i∈Z/dZ such that
T maps Oi to Oi+1, and the restriction of T d to each Oi is mixing. For the sake of
simplicity, we only consider transformations T that are mixing (i.e., for which d = 1).
However, the results we give have their counterparts in the general case, since they
can be applied to T d on each set Oi . Note that the mixing of T is equivalent to the
ergodicity of all the iterates T n and is implied by the equality gcd{rl} = 1.

Remark 1.5
Under the first four assumptions of Definition 1.4, and if T is mixing for the proba-
bility measure µ̃, then T is exponentially mixing (for Hölder-continuous functions).
This has been proved by Young in [Y1, Theorem 2] (in a slightly different set-
ting) using a spectral gap argument and again in [Y2, Theorem 3] using coupling.
We do not use these results of Young. Indeed, our arguments yield yet another
proof of this exponential mixing, through operator renewal theory (see, in particular,
Corollary 3.5). This proof is not new; it is already implicit in [S] and explicit in [G4,
Remark 2.3.7].
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In a similar setting (the study of expanding semiflows), Ruelle shows in [Ru] that a
suspension over an expanding map cannot be exponentially mixing if the roof function
is locally constant. Therefore, it is not surprising that this case should be excluded
from our study, since, among other results, we prove exponential mixing.

Definition 1.6
Let T be a nonuniformly expanding transformation of base Y on a manifold X. Let
φ : X → R be a C1 function. Denote by φY the induced function on Y given by
φY (x) = ∑r(x)−1

i=0 φ(T ix). We say that φ is cohomologous to a locally constant function
if there exists a C1 function f : Y → R such that the function φY − f + f ◦ TY is
constant on each set Wl, l ∈ �.

If φ is not cohomologous to a locally constant function, we define a map
T : X × S1 → X × S1 by T(x, ω) = (T x, ω + φ(x)). It preserves the probability
measure µ̃ ⊗ Leb (in this article, the Lebesgue measure on the circle S1 = R/2πZ,
denoted by Leb or dω, is always normalized of mass 1). The transformation T is
nonuniformly partially hyperbolic in the following sense: in each fiber S1, T is an
isometry while it is expanding in the direction of X. Hence, we would like to talk
of partial hyperbolicity. However, since the expansion of T is not uniform, T can
have neutral fixed points or even critical points. Hence, there may exist points where
the expansion in the X direction does not dominate what is happening in the fiber.
Therefore, the partial hyperbolicity is asymptotic rather than instantaneous.

1.3. Limit theorems for nonuniformly partially hyperbolic skew-products
Let T be a nonuniformly expanding map with base Y , preserving the probability
measure µ̃, and mixing. Assume that µY has full support in Y . Let φ : X → R be a
C1 function which is not cohomologous to a locally constant function. We consider
the skew-product T(x, ω) = (T x, ω + φ(x)).

THEOREM 1.7
For any α > 0, there exist θ̄ < 1 and C > 0 such that, for all functions f, g from
X × S1 to C, respectively, bounded and Hölder-continuous with exponent α, and for
all n ∈ N, we have

∣∣∣
∫

f ◦ Tn · g d(µ̃ ⊗ Leb) −
( ∫

f d(µ̃ ⊗ Leb)
)( ∫

g d(µ̃ ⊗ Leb)
)∣∣∣

≤ Cθ̄n ‖f ‖L∞ ‖g‖Cα . (1.10)
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We then are interested in limit theorems for the transformation T. Let ψ : X×S1 → R

be a Hölder-continuous function, such that
∫

ψ d(µ̃ ⊗ Leb) = 0. Let

σ 2 =
∫

ψ2 d(µ̃ ⊗ Leb) + 2
∞∑

k=1

∫
ψ · ψ ◦ Tk d(µ̃ ⊗ Leb). (1.11)

This quantity is well defined by Theorem 1.7.

PROPOSITION 1.8
We have σ 2 ≥ 0. Moreover, σ 2 = 0 if and only if there exists a measurable function
f : X × S1 → R such that ψ = f − f ◦ T almost everywhere. In this case, the
function f has a version that is continuous on Y × S1, and it belongs to Lp(X × S1)
for all p < ∞.

Let us denote by Snψ the Birkhoff sums
∑n−1

i=0 ψ ◦ Ti . When σ 2 is nonzero (i.e., ψ

is not a coboundary), then ψ satisfies the central limit theorem, as follows.

THEOREM 1.9
Let ψ be a Hölder-continuous function on X × S1 with zero average, such that
σ 2 > 0. Then Snψ/

√
n satisfies the central limit theorem; that is, Snψ/

√
n converges

in distribution (for the probability measure µ̃⊗Leb) towards the Gaussian distribution
N(0, σ 2).

Let us say that ψ is periodic if there exist a > 0, λ > 0, and f : X × S1 → R/λZ

measurable such that ψ = f − f ◦ T + a mod λ almost everywhere. Otherwise,
we say that ψ is aperiodic (this implies, in particular, that ψ is not a coboundary and
hence that σ 2 > 0).

PROPOSITION 1.10
If ψ is a periodic C6 function, there exist a > 0, λ > 0, and f : X × S1 → R/λZ

measurable such that ψ = f − f ◦ T + a mod λ almost everywhere, and f is
continuous on Y × S1.

This proposition makes it possible to check in practice whether a function ψ is periodic
or not using periodic points: let x be a point in Y , fixed under an iterate Tn of T such
that T is continuous on a neighborhood of the orbit of x. If ψ = f − f ◦ T + a

mod λ almost everywhere, with f continuous on Y , then f is continuous (modulo λ)
along the orbit of x, and we obtain ψ = f − f ◦ T + a mod λ along this orbit. In
particular, Snψ(x) = an mod λ; this restricts the possible values of a and λ. Using
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three periodic orbits of T, we may reach a contradiction, showing that no values of a

and λ are possible, and proving that ψ is aperiodic.
The notion of periodicity is interesting, since it gives the only obstruction to the

local limit theorem as follows.

THEOREM 1.11
Let ψ be a C6 function on X × S1 with vanishing average, aperiodic (which implies
σ 2 > 0). Then the Birkhoff sums Snψ satisfy the local limit theorem in the following
sense: for any compact interval I and any real sequence kn such that kn/

√
n → κ ∈ R,

we have, when n → ∞, the following:

√
n (µ̃ ⊗ Leb)

{
(x, ω) ∈ X × S

1
∣∣ Snψ(x, ω) ∈ I + kn

} → Leb(I )
e−κ2/(2σ 2)

σ
√

2π
. (1.12)

We also obtain numerous other limit theorems (such as the Berry-Esseen theorem
on the speed of 1/

√
n in the central limit theorem, the renewal theorem, and so on).

Instead of giving precise statements, we give the key estimate that implies all of them
by showing that the Birkhoff sums Snψ essentially behave like a sum of independent
identically distributed random variables.

THEOREM 1.12
Let ψ be a C6 function with zero average, such that σ 2 > 0. There exist τ0 > 0, C > 0,
c > 0, and θ̄ < 1 such that, for all functions f, g from X × S1 to C, respectively,
bounded and C6, for any n ∈ N, and for any t ∈ [−τ0, τ0], we have

∣∣∣
∫

eitSnψ · f ◦ Tn · g d(µ̃ ⊗ Leb)

−
(

1 − σ 2t2

2

)n( ∫
f d(µ̃ ⊗ Leb)

)( ∫
g d(µ̃ ⊗ Leb)

)∣∣∣
≤ C

(
θ̄ n + |t |(1 − ct2)n

) ‖f ‖L∞ ‖g‖C6 . (1.13)

Moreover, if ψ is aperiodic, for all t0 > τ0 there exist C > 0 and θ̄ < 1 such that, for
all |t | ∈ [τ0, t0], we have

∣∣∣
∫

eitSnψ · f ◦ Tn · g d(µ̃ ⊗ Leb)
∣∣∣ ≤ Cθ̄n ‖f ‖L∞ ‖g‖C6 . (1.14)

Taking f = g = 1, we obtain that the characteristic function of eitSnψ essentially
behaves like (1 − σ 2t2/2)n, which makes it possible to prove Theorem 1.9 for C6

functions and to prove Theorem 1.11, as well as numerous limit theorems, by mim-
icking the classical methods in probability theory for sums of independent identically
distributed random variables. It should just be checked that the additional error term
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θ̄ n + |t |(1 − ct2)n does not spoil the arguments. This has already been done in [G2,
pages 30–33]. We do not give further details on these classical arguments in the
following.

Note that, taking t = 0, Theorem 1.12 implies Theorem 1.7 (for α = 6, but this
easily implies the general case by a regularization argument). However, the proof of
Theorem 1.7 is considerably easier than the proof of Theorem 1.12; hence, we give
proof of Theorem 1.7 with full details, which also allows us to introduce, in a simple
setting, some tools used later in more sophisticated versions.

Remark 1.13
Propositions 1.8 and 1.10 give automatic regularity for solutions of the cohomological
equation, with a loss of regularity (arbitrarily small in Proposition 1.8, of 6 derivatives
in Proposition 1.10). The loss of 6 derivatives is probably not optimal but, with the
method of proof we use, some loss seems to be unavoidable.

In general, the continuity of f on Y × S1 cannot be extended to a continuity on
the whole space (e.g., think of a map T with discontinuities). Nevertheless, using the
specificities of T , it is often possible to obtain the continuity of f on larger sets.

Remark 1.14
Theorem 1.9 is first proved for C6 functions by using Theorem 1.12 and then is ex-
tended to Hölder-continuous functions by an approximation argument. This argument
does not apply for the local limit theorem, which explains our stronger regularity
assumption in Theorem 1.11.

Remark 1.15
We require that µY have full support in Y . For some interesting maps (e.g., maps
on Cantor sets; see [N]), this condition is not satisfied. The full support condition is
used only to get Dolgopyat-like contraction in the proof of Lemma A.8, and it can be
dispensed with under a stronger condition on φ. Indeed, if there exist two sequences
h1, h2, . . . and h′

1, h
′
2, . . . of elements of H and a point x in the support of µY such

that the series
∑∞

n=1 D(φY ◦ hn · · ·h1)(x) and
∑∞

n=1 D(φY ◦ h′
n · · · h′

1)(x) converge
and are not equal, then the proof of this lemma goes through (note that this condition
is very similar to the nonlocal integrability property (NLI) in [N]). When µY has full
support, this condition is equivalent to φ not being cohomologous to a locally constant
function, as shown in the proof of Lemma A.8.

1.4. Examples
In the examples, if T and φ are given, and one wants to apply the previous results, then
one should first check that T is nonuniformly expanding of base Y for some Y and
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then prove that φ is not cohomologous to a locally constant function. The first issue
depends strongly on the map T (see the following list of examples), but the second
one is generally easy to check by using periodic orbits, as follows.

Assume—this is the case in all our examples—that every inverse branch h ∈ H
of TY has a unique fixed point xh. Let f be a C1 function on Y . If φY − f + f ◦ TY is
constant on each set h(Y ), it has to be equal to φY (xh) there. Consequently, the function
g, equal to φY −φY (xh) on each set h(Y ), is cohomologous to zero. In particular, if one
can find a periodic orbit of TY along which the Birkhoff sum of g is nonzero, then this
is a contradiction, and φ cannot be cohomologous to a locally constant function. This
can easily be checked in practice: for example, we use this argument in the specific
case of Farey sequences.

If 1 ≤ k ≤ ∞, the previous argument shows, moreover, that in the space of
Ck functions on X, the set of functions φ which are cohomologous to a locally
constant function is contained in a closed vector subspace of infinite codimension.
Hence, the theorems of Section 1.3 can be applied for most (in a very strong sense)
functions φ.

Let us now describe different classes of maps T which satisfy Definition 1.4.

Nonuniformly expanding maps and Lebesgue measure
Let T be a C2 map on a compact Riemannian manifold X (possibly with boundary). We
assume that T is nonuniformly expanding in the following sense (see [ABV], [ALP],
[G3]). Let S be a closed subset of X with zero Lebesgue measure (corresponding to
the singularities of T ), possibly empty, and containing the boundary of X. We assume
that T is a local diffeomorphism on X − S, nondegenerate close to S: there exist
B > 1 and β > 0 such that, for any x ∈ X −S and any nonzero tangent vector v at x,

1

B
d(x, S)β ≤ ‖DT (x)v‖

‖v‖ ≤ Bd(x, S)−β. (1.15)

Assume also that, for any x, y ∈ X with d(x, y) < d(x, S)/2,

∣∣log ‖DT (x)−1‖ − log ‖DT (y)−1‖∣∣ ≤ B
d(x, y)

d(x, S)β
(1.16)

and

∣∣log | det DT (x)−1| − log | det DT (y)−1|∣∣ ≤ B
d(x, y)

d(x, S)β
. (1.17)

For δ > 0, let dδ(x, S) = d(x, S) if d(x, S) < δ, and let dδ(x, S) = 1 otherwise. Let
δ : (0, ε0) → R+ be a positive function, and let κ > 0. Assume that, for any ε < ε0,
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there exist C > 0 and θ < 1 such that, for any N ∈ N,

Leb
{
x ∈ X

∣∣∣ ∃n ≥ N,
1

n

n−1∑
k=0

log
∥∥DT (T kx)−1

∥∥−1
< κ

or

1

n

n−1∑
k=0

− log dδ(ε)(T
kx, S) > ε

}
≤ CθN.

This assumption means that the points that do not see the expansion or are too close
to the singularities after time N have an exponentially small measure.

As examples of such applications, let us first mention uniformly expanding maps,
of course, but also multimodal maps with infinitely many branches (see [AP]), which
have thereby infinitely many critical points, as well as small perturbations of uni-
formly expanding maps (such perturbations can have saddle fixed points; see [Al, Sec-
tion 6]).

PROPOSITION 1.16
Under these assumptions, there exists a subset Y of X such that T is nonuniformly
expanding of base Y for Lebesgue measure.

Proof
This theorem is essentially proved in [G3, Theorem 4.1]. More precisely, this theorem
constructs a subset Y of X and a partition of Y such that the first four properties of
Definition 1.4 are satisfied. The set Y is an open set with piecewise C1 boundary, and
each inverse branch h can be extended to a neighborhood of Y .

If the boundary of Y were C1 (and not merely piecewise C1), each set h(Y ) would
also be an open set with C1 boundary, and the uniform weak Federer property would
directly result from the good doubling properties of Lebesgue measure. However, if
the boundary of Y is only piecewise C1, the images of the boundary components by
an inverse branch h could meet with smaller and smaller angles, which could prevent
the uniform weak Federer property from holding.

Therefore, we have to modify slightly the construction in [G3] to obtain a set Y

with C1 boundary. In that article, one starts from a partition Ui of X (into sets with
piecewise C1 boundary), and one subdivides each set Ui into subsets Vj that are sent
by some iterate of T on one of the sets Uk . The set Y is then one of the Ui’s, and the
desired partition of Y is obtained by inducing from the Vj ’s (see [G3, Section 4] for
details).

To obtain a smooth Y , we also start from a partition Ui , but we decompose Ui

as U 1
i ∪ U 2

i , where U 1
i is a ball inside Ui and U 2

i is its complement. Applying the
construction of [G3] separately to each set U 1

i and U 2
i , we subdivide them into sets
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Vj that are sent by some iterate of T to some Uk . We finish the construction by taking
for Y one of the sets U 1

i and inducing on it. �

To apply the results of Section 1.3, one needs an additional mixing assumption, which
is satisfied as soon as all the iterates of T are topologically transitive on the attractor⋂

n≥0 T n(X) (see [G3]).

Multimodal maps of Collet-Eckmann type
Let T be a multimodal map on a compact interval I . If the derivative of T n along
the postcritical orbits grow exponentially fast, and T is not renormalizable (which
prevents periodicity problems), [BLV] shows that there exists a unique absolutely
continuous invariant probability measure µ̃, and that T is exponentially mixing for
this measure.

To prove this result, the authors show that there exist an interval Y and a sub-
partition Wl of Y satisfying the first four properties of Definition 1.4 for Lebesgue
measure. Since the sets h(Y ) (for h ∈ ⋃

n∈N
Hn) are all intervals, the uniform weak

Federer property is also trivially satisfied by Lebesgue measure.

Gibbs measures in dimension 1
If T is a C2 uniformly expanding map on a compact connected manifold X, and if
u : X → R is a C1 function, there exists a unique invariant probability measure µ

that maximizes the quantity hν(T ) + ∫
u dν over all invariant probability measures

ν. This is the so-called Gibbs measure associated to the potential u.
In general, it is unlikely that such a Gibbs measure satisfies the weak Federer

property (unless µ is equivalent to Lebesgue measure, which corresponds to potentials
u which are cohomologous to − log det(DT )). Indeed, the proof of the weak Federer
property in the previous examples relies in an essential way on the good doubling
properties of Lebesgue measure.

However, in dimension 1 (i.e., if T is a circle map), the iterates of T are conformal,
which implies that µ satisfies the weak Federer property, and our results apply. Proofs
of the Federer property in this setting have been given by Dolgopyat and by Pollicott,
but with small imprecisions, so we give a full proof in Proposition 6.2 (as a very
simple consequence of the methods we develop to treat the Farey sequence). Note that
the same results also apply in higher dimension for conformal uniformly expanding
maps (since uniformly expanding maps always admit Markov partitions).

Farey sequences
The results of Section 1.3 also apply to the map (1.9), which generates the Farey
sequence. However, the proof requires more work, since checking the weak Federer
property is not trivial. Moreover, the most interesting results stated in Theorem 1.2
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are pointwise results (for a random walk starting from (1, 0)), while the statements of
Section 1.3 are on average results. To prove the pointwise statements, we therefore
need to use more technical results, established during the course of the proof of
Theorems 1.7 and 1.12. As a consequence, the results of Section 1.1 are proved at the
end of the article in Section 6.

1.5. Method of proof and contents of the article
In general, to prove exponential mixing and a local limit theorem, it is very comfortable
to have a spectral gap property for a transfer operator (the spectral perturbation
methods then yield the desired results quite automatically). The spectral gap is in
general a consequence of some expansion or contraction properties. However, in our
setting, the map T is an isometry in the fibers, and a spectral gap seems therefore
difficult to obtain. Note that [Ts] manages to construct a space with a spectral gap for
such maps, but under strong assumptions: the map T should be uniformly expanding,
and µ̃ should be absolutely continuous with respect to Lebesgue measure. These
properties are unfortunately not satisfied in our setting, and we thus have to work
without a spectral gap (on the space X × S1).

In [D1], [D2], Dolgopyat developed techniques that he used to prove the exponen-
tial decay of correlations for maps T, as above, if T is uniformly expanding. His main
idea is to work in Fourier coordinates, to see that each frequency is left invariant by the
transfer operator associated to T and to obtain explicit bounds on the mixing speed
in each frequency (by using oscillatory integrals, which give explicit compensations).
The gain is not uniform with respect to the frequency (which accounts for the lack of
spectral gap), but the estimates are nevertheless sufficiently good to obtain exponential
mixing.

In an essential way, we use Dolgopyat’s ideas in this article as a technical tool.
This tool applies to uniformly expanding maps, which is not the case of our map T ; we
therefore need to induce on the set Y to get uniform expansion. To obtain information
on the initial map, we then make use of (elementary) ideas of generating series and
renewal theory.

The real difficulty of the article lies in the local limit theorem, since a spectral
gap property seems more or less necessary to any known proof of the local limit
theorem, while Dolgopyat’s arguments do not give such a spectral gap. If we try to
work at the level of frequencies, just like for the exponential mixing, we quickly
run into the following additional difficulty: if f is a function of frequency k (i.e.,
f (x, ω) = u(x)eikω), then eitψf is no longer a function of frequency k. In other
words, the multiplication by eitψ—which is at the heart of the proof of the local limit
theorem for the function ψ—mixes the different frequencies together. Hence, even
though Dolgopyat’s techniques give a good control at high frequencies, this control
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is instantaneously ruined by the multiplication by eitψ , which can go back into low
frequencies, where no control is available.

The central idea for the proof of the local limit theorem is to induce at the
same time in x and in k: we consider some kind of random walk on the space
X × Z (where the Z factor corresponds to the space of frequencies), and we in-
duce on a subset Y × [−K, K], where K is large enough so that what happens
outside of this set can be controlled by Dolgopyat’s tools. The main interest of this
process is that the induced operator on Y × [−K, K] has a spectral gap and can
be studied very precisely. Using techniques of operator renewal theory in [S], [G2],
we then use this information to obtain a global control on X × Z, finally yielding
Theorem 1.12.

Remark 1.17
The next natural question is to study maps of the form T′ : (x, ω, ω′) �→ (T x, ω +
φ(x), ω′+ψ(x, ω)), where T and φ are as above. If ψ is aperiodic, then Theorem 1.12
shows that the correlations of functions of the form u(x, ω)eikω′

(where u is C6 and
k ∈ Z) tend to zero. Since the linear combinations of such functions are dense in L2,
this implies that T′ is mixing. It is even Bernoulli, by the following argument. First,
T (or rather its natural extension) is Bernoulli since it is mixing and nonuniformly
hyperbolic (see, e.g., [OW]). Since T is a mixing isometric extension of T , it is also
Bernoulli by [R]. The same argument applied to T then implies that T′ is Bernoulli.

However, to prove further results on T′ such as exponential mixing or the local
limit theorem (probably under stronger assumptions on ψ) seems out of reach by
current techniques. More precisely, we use Dolgopyat’s techniques (which give precise
explicit estimates for the map T ) to study the map T (and obtain, by an abstract
compactness argument, nonexplicit estimates for T). To go one step further and study
precisely T′, we would need explicit estimates for T (i.e., in (1.14), we would need
to control θ̄ and C in terms of t0), which seems considerably more difficult.

The article is organized as follows. In Section 2, we state a theorem on transfer
operators giving all the technical estimates we need further on (with contraction in
the classical sense or in Dolgopyat norms). This technical theorem is proved in the
appendix. In Section 3, it is used to prove Theorem 1.7. The proof is a baby version
of the proof of the local limit theorem, introducing some tools on renewal operators
that are used further on. In Section 4, we describe in detail the strategy of the proof of
the local limit theorem and give two technical results essential to its proof. The proof
itself is given in Section 5. Finally, Section 6 is devoted to the proof of the results on
Farey sequences as stated in Section 1.1.

In the remainder of this article, we fix once and for all a map T that is nonuniformly
expanding of base Y and mixing, together with a function φ that is not cohomologous
to a locally constant function.
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2. Tools on transfer operators
Let us first give two general tools on transfer operators. If T0 is a probability-preserving
map, its transfer operator T̂0 is defined by duality by

∫
T̂0u · v = ∫

u · v ◦ T0. It acts
on integrable functions. It turns out that the spectral properties of the transfer operator
(acting on a suitable Banach subspace of L1) give a very powerful tool to study the
dynamical properties of T0. The following theorem of Hennion is especially important
for us.

THEOREM 2.1
Let M be a linear operator acting continuously on a Banach space B endowed with a
norm ‖·‖. Assume that there exists a seminorm | · | on B such that the unit ball of ‖·‖
is relatively compact for | · |. Assume also that there exist n > 0, C > 0, and σ > 0
such that, for any x ∈ B,

‖Mnx‖ ≤ σn ‖x‖ + C|x|. (2.1)

Then the essential spectral radius of M is at most σ ; that is, for any r > σ , the
intersection of the spectrum of M with {|z| > r} consists in finitely many eigenvalues
of finite multiplicity.

Proof
Hennion proves this theorem in [H, Corollary 1], assuming additionally that M is also
continuous for the seminorm | · |; [BGK, Lemma 2.2] shows that this assumption can
be dispensed with. �

We also need the following general lemma on transfer operators.

LEMMA 2.2
Let T0 be an ergodic transformation of a probability space, with corresponding transfer
operator T̂0. Let g be a nonzero integrable function, let f be a measurable function
with modulus at most 1, and let λ ∈ C with |λ| ≥ 1. We assume that λg = T̂0(fg).
Then |λ| = 1, |f | = 1 almost everywhere, and λg ◦ T = fg almost everywhere.

Proof
We have |λ||g| ≤ T̂0|g|. Integrating this equation yields |λ| ‖g‖L1 ≤ ‖g‖L1 , which
implies |λ| = 1. Moreover, the function T̂0|g| − |g| is nonnegative and has zero
integral, hence it vanishes almost everywhere. Since T̂0|g| = |g|, the measure with
density |g| is invariant. By ergodicity, |g| is almost everywhere constant (and this
constant is nonzero). The equation λg = T̂0(fg) becomes T̂0(λ−1fg/g ◦ T0) = 1.
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Therefore,

1 =
∫

λ−1f
g

g ◦ T0
≤

∫ ∣∣∣λ−1f
g

g ◦ T0

∣∣∣ ≤ 1. (2.2)

This shows that the function λ−1f
g

g◦T
has to be equal to 1 almost everywhere. �

We now turn to the specific situation of skew-products. For k ∈ Z and v ∈ C1(Y ), we
define an operator

Lkv(x) =
∑
h∈H

e−ikφY (hx)J (hx)v(hx). (2.3)

These operators are the building blocks of the transfer operator associated to T. In
particular, let L = L0 (this is the transfer operator associated to TY ). For x ∈ Y and
n ∈ N, let us also write SY

n φY (x) = ∑n−1
i=0 φY (T i

Y x).
For n ∈ N and x ∈ Y , let r (n)(x) = ∑n−1

i=0 r(T i
Y x). This is simply the Birkhoff

sum SY
n r(x), but we favor the more compact notation r (n) since we think of r (n) as a

return time for the iterated map T n
Y , and not as a Birkhoff sum.

For n ∈ N, A > 0, and ε > 0, we denote by CA,ε
n the set of functions v from Y

to C which are C1 on each set h(Y ) for h ∈ Hn, and such that the quantity

‖v‖CA,ε
n

= sup
h∈Hn

sup
x∈Y

max(|v(hx)|, ‖D(v ◦ h)(x)‖ /A)/eεr (n)(hx) (2.4)

is finite. These are the functions we work with. They can be unbounded, but their
explosion speed is controlled by the return time. Typically, if one starts from a
smooth function on X and induces, then the resulting function is unbounded, but
it belongs to CA,ε

1 for any A, ε. In particular, for any A > 0 and any ε > 0, we have
supn∈N

∥∥SY
n φY

∥∥
CA,ε

n
< ∞. Note that the set of functions CA,ε

n does not depend on A,
but the corresponding norm does.

Let k ∈ Z, and let C0 > 1. We denote by Ek(C0) the set of pairs (u, v) of
functions from Y to C such that u takes only nonnegative values, |v| ≤ u, and
max(‖Dv‖ , ‖Du‖) ≤ C0 max(1, |k|)u. This set is a cone (i.e., it is stable under
addition and multiplication by nonnegative real numbers). We also write ‖v‖Dk(C0) (or
simply ‖v‖Dk

) for the infimum of the quantities ‖u‖L4 over all functions u such that
(u, v) ∈ Ek(C0). Since Ek(C0) is a cone, this is a norm, satisfying ‖v‖L4 ≤ ‖v‖Dk

≤
‖v‖C1 . The Dk norm has been (implicitly) used by Dolgopyat, and it is very useful
since it enjoys good contraction properties for the action of the transfer operator Lk .

We freely use the following trivial inequalities: if |k| ≤ |�|, then ‖v‖D�
≤ ‖v‖Dk

.
Moreover, for any k, we have ‖v‖Dk

≤ ‖v‖C1 . Finally, we have ‖v‖CA,ε′
n

≤ ‖v‖CA,ε
n

as
soon as ε′ ≥ ε.
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The theorem we use is the following. Recall that T is a fixed nonuniformly ex-
panding transformation of base Y and that φ is a C1 function that is not cohomologous
to a locally constant function, also fixed once and for all.

THEOREM 2.3
There exist N > 0, C0 > 1, ε > 0, and θ ∈ (2−1/(1010N), 1) such that, for any M ≥ 1,
the following properties hold.

(Classical contraction) For any A ≥ 1, there exists a constant C(A) such that, for any
ψ ∈ CA,4ε

MN and for any v ∈ C1(Y ),

‖LMN (ψv)‖C1 ≤ θ100MN
(

sup
x∈Y

|ψ(x)|/e4εr (MN)(x)
) ‖v‖C1 + C(A) ‖ψ‖CA,4ε

MN
‖v‖C0 .

(2.5)
Moreover, there exists C > 0 satisfying the following property. Let A ≥ 1,
let ψ1, . . . , ψn ∈ CA,4ε

MN , and let v ∈ C1(Y ). Write v0 = v, and write vi =
LMN (ψiv

i−1). Then

‖vn‖C1 ≤ CA
( n∏

i=1

‖ψi‖CA,4ε
MN

)(
θ100MNn ‖v‖C1 + θ−MNn ‖v‖L2

)
. (2.6)

(Dolgopyat’s contraction) For any A ≥ 1, there exists K = K(A, M) such that, for
any |k| ≥ K , for any C1 function v : Y → C, and for any function ψ ∈ CA,4ε

MN ,

‖LMN
k (ψv)‖Dk

≤ θ100MN ‖ψ‖CA,4ε
MN

‖v‖D2M k
. (2.7)

Moreover, for any |�| ≥ |k| ≥ K , we also have

‖LMN
k (ψv)‖D�

≤ θ−MN ‖ψ‖CA,4ε
MN

‖v‖D2M �
. (2.8)

The first half of the theorem is really classical (it is a consequence of the usual
contraction of transfer operators on spaces of Lipschitz or C1 functions), the second
half is less classical but should not be surprising to a reader familiar with Dolgopyat’s
techniques. However, this result contains additional technical difficulties with respect
to the same kind of results in the literature. Indeed, the functions in CA,ε

MN are usually
unbounded and have unbounded derivatives. Moreover, the application of Dolgopyat’s
arguments is problematic since the function φY is also unbounded with unbounded
derivative. As a consequence, the proof of this theorem is quite unpleasant, even
though it does not need additional conceptual ideas, only technical ones. Therefore,
the proof of Theorem 2.3 is postponed to the appendix.

In the rest of this article (except the appendix), N , C0, ε, and θ are fixed once and
for all and denote the constants given by Theorem 2.3.
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Remark 2.4
Note that the bounds with ‖ψ‖CA,4ε

MN
imply the same bounds with ‖ψ‖CA,ε

MN
. Most of

the time, we only need this weaker version (the inequalities with 4ε simply give a
small additional margin, which is useful from time to time). In some applications of
Theorem 2.3, the function ψ does not play any role (i.e., the theorem with ψ = 1 would
suffice). However, to study the local limit theorem, the relevant operators incorporate
the iteration of the map and the multiplication by a characteristic function. The
presence of the function ψ in the above statements makes it possible to study such an
operator using Theorem 2.3.

Remark 2.5
Concerning the precise formulation of Theorem 2.3, let us make two additional remarks
that are apparently technical but are in fact extremely important for the forthcoming
proofs.
(1) The theorem for M = 1 is sufficient to obtain the exponential mixing (and

to prove the theorem for M = 1, we only need the weak Federer property
of Y and no uniformity on the inverse branches). However, to prove the local
limit theorem, we need to take larger and larger M’s; since θ is independent
of M , the gain θ100MN enables us to control some terms that are polynomially
growing with M . The uniformity in M in Theorem 2.3 is therefore crucial.

(2) Since ‖v‖D2M k
≤ ‖v‖Dk

, the inequality (2.7) is stronger than

‖LMN
k (ψv)‖Dk

≤ θ100MN ‖ψ‖CA,4ε
MN

‖v‖Dk
. (2.9)

The inequality (2.9) would be sufficient to prove the exponential mixing. How-
ever, to prove the local limit theorem, we jump from one frequency to another,
and the additional gain in the index given by (2.7) is crucial (especially in the
proof of Lemma 4.3).

3. Exponential mixing

3.1. A model for T
For n ∈ N, we define an artificial transformation, which models the dynamics of
T, as follows. Let X(n) = {(x, i) | x ∈ Y, i < r (n)(x)}, define a map U (n) (or
simply U if n is implicit) on X(n) by U (x, i) = (x, i + 1) if i + 1 < r (n)(x), and let
U (x, r (n)(x) − 1) = (T n

Y (x), 0). Let π (n) : X(n) → X be given by π (n)(x, i) = T i(x);
we obtain π (n) ◦ U = T ◦ π (n). We endow each set h(Y ) × {i}, for h ∈ Hn and
i < r (n) ◦ h, with the restriction of the measure µY to h(Y ). This yields a measure
µ(n) that is invariant under U and whose restriction to Y × {0} is equal to µY .
Strictly speaking, the map U is not defined everywhere since some points of Y do not
come back to Y . However, it is defined µ(n) almost everywhere, which is sufficient
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for our needs. The measure π (n)
∗ µ(n) is absolutely continuous with respect to µ̃ and

invariant; hence, these measures are proportional by ergodicity. In particular, setting
µ̃(n) = µ(n)/µ(n)(X(n)), we have π (n)

∗ µ̃(n) = µ̃.
We also endow X(n) with a metric, as follows. The set Y is canonically embedded

in X(n) by y �→ (y, 0); we endow the image of this embedding by the metric of Y . Let
h ∈ Hn, and let 0 < i < r (n) ◦ h (this function is constant on Y ). The map Ur (n)◦h−i

is a bijection between h(Y ) × {i} and Y × {0}; we choose the metric on h(Y ) × {i} so
that this map is an isometry.

With this choice of the metric, the map U is very expanding on the points of the
form (y, 0) (it expands the metric by at least κn), and it is a local isometry on the
points (y, i) with i > 0. Since T satisfies the third property of Definition 1.4, the map
π (n) is almost a contraction for each n: there exists a constant C such that

‖Dπ (n)(x) · v‖ ≤ C ‖v‖ (3.1)

for any x ∈ X(n) and v tangent at x. If u : X → C is a C1 function, the function
u ◦ π (n) is then also C1 on X(n), and ‖u ◦ π (n)‖C1 ≤ C ‖u‖C1 .

We finally define a map U = U(n) on X(n) × S1 by U(x, ω) = (Ux, ω + φ ◦
π (n)(x)). If we define π̃ (n) : X(n) × S1 → X × S1 as π (n) × Id, then U is a model for
T since π̃ (n) ◦U = T◦ π̃ (n). To study the properties of T, it is therefore sufficient to
understand U(n) (for any conveniently chosen n). Abusing notations, we simply write
φ on X(n) instead of φ ◦ π (n). We also identify Y with Y × {0} ⊂ X(n).

The map U is not always mixing for the measure µ̃(n); setting

d = d (n) = gcd
{
r (n)(x)

∣∣ x ∈ Y
}
, (3.2)

then U is mixing if and only if d = 1. If d > 1, let us write, for k ∈ Z/dZ, µ̃
(n)
k for

the probability measure induced by µ̃(n) on the set {(x, i) | i = k mod d}. Then each
measure µ̃

(n)
k is invariant under Ud and mixing. The measure π (n)

∗ µ̃
(n)
k is absolutely

continuous with respect to µ̃ and invariant under T d . Since T d is ergodic (because T

is mixing), this yields π (n)
∗ µ̃

(n)
k = µ̃.

3.2. The transfer operator associated to U(N)

In the rest of this section, we work on X(N), where N is given by Theorem 2.3 (and
fixed once and for all). This theorem makes it possible to study the transfer operator
Û associated to the map U = U(N). Our goal in this section is to use this information
to prove Theorem 1.7.

To keep the arguments as transparent as possible, we assume (until the end of the
proof and without repeating it each time) that d (N) = gcd{r (N)(x)} is equal to 1. At
the end of the proof, we indicate the modifications to be done in the general case.
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Let us write a function v on X(N) × S1 as v(x, ω) = ∑
k∈Z

vk(x)eikω, that is,

vk(x) =
∫

v(x, ω)e−ikω dω, (3.3)

where dω denotes the normalized Lebesgue measure on S1. If Û is the transfer operator
associated to U, and if J is the inverse of the Jacobian of U for µ(N), then

Ûv(x, ω) =
∑

U(x ′,ω′)=(x,ω)

J(x ′)v(x ′, ω′) =
∑

U (x ′)=x

J(x ′)v
(
x ′, ω − φ(x ′)

)

=
∑
k∈Z

∑
Ux ′=x

J(x ′)vk(x ′)eik(ω−φ(x ′)).

In the same way, if J(n) denotes the Jacobian of Un, then

Ûnv(x, ω) =
∑
k∈Z

∑
Unx ′=x

J(n)(x ′)vk(x ′)eik(ω−Snφ(x ′)). (3.4)

Hence, the operator Ûn is diagonal, acting on the kth frequency by the operator

Mn
kv(x) =

∑
Unx ′=x

J(n)(x ′)v(x ′)e−ikSnφ(x ′). (3.5)

We understand separately the action of Mk for each k. Using the induction process,
we are able to understand this operator for points x, x ′ belonging to the base Y of
X(N). We then use this information to reconstruct the whole operator Mk . To do so,
let us define the following operators:

Rn,kv(x) =
∑

Unx ′=x
x ′∈Y,Ux ′,...,Un−1x ′ �∈Y,Unx ′∈Y

J(n)(x ′)v(x ′)e−ikSnφ(x ′), (3.6)

Tn,kv(x) =
∑

Unx ′=x
x ′∈Y,Unx ′∈Y

J(n)(x ′)v(x ′)e−ikSnφ(x ′), (3.7)

An,kv(x) =
∑

Unx ′=x
x ′∈Y,Ux ′,...,Unx ′ �∈Y

J(n)(x ′)v(x ′)e−ikSnφ(x ′), (3.8)

Bn,kv(x) =
∑

Unx ′=x
x ′,...,Un−1x ′ �∈Y,Unx ′∈Y

J(n)(x ′)v(x ′)e−ikSnφ(x ′), (3.9)

Cn,kv(x) =
∑

Unx ′=x
x ′,...,Unx ′ �∈Y

J(n)(x ′)v(x ′)e−ikSnφ(x ′). (3.10)
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The main interest of these definitions is the following. First, cutting an orbit according
to the first and last time it belongs to Y , we get

Mn
k = Cn,k +

∑
a+i+b=n

Aa,kTi,kBb,k. (3.11)

Moreover, considering all the times an orbit belongs to Y , we obtain

Tn,k =
∞∑

p=1

∑
j1+···+jp=n

Rj1,k · · ·Rjp,k. (3.12)

Finally, for z ∈ C with modulus at most eε, we have
∑
n>0

znRn,kv = LN
k (zr (N)

v). (3.13)

The restriction |z| < eε ensures that this operator is well defined by Theorem 2.3.
More precisely, we even have the following.

LEMMA 3.1
There exists C > 0 such that, for any n ∈ N, for any k ∈ Z, we have

‖Rn,kv‖C1(Y ) ≤ C max(1, |k|)e−2εn ‖v‖C1(Y ) . (3.14)

Proof
Let ψn,k(x) = e−ikSY

N φY (x) if r (N)(x) = n, and 0 otherwise, so that Rn,kv = LN (ψn,kv).
We show that ‖ψn,k‖C1,4ε

N
≤ C max(1, |k|)e−2εn, which concludes the proof by (2.6).

We have |ψn,k(x)| ≤ e−2nεe2εr (N)(x). Moreover, if h ∈ HN satisfies r (N) ◦ h = n,
we have

‖D(ψn,k ◦ h)(x)‖ ≤ C|k|r (N)(hx) ≤ C|k|e2εr (N)(hx) ≤ C|k|e−2εne4εr (N)(hx). (3.15)

This proves the lemma. �

3.3. Study of the operators Tn,k

In Equation (3.11), the complicated part in the expression of Mn
k comes from Ti,k ,

since the other operators are more or less explicit. This section is devoted to the study
of the operators Ti,k , by using (3.12).

LEMMA 3.2
There exist C > 0 and θ̄ < 1 such that, for any k ∈ Z − {0}, for any n ∈ N, and for
any v ∈ C1(Y ), we have ‖Tn,kv‖C1 ≤ Ck2θ̄ n ‖v‖C1 .
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Proof
For k ∈ Z and |z| ≤ eε, let us write Lk,zv = LN

k (zr (N)
v) = LN (e−ikSY

N φY zr (N)
v). Since

Lk,z = ∑
zjRj,k by (3.13), Lemma 3.1 shows that this operator acts continuously on

C1(Y ) and that z �→ Lk,z is holomorphic on the disk {|z| ≤ eε}. Formally, we can

rewrite (3.12) as
∑

Tn,kz
n = (

I − ∑
Rj,kz

j
)−1 = (I − Lk,z)−1. Hence, for any path

γ in C around zero bounding a domain on which I − Lk,z is invertible for any z, we
have, for any n ∈ N,

Tn,k = 1

2iπ

∫
γ

z−n−1(I − Lk,z)
−1 dz. (3.16)

We use this equation as well as the information on Lk,z to estimate Tn,k .

Step 1. Fix A0 = 1, and let K0 = K(A0, 1) be given by the second half of Theorem
2.3 for this value of A. We first prove the lemma for |k| ≥ K0. Let us fix such a k.

Let |z| ≤ eε. The function zr (N)
belongs to CA0,ε

N and its norm is bounded by 1.
For n ∈ N, we can iterate n times (2.7) (or rather (2.9)) (for M = 1) to obtain

‖Ln
k,zv‖L4 ≤ ‖Ln

k,zv‖Dk
≤ θ100Nn ‖v‖Dk

≤ θ100Nn ‖v‖C1 . (3.17)

We then use (2.6). Note that the function ψ(x) = e−ikSY
N φY (x)zr (N)(x) is bounded by

eεr (N)(x), and that, for h ∈ HN , we have

‖D(ψ ◦ h)(x)‖ ≤ |k|‖D(SY
NφY ◦ h)(x)‖eεr (N)(x)

≤ C|k|r (N)(x)eεr (N)(x) ≤ C ′|k|e2εr (N)(x).

Letting A = C ′|k|, we have proved that ψ ∈ CA,2ε
N and that ‖ψ‖CA,2ε

N
≤ 1. Applying

(2.6) for n iterates, we obtain, for any C1 function w,

‖Ln
k,zw‖C1 ≤ C|k|(θ100Nn ‖w‖C1 + θ−Nn ‖w‖L2 ). (3.18)

Applying this equation to w = Ln
k,zv and using (3.17), we get

‖L2n
k,zv‖C1 ≤ C|k|(θ100Nn‖Ln

k,zv‖C1 + θ−Nnθ100Nn ‖v‖C1 ). (3.19)

Applying once again (3.18) but this time to v, we finally get ‖L2n
k,zv‖C1 ≤

C|k|2θ99Nn ‖v‖C1 . We can argue, in the same way for odd times, to finally obtain
the existence of C such that, for any n ∈ N, v ∈ C1(Y ), |k| ≥ K0, and |z| ≤ eε,

‖Ln
k,zv‖C1 ≤ Ck2θ40Nn ‖v‖C1 . (3.20)

In particular, this shows that the operator I − Lk,z is invertible on C1(Y ) and that its
inverse

∑
Ln

k,z has a norm that is bounded by Ck2/(1 − θ40N ).
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We can then use equation (3.16) by taking for γ a circle of radius eε. We obtain

‖Tn,k‖ ≤ Ck2

∫
γ

|z|−n ≤ Ck2e−nε. (3.21)

This concludes the proof for |k| ≥ K0.

Step 2. Consider now |k| < K0, k �= 0. We show that, for any z with |z| ≤ 1, the
operator I − Lk,z is invertible on C1(Y ). Since the invertible operators form an open
set, this implies the existence of ε(k) such that, for |z| ≤ eε(k), I − Lk,z is invertible
on C1(Y ). Using a path γ that is a circle of radius eε(k), we can then conclude as above
(without explicit control, but since there are only finitely many values of k to deal
with, this is not a problem).

Thus, consider z with |z| ≤ 1. The inequality (3.18) still holds (its proof does not
use |k| ≥ K0). Therefore, there exists C > 0 such that, for any n ∈ N, ‖Ln

k,zv‖C1 ≤
Cθ100Nn ‖v‖C1 +C(n) ‖v‖L2 . Since the injection of C1(Y ) in L2(Y ) is compact, this is
a Lasota-Yorke inequality. Hennion’s Theorem 2.1 therefore shows that the essential
spectral radius of Lk,z is less than 1. If I −Lk,z is not invertible, there must therefore
exist v ∈ C1(Y ) nonzero such that Lk,zv = v (i.e., LN (e−ikSY

N φY zr (N)
v) = v). The

operator LN is the transfer operator associated to the map T N
Y , which is ergodic on

Y . Lemma 2.2 applies and shows on the one hand that |z|r (N)
is almost everywhere

equal to 1 (hence |z| = 1) and on the other hand that v ◦ T N
Y = zr (N)

e−ikSY
N φY v almost

everywhere. Raising this equation to the power K0, we obtain that vK0 is invariant
under the operator LkK0,z

K0 . But we have already proved that I −LkK0,z
K0 is invertible

on C1(Y ). As a consequence, vK0 = 0, and v = 0, which is a contradiction. This
concludes the proof for |k| ∈ [1, K0). �

To obtain an estimate on Tn,0, we must also take into account the fact that I − L0,1 is
not invertible (its kernel corresponds to constant functions), which adds a residue in
the integral calculus of the previous proof. In the following definition, we introduce a
tool that makes the computation of this residue possible. We write D for the open unit
disk in C, and D for its closure.

Definition 3.3
Let B be a Banach space, and let Rj be operators acting on B for j > 0. We say that
they form a renewal sequence of operators with exponential decay if the following
conditions hold.
(1) There exist δ > 0 and C > 0 such that ‖Rj‖ ≤ Ce−δj . We can thus define an

operator R(z) = ∑
Rjz

j for |z| < eδ .
(2) For any z ∈ D − {1}, the operator I − R(z) is invertible on B.
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(3) The operator R(1) has a simple isolated eigenvalue at 1. Let P = P (1) be the
corresponding spectral projection, and let R′(1) = ∑

jRj . We assume that
there exists µ > 0 such that PR′(1)P = µP .

PROPOSITION 3.4
Let Rj be a renewal sequence of operators with exponential decay on a Banach space
B. Let us define an operator Tn by Tn = ∑∞

p=1

∑
j1+···+jp=n Rj1 · · ·Rjp

. Then there
exist C > 0 and θ̄ < 1 such that, for any n ∈ N, ‖Tn − P/µ‖ ≤ Cθ̄n.

Proof
For z close to 1, the operator R(z) is close to R(1). Hence, it has an eigenvalue λ(z)
close to 1, with a corresponding spectral projection P (z) (and all these quantities
depend holomorphically on z). Let us compute the derivative λ′(1).

We denote with a prime the derivative with respect to z. For any x ∈ B,
R(z)P (z)x = λ(z)P (z)x. Differentiating with respect to z and then multiplying
on the left by P (z), we get (omitting the variable z)

PR′Px + PRP ′x = λ′Px + λPP ′x. (3.22)

Moreover, PRP ′ = P 2RP ′ = PRPP ′ = λPP ′. After simplification, we obtain
PR′Px = λ′Px. For z = 1, PR′P = µP . Choosing x such that Px �= 0, we finally
get

λ′(1) = µ �= 0. (3.23)

In particular, on a small enough disk O around 1, the function z �→ λ(z) is injective,
and takes the value 1 only for z = 1.

The operators I − R(z) are invertible for z ∈ D − O, hence also for z in a
neighborhood of this compact set. We can therefore choose a path γ around zero
going along an arc of a circle of radius greater than 1 and the inner part of ∂O. It
satisfies the equation

Tn = 1

2iπ

∫
γ

z−n−1
(
I − R(z)

)−1
dz. (3.24)

We modify γ into a new path γ̃ that runs along the same arc of a circle of radius
greater than 1 and the outer part of ∂O. To obtain an analogue of (3.24), we need
to add the residue of z−n−1(I − R(z))−1 inside O. We have (I − R(z))−1 = (1 −
λ(z))−1P (z) + Q(z), where Q(z) is holomorphic inside O (hence without residue).
The only pole is thus at 1, and we get

Tn = 1

2iπ

∫
γ̃

z−n−1
(
I − R(z)

)−1
dz + 1

λ′(1)
P. (3.25)
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On γ̃ , |z| ≥ eδ′
for some δ′ > 0. As ‖(I − R(z))−1‖ is uniformly bounded along γ̃ ,

the integral term is therefore O(e−nδ′
). The remaining term gives the conclusion of

the proposition. �

We can now come back to the study of the transfer operator associated to U, and more
precisely to the operators Tn,0, which have not yet been estimated.

COROLLARY 3.5
For any C1 function v on Y , let Pv = ∫

v dµY . Then there exist C > 0 and θ̄ < 1
such that, for any n ∈ N and any v ∈ C1(Y ), we have

∥∥∥Tn,0v − 1

µ(N)(X(N))
Pv

∥∥∥
C1

≤ Cθ̄n ‖v‖C1 . (3.26)

Proof
We use the fact that the Markov transformations TY and U are mixing. Since these
transformations are topologically mixing (by the equality gcd{r (N)(x)} = 1 for U ),
the mixing in measure results, for example, from [A, Theorem 4.4.7].

Let us show that Rn,0 is a renewal sequence of operators with exponential decay
on the Banach space B = C1(Y ). The exponential decay of ‖Rn,0‖ is given by Lemma
3.1. Let L0,zv = LN (zr (N)

v) = ∑
znRn,0 = R(z).

Let us check that I − R(z) = I − L0,z is invertible for z ∈ D − {1}. As in the
proof of Lemma 3.2, the operators L0,z (for |z| ≤ 1) have an essential spectral radius
less than 1 on C1. If I − L0,z were not invertible, there would exist a nonzero C1

function v such that L0,zv = v. Lemma 2.2 implies that |z| = 1 and v ◦T N
Y = zr (N)

v.
Let us extend v to the whole space X(N) by setting v(x, i) = ziv(x, 0). Thus, the
function v is bounded (and therefore integrable) and satisfies v ◦ U = zU . This is a
contradiction since U is mixing.

For z = 1, R(1) = L0,1 simply is the transfer operator associated to T N
Y . It has a

simple eigenvalue at 1 (the corresponding spectral projection being P ), and no other
eigenvalue of modulus 1. Let us compute PR′(1)P . We have

PRn,0Pu = µY {r (N) = n}Pu. (3.27)

As a consequence, Kac’s formula gives PR′(1)P = ( ∑
nµY {r (N) = n})P =

µ(N)(X(N))P .
We can then apply Proposition 3.4 and get the conclusion of the corollary. �

3.4. The exponential mixing
The estimates on Tn,k given in Section 3.3 enable us to describe Mn

k for any k and
then to describe the full transfer operator Û.
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For x ∈ X(N), denote by h(x) its height in the tower (i.e., if x = (y, i) with y ∈ Y

and i < r (N)(x), let h(x) = i). We write C5,1(X(N) × S1) for the set of functions
v : X(N) × S1 → C such that ∂iv/∂ωi is C1 for 0 ≤ i ≤ 5 with its canonical norm.

THEOREM 3.6
There exist constants C > 0 and θ̄ < 1 such that, for any C5,1 function v : X(N) ×
S1 → C, for any n ∈ N, and for any (x, ω) ∈ X(N) × S1 with h(x) ≤ n/2, we have

∣∣∣Ûnv(x, ω) −
∫

v d(µ̃(N) ⊗ Leb)
∣∣∣ ≤ Cθ̄n ‖v‖C5,1 . (3.28)

For the proof, we need information on the operators Ti,k , but we also need to describe
precisely the operators Bi,k (defined in (3.9)).

LEMMA 3.7
There exist θ̄ < 1 and C > 0 such that, for any k ∈ Z, v ∈ C1(X(N)), and n ∈ N,

‖Bn,kv‖C1 ≤ C(1 + |k|)θ̄ n ‖v‖C1 . (3.29)

Moreover,

∣∣∣
∫

X(N)

v dµ(N) −
n∑

j=0

∫
Y

Bj,0v dµ(N)
∣∣∣ ≤ Cθ̄n ‖v‖C1 . (3.30)

Proof
For y ∈ Y , let vn(y) = 0 if r (N)(y) ≤ n, and let

vn(y) = v
(
y, r (N)(y) − n

)
exp

(
− ik

r (N)(y)−1∑
j=r (N)(y)−n

φ(y, j )
)

(3.31)

otherwise. For x ∈ Y , we then have Bn,kv(x) = LNvn(x) since Bn,kv(x) takes into
account the values of v on the set Zn of points that enter Y after exactly n iterations,
that is, points of the form (y, r (N)(y) − n) with r (N)(y) > n.

Let us check that the function vn belongs to C1,ε
N . First, since vn vanishes for

r (N) ≤ n, we have

|vn(x)| ≤ 1r (N)(x)>n ‖v‖C0 ≤ e−εneεr (N)(x) ‖v‖C0 . (3.32)

Moreover, if h ∈ HN , then

‖D(vn ◦ h)(x)‖ ≤ 1r (N)◦h>n(‖v‖C1 + kn ‖v‖C0 ) ≤ C(1 + |k|)ne−εneεr (N)(hx) ‖v‖C1 .

(3.33)
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Hence, vn belongs to C1,ε
N , and its norm is bounded by C(1 + |k|)θ̄ n ‖v‖C1 . Applying

(2.6), this yields (3.29).
For (3.30), note that

∑∞
j=0

∫
Y

Bj,0v = ∫
v since

∫
Y

Bj,0v is the integral of v on
Zj . Therefore,

∣∣∣
∫

v −
n∑

j=0

∫
Y

Bj,0v

∣∣∣ ≤
∞∑

j=n+1

∣∣∣
∫

Y

Bj,0v

∣∣∣ ≤
∞∑

j=n+1

‖Bj,0v‖C1 ≤ Cθ̄n ‖v‖C1 (3.34)

by (3.29). �

COROLLARY 3.8
There exist C > 0 and θ̄ < 1 such that, for any k ∈ Z, any n ∈ N, any x ∈ X(N) with
h(x) ≤ n/2, and any v ∈ C1(X(N)), we have

∣∣∣Mn
kv(x) − 1k=0

∫
v dµ̃(N)

∣∣∣ ≤ C(1 + |k|3)θ̄ n ‖v‖C1 . (3.35)

Proof
Assume first that x ∈ Y . Then (3.11) simply becomes

Mn
kv(x) =

n∑
i=0

Tn−i,kBi,kv(x). (3.36)

If k �= 0, then

‖Tn−i,kBi,kv‖C1 ≤ Ck2θ̄ n−i‖Bi,kv‖C1 ≤ C|k|3θ̄ n−i θ̄ i ‖v‖C1 , (3.37)

by Lemmas 3.2 and 3.7. Summing over i, we obtain the desired bound.
If k = 0, Corollary 3.5 gives an additional term

n∑
i=0

PBi,0v/µ(N)(X(N)) =
n∑

i=0

∫
Y

Bi,0v dµ(N)/µ(N)(X(N))

=
∫

v dµ(N)/µ(N)(X(N)) + O(θ̄ n) =
∫

v dµ̃(N) + O(θ̄ n)

by (3.30). This proves (3.35) for x ∈ Y .
If x has height j ∈ (0, n/2], let us write x = Uj (x ′), so that

Mn
ku(x) = e−ikSj φ(x ′)Mn−j

k u(x ′). (3.38)

The estimate for x ′ gives the desired conclusion (after replacing θ̄ with θ̄1/2). �
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Proof of Theorem 3.6
Let v : X(N) × S1 → R be a C5,1 function. We decompose it as v(x, ω) =∑

k∈Z
vk(x)eikω. Then

Ûnv(x, ω) =
∑
k∈Z

Mn
kvk(x) · eikω (3.39)

by (3.4). Therefore, if h(x) ≤ n/2, Corollary 3.8 gives

∣∣∣Ûnv(x, ω) −
∫

v d(µ̃(N) ⊗ Leb)
∣∣∣ ≤

∣∣∣Mn
0v0(x) −

∫
v0 dµ̃(N)

∣∣∣ +
∑
k �=0

∣∣∣Mn
kvk(x)

∣∣∣

≤ C
∑
k∈Z

(1 + |k|3)θ̄ n ‖vk‖C1 .

With 5 integrations by parts with respect to ω, we show that ‖vk‖C1 ≤ C ‖v‖C5,1 /(1+
|k|5). This implies the theorem after summation. �

Proof of Theorem 1.7 (under the assumption that d (N) = 1)
Let us first show that, on X(N) × S1,

∥∥∥Ûnv −
∫

v d(µ̃(N) ⊗ Leb)
∥∥∥

L1
≤ Cθ̄n ‖v‖C5,1 (3.40)

for some constants C > 0 and θ̄ < 1. To do this, we decompose X(N) as
{x | h(x) > n/2} and {x | h(x) ≤ n/2}. The first set has an exponentially small
measure, its contribution is therefore exponentially small. If x belongs to the second
set,

∣∣Ûnv(x, ω) − ∫
v
∣∣ ≤ Cθ̄n ‖v‖C5,1 by Theorem 3.6. This proves (3.40).

This implies that, for any functions v ∈ C5,1 and u ∈ L∞,

∣∣∣
∫

u ◦ Un · v d(µ̃(N) ⊗ Leb) −
( ∫

u d(µ̃(N) ⊗ Leb)
)( ∫

v d(µ̃(N) ⊗ Leb)
)∣∣∣

≤ Cθ̄n ‖u‖L∞ ‖v‖C5,1 . (3.41)

Now take f ∈ L∞(X×S1), and take g ∈ C6(X×S1). The functions u = f ◦π̃ (N) and
v = g ◦ π̃ (N) are defined on X(N) × S1, respectively, bounded and in C5,1. Moreover,
(3.1) shows that ‖v‖C5,1 ≤ C ‖g‖C6 . Since π (N)

∗ µ̃(N) = µ̃, (3.41) implies that

∣∣∣
∫

f ◦ Tn · g d(µ̃ ⊗ Leb) −
( ∫

f d(µ̃ ⊗ Leb)
)( ∫

g d(µ̃ ⊗ Leb)
)∣∣∣

≤ Cθ̄n ‖f ‖L∞ ‖g‖C6 . (3.42)
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Let n ∈ N, and let f ∈ L∞. The linear operator

g �→
∫

f ◦ Tn · g d(µ̃ ⊗ Leb) −
( ∫

f d(µ̃ ⊗ Leb)
)( ∫

g d(µ̃ ⊗ Leb)
)

(3.43)

is then bounded by 2 ‖f ‖L∞ in C0 norm, and by Cθ̄n ‖f ‖L∞ in C6 norm. For any
noninteger α ∈ (0, 6), interpolation theory on the compact manifold X ×S1 (possibly
with boundary) shows that there exists a constant Cα such that any operator that is
bounded by A in C0 norm and by B in C6 norm is then bounded by CαA

1−α/6Bα/6 in
Cα norm (see [T, page 200]). As a consequence, we get

∣∣∣
∫

f ◦ Tn · g d(µ̃ ⊗ Leb) −
( ∫

f d(µ̃ ⊗ Leb)
)( ∫

g d(µ̃ ⊗ Leb)
)∣∣∣

≤ Cα ‖f ‖L∞ 21−α/6(Cθ̄n)α/6 ‖g‖Cα .

This concludes the proof of the theorem for noninteger α. The general case follows
readily. The interpolation argument can also be replaced by an elementary (but less
synthetic) convolution argument. The idea of using interpolation theory in this kind
of setting was suggested by Dinh and Sibony in [DS]. �

Proof of Theorem 1.7 in the general case
If d = d (N) > 1, the transformation U is not mixing, and the arguments used above
(especially in the proof of Corollary 3.5) do not apply anymore.

However, they can be applied to the transformation Ud and its invariant measure
µ̃

(N)
0 (defined in Section 3.1). As π (N)

∗ µ̃
(N)
0 = µ̃, this implies Theorem 1.7 for times n

of the form kd . To deduce the general case, one writes n = kd + r with 0 ≤ r < d

and applies the theorem to the time kd and to the functions f ◦ Tr and g (which are,
respectively, bounded and Cα). �

3.5. Proof of one implication in Proposition 1.8
PROPOSITION 3.9
Let ψ : X × S1 → R be a Hölder-continuous function of zero average, and define
σ 2 by (1.11). Then σ 2 ≥ 0. Moreover, if σ 2 = 0, there exists a measurable function
f : X × S1, continuous on Y × S1, belonging to Lp for any p < ∞ such that
ψ = f − f ◦ T almost everywhere.

This is one of the implications in Proposition 1.8. Theorem 1.9 is required for the
other half, hence its proof is postponed to Section 5.6.
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Proof
We have

∫
X×S1

( n−1∑
i=0

ψ ◦ Ti
)2

= n

∫
ψ2 + 2

n−1∑
i=0

(n − i)
∫

ψ · ψ ◦ Ti . (3.44)

Since
∑

i>0 i

∣∣∣ ∫ ψ · ψ ◦ Ti

∣∣∣ < ∞ by Theorem 1.7, this yields

∫
X×S1

( n−1∑
i=0

ψ ◦ Ti
)2

= nσ 2 + O(1). (3.45)

As a consequence, σ 2 ≥ 0. Moreover, if σ 2 = 0, the Birkhoff sums of ψ are uniformly
bounded in L2. By [K, Remark 1], there exists an L2 function f with zero average
such that ψ = f − f ◦ T almost everywhere. We have to prove that f is continuous
on Y × S1 and belongs to every Lp, p < ∞.

Theorem 3.6 implies that there exist θ̄ < 1 and C > 0 such that, for any C6

function v : X × S1 → C, for any n ∈ N and for any x ∈ X(N) with h(x) ≤ n/2, we
have

∣∣∣Ûn(v ◦ π̃ (N))(x, ω) −
∫

v

∣∣∣ ≤ Cθ̄n ‖v‖C6 . (3.46)

Since |Ûn(v ◦ π̃ (N))(x, ω) − ∫
v| ≤ 2 ‖v‖C0 , interpolation theory as above implies

that, for any α > 0, there exist Cα > 0 and θ̄α < 1 such that, for any x ∈ X(N) with
h(x) ≤ n/2, we have

∣∣∣Ûn(v ◦ π̃ (N))(x, ω) −
∫

v

∣∣∣ ≤ Cαθ̄
n
α ‖v‖Cα . (3.47)

As ψ belongs to Cα and has vanishing integral, we can therefore define a function
g on X(N) × S1 by

g(x, ω) = −
∞∑

n=1

Ûn(ψ ◦ π̃ (N))(x, ω). (3.48)

This function is continuous on Y ×S1. Moreover, if h(x) = H , then the first 2H terms
in the sum defining g(x, ω) are bounded by ‖ψ‖C0 , while the other ones are bounded
by Cθ̄n

α by (3.47). Hence, g(x, ω) is bounded by C(1 + h(x)). Therefore, g belongs
to Lp for any p < ∞ (it even has an exponential moment), since µ(N){h(x) ≥ n}
decays exponentially with n. Moreover, by construction, Ûg − g = Û(ψ ◦ π̃ (N)).
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We know that ψ = f − f ◦ T, where f ∈ L2. As a consequence, ψ ◦ π̃ (N) =
f ◦ π̃ (N) − f ◦ π̃ (N) ◦ U, whence Û(ψ ◦ π̃ (N)) = Û(f ◦ π̃ (N)) − f ◦ π̃ (N). We get

g − f ◦ π̃ (N) = Û(g − f ◦ π̃ (N)). (3.49)

In particular, for any n ∈ N, g − f ◦ π̃ (N) = Ûn(g − f ◦ π̃ (N)).
Theorem 3.6 shows that, for any function v ∈ C5,1(X(N) ×S1) with zero integral,

Ûnv converges to zero in L2. By density, this convergence holds for any function
v ∈ L2 with zero integral. In particular, Ûn(g − f ◦ π̃ (N)) converges to zero, hence
g−f ◦ π̃ (N) = 0. As g is continuous on Y ×S1 and belongs to all spaces Lp, p < ∞,
this concludes the proof. �

4. Strategy and tools for the local limit theorem

4.1. Description of the strategy of the proof
Let us fix an integer M . We work with the transformation U = U (MN) on X(MN)

(hence also with U(MN) on X(MN) × S1).
Let ψ : X×S1 → R be a C6 function with zero average. We also write ψ instead

of ψ ◦ π̃ (MN) on X(MN) × S1. To prove the local limit theorem for ψ , we consider for
t ∈ R the operator Ût (v) := Û(eitψv). If we understand well the iterates of Ût , we
deduce the asymptotic behavior of

∫
eitSnψ , since this quantity is equal to

∫
Ûn

t (1).
Instead of working with functions on X(MN) × S1, we have seen in the proof

of the exponential mixing that it is worthwhile to use Fourier series, and work on
X(MN) × Z. If v is a function and (vk)k∈Z denote its Fourier coefficients, then the
Fourier coefficients of eitψv are given by

(eitψv)k =
∑

a+b=k

(eitψ )avb. (4.1)

Applying then the operator Û (which acts at the level of the kth frequency by the
operator Mk), we obtain

(Ût v)k(x) =
∑
l∈Z

∑
Ux ′=x

J(x ′)e−ikφ(x ′)(eitψ )k−l(x
′)vl(x

′). (4.2)

This is some kind of Markov operator on X(MN) × Z, for the “transition probability”

Kt
(x,k)→(x ′,l) := 1Ux ′=xJ(x ′)e−ikφ(x ′)(eitψ )k−l(x

′). (4.3)

The equality
∑

(x ′,l) Kt
(x,k)→(x ′,l) = 1 does not hold, so this is not a real transition

kernel, but we nevertheless use the intuition of random walks. In particular, let us
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write, for n ∈ N,

Kt,n
(x,k)→(x ′,l) =

∑
k0=l,k1,...,kn−1,kn=k

x0=x ′,x1,...,xn−1,xn=x

Kt
(xn,kn)→(xn−1,kn−1) . . . Kt

(x2,k2)→(x1,k1)Kt
(x1,k1)→(x0,k0).

(4.4)
In this expression, we consider trajectories of the random walk xn, xn−1, . . . , x0. It
may seem unnatural to write things in that direction, but it is designed to give the good
order when we express things in terms of transfer operators. Let K̂t be the operator
with kernel Kt , acting on bounded functions on X(MN) × Z, by

K̂t v(x, k) =
∑
(x ′,l)

Kt
(x,k)→(x ′,l)v(x ′, l). (4.5)

By construction, the powers K̂t,n of K̂t have kernels Kt,n. Moreover, Ût corresponds
to the operator K̂t at the level of frequencies; that is, if v is a smooth function on
X(MN) × S1 with Fourier coefficients (vk)k∈Z, then

(Ûn
t v)k(x) =

∑
(x ′,l)

Kt,n
(x,k)→(x ′,l)vl(x

′). (4.6)

To see that this expression and these computations are correct, we should check that

sup
(x,k)∈X(MN)×Z

∑
(x ′,l)

|Kt
(x,k)→(x ′,l)| < ∞, (4.7)

which is always the case if ψ is C2 in the direction of S1 (by two integrations by parts)
and is always satisfied in the following. A priori, this does not prevent Kt,n

(x,k)→(x ′,l)
from blowing up exponentially fast with n. However, Kt,n

(x,k)→(x ′,l) is also the kernel of

the operator obtained by multiplying v with eitSnψ and then applying Ûn. Therefore,

Kt,n
(x,k)→(x ′,l) = 1Unx ′=xJ(n)(x ′)e−ikSnφ(x ′)(eitSnψ )k−l(x

′), (4.8)

and this quantity is bounded by J(n)(x ′) ≤ 1. Note that (4.8) can also be checked
directly from the formula (4.4), with several successive integrations.

We let different operators (with kernels related to Kt,n) act on spaces of functions
from X(MN) × Z to C (or Y × Z to C if we only consider trajectories starting from
Y ×Z or ending in Y ×Z). If B is such a functional space, and if v ∈ B, we sometimes
write vk(x) instead of v(x, k).

To understand the previous “random walk,” we study its successive returns to the
set Y × [−K, K], where K is large enough. Indeed, outside of this set, we have a
strong contraction (by Theorem 2.3), and hence excursions can be controlled. Only
what happens inside Y × [−K, K] can therefore be problematic, and we use there
an abstract compactness argument. Let us denote by Kt,n,exc

(x,k)→(x ′,l) the “probability”
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of an excursion (i.e., of starting from (x, k) ∈ Y × [−K, K] and coming back to
(x ′, l) ∈ Y × [−K, K] after a time exactly n without entering Y × [−K, K] in
between). Formally, for (x, k) ∈ Y × [−K, K] and (x ′, l) ∈ Y × [−K, K], we have

Kt,n,exc
(x,k)→(x ′,l) =

∑
k0=l,...,kn=k

x0=x ′,x1,...,xn−1∈X,xn=x
(xi ,ki )�∈Y×[−K,K] for 0<i<n

Kt
(xn,kn)→(xn−1,kn−1) · · · Kt

(x2,k2)→(x1,k1)Kt
(x1,k1)→(x0,k0).

Let BK = ⊕
|k|≤K C1(Y ). An element of BK can therefore be seen as a function

v on X × Z such that vk is C1 for |k| ≤ K , and vk = 0 for |k| > K . We define then
an operator Rt

n on BK by

(Rt
nv)k(x) =

∑
(x ′,l)

Kt,n,exc
(x,k)→(x ′,l)vl(x

′). (4.9)

For x ∈ Y and |k| ≤ K , let also (T t
nv)k(x) = ∑

(x ′,l)∈Y×[−K,K] Kt,n
(x,k)→(x ′,l)vl(x ′),

(i.e., we consider all the returns of the “random walk” to Y × [−K, K] and not only
the first ones). This means that T t

nv = 1Y×[−K,K]K̂t,n(1Y×[−K,K]v) for v ∈ BK . By
construction,

T t
n =

∞∑
p=1

∑
j1+···+jp=n

Rt
j1

· · · Rt
jp

. (4.10)

This is a renewal equation that we already met in the course of the proof of exponential
mixing. The main difference is that, for the mixing, each frequency was left invariant
by the transfer operator, which means we only had to consider random walks on
X(N) and excursions outside Y . Here, since there is also some interaction between
the frequencies, we have to localize spatially (i.e., on Y ) but also on the space of
frequencies since the estimates given by Theorem 2.3 are not uniform in k.

The proof consists in understanding precisely the Rt
n’s, deducing from that good

estimates on T t
n ’s, and using these to reconstruct precisely enough Ûn

t . We thus need
two technical tools: on the one hand, a tool on perturbations of renewal sequences of
operators (we want estimates that are precise both with respect to n and t); and on the
other hand, good estimates on the excursions outside of Y × [−K, K].

Before going on, let us give another expression of Kt,n,exc that is needed later on by
considering the successive returns to Y ×Z. Let us define a function ψY : Y ×S1 → R

by

ψY (x, ω) =
r(x)−1∑
i=0

ψ
(
T ix, ω +

i−1∑
j=0

φ(T jx)
)
. (4.11)
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It is the function induced by ψ and T on the set Y × S1. Let us denote by SY
n ψY

the Birkhoff sums of ψY for the map induced by T on Y × S1. For x, x ′ ∈ Y and
k, l ∈ Z, let Kt,Y

(x,k)→(x ′,l) = 1T MN x ′=xJ
(MN)(x ′)e−ikSY

MN φY (x ′)(eitSY
MN ψY )k−l(x ′), which

corresponds to the “probability” (for the above random walk) of the first return in
Y × Z. Considering the successive returns to Y × (Z − [−K, K]), for x, x ′ ∈ Y and
k, l ∈ [−K, K] we get

Kt,n,exc
(x,k)→(x ′,l) =

∑
p≥0

∑
k0=l,k1,...,kp−1 �∈[−K,K],kp=k

x0=x ′,x1,...,xp−1∈Y,xp=x∑p−1
i=0 r (MN)(xi )=n

Kt,Y
(xp,kp)→(xp−1,kp−1) · · · Kt,Y

(x1,k1)→(x0,k0).

(4.12)

4.2. Perturbed renewal sequences of operators
Definition 4.1
Let B be a Banach space, and let Rt

j be operators acting on B for j > 0 and
t ∈ [−t0, t0] for some t0 > 0. These operators form a perturbed sequence of renewal
operators with exponential decay if the following conditions hold.
(1) The operators R0

j form a renewal sequence of operators with exponential decay.
In particular, we write P and µ for the associated spectral projection and
coefficient, as in Definition 3.3.

(2) There exist δ > 0 and a, C > 0 such that, for all t, t ′ ∈ [−t0, t0] with
|t − t ′| ≤ a, for any j > 0, ‖Rt

j − Rt ′
j ‖ ≤ C|t − t ′|e−δj .

(3) Let us write R(z, t) = ∑
zjRt

j for |z| < eδ . For (z, t) close to (1, 0), the oper-
ator R(z, t) is a small perturbation of R(1, 0). Therefore, it has an eigenvalue
λ(z, t) close to 1. We assume that, for some α > 0, λ(1, t) = 1−αt2 +O(|t |3).

We say that this sequence is aperiodic if, for any (z, t) ∈ (D × [−t0, t0]) − {(1, 0)},
the operator I − R(z, t) is invertible on B.

THEOREM 4.2
Let Rt

j be a perturbed sequence of renewal operators with exponential decay. Let

T t
n =

∞∑
p=1

∑
j1+···+jp=n

Rt
j1

· · ·Rt
jp

. (4.13)

Then there exist τ0 ∈ (0, t0), θ̄ < 1, and c, C > 0 such that, for t ∈ [−τ0, τ0], for
n > 0, we have

∥∥∥T t
n − 1

µ

(
1 − αt2

µ

)n

P

∥∥∥ ≤ Cθ̄n + C|t |(1 − ct2)n. (4.14)
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Moreover, if Rt
j is aperiodic, one also has, for |t | ∈ [τ0, t0] and n > 0,

‖T t
n‖ ≤ Cθ̄n. (4.15)

Proof
If γ is a path around zero in C, close enough to zero,

T t
j = 1

2iπ

∫
γ

z−j−1
(
I − R(z, t)

)−1
dz. (4.16)

By analyticity, this equality holds true for any path γ around zero bounding a domain
on which I − R(z, t) is invertible for any z.

Let us first show (4.15) in the aperiodic case. Let t �= 0. The operators I −R(z, t)
are invertible for any z ∈ D. Since invertible operators form an open set, there exist
an open neighborhood It of t and εt > 0 such that I − R(z, t ′) is invertible for t ′ ∈ It

and |z| ≤ eεt . Taking for γ the circle of radius eεt , we obtain ‖T t ′
j ‖ ≤ C(t)e−jεt . If

τ > 0, the compact set [−t0, −τ ] ∪ [τ, t0] can be covered by a finite number of the
intervals It , and we get the following: there exist δτ > 0 and Cτ > 0 such that, for
any |t | ∈ [τ, t0], for any j > 0, ‖T t

j ‖ ≤ Cτe
−jδτ . This proves (4.15) if we can choose

τ so that (4.14) is satisfied.
For (4.14), we work in a neighborhood of (z, t) = (1, 0). There exist an open disk

O around 1 and τ0 > 0, such that, for (z, t) ∈ O × [−τ0, τ0], the operator R(z, t) has
a unique eigenvalue λ(z, t) close to 1. Let us also denote by P (z, t) the corresponding
spectral projection. These functions depend holomorphically on z and in a Lipschitz
way on t .

We saw in the proof of Proposition 3.4 that λ′(1, 0) = µ �= 0. Reducing O if
necessary, we can therefore assume that z �→ λ(z, 0) is injective on O (and takes the
value 1 only at z = 1).

When t converges to zero, the function z �→ λ(z, t) converges uniformly to
z �→ λ(z, 0) (with a speed O(t)). Since all of these functions are holomorphic, the
derivatives converge uniformly with the same speed. In particular, z �→ λ(z, t) takes
the value 1 at a unique point ρ(t) in O (if t is small enough) by Rouché’s theorem.
Moreover, ρ(t) → 1 when t → 0.

Let us establish an asymptotic expansion of ρ(t). We have

λ
(
ρ(t), t

) − λ(1, t) =
∫ ρ(t)

1
λ′(z, t) dz

=
∫ ρ(t)

1

(
λ′(z, t) − λ′(1, 0)

)
dz + λ′(1, 0)

(
ρ(t) − 1

)
.
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Moreover, |λ′(z, t)−λ′(1, 0)| ≤ C(|z−1|+|t |) ≤ C(|ρ(t)−1|+|t |). As λ(ρ(t), t)−
λ(1, t) = 1 − λ(1, t) = αt2 + O(|t |3), we obtain

λ′(1, 0)
(
ρ(t) − 1

) = αt2 + O(t3) + O
(|t ||ρ(t) − 1|) + O

(|ρ(t) − 1|2). (4.17)

As λ′(1, 0) = µ �= 0, this yields ρ(t) − 1 ∼ αt2/µ. In particular, ρ(t) − 1 = O(t2).
Putting this information back in the equation, we finally obtain

ρ(t) = 1 + αt2/µ + O(t3). (4.18)

The operators I −R(z, 0) are invertible for z ∈ D−O. By continuity, I −R(z, t)
is invertible for any z in a neighborhood of this compact set, and t close enough to zero,
say t ∈ [−τ0, τ0]. We can therefore choose a path γ around zero made of an arc of a
circle of radius greater than 1 and the inner part of ∂O, satisfying (4.16) for |t | ≤ τ0.
We modify γ into a new path γ̃ by replacing the inner part of ∂O with its outer part.
To obtain an analogue of (4.16), we should add the residue of z−j−1(I − R(z, t))−1

inside O. We have (I − R(z, t))−1 = (1 − λ(z, t))−1P (z, t) + Q(z, t), where Q(z, t)
is holomorphic inside O (hence without residue). The only pole is located at ρ(t), and
we obtain

T t
j = 1

2iπ

∫
γ̃

z−j−1
(
I − R(z, t)

)−1
dz + 1

λ′(ρ(t), t)
P

(
ρ(t), t

)
ρ(t)−j−1. (4.19)

On γ̃ , we have |z| ≥ eδ0 for some δ0 > 0. As ‖(I − R(z, t))−1‖ is uniformly
bounded on γ̃ , the integral term is O(e−δ0j ). For the remaining term, we have
P (ρ(t), t)/λ′(ρ(t), t) = P (1, 0)/λ′(1, 0) + O(t). Making this substitution gives an
error of O(|t ||ρ(t)|−j ) = O(|t |(1 − ct2)j ) by (4.18). We get

∥∥∥T t
j − 1

µ
Pρ(t)−j−1

∥∥∥ ≤ Ce−jδ0 + C|t |(1 − ct2)j . (4.20)

Finally, if we replace ρ(t)−j−1 with (1 − αt2/µ)j , the error is bounded, thanks to
(4.18), by

C(1 − ct2)j
(
(1 + C|t |3)j − 1

) ≤ C(1 − ct2)j (1 + C|t |3)j j |t |3.

If t is small enough, (1 − ct2)(1 + C|t |3) ≤ (1 − ct2/2). Finally,

j |t |3(1 − ct2/2)j ≤ j |t |3(1 − ct2/4)j (1 − ct2/4)j

≤ |t |(1 − ct2/4)j · j t2 exp(−cj t2/4) ≤ C|t |(1 − ct2/4)j

(4.21)

since the function x �→ xe−cx/4 is bounded on R+. �
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4.3. Estimates on the excursions
In this section, we fix an integer M , a constant A > 1, and a sequence (γd)d∈Z with
γd ∈ (0, 1] and γd = O(1/|d|4) when d → ±∞.

We then choose an integer K such that

∀|d| > K/2, γd ≤ 1

(1 + |d|)60/17
, (4.22)

and

K ≥ K(A, M) given by Theorem 2.3, (4.23)

and

∀n ≥ 1, 2Mn − 1 − n/2 ≥ 2Mn/K. (4.24)

Let k = (k0, k1, . . . , kj ) be a sequence of integers. We say that this sequence
is admissible if |ki | > K for any i ∈ (0, j ). We say that it is strongly admis-
sible if, additionally, |kj | > K . We denote by di = ki − ki−1 the successive
differences.

LEMMA 4.3
Let k = (k0, k1, . . . , kj0 ) be a strongly admissible sequence. Let ψ1, . . . , ψj0 be
functions from Y to C, and let ε1, . . . , εj0 belong to [0, 1]. Assume that ‖ψi‖CA,3ε

MN
≤

εiγdi
.
Let v0 : Y → C. Define a sequence of functions vi by induction, by vi =

LMN
ki

(ψiv
i−1). Then

‖vj0‖L2 ≤
( j0∏

i=1

εiγ
9/10
di

)
θ100MNj0‖v0‖C1 . (4.25)

Proof
We use the following virtual heights

βi = max
(
|ki |, |ki−1|

2M
· · · |k0|

2Mi

)
. (4.26)

Their interest is that we are able to control by induction the Dolgopyat norms
‖vi‖Dβi

. (This would not be possible for the norm Dki
if the jumps di are too

large.)
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If |ki | ≥ βi−1/2M , we have βi = |ki |. Then, by Theorem 2.3 (and more precisely
(2.7)),

‖vi‖Dβi
= ‖LMN

ki
(ψiv

i−1)‖Dki
≤ θ100MN ‖ψi‖CA,3ε

MN
‖vi−1‖D2M ki

≤ θ100MNεiγdi
‖vi−1‖Dβi−1

.

Otherwise, βi = βi−1/2M > |ki |, and (using (2.8)) we have

‖vi‖Dβi
= ‖LMN

ki
(ψiv

i−1)‖Dβi
≤ θ−MN ‖ψi‖CA,3ε

MN
‖vi−1‖D2M βi

≤ θ−MNεiγdi
‖vi−1‖Dβi−1

. (4.27)

In both cases, we have similar equations with a large gain or a small loss.
Let us show by induction on i that

‖vi‖Dβi
≤ θ100MNiε1 · · · εi(γd1 · · · γdi

)9/10‖v0‖Dk0
, (4.28)

the result being clear for i = 0.
Assume that the result is proved up to i − 1, and let us prove it for i. If βi = |ki |,

then

‖vi‖Dβi
≤ θ100MNεiγdi

‖vi−1‖Dβi−1
≤ θ100MNεi(γdi

)9/10‖vi−1‖Dβi−1
(4.29)

since γd ≤ 1 for any d ∈ Z. The inductive assumption concludes the proof.
If βi > |ki |, consider ι the last time before i for which βι = |kι|. Iterating (4.27)

up to ι, we get

‖vi‖Dβi
≤ εi · · · ει+1γdi

· · · γdι+1θ
−MN(i−ι) ‖vι‖Dβι

. (4.30)

Moreover, βi = βι/2M(i−ι), and βi > K since k is strongly admissible. Hence,

|dι+1| + · · · + |di | ≥ |kι − ki | ≥ (2M(i−ι) − 1)βi ≥ (2M(i−ι) − 1)K. (4.31)

Write J for the set of indexes a ∈ (ι, i] for which |da| > K/2. Then
∑

J |da| ≥
(2M(i−ι) − 1 − (i − ι)/2)K . By (4.24), we therefore get

∑
J |da| ≥ 2M(i−ι). By (4.22),

γd ≤ 1/(1 + |d|) for any |d| > K/2. We obtain

(γdi
· · · γdι+1 )

1/10 ≤
∏
a∈J

γ
1/10
da

≤
∏
a∈J

1

(1 + |da|)1/10
=

( 1∏
a∈J (1 + |da|)

)1/10

≤
( 1∑

a∈J |da|
)1/10

≤ 2−M(i−ι)/10.
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By Theorem 2.3, θ101N ≥ 2−1/10. As a consequence, 2−M(i−ι)/10 ≤ θ101MN(i−ι). Hence,
we obtain from (4.30)

‖vi‖Dβi
≤ θ−MN(i−ι)(γdi

· · · γdι+1 )
1/10 · εi · · · ει+1(γdi

· · · γdι+1 )
9/10 ‖vι‖Dβι

≤ θ100MN(i−ι) · εi · · · ει+1(γdi
· · · γdι+1 )

9/10 ‖vι‖Dβι
.

Using the induction assumption at ι, we get (4.28) at i. This concludes the induction
and the proof of (4.28).

From (4.28) at j0, we obtain, in particular,

‖vj0‖L2 ≤ θ100MNj0ε1 · · · εj0 (γd1 · · · γdj0
)9/10‖v0‖Dk0

. (4.32)

As ‖v0‖Dk0
≤ ‖v0‖C1 , this concludes the proof. �

LEMMA 4.4
There exists a constant C (depending on M, A, {γd}, K) satisfying the following
property. Let (k0, k1, . . . , kj ) be an admissible sequence. Let ψ1, . . . , ψj be functions
from Y to C, and let ε1, . . . , εj belong to [0, 1]. We assume that ‖ψi‖CA,3ε

MN
≤ εiγdi

.
Let v0 : Y → C. Define a sequence of functions vi by induction, by vi =

LMN
ki

(ψiv
i−1). Then

‖vj‖C1 ≤ C(1 + k2
0)

( j∏
i=1

εiγ
1/3
di

)
θ30MNj‖v0‖C1 . (4.33)

Proof
We write j0 = j/2 or (j − 1)/2, depending on whether j is even or odd.

Let ϕi = e−ikiS
Y
MN φY ψi , so that vi = LMN (ϕiv

i−1). We have |ϕi(x)| ≤
εiγdi

e3εr (MN)(x) and, for h ∈ HMN ,

‖D(ϕi ◦ h)(x)‖ ≤ ‖D(ψi ◦ h)(x)‖ + |ki |‖D(SY
MNφY ◦ h)(x)‖|ψi(hx)|

≤ Aεiγdi
e3εr (MN )(hx) + C|ki |r (MN)(hx)εiγdi

e3εr (MN)(hx)

≤ C|ki |εiγdi
e4εr (MN )(hx)

for some constant C ≥ 1 depending only on M and A. Let B = C max |ki |; this
shows that ‖ϕi‖CB,4ε

MN
≤ εiγdi

.
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We can apply (2.6) between the indexes 1 and j0 to get

‖vj0‖C1 ≤ C(max |ki |)
( j0∏

i=1

εiγdi

)
(θ100MNj0‖v0‖C1 + θ−MNj0‖v0‖L2 )

≤ Cθ−MNj0

( j0∏
i=1

εiγdi

)
(max |ki |)‖v0‖C1 .

Applying (2.6) between the indexes j0 + 1 and j , we obtain

‖vj‖C1 ≤ C(max |ki |)
( j∏

i=j0+1

εiγdi

)
(θ100MN(j−j0)‖vj0‖C1 + θ−MN(j−j0)‖vj0‖L2 ).

We use the bound on ‖vj0‖C1 given by the previous equation and the bound on ‖vj0‖L2

from Lemma 4.3 (if j0 = 0, this lemma does not apply since the sequence (k0) is
not necessarily strongly admissible, but the estimate (4.25) is trivial in this case).
Since 100MN(j − j0) − MNj0 and −MN(j − j0) + 100MNj0 are both at least
C + 99MNj/2 ≥ C + 40MNj , we obtain

‖vj‖C1 ≤ C
( j∏

i=1

εiγdi

)
θ40MNj (max |ki |)2‖v0‖C1

+ C
( j0∏

i=1

εiγ
9/10
di

)( j∏
i=j0+1

εiγdi

)
(max |ki |)θ40MNj‖v0‖C1

≤ Cθ40MNj (max |ki |)2
( j∏

i=1

εiγ
9/10
di

)
‖v0‖C1 .

Assume first that max |ki | ≤ 2(|k0| + jK). As θ40MNjj 2 ≤ Cθ30MNj , we obtain the
conclusion of the lemma by bounding directly

( ∏j

i=1 γdi

)9/10
by

( ∏j

i=1 γdi

)1/3
.

Assume now that max |ki | > 2(|k0| + jK). We have |k0| + ∑ |di | ≥ max |ki |.
Denote by J the set of indexes ≥ 1 for which |di | > K . Then

∑
i∈J

|di | ≥ max |ki | − |k0| − jK ≥ max |ki |/2. (4.34)

By (4.22), γd ≤ 1/(1 + |d|)60/17 for any |d| > K . We get

(∏
γdi

)17/30
≤

( 1∏
i∈J (1 + |di |)60/17

)17/30
≤

( 1∑
i∈J |di |

)2
≤ 4/(max |ki |)2.
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Finally,

(max |ki |)2
( j∏

i=1

γdi

)9/10
= (max |ki |)2

( j∏
i=1

γdi

)17/30
·
( j∏

i=1

γdi

)1/3
≤ 4

( j∏
i=1

γdi

)1/3
.

This yields again the conclusion of the lemma. �

5. Proof of the local limit theorem
We fix a C6 function ψ : X × S1 → R with vanishing average, and a real number
t0 > 0. We study the operators T̂t := T̂(eitψ ·) for |t | ≤ t0. We first choose M , A,
a sequence γd , and an integer K so that the results of Section 4.3 apply. All these
choices depend on ψ and t0.

5.1. Choosing the constants
Let ψY be the function defined in (4.11). There exists a constant C(ψ) such that
|SY

n ψY (x, ω)| ≤ C(ψ)r (n)(x). More generally, as T is an isometry in the fiber direc-
tion S1, we even have, for 0 ≤ j ≤ 4,

∣∣∣ ∂j

∂ωj
SY

n ψY (x, ω)
∣∣∣ ≤ C(ψ)r (n)(x). (5.1)

In particular, for any |t | ≤ t0, we have

∣∣∣ ∂4

∂ω4
eitSY

n ψY (x,ω)
∣∣∣ ≤ C(t0, ψ)r (n)(x)4. (5.2)

Let us denote by F
(n,t)
d the dth Fourier coefficient of eitSY

n ψY in the circle direction.
Making 4 integrations by parts in the circle direction and using the previous equation
yields

|F (n,t)
d (x)| ≤ C(t0, ψ)r (n)(x)4

1 + |d|4 ≤ C ′(t0, ψ)eεr (n)(x)

1 + |d|4 . (5.3)

There also exists C(n, t0, ψ) such that, for any h ∈ Hn,

‖D(F (n,t)
d ◦ h)(x)‖ ≤ C(n, t0, ψ)

eεr (n)(hx)

1 + |d|4 . (5.4)

Once and for all, we fix an integer M such that

θ20MN
∑
d∈Z

min
(

1,
C ′(t0, ψ)

1 + |d|4
)1/3

< θ10MN (5.5)
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and

θ100MN
∑
d∈Z

min
(

1,
C ′(t0, ψ)

1 + |d|4
)

< 1/4. (5.6)

Let γd = min(1, C ′(t0, ψ)/(1 + |d|4)). By (5.4), we can then choose a constant
A such that

‖F (MN,t)
d ‖CA,ε

MN
≤ γd (5.7)

for any d ∈ Z. Finally, we choose K satisfying (4.22) – (4.24).
All the constants C that we consider through the remainder of Section 5 may

depend on M, A, {γd}, K . We work on the space X(MN) with the map U = U (MN) to
prove Theorem 1.12 for t ∈ [−t0, t0]. We freely use all the results that we proved in
Section 3. Formally, we proved these results for X(N), but the same arguments hold
verbatim in X(MN).

As in the proof of Theorem 1.7, we assume until the end of the proof that
d (MN) = 1 (i.e., that U (MN) is mixing). Only at the end of the proof do we give the
modifications to be done to handle the general case.

5.2. The renewal process
As in Section 4.1, let us define a space BK = ⊕

|k|≤K C1(Y ) endowed with the norm
of the supremum of the C1 norms of the different components. We see an element v

of BK as a set of functions (vk)|k|≤K , where vk corresponds to frequency k, and then
‖v‖BK

= sup|k|≤K ‖vk‖C1 . We also write ‖v‖C0 = sup ‖vk‖C0 .
For z ∈ C, t ∈ [−t0, t0], and k = (k0, . . . , kj ) an admissible sequence, we

formally define an operator Qt
k(z) on C1(Y ) as follows, where di = ki − ki−1:

Qt
k(z)v = LMN

kj

(
zr (MN)

F
(MN,t)
dj

LMN
kj−1

zr (MN) · · · LMN
k1

(zr (MN)
F

(MN,t)
d1

v) . . .
)
. (5.8)

Intuitively, this operator applies to a function of frequency k0 and gives a function of
frequency kj . If B is a Banach space of functions from Y × Z to C, it is therefore
more natural to consider an operator Q̄t

k(z) from B to B, defined by (Q̄t
k(z)v)k = 0

(if k �= kj ) and (Q̄t
k(z)v)kj

= Qt
k(z)vk0 . This applies, for instance, if B = BK (and

|k0| ≤ K , |kj | ≤ K). We occasionally use the operators Q̄t
k(z), but the technical

estimates are formulated in terms of Qt
k(z).

LEMMA 5.1
The operator Qt

k(z) acts continuously on C1(Y ) for any t ∈ [−t0, t0] and any |z| ≤ e2ε,

and its norm is bounded by C(1+k2
0)θ20MNj

∏j

i=1 γ
1/3
di

. Moreover, the map z �→ Qt
k(z)

is holomorphic from {|z| < e2ε} to End(C1(Y )), where End(C1(Y )) is the set of
continuous linear operators on C1(Y ).
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There exist a > 0 and C > 0 such that, for all |t − t ′| ≤ a, for any admissible
sequence k, we have

‖Qt
k(z) − Qt ′

k (z)‖End(C1(Y )) ≤ C|t − t ′|(1 + k2
0)θ20MNj

j∏
i=1

γ
1/3
di

. (5.9)

Finally, if |t | ≤ a,

‖Qt
k(z)‖ ≤ C(1 + k2

0)(C|t |)#{i | di �=0}θ20MNj

j∏
i=1

γ
1/3
di

. (5.10)

Proof
To estimate the norm of Qt

k(z), we use the estimate given by Lemma 4.4, taking εi = 1

and ψi = zr (MN)
F

(MN,t)
di

. If |z| ≤ e2ε, we have ‖ψi‖CA,3ε
MN

≤ ‖F (MN,t)
di

‖CA,ε
MN

≤ γdi
. We

obtain

‖Qt
k(z)‖End(C1(Y )) ≤ C(1 + k2

0)
( j∏

i=1

γ
1/3
di

)
θ30MNj . (5.11)

If |z| < e2ε, each function ψi1r (MN)>n tends to 0 in CA,3ε
MN when n tends to infinity. As

a consequence, z �→ Qt
k(z) is a uniform limit of polynomials on any compact subset

of {|z| < e2ε} and is therefore holomorphic there.
To prove the rest of the lemma, we use the following inequality (which can

easily be proved by four integrations by parts): there exists C > 0 such that, for any
t, t ′ ∈ [−t0, t0] and for any d ∈ Z,

‖F (MN,t)
d − F

(MN,t ′)
d ‖CA,ε

MN
≤ C|t − t ′|γd. (5.12)

To prove (5.9), let us write Qt
k(z)v − Qt ′

k (z)v as

j∑
b=0

LMN
kj

(
zr (MN)

F
(MN,t)
dj

LMN
kj−1

· · · LMN
kb

(
zr (MN)

(F (MN,t)
db

− F
(MN,t ′)
db

)LMN
kb−1

zr (MN)
F

(MN,t ′)
db−1

LMN
kb−2

( · · · LMN
k1

(zr (MN )
F

(MN,t ′)
d1

v) · · · ).
Fix b. To estimate the corresponding term in this equation, we again use Lemma
4.4. Let ψi = zr (MN)

F
(MN,t)
di

for i > b, let ψi = zr (MN)
F

(MN,t ′)
di

for i < b, and let

ψb = zr (MN)
(F (MN,t)

db
− F

(MN,t ′)
db

). Let also εi = 1 for i �= b. Then ψi, εi satisfy the
assumptions of Lemma 4.4 for i �= b. Finally, let εb = C|t ′ − t | (where C is as in
(5.12)). If t ′ is close enough to t , we have εb ≤ 1, and the assumptions of Lemma 4.4
are again satisfied by (5.12).
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Using this lemma, we obtain (after summation over b)

‖Qt
k(z)v − Qt ′

k (z)v‖C1 ≤ C(j +1)|t ′ − t |(1+k2
0)

( j∏
i=1

γ
1/3
di

)
θ30MNj‖vk0‖C1 . (5.13)

As (j + 1)θ30MNj ≤ Cθ20MNj , we get (5.9).
Finally, to prove (5.10), note that F

(MN,0)
d = 0 if d �= 0. As a consequence, (5.12)

applied to t ′ = 0 gives ‖F (MN,t)
d ‖CA,ε

MN
≤ C|t |γd . We can therefore apply Lemma 4.4

to εi = 1 if di = 0 and εi = C|t | if di �= 0 to obtain (5.10). �

Let us then define formally an operator R(z, t) on BK by R(z, t) = ∑
Q̄t

k(z), where
we sum over all admissible sequences k with |k0| ≤ K and |kj | ≤ K , that is,

(
R(z, t)v

)
k
=

∞∑
j=1

∑
k0,k1,...,kj−1

|k0|≤K
k=(k0,k1,...,kj−1,k) admissible

Qt
k(z)vk0 . (5.14)

The coefficient of zn corresponds to considering the first returns to Y × [−K, K] after
a time exactly n. By (4.12), this is exactly the operator Rt

n defined in (4.9). Using
the estimates in Lemma 5.1, our next goal is to prove that the operators Rt

n satisfy
the assumptions of Theorem 4.2. Indeed, this theorem thus provides us with a good
estimate for T t

n (defined in (4.10)), which is the main building block of Ûn
t .

LEMMA 5.2
The formal series R(z, t) defines a holomorphic function on the disk |z| < e2ε,
uniformly bounded in t ∈ [−t0, t0]. In particular, there exists C > 0 such that, for
any t ∈ [−t0, t0], for any n ∈ N, and for any v ∈ BK , we have

‖Rt
nv‖BK

≤ Ce−nε ‖v‖BK
.

Moreover,

‖R(z, t)v − R(z, t ′)v‖BK
≤ C|t − t ′| ‖v‖BK

. (5.15)

In particular, for any n ∈ N, for any v ∈ BK , we have

‖Rt
nv − Rt ′

n v‖BK
≤ C|t − t ′|e−nε ‖v‖BK

.
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Proof
As θ20MN

∑
d∈Z

γ
1/3
d < 1, the estimates given by Lemma 5.1 are summable. This

directly implies the lemma. �

LEMMA 5.3
There exists a constant C such that, for any z with |z| ≤ e2ε, for any t ∈ [−t0, t0],
and for any v ∈ BK , we have

‖R(z, t)v‖BK
≤ 1

2
‖v‖BK

+ C ‖v‖C0 . (5.16)

Proof
Fix an integer P . We define a truncated series R(z, t, P ) by summing as in R(z, t)
along admissible sequences k = (k0, k1, . . . , kj ) but with the additional restrictions
that sup |ki | ≤ P and j ≤ P . When P tends to infinity, R(z, t, P ) converges (in
norm) to R(z, t), uniformly for (z, t) ∈ {|z| ≤ e2ε} × [−t0, t0]. We show that, for any
P ∈ N, there exists C(P ) such that

‖R(z, t, P )v‖BK
≤ 1

3
‖v‖BK

+ C(P ) ‖v‖C0 . (5.17)

This implies the desired result, by choosing a large enough P .
Let k be an admissible sequence of length j > 0. Iterating j times the equation

(2.5) (applied to the functions ψi = zr (MN)
e−ikiS

Y
MNφY F

(MN,t)
di

), we obtain a constant
C(k) such that, for any v ∈ C1(Y ), we have

‖Qt
k(z)v‖C1 ≤ θ100MNj

( j∏
i=1

γdi

)
‖v‖C1 + C( k ) ‖v‖C0 . (5.18)

The operator R(z, t, P ) involves only a finite number of admissible sequences. De-
noting by C(P ) the sum of C( k ) over these admissible sequences, we obtain, for any
v ∈ BK ,

‖R(z, t, P )v‖BK
≤

P∑
j=1

θ100MNj
( ∑

d∈Z

γd

)j

‖v‖BK
+ C(P ) ‖v‖C0

≤ θ100MN
∑

γd

1 − θ100MN
∑

γd

‖v‖BK
+ C(P ) ‖v‖C0

≤ 1

3
‖v‖BK

+ C(P ) ‖v‖C0

by (5.6). �
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COROLLARY 5.4
For any t ∈ [−t0, t0] and for any |z| ≤ e2ε, the operator R(z, t) acting on BK has an
essential spectral radius bounded by 1/2.

Proof
This is a consequence of Theorem 2.1. �

Definition 5.5
Let ψ : X ×S1 → R be a C6 function. We say that it is continuously periodic if there
exist a > 0, λ > 0, and f : X×S1 → R/λZ measurable such that ψ = f −f ◦T+a

mod λ almost everywhere and f is continuous on Y × S1. Otherwise, we say that ψ

is continuously aperiodic.

Proposition 1.10 says that aperiodicity and continuous aperiodicity are equivalent.
However, we prove this equivalence only at the end of our arguments. Until then, it is
more convenient to work with the notion of continuous aperiodicity.

PROPOSITION 5.6
For any z ∈ D − {1}, the operator I − R(z, 0) is invertible on BK . Moreover, if the
function ψ is continuously aperiodic, the operator I − R(z, t) is invertible on BK for
any (z, t) ∈ (D × [−t0, t0]) − {(1, 0)}.

Proof
Let |z| ≤ 1, and let t ∈ [−t0, t0]. If the operator I − R(z, t) is not invertible, its
kernel contains a nonzero function v = (v−K, . . . , vK ) by Corollary 5.4. Let us define
a function vk for |k| > K by

vk =
∞∑

p=1

∑
k=(k0,k1,...,kj−1,k) admissible

|k0|≤K

Qt
k(z)vk0 .

Lemma 5.1 implies (after summation over the admissible sequences) that∑
k∈Z

‖vk‖C1 < ∞. Moreover, for any k ∈ Z,

vk =
∑
l∈Z

LMN
k (zr (MN )

F
(MN,t)
k−l vl). (5.19)

This equation is indeed a consequence of the construction of the vk’s if |k| > K , and
of the fact that v is a fixed point of R(z, t) if |k| ≤ K .

Let us define a continuous function g on Y × S1 by g(x, ω) = ∑
k∈Z

vk(x)eikω.
As v is nonzero, g is also nonzero. The invariance equation (5.19) translates into the



LOCAL LIMIT THEOREM AND FAREY SEQUENCES 241

following for g:

ÛY (zr (MN )
eitSY

MN ψY g) = g, (5.20)

where ÛY is the transfer operator associated to the map which is induced by U =
U(MN) on Y . Lemma 2.2 yields |z| = 1 and g ◦ UY = eitSY

MN ψY zr (MN)
g. Let us extend

g to the whole space X(MN) × S1 by setting

g(x, j, ω) = zjg(x, 0, ω) exp
(
it

j−1∑
k=0

ψ ◦ Uk(x, ω)
)
. (5.21)

This function is bounded (since g is bounded on Y ), nonzero, and satisfies g ◦ U =
zeitψg.

If t = 0, we obtain g ◦ U = zg. But the map U is mixing (this was proved
in Theorem 3.6 and in (3.41) for U(N), and the same proof holds for U(MN)). As a
consequence, z = 1.

If t �= 0, let f : X(MN) × S1 → R/2πZ be the logarithm of g, and let a be such
that z = e−ia . Then tψ ◦ π̃ (MN) = f ◦ U − f + a mod 2π , and f is continuous
on Y × S1 ⊂ X(MN) × S1 (we have reintroduced the projection π̃ (MN) in the notation
since we soon confront lifting problems). In general, f is not constant on the fibers of
π̃ (MN) and can therefore not be written as f̃ ◦ π̃ (MN) in R/2πZ. However, since the
fibers of π̃ (MN) are countable, [G2, Theorem 1.4] shows that there exist λ of the form
2π/n for some integer n, and f̃ : X × S1 → R/λZ, such that f = f̃ ◦ π̃ (MN) mod λ

almost everywhere. As a consequence, tψ = f̃ ◦ T − f̃ + a mod λ and f̃ has a
continuous version on Y × S1 (since this is the case for f ). Hence, ψ is continuously
periodic. �

LEMMA 5.7
The operator R(1, 0) has a simple eigenvalue at 1. The corresponding spectral pro-
jection is given by (Pv)0 = ∫

Y
v0 dµY , and (Pv)k = 0 if k �= 0. Denoting by R′(z, t)

the derivative with respect to z of R(z, t), we have PR′(1, 0)P = µ(MN)(X(MN))P .

Proof
We have (R(1, 0)v)k = LMN

k vk . It is therefore sufficient to know the spectral prop-
erties of the operators LMN

k (for |k| ≤ K) to conclude. For k �= 0, these operators
have a spectral radius less than 1, while for k = 0 there is a simple eigenvalue at 1,
the corresponding eigenprojection being given by integration (as we saw in the proofs
of Lemma 3.2 and Corollary 3.5). This yields the desired formula for P .

As PR0
jP = µY {r (MN) = j}P for j ≥ 1, we have

PR′(1, 0)P =
∑

jµY {r (MN) = j}P = µ(MN)(X(MN))P (5.22)

by Kac’s formula. �
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5.3. Estimate of the perturbed eigenvalue
In this section, we prove this theorem (which is necessary to apply Theorem 4.2).

THEOREM 5.8
Denote by λ(1, t) the eigenvalue close to 1 of R(1, t) for small t . Then

λ(1, t) = 1 − µ(MN)(X(MN))
σ 2t2

2
+ O(t3), (5.23)

where σ 2 is given by (1.11).

The proof of Theorem 5.8 takes the rest of Section 5.3. We write R(t) and λ(t) instead
of R(1, t) and λ(1, t) since we consider only z = 1.

Let f t be the eigenfunction (in BK ) of R(t) for the eigenvalue λ(t), normalized
so that

∫
f t

0 = 1 (this is possible since
∫

f 0
0 = 1 and f t converges to f 0 in BK ).

Note that f t = f 0 + O(t) and that λ(t) = 1 + O(t) (since R(t) = R(0) + O(t) and
the simple isolated eigenvalues, as well as the corresponding eigenfunctions, depend
in a Lipschitz way on the operator). Moreover, f 0

0 = 1, and f 0
k = 0 for k �= 0.

LEMMA 5.9
We have λ(t) = 1 + O(t2).

Proof
We have

(
R(t)f t

)
0

= ∑
Qt

k(1)f t
k0

, where the summation is over the admissible
sequences k = (k0, . . . , kj ), with |k0| ≤ K and kj = 0. If j ≥ 2, there are at least
two nonzero differences di = ki − ki−1, and the sum of the corresponding terms is
therefore bounded by Ct2 by (5.10). If j = 1 but k0 �= 0, the difference is nonzero,
which gives a O(t) factor. As f t

k0
= O(t), the resulting term is therefore also O(t2).

It remains
(
R(t)f t

)
0

= Qt
(0,0)(1)f t

0 + O(t2). As R(t)f t = λ(t)f t and
∫

f t
0 = 1, we

obtain after integration

λ(t) =
∫

Y

Qt
(0,0)(1)f t

0 + O(t2) =
∫

Y

LMN (F (MN,t)
0 f t

0 ) + O(t2)

=
∫

Y×S1

eitSY
MN ψY (x,ω)f t

0 (x) + O(t2).

As
∫

f t
0 = 1, we get

λ(t) = 1 +
∫

(eitSY
MN ψY − 1)(f t

0 − 1) +
∫

(eitSY
MN ψY − 1) + O(t2). (5.24)



LOCAL LIMIT THEOREM AND FAREY SEQUENCES 243

Since f t
0 = f 0

0 + O(t) = 1 + O(t), the first integral is O(t2). For the second one,
∫

(eitSY
MN ψY −1) = it

∫
SY

MNψY +O(t2) = MNit

∫
X×S1

ψ+O(t2) = O(t2) (5.25)

since
∫

ψ = 0. This finally yields λ(t) = 1 + O(t2). �

Define a function gk on Y by gk(x) = ∫
SY

MNψY (x, ω)e−ikω dω.

LEMMA 5.10
The function gk belongs to C1,ε

MN . Moreover, there exists a constant C > 0 such that,
for any small enough t and for any k ∈ Z,

‖F (MN,t)
k − 1k=0 − itgk‖C1,ε

MN
≤ Ct2

1 + k4
. (5.26)

Proof
Write

F
(MN,t)
k (x) − 1k=0 − itgk(x) =

∫
S1

(
eitSY

MN ψY (x,ω) − 1 − itSY
MNψY (x, ω)

)
e−ikω dω

= −t2

∫ 1

v=0
(1 − v)

( ∫
S1

SY
MNψY (x, ω)2

× eitSY
MN ψY (x,ω)ve−ikω dω

)
dv.

This gives (5.26) after four integrations by parts with respect to ω. �

LEMMA 5.11
For any |k| ≤ K , we have in C1(Y )

f t
k = f 0

k + it

∞∑
n=1

LMNn
k (gk) + O(t2). (5.27)

Note that gk belongs to C1,ε
MN , which implies that LMN

k gk ∈ C1(Y ) by Theorem
2.3. The series

∑
n∈N

LMNn
k LMN

k g is therefore convergent in C1(Y ): for k �= 0, the
spectral radius of LMN

k on C1(Y ) is less than 1, and the convergence is trivial. For
k = 0, there is still exponential convergence for functions with zero average, which
is the case of g0 because

∫
ψ = 0.
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Proof of Lemma 5.11
As λ(t) = 1 + O(t2), we have

f t − f 0

t
= λ(t)f t − f 0

t
+ O(t) = R(t)f t − R(0)f 0

t
+ O(t)

= (
R(t) − R(0)

)f t − f 0

t
+ R(0)

f t − f 0

t
+ R(t) − R(0)

t
f 0 + O(t).

Since R(t) − R(0) = O(t) and since f t − f 0 = O(t), we obtain, after moving
R(0) f t−f 0

t
to the left-hand side,

(
I − R(0)

)f t − f 0

t
= R(t) − R(0)

t
f 0 + O(t). (5.28)

The operator R(0) simply acts by (R(0)v)k = LMN
k vk . Let us study (R(t)f 0)k =∑

k Qt
k(1)1, where k is an admissible sequence beginning by 0 and ending by k. If the

length of this admissible sequence is at least 2, there are two nonzero differences, and
we obtain a term bounded by O(t2). Hence,

(
R(t)f 0

)
k
= Qt

(0,k)(1)1 + O(t2) = LMN
k (F (MN,t)

k ) + O(t2). (5.29)

Applying Lemma 5.10 and using the fact that LMN
k is continuous from C1,ε

MN to C1(Y ),
we get, in C1(Y ),

(
R(t)f 0

)
k
= 1k=0 + itLMN

k gk + O(t2) = (
R(0)f 0

)
k
+ itLMN

k gk + O(t2). (5.30)

Let hk = ∑
n>0 LMNn

k gk . Denote by h the corresponding element in BK so that the
kth component of (I − R(0))h is equal to LMN

k gk . Equations (5.28) and (5.30) imply
that

(
I − R(0)

)(f t − f 0

t
− ih

)
= O(t). (5.31)

As I − R(0) is invertible on the set of elements v of BK , with
∫

v0 = 0, this shows
that (f t − f 0)/t − ih = O(t), which is the desired conclusion. �

Let UY be the map induced by U = U(MN) on Y ×S1. The associated transfer operator
ÛY acts on each frequency k by LMN

k . From the spectral properties of the operators
LMN

k , we obtain the convergence of the series

σ̃ 2 =
∫

Y

(SY
MNψY )2 + 2

∞∑
n=1

∫
Y

SY
MNψY · SY

MNψY ◦ Un
Y

=
∫

Y

(SY
MNψY )2 + 2

∞∑
n=1

∫
Y

Ûn
Y SY

MNψY · SY
MNψY . (5.32)
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LEMMA 5.12
We have λ(t) = 1 − σ̃ 2t2/2 + O(t3).

Proof
Let us estimate (R(t)f t )0. We have(
R(t)f t

)
0
=

∑
1≤|k|≤K

∑
k=(k,k1,...,kj−1,0) admissible

Qt
k(1)f t

k +
∑

k=(0,k1,...,kj−1,0) admissible

Qt
k(1)f t

0 .

In the first sum, f t
k = O(t). If there are two nonzero differences in the admissible

sequence k, we therefore obtain terms bounded by O(t3) by (5.10). In the second sum,
we also get O(t3) unless there are at most two nonzero differences, which is possible
only for the sequences k = (0, 0) and k = (0, �, . . . , �, 0), where � is repeated a
number of times, say j , and |�| > K . Hence,(

R(t)f t
)

0
=

∑
1≤|k|≤K

LMN (F (MN,t)
−k f t

k ) + LMN (F (MN,t)
0 f t

0 )

+
∑

Qt
(0,�,...,�,0)(1)f t

0 + O(t3).

We have

Qt
(0,�,...,�,0)(1)v = LMN

(
F

(MN,t)
−� LMN

� F
(MN,t)
0 LMN

� · · · LMN
� (F (MN,t)

� f t
0 ) · · · ).

(5.33)

As there are two nonzero differences in these admissible sequences, the contribution
of these terms to R(t)f t

0 is O(t2). Moreover, F
(MN,t)
0 = 1 + O(t). If we replace

F
(MN,t)
0 by 1, we get an additional error of O(t) in each term. It can be checked as in

the proof of (5.9) that these errors are summable. In the same way, f t
0 may be replaced

by 1 since the error is O(t). We get(
R(t)f t

)
0

=
∑

1≤|k|≤K

LMN (F (MN,t)
−k f t

k ) + LMN (F (MN,t)
0 f t

0 )

+
∑
j>0

∑
|�|>K

LMN (F (MN,t)
−� LMNj

� F
(MN,t)
� ) + O(t3).

For |�| > K and for j > 0, we have ‖LMNj

� v‖C1 ≤ C(1 + �2)θ30MNj ‖v‖C1,ε
MN

for any function v by Lemma 4.4. Hence, (5.26) enables us to replace F
(MN,t)
� and

F
(MN,t)
−� , respectively, with itg� and itg−�, the additional errors being summable and

giving a term of order O(t3). Using also the estimates on f t
k of Lemma 5.11, we obtain(

R(t)f t
)

0
= −t2

∑
1≤|k|≤K

∑
n>0

LMN (g−kLMNn
k gk) + LMN (F (MN,t)

0 f t
0 )

− t2
∑
|�|>K

∑
j>0

LMN (g−�LMNj

� g�) + O(t3).
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To estimate LMN (F (MN,t)
0 f t

0 ), we write, in C1,ε
MN ,

F
(MN,t)
0 (x) = 1 + itg0(x) − t2

2

∫
S1

SY
MNψY (x, ω)2 dω + O(t3). (5.34)

Consequently, by Lemma 5.11 and since
∫

f t
0 = 1,

∫
g0 = 0, we have

∫
Y

LMN (F (MN,t)
0 f t

0 ) =
∫

Y

F
(MN,t)
0 f t

0

= 1 +
∫

Y

itg0f
t

0 − t2

2

∫
Y

∫
S1

SY
MNψY (x, ω)2f t

0 (x) dω + O(t3)

= 1 − t2
∞∑

n=1

∫
Y

g0LMNng0 − t2

2

∫
Y×S1

SY
MNψY (x, ω)2 + O(t3).

Finally, as λ(t) = ∫
Y

λ(t)f t
0 = ∫

Y
(R(t)f t )0, we obtain

λ(t) = 1 − t2

2

∫
Y×S1

SY
MNψY (x, ω)2 − t2

∑
k∈Z

∑
n>0

∫
Y

g−kLMNn
k gk + O(t3), (5.35)

and the sum is absolutely converging. To conclude the proof, it is therefore sufficient
to show that, for any n > 0,

∑
k∈Z

∫
Y

g−kLMNn
k gk =

∫
Y×S1

SY
MNψY · SY

MNψY ◦ Un
Y . (5.36)

We have∫
Y

g−kLMNn
k gk =

∫
g−kLMNn(e−ik

∑n−1
j=0 SY

MN φY ◦U
j

Y gk)

=
∫

Y

g−k ◦ Un
Y e−ik

∑n−1
j=0 SY

MN φY ◦U
j

Y gk

=
∫

Y

( ∫
S1

SY
MNψY (Un

Y x, ω̃)eikω̃ dω̃
)
e−ik

∑n−1
j=0 SY

MN φY ◦Uj

Y (x)

×
( ∫

S1

SY
MNψY (x, ω)e−ikω dω

)
dµY (x).

Let ω′ = ω̃ − ∑n−1
j=0 SY

MNφY ◦ U
j

Y (x), so that the previous formula becomes

∫
Y

g−kLMNn
k gk =

∫
Y

( ∫
S1

SY
MNψY ◦ Un

Y (x, ω′)eikω′
dω′

)

×
( ∫

S1

SY
MNψY (x, ω)e−ikω dω

)
dµY (x). (5.37)
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For any u, v ∈ L2(Y × S1), we have
∫

Y×S1

uv =
∑
k∈Z

∫
Y

( ∫
S1

u(x, ω′)eikω′
dω′

)( ∫
S1

v(x, ω)e−ikω dω
)

dµY (x), (5.38)

where the series on the right-hand side converges absolutely. This is simply Parseval’s
equality in each fiber S1, integrated with respect to x. Together with (5.37), this yields
(5.36) and concludes the proof of the lemma. �

LEMMA 5.13
We have σ̃ 2 = µ(MN)(X(MN))σ 2.

Together with Lemma 5.12, this lemma concludes the proof of Theorem 5.8.

Proof
We show that

σ̃ 2 =
∫

X(MN)×S1

ψ2 d(µ(MN) ⊗ Leb) + 2
∞∑

n=1

∫
X(MN)×S1

ψ · ψ ◦ Un d(µ(MN) ⊗ Leb).

(5.39)
Since µ(MN) projects on µ(MN)(X(MN))µ̃, this implies the result of the lemma.

It is easy to convince oneself of (5.39) by expanding the expression of SY
MNψY

in σ̃ 2 and then gluing back together the different pieces to get the right member of
(5.39). However, this process involves series which are a priori not convergent, which
is a problem. We therefore do the computation in a different way, inspired by [G1,
Proposition 4.8].

Let us define a function c on X(MN) × S1 by c = ∑∞
n=1 Ûn(ψ). This series

converges by Theorem 3.6, and defines a function belonging to Lp(X(MN) × S1) for
any p. Moreover, c = Ûψ + Ûc. Let a be the restriction of c to Y . The previous
equation implies that a = ÛY SY

MNψY + ÛY a. As a consequence, the function ã =
a − ∫

a is equal to
∑∞

n=1 Ûn
Y (SY

MNψY ) (and this series is indeed converging, since∫
SY

MNψY = 0). In particular,

σ̃ 2 =
∫

Y×S1

(SY
MNψY )2 + 2

∫
Y×S1

SY
MNψY · ã

=
∫

Y×S1

(SY
MNψY )2 + 2

∫
Y×S1

SY
MNψY · a. (5.40)

The explicit relationship between a and c then makes it possible to show (as in the
proof of [G1, Proposition 4.8]) that this quantity is equal to

∫
X(MN)×S1 (ψ2 + 2ψc),

which proves (5.39) thanks to the definition of c. �
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5.4. Reconstruction of Ûn
t

Let us assume from now on that σ 2 > 0.
We proved in Sections 5.2 and 5.3 that the sequence Rt

n is a perturbed renewal
sequence of operators with exponential decay in the sense of Definition 4.1 and that it
is aperiodic if the function ψ itself is continuously aperiodic. We can therefore apply
Theorem 4.2 and get the following estimate on T t

n (defined in (4.10)).

PROPOSITION 5.14
Let P be the operator on BK defined in Lemma 5.7. There exist τ0 > 0, c > 0, C > 0,
and θ̄ < 1 such that, for any n ∈ N, for any t ∈ [−τ0, τ0], and for any v ∈ BK , we
have

∥∥∥T t
nv − 1

µ(MN)(X(MN))

(
1 − σ 2t2

2

)n

P v

∥∥∥
BK

≤ C
(
θ̄ n+|t |(1−ct2)n

) ‖v‖BK
. (5.41)

Moreover, if ψ is continuously aperiodic, we also have, for any |t | ∈ [τ0, t0],

‖T t
nv‖BK

≤ Cθ̄n ‖v‖BK
. (5.42)

We recall that T t
n is also given by T t

nv = 1Y×[−K,K]K̂t,n(1Y×[−K,K]v). As we have a
good control on K̂t outside Y × [−K, K], the information given by Proposition 5.14
therefore makes it possible to reconstruct precisely K̂t,n. As a first step, we estimate
P t

nv := 1Y×ZK̂t,n(1Y×Zv). As in Section 3.2, we thus define operators At
n, Bt

n, and
Ct

n using the kernel Kt along trajectories of the “random walk” of length n, starting
and ending in Y × Z, with the following additional restrictions. For the operator At

n,
we only sum over the trajectories that enter in Y × [−K, K] after a time exactly n,
for the operator Bt

n over the trajectories starting in Y × [−K, K] and staying out of it
for the next n iterates , and for the operator Ct

n over the trajectories spending all their
iterates outside of Y × [−K, K]. Formally, for n > 0, we have

At
nv(x, k) =

∑
p≥0

∑
k0∈[−K,K],k1,...,kp−1,kp=k �∈[−K,K]

x0,x1,...,xp−1,xp=x∑p−1
i=0 r (MN)(xi )=n

Kt,Y
(xp,kp)→(xp−1,kp−1) · · · Kt,Y

(x1,k1)→(x0,k0)v(x0, k0),

and Bt
n, Ct

n are defined in an analogous way.
By construction, the operator P t

n satisfies

P t
n = Ct

n +
∑

a+i+b=n

At
aT

t
i Bt

b (5.43)

as long as this expression makes sense. We therefore need to introduce different
Banach spaces of functions from Y × Z to C such that the operators At

n, Bt
n, and Ct

n

are well defined between these spaces. In addition to BK , let us denote by B2
Y the
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set of functions v from Y × Z to C such that
∑

k∈Z
(1 + k2) ‖vk‖C1(Y ) < ∞ with its

canonical norm, and let us denote by B0
Y the set of functions v from Y × Z to C such

that
∑

k∈Z
‖vk‖C1(Y ) < ∞. We consider At

a as an operator from BK to B0
Y , Bt

b as an
operator from B2

Y to BK , and Ct
n as an operator from B2

Y to B0
Y . Of course, it should

be checked that these operators are bounded for these respective norms. This is done
in the following lemma.

LEMMA 5.15
There exists C > 0 such that, for any n ∈ N∗ and any t ∈ [−t0, t0], we have

‖At
n‖BK→B0

Y
≤ C|t |e−εn, ‖Bt

n‖B2
Y →BK

≤ C|t |e−εn, ‖Ct
n‖B2

Y →B0
Y

≤ Ce−εn.

(5.44)

Proof
Let us start with At

n. If k = (k0, . . . , kj ) is an admissible sequence, we have defined an
operator Q̄t

k(z) in Section 5.2 by (Q̄t
k(z)v)k = 0 if k �= kj , and (Q̄t

k(z)v)kj
= Qt

k(z)vk0 .
We define an operator A(z, t) from BK to B0

Y by

A(z, t) =
∞∑

j=1

∑
k=(k0,k1,...,kj−1,kj ) admissible

|k0|≤K,|kj |>K

Q̄t
k(z). (5.45)

By construction, At
n is the coefficient of zn in this series. Moreover, summing the

estimates of Lemma 5.1 over admissible sequences with |k0| ≤ K and |kj | > K , we
obtain that A(z, t) is holomorphic on the disk {|z| < e2ε} (as a function from BK to
B0

Y ). Summing the estimates (5.10) for small t , we also get that A(z, t) is bounded
by C|t | (since the number of differences in such an admissible sequence is at least 1).
As a consequence, A(z, t) is bounded by C|t | for t ∈ [−t0, t0] since this inequality is
trivial outside of a neighborhood of zero. Thus, the coefficient of zn in A(z, t) decays
at least like C|t |e−εn. This concludes the proof of the estimate of At

n.
For Bt

n, we argue in the same way, using the fact that it is the coefficient of zn in
the series

∞∑
j=1

∑
k=(k0,k1,...,kj−1,kj ) admissible

|k0|>K,|kj |≤K

Q̄t
k(z). (5.46)

As ‖Qt
k(z)‖C1(Y )→C1(Y ) ≤ C|t |(1 + k2

0)θ20MNj
∏j

i=1 γ
1/3
di

by Lemma 5.1, we also have

‖Q̄t
k(z)‖B2

Y →BK
≤ C|t |θ20MNj

j∏
i=1

γ
1/3
di

. (5.47)
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Since this quantity is summable with respect to k, the series (5.46) is holomorphic on
the disk {|z| < e2ε} and bounded by C|t |. We conclude as above.

Finally, Ct
n is the coefficient of zn in the series

∞∑
j=1

∑
k=(k0,k1,...,kj−1,kj ) admissible

|k0|>K,|kj |>K

Q̄t
k(z), (5.48)

which defines a holomorphic function from B2
Y to B0

Y in the disk {|z| < e2ε} (by
summing the estimates of Lemma 5.1). This yields the desired estimate for Ct

n. �

We have defined a projection P on BK , which can be extended to an operator from
B2

Y to B0
Y , as follows: (Pv)k = 0 if k = 0, and (Pv)0 = ∫

Y
v0 dµY .

COROLLARY 5.16
There exist constants τ0 > 0, c > 0, C > 0, and θ̄ < 1 such that, for any n ∈ N,
t ∈ [−τ0, τ0], and v ∈ B2

Y , we have

∥∥∥P t
nv − 1

µ(MN)(X(MN))

(
1 − σ 2t2

2

)n

P v

∥∥∥
B0

Y

≤ C
(
θ̄ n+|t |(1−ct2)n

) ‖v‖B2
Y
. (5.49)

Moreover, if ψ is continuously aperiodic, one also has, for any |t | ∈ [τ0, t0],

‖P t
nv‖B0

Y
≤ Cθ̄n ‖v‖B2

Y
. (5.50)

Proof
We write P t

n = At
0T

t
nBt

0 +Ct
n +∑

a+i+b=n, i<n At
aT

t
i Bt

b as an operator from B2
Y to B0

Y .
The term At

0T
t
nBt

0 gives the desired asymptotics by Proposition 5.14 (and since At
0

and Bt
0 are simply trivial extension and restriction operators). The term Ct

n is O(θ̄ n)
by Lemma 5.15. Hence, we should estimate the sum

∑
a+i+b=n, i<n At

aT
t
i Bt

b whose
norm is bounded by

C|t |
∑

a+i+b=n

e−εa
(
θ̄ i + (1 − ct2)i

)
e−εb, (5.51)

again by Lemma 5.15 and Proposition 5.14. The term
∑

e−εaθ̄ ie−εb is exponentially
small in n, while the remaining term is bounded by

|t |
∑

i+j=n

(j + 1)e−εj (1 − ct2)i ≤ C|t |(1 − ct2)n
n∑

j=0

(
(1 − ct2)−1e−ε

)j

≤ C|t |(1 − ct2)n

1 − (1 − ct2)−1e−ε
.

This is bounded by C|t |(1 − ct2)n if t is small enough.
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When ψ is continuously aperiodic, the equation (5.50) is proved in the same way
by combining (5.42) and Lemma 5.15. �

The next step in the reconstruction of K̂t,n is to understand P̃ t
nv := 1Y×ZK̂t,n(v).

We let this operator act on the space B3 of functions v from X(MN) × Z to C

such that
∑

k∈Z
(1 + |k|3) ‖vk‖C1(X(MN)) < ∞, and we let it take its values in B0

Y .
Let us also define an operator P̃ from B3 to B0

Y by (P̃ v)k = 0 for k �= 0, and
(P̃ v)0 = ∫

X(MN) v0 dµ̃(MN) (recall that µ̃(MN) is a probability measure on X(MN) whose
restriction to Y is µY /µ(MN)(X(MN))).

PROPOSITION 5.17
There exist constants τ0 > 0, c > 0, C > 0, and θ̄ < 1 such that, for any n ∈ N, for
any t ∈ [−τ0, τ0], and for any v ∈ B3, we have

∥∥∥P̃ t
nv −

(
1 − σ 2t2

2

)n

P̃ v

∥∥∥
B0

Y

≤ C
(
θ̄ n + |t |(1 − ct2)n

) ‖v‖B3 . (5.52)

Moreover, if ψ is continuously aperiodic, one also has, for any |t | ∈ [τ0, t0],

‖P̃ t
nv‖B0

Y
≤ Cθ̄n ‖v‖B3 . (5.53)

Proof
Let us define an operator Dt

n, which corresponds to considering the trajectories of the
“random walk” starting from Y × Z and staying outside of Y × Z during a time n, so
that P̃ t

n = ∑
i+j=n P t

i D
t
j . Formally, for x ∈ Y , we have

Dt
nv(x, k) =

∑
k0,...,kn=k
x0,...,xn=x

xi �∈Y for 0≤i<n

Kt
(xn,kn)→(xn−1,kn−1) · · · Kt

(x1,k1)→(x0,k0)v(x0, k0). (5.54)

We first study Dt
n as an operator from B3 to B2

Y . As the dynamics of U between two
returns to Y is trivial, Dt

n can be explicitly described as follows. Recall that a point
x in X(MN) is a pair (y, i) where y ∈ Y and i < r (MN)(y). The preimages of (x, 0)
under Un which do not enter Y in between are exactly the points (hx, r (MN)(hx)−n),
where h ∈ HMN is an inverse branch of T MN

Y whose return time r (MN) ◦ h is greater
than n. Let v ∈ B3. For k, l ∈ Z, let us define a function vn

k,l on Y by

vn
k,l(y) = 1r (MN)(y)>nvl

(
y, r (MN)(y)−n

)
e−ikSnφ(y,r (MN)(y)−n)(eitSnψ )k−l

(
y, r (MN)(y)−n

)
.

Here, (y, r (MN)(y) − n) is a point in X(MN), e−ikSnφ is a function on X(MN), and
(eitSnψ )k−l is the k − lth Fourier coefficient (in the ω direction) of the function eitSnψ
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on X(MN) × S1, so it is also a function on X(MN). We have defined vn
k,l so that

Dt
nv(x, k) = ∑

l LMNvn
k,l(x).

Let us now estimate ‖Dt
nv‖B2

Y
in terms of ‖v‖B3 . As ψ belongs to C5,1, the k− lth

Fourier coefficient of eitSnψ is bounded by Cn5/(1 + |k − l|5). As r (MN)(x) > n, we
get

|vn
k,l(x)| ≤ C ‖vl‖C0

n5

1 + |k − l|5 ≤ C ‖vl‖C0 e−εn e2εr (MN)(x)

1 + |k − l|5 , (5.55)

and, for any inverse branch h, we get

‖D(vn
k,l ◦ h)‖C0 ≤ C ‖vl‖C1 (1 + |k|)n n5

1 + |k − l|5

≤ C ‖vl‖C1 (1 + |k|)e−εn e2εr (MN)(x)

1 + |k − l|5 . (5.56)

As a consequence,

‖vn
k,l‖C1,2ε

MN
≤ C(1 + |k|)

1 + |k − l|5 ‖vl‖C1 e−εn. (5.57)

By Theorem 2.3, ‖LMNvn
k,l‖C1(Y ) ≤ C‖vn

k,l‖C1,2ε
MN

. Finally,

‖Dt
nv‖B2

Y
=

∑
k

(1 + |k|2)‖(Dt
nv)k‖C1(Y ) ≤ Ce−εn

∑
k,l

1 + |k|3
1 + |k − l|5 ‖vl‖C1 . (5.58)

If l is fixed,

∑
k

1 + |k|3
1 + |k − l|5 =

∑
j

1 + |j + l|3
1 + |j |5 ≤ C

∑
j

1 + |j |3 + |l|3
1 + |j |5 ≤ C(1+|l|3). (5.59)

Consequently,

‖Dt
nv‖B2

Y
≤ Ce−εn ‖v‖B3 . (5.60)

In the equality P̃ t
nv = ∑

i+j=n P t
i D

t
jv, let us replace P t

i with (1 −
σ 2t2/2)iP /µ(MN)(X(MN)) + Et

i , where Et
i is an error term. The control of Et

i given
by Corollary 5.16, combined with the computation made at the end of the proof of
this lemma, gives

∑
i+j=n

‖Et
iD

t
j‖B3→B0

Y
≤ C

∑
i+j=n

(
θ̄ i + |t |(1 − ct2)i

)
e−εj ≤ C

(
θ̄ n + |t |(1 − ct2)n

)
.

(5.61)
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Hence there is only one term left to be estimated in P̃ t
nv, with frequency zero, given

by

I t
n := 1

µ(MN)(X(MN))

∑
i+j=n

(
1 − σ 2t2

2

)i
∫

Y

(Dt
jv)0 dµY . (5.62)

For all u, v ∈ R holds |eu − ev| ≤ |u − v|emax(u,v). As | ∫
Y

(Dt
jv)0| ≤ Ce−εj ‖v‖B3 ,

we obtain

∣∣∣
n∑

j=0

(
1 − σ 2t2

2

)n−j
∫

Y

(Dt
jv)0 dµY −

(
1 − σ 2t2

2

)n
n∑

j=0

∫
Y

(Dt
jv)0 dµY

∣∣∣

≤ C
(

1 − σ 2t2

2

)n
n∑

j=0

∣∣∣(1 − σ 2t2

2

)−j

− 1
∣∣∣e−εj ‖v‖B3

≤ C
(

1 − σ 2t2

2

)n
n∑

j=0

j

∣∣∣ log
(

1 − σ 2t2

2

)∣∣∣(1 − σ 2t2

2

)−j

e−εj ‖v‖B3

≤ Ct2
(

1 − σ 2t2

2

)n

‖v‖B3 .

Let us define a function f on X(MN) ×S1 by f (x, ω) = ∑
k vk(x)eikω. If Zj ⊂ X(MN)

denotes the set of points in X(MN) which enter into Y after exactly j iterates, we
have ∫

Y

(Dt
jv)0 dµY =

∫
Zj ×S1

f eitSj ψ d(µ(MN) ⊗ Leb). (5.63)

Since the measure of Zj decays exponentially fast,

∣∣∣
∫

Y

(Dt
jv)0 dµY −

∫
Zj ×S1

f d(µ(MN) ⊗ Leb)
∣∣∣ ≤ C

∫
Zj ×S1

|t |j ‖f ‖C0 ≤ C|t |θ̄ j ‖v‖B3 .

(5.64)
Finally,

∣∣∣
n∑

j=0

∫
Zj ×S1

f d(µ(MN) ⊗ Leb) −
∫

X(MN )×S1

f d(µ(MN) ⊗ Leb)
∣∣∣

≤ C ‖f ‖C0

∞∑
j=n+1

µ(MN)(Zj ) ≤ C ‖v‖B3 θ̄ n.
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Combining these different estimates, we obtain

I t
n =

(
1−σ 2t2

2

)n 1

µ(MN)(X(MN))

∫
X(MN )×S1

f d(µ(MN) ⊗ Leb) + O
(
θ̄ n + |t |(1 − ct2)n

)

=
(

1 − σ 2t2

2

)n
∫

X(MN)

v0 dµ̃(MN) + O
(
θ̄ n + |t |(1 − ct2)n

)
.

This proves (5.52). Finally, (5.53) is proved in the same way, by using (5.50). �

Let Ût denote the operator acting on functions on X(MN) × S1 by Ût (v) = Û(eitψv),
where Û is the transfer operator associated to U.

THEOREM 5.18
Assume that σ 2 > 0. Then there exist constants τ0 > 0, c > 0, C > 0, and θ̄ < 1 such
that, for any C5,1 function v : X(MN) ×S1 → C, for any n ∈ N, for any t ∈ [−τ0, τ0],
and for any (x, ω) ∈ X(MN) × S1 such that h(x) ≤ n/2, we have

∣∣∣Ûn
t v(x, ω) −

(
1 − σ 2t2

2

)n
∫

v d(µ̃(MN) ⊗ Leb)
∣∣∣

≤ C
(
1 + h(x)

)(
θ̄ n + |t |(1 − ct2)n

) ‖v‖C5,1 . (5.65)

Moreover, if ψ is continuously aperiodic, we also have, for any |t | ∈ [τ0, t0] and for
any (x, ω) with h(x) ≤ n/2,

|Ûn
t v(x, ω)| ≤ Cθ̄n ‖v‖C5,1 . (5.66)

Note that this theorem implies Theorem 3.6, taking simply t = 0 (and a different
value of θ̄ ).

Proof
Define w in B3 by w(x, k) = ∫

S1 v(x, ω)e−ikω dω, so that v(x, ω) = ∑
w(x, k)eikω.

As v ∈ C5,1, w belongs to B3 and ‖w‖B3 ≤ C ‖v‖C5,1 .
For x ∈ Y , we have Ûn

t v(x, ω) = ∑
k∈Z

(P̃ t
nw)k(x)eikω by construction of P̃ t

n .
Hence Proposition 5.17 implies that, for x ∈ Y and t ∈ [−τ0, τ0],
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∣∣∣Ûn
t v(x, ω) −

(
1 − σ 2t2

2

)n
∫

v

∣∣∣ ≤
∣∣∣(P̃ t

nw)0(x) −
(

1 − σ 2t2

2

)n
∫

w0

∣∣∣
+

∑
k∈Z∗

|(P̃ t
nw)k(x)|

≤
∥∥∥P̃ t

nw −
(

1 − σ 2t2

2

)n

P̃w

∥∥∥
B0

Y

≤ C(θ̄ n + |t |(1 − ct2)n) ‖w‖B3

≤ C(θ̄ n + |t |(1 − ct2)n) ‖v‖C5,1 .

This proves (5.65) for the points x with h(x) = 0.
Assume now that j = h(x) ∈ (0, n/2]. Let x ′ be such that Ujx ′ = x, and let ω′ =

ω−Sjφ(x ′), so that Uj (x ′, ω′) = (x, ω). Then Ûn
t v(x, ω) = eitSj ψ(x ′,ω′)Ûn−j

t v(x ′, ω′).
Using the result for (x ′, ω′), we get

∣∣∣Ûn
t v(x, ω)−eitSj ψ(x ′,ω′)

(
1− σ 2t2

2

)n−j
∫

v

∣∣∣ ≤ C
(
θ̄ n−j + |t |(1 − ct2)n−j

) ‖v‖C5,1 .

(5.67)

Since n − j ≥ n/2, this last term is bounded by θ̄ n/2 + |t |(1 − ct2)n/2, which is
compatible with (5.65) (upon changing the values of θ̄ and c).

Moreover, |eitSj ψ(x ′,ω′) − 1| ≤ C|t |j . Replacing eitSj ψ(x ′,ω′) by 1 in (5.67), we add
an error which is bounded by C|t |h(x)(1 − σ 2t2/2)n/2. This is again compatible with
(5.65). Finally,

∣∣∣(1 − σ 2t2

2

)n−j

−
(

1 − σ 2t2

2

)n∣∣∣ ≤ j

∣∣∣ log
(

1 − σ 2t2

2

)∣∣∣(1 − σ 2t2

2

)n−j

≤ Cjt2(1 − ct2)n/2,

which is still compatible with (5.65). Incorporating all these substitutions, we obtain
(5.65).

Finally, (5.66) is proved in the same way, by using (5.53). �

Proof of Theorem 1.12
Theorem 3.6 enabled us to prove Theorem 1.7. The same arguments make it possible
to deduce Theorem 1.12 from Theorem 5.18, when d (MN) = 1.

When d = d (MN) > 1, let us show (1.13) ((1.14) is analogous). Applying the
previous arguments to the transformation Ud , which is mixing, we almost obtain
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(1.13) for times n of the form kd , with a slight difference: since σ 2 is replaced with

∫
(Sdψ)2 + 2

∞∑
j=1

∫
(Sdψ)(Sdψ) ◦ Tjd = dσ 2, (5.68)

we in fact obtain
∣∣∣
∫

eitSkdψ · f ◦ Tn · g d(µ̃ ⊗ Leb)

−
(

1 − d
σ 2t2

2

)k( ∫
f d(µ̃ ⊗ Leb)

)( ∫
g d(µ̃ ⊗ Leb)

)∣∣∣
≤ C(θ̄ k + |t |(1 − ct2)k) ‖f ‖L∞ ‖g‖C6 .

To really obtain (1.13), we thus have to bound (1 − σ 2t2/2)kd − (1 − dσ 2t2/2)k . We
have

∣∣∣(1 − σ 2t2

2

)kd

−
(

1 − d
σ 2t2

2

)k∣∣∣ ≤
∣∣∣kd log

(
1 − σ 2t2

2

)
− k log

(
1 − d

σ 2t2

2

)∣∣∣
× max

((
1 − σ 2t2

2

)kd

,
(

1 − d
σ 2t2

2

)k
)

≤ Ck|t |4(1 − ct2)k.

By (4.21), this term is bounded by Ct2(1−ct2/2)k . This concludes the proof for times
n = kd .

If n is a general time, it can be written as kd + r with 0 ≤ r < d . The theorem
at time kd , applied to the functions eitSrψf ◦ Tr and g (respectively, bounded and
C6) almost gives the result, the factor (1 − σ 2t2/2)n simply being replaced with
(1 − σ 2t2/2)kd . As above, one checks that the resulting additional error term is still
compatible with (1.13). �

5.5. Proof of Theorem 1.9
Assume first that ψ is a C6 function with σ 2 > 0. Theorem 1.12 for f = g = 1 shows
that the characteristic function of Snψ/

√
n converges to e−σ 2t2/2, which is equivalent

to the convergence of Snψ/
√

n toward the Gaussian distribution N(0, σ 2). This
concludes the proof in this case.

Assume now that ψ is only Cα , with zero average and with σ 2 > 0. Let ψε

be a C6 function, close to ψ in Cα/2, with corresponding asymptotic variance σ 2
ε .

Theorem 1.7 (applied in Cα/2) shows that the variance of Sn(ψ −ψε)/
√

n is uniformly
small in n. This implies on the one hand that the distributions of Snψ/

√
n and Snψε/

√
n

are close, and on the other hand that σ 2
ε is close to σ 2. In particular, if ε is small enough,

σ 2
ε > 0. As Snψε/

√
n converges to N(0, σ 2

ε ), this implies that Snψ/
√

n is close in
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distribution to N(0, σ 2) if n is large enough. Therefore, Snψ/
√

n is indeed converging
to N(0, σ 2).

5.6. Regularity in the cohomological equation
Proof of Proposition 1.8
We proved half of the proposition in Proposition 3.9. It remains to prove that, if
ψ = f − f ◦ T for some measurable f , then σ 2 = 0. If σ 2 > 0, Theorem 1.9
implies that Snψ/

√
n converges to a Gaussian distribution. However, Snψ/

√
n =

(f − f ◦ Tn)/
√

n converges in distribution to zero, which is a contradiction. Hence
σ 2 = 0. �

Proof of Proposition 1.10
Let ψ : X × S1 → R be a C6 function. We have to show that ψ is periodic if and
only if ψ is continuously periodic.

If ψ is continuously periodic, it is trivially periodic. Conversely, suppose that ψ

is continuously aperiodic, but it is nevertheless possible to write ψ = u − u ◦ T + a

mod λ, where u is measurable and a ∈ R.
If σ 2 vanished, ψ would be continuously periodic by Proposition 1.8, which is a

contradiction. Hence σ 2 > 0. As ψ is continuously aperiodic, it satisfies Theorem 1.12
(because (1.14) has been proved under the sole assumption of continuous aperiodicity).
In particular, for t �= 0 and for any functions f, g that are, respectively, bounded
and C6,

∫
eitSnψf ◦ Tng → 0. By density, this convergence to zero holds for any

f, g ∈ L2. However, for t = 2π/λ, f = eitu, and g = e−itu, we have
∫

eitSnψf ◦ Tng =
∫

eit(u−u◦Tn+na)eitu◦Tn

e−itu = eitna, (5.69)

which does not converge to zero. This is a contradiction. �

6. Proofs for Farey sequences

6.1. A general criterion for the weak Federer property
We would like to prove that some measures µ satisfy the weak Federer property. In
the introduction, we showed that this property is quite easy to check for Lebesgue
measure. However, in view of the application to Farey sequences, it is desirable to
have a sufficiently simple criterion that does not apply only to absolutely continuous
measures. In this section, we describe such a criterion.

Let us consider a Riemannian manifold Z endowed with a measure µ such that,
for any ρ > 0, infx∈Z µ(B(x, ρ)) > 0. We assume that Z is partitioned in a finite
number of subsets Y1, . . . , Yp and that each set Yj admits a (finite or countable)
subpartition modulo zero into sets (Wl,j )l∈�(j ). Also let T be a map that sends each
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set Wl,j diffeomorphically to one of the Yk . We can define Hn as the set of inverse
branches of T

n
. Such an inverse branch h is not defined on the whole space Z but

rather only on one of the sets Yj = Yj (h). We assume the following.
(1) There exist κ > 1 and Cl,j such that, for any x ∈ Wl,j and v tangent at Z in x,

κ ‖v‖ ≤ ‖DT (x)v‖ ≤ Cl,j ‖v‖.
(2) Let J (x) be the inverse of the Jacobian of T with respect to µ. There exists

C > 0 such that, for any h ∈ H1, ‖D((log J ) ◦ h)‖ ≤ C.
(3) For any C̄ > 1, there exist D̄ > 1 and η0 > 0 such that, for any η < η0 and

for any 1 ≤ j ≤ p, there exist disjoint balls B(x1, C̄η), . . . , B(xk, C̄η) that
are compactly included in Yj ; sets A1, . . . , Ak with Ai ⊂ B(xi, D̄C̄η) ∩ Yj

such that, for any x ′
i ∈ B(xi, (C̄ −1)η), we have µ(B(x ′

i , η)) ≥ µ(Ai)/D̄; and
a finite number of inverse branches h1, . . . , h� ∈ H1 defined, respectively,
on Yj1, . . . , Yj�

such that, for any i ∈ [1, �], there exist x ∈ Yji
and v a unit

tangent vector at x with

‖Dhi(x)v‖ ≥ C̄η (6.1)

such that

k⋃
i=1

B(xi, C̄η) ⊂
k⋃

i=1

Ai (6.2)

and

Yj =
( k⋃

i=1

Ai

)
�

( �⊔
i=1

hi(Yji
)
)

mod 0. (6.3)

(4) The transformation T is uniformly quasi-conformal in the following sense:
there exists K > 0 such that, for any h ∈ ⋃

n∈N
Hn defined on a set Yj , for

any x, x ′ ∈ Yj and any unit tangent vectors v and v′, respectively, at x and x ′,
we have

‖Dh(x)v‖ ≤ K‖Dh(x ′)v′‖. (6.4)

The first two properties are uniform expansion properties, analogous to the similar
requirements on TY in Definition 1.4. The difference is that the full shift structure has
been replaced by a subshift of finite type, since such a structure naturally appears in
the proofs for Farey sequences. The third property is a kind of weak Federer property,
but not on the whole space, rather on the images of branches whose size is at most C̄η

(by the requirement (6.1)). It turns out to be much easier to check than the true weak
Federer property. Finally, the last property of uniform quasi conformality enables us
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to iterate the dynamics to get information at scales that are not covered by the third
assumption.

PROPOSITION 6.1
Under the previous assumptions, the sets h(Yj (h)) (for h ∈ ⋃

n∈N
Hn) uniformly have

the weak Federer property (for the measure µ).

Proof
The quasi-conformality assumption shows that it is sufficient to prove that each set Yj

satisfies the weak Federer property: if sets Ai as in the definition of the weak Federer
property can be constructed on Yj , they can be transported to h(Yj ) by the map h. In
this process, one loses only harmless constant factors, and this implies the uniform
weak Federer property. From this point on, we therefore work only on Yj for each
1 ≤ j ≤ p.

We want to construct sets Ai as in the definition of the weak Federer property.
The third assumption of the proposition gives some of these sets, but to get the other
ones we need to iterate the dynamics. Thus, our construction is inductive.

For any 1 ≤ j ≤ p, let us fix a point aj ∈ Yj and a unit tangent vector vj at aj .
Let also ρ > 0 be such that the balls B(aj , ρ) are compactly included in Yj . Fix a
constant C for which one wants to prove the weak Federer property, and consider η

small enough. We say that an inverse branch h ∈ Hn, defined on Yj , is (C, η)-good,
or simply good, if ‖Dh(aj )vj‖ ≥ KCη/ρ.

We prove the following fact: there exists a constant M such that, if h ∈ Hn is a
good branch defined on Yj , then there exist disjoint balls B(x1, Cη), . . . , B(xk, Cη)
compactly included in h(Yj ), sets A1, . . . , Ak with Ai ⊂ h(Yj ) ∩ B(xi, MCη) such
that any ball B(x ′

i , η) included in B(xi, Cη) satisfies µ(B(x ′
i , η)) ≥ µ(Ai)/M , and

good branches h1, . . . , h� ∈ Hn+1 defined, respectively, on Yj1, . . . , Yj�
such that

k⋃
i=1

B(xi, Cη) ⊂
k⋃

i=1

Ai (6.5)

and

h(Yj ) =
( k⋃

i=1

Ai

)
�

( �⊔
i=1

hi(Yji
)
)
. (6.6)

This fact easily implies the proposition: we first apply it to the inverse branch IdYj

(which is obviously good if η is small enough) and then by induction to the inverse
branches that are produced by the fact at the previous step. This process terminates
since there is no good branch in Hn if n is large enough.
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To prove that fact, we use the assumption (3) for the constant C̄ =
max(K2C, K4C/ρ). Let D̄ > 1 and η0 be given by (3) for this value of C̄. Let
η < η0. Let h ∈ Hn be a good branch defined on a set Yj .

Case 1. Assume that η/(K‖Dh(aj )vj‖) ≥ η0. The image of the ball B(aj , ρ) contains
the ball B(haj , ρ‖Dh(aj )vj‖/K), which itself contains B(haj , Cη) since h is good.
Moreover, for x, x ′ ∈ Y holds d(hx, hx ′) ≤ d(x, x ′)K‖Dh(aj )vj‖ ≤ diam Yη/η0.
In particular, if M ≥ diam Y/(Cη0), we get h(Y ) ⊂ B(haj , MCη). We can thus
take a ball B(haj , Cη) and a set A1 = h(Y ). To conclude, we should check that
µ(B(x ′, η)) ≥ M−1µ(Ai) for any x ′ ∈ B(haj , (C − 1)η) if M is large enough. Since
the iterates of T have a uniformly bounded distortion,

µ(B(x ′, η))

µ(Ai)
� µ(h−1B(x ′, η))

µ(Y )
. (6.7)

Moreover, h−1B(x ′, η) contains B(h−1x ′, η/(K‖Dh(aj )vj‖)), which itself contains
B(h−1x ′, η0). The measure of these balls is uniformly bounded from below. This
concludes the proof in this case.

Case 2. Assume now that η/(K‖Dh(aj )vj‖) < η0. Let ηh = η/(K‖Dh(aj )vj‖);
it is bounded by η0. Hence, the assumption (3) gives sets A1, . . . , Ak , balls
B(x1, C̄ηh), . . . , B(xk, C̄ηh), and inverse branches h1, . . . , h�, defined, respectively,
on Yj1, . . . , Yj�

. We show that the balls B(hx1, Cη), . . . , B(hxk, Cη), the sets
Āi = h(Ai), and the inverse branches h ◦ h1, . . . , h ◦ h� satisfy the conclusion
of the fact.

Let us first show that the inverse branch h ◦ hi is good. By definition of hi ,
‖Dhi(aji

)vji
‖ ≥ C̄ηh/K ≥ K2Cη/(ρ‖Dh(aj )vj‖). We have D(h ◦ hi)(aji

)vji
=

Dh(hiaji
)Dhi(aji

)vji
. Moreover, ‖Dh(x)v‖ ≥ K−1 ‖v‖ ‖Dh(aj )vj‖. Therefore,

‖D(h ◦ hi)(aji
)vji

‖ ≥ K−1‖Dhi(aji
)vji

‖‖Dh(aj )vj‖

≥ K−1 K2Cη

ρ‖Dh(aj )vj‖‖Dh(aj )vj‖ = KCη/ρ.

This shows that h ◦ hi is good.
The set hB(xi, C̄ηh) contains the ball B(hxi, C̄ηh‖Dh(aj )vj‖/K), which itself

contains the ball B(hxi, Cη) because C̄ ≥ K2C. Moreover, for any x ′ ∈ B(hxi,

(C − 1)η), the set h−1B(x ′, η) contains the ball B(h−1x ′, η/(K‖Dh(aj )vj‖)) =
B(h−1x ′, ηh). As the distortion of the iterates of T is uniformly bounded, for any
x ′ ∈ B(hxi, (C − 1)η) we obtain

µ(B(x ′, η))

µ(Āi)
� µ(h−1B(x ′, η))

µ(Ai)
≥ µ(B(hx ′, ηh))

µ(Ai)
≥ D̄−1. (6.8)
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Finally, as Ai ⊂ B(xi, D̄C̄ηh), Āi is contained in B(hxi, D̄C̄ηhK‖Dh(aj )vj‖) =
B(hxi, D̄C̄η). �

The previous criterion easily implies that Gibbs measures in dimension 1 have the
uniform weak Federer property, as in the following.

PROPOSITION 6.2
Let T be a C2 uniformly expanding map on the circle S1, and let µ be a Gibbs measure
corresponding to a C1 potential. Then there exists a subset Y of S1 such that T is
nonuniformly expanding with base Y for the measure µ.

Proof
Let d be the topological degree of T , and let x0 be a fixed point of T . Let Y = Z =
S1 − {x0}. Then S1 − T −1(x0) is the union of d intervals W1, . . . , Wj , each of them
being sent by T onto Z. These intervals form a partition (modulo 0) of Z satisfying
the first four points of Definition 1.4 (for ri = 1, 1 ≤ i ≤ d). If we can prove that
T satisfies the assumptions of the previous proposition, the proof will be complete.
The assumptions (1) and (2) are clear, and the fourth assumption is equivalent to
the bounded distortion for Lebesgue measure since we are in one dimension. Let us
check (3) for some C̄ > 0. Let η0 be small enough so that, for any x ∈ Z and any
inverse branch h ∈ H, |h′(x)| ≥ C̄η0. We take no ball B(xi, C̄η), no set Ai , and
all the inverse branches h ∈ H. Then (6.2) is empty, hence trivial, and (6.3) is also
trivial. �

Remark 6.3
Proposition 6.2 also holds for Hölder potentials with the same proof since our argument
only uses the bounded distortion properties of the measure. However, this is not
sufficient to apply our main theorems, since they require the Jacobian to be really C1.

6.2. Farey sequences
Let r > 1. Let T be the map on X = [0, 1] given by (1.8), and let T be its extension
to [0, 1] × R/(log r)Z defined in (1.9) using a function φ. This function is not C1

on [0, 1], which seems to be a problem since we always worked with a function
φ of class C1. To avoid this problem, we can simply work with the disjoint union
X = [0, 1/2] � [1/2, 1], on which φ is C1. All our results in the previous sections
have been formulated for transformations on X × R/2πZ, but the same results hold
verbatim on X × R/γZ for any γ �= 0, and, in particular, for γ = log r . Henceforth,
we simply denote R/(log r)Z by S1 and apply without further notice the preceding
results.

Let x0 = 1/2, and set xn = hA(xn−1) (i.e., xn is the preimage of xn−1 under the
left branch of T ). Explicitly, xn = 1/(n+2). Let Ij = (xj , xj−1). Let also Īj = 1−Ij



262 SÉBASTIEN GOUËZEL

be the symmetric of Ij with respect to 1/2. Let Y = (x1, x0) = (1/3, 1/2), and
denote by TY the map induced by T on Y . Its combinatorics can be described as
follows: a point of Y is sent by T in (1/2, 1), spends some time i > 0 there, is then
sent back to (0, 1/2), and increases (for j ≥ 0 iterates) before entering back in Y .
The points with this combinatorics form an interval Ii,j := T −1(Īi) ∩ T −i−1(Ij+1)
and T i+j+1(Ii,j ) = Y . Letting ri,j = i + j + 1, we thus obtain a partition of Y that
satisfies the first point of Definition 1.4.

PROPOSITION 6.4
The map T is nonuniformly expanding of base Y in the sense of Definition 1.4 for the
partition {Ii,j }i>0,j≥0 and for Minkowski’s measure µ. Moreover, it is mixing.

Proof
The first point of Definition 1.4 is clear. For the second one, note that the Jacobian of T

for Minkowski’s measure is everywhere equal to 2 by definition. Hence, the Jacobian
of TY on Ii,j is constant (equal to 2i+j+1), and D((log J ) ◦ hi,j ) = 0. The third point
is trivial. For the fourth one, we have, for any σ > 0,

∫
Y

eσr =
∑

µ(Ii,j )eσ (i+j+1) =
∑

2−i−j−3eσ (i+j+1), (6.9)

which is finite as soon as σ < log 2. The mixing of T is a consequence of the equality
gcd{ri,j } = 1.

Thus, we just have to prove the uniform weak Federer property. To do this, we
use Proposition 6.1. Let Y0 = Y , and let Y1 be its symmetric with respect to 1/2. Let
Z = Y0 ∪ Y1, and let T be the first-return map induced by T on Z. It sends each
interval T −1(Īi) ∩ Y0 bijectively to Y1 and each interval T −1(Ii) ∩ Y1 bijectively to
Y0. If we prove that T satisfies the assumptions of Proposition 6.1, this concludes the
proof of the uniform weak Federer property since the inverse branches of the iterates
of TY are, in particular, inverse branches of iterates of T .

Assumptions (1) and (2) of Proposition 6.1 are trivial (since J is constant on each
monotonicity interval of T ). For assumption (4), the quickest argument is certainly
to use the fact that all the inverse branches of the iterates of T are homographies
(hence with vanishing Schwarzian derivative) which can be extended to the whole
interval [0, 1]. Koebe’s lemma [DV, Theorem IV.1.2] directly yields the uniform
quasi conformality.

Hence we just have to check assumption (3). By symmetry, it is sufficient to check
it on Y0. If J is an interval, we denote its length by |J |. Then |Īn| is a decreasing
sequence, with |Īn+1|/|Īn| → 1 when n → ∞ since T ′(1) = 1. As a consequence,
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Kn = T −1(Īn) ∩ Y0 satisfies |Kn+1|/|Kn| → 1, and there exists C > 0 such that
|Km| ≤ C|Kn| for all m ≥ n. Finally, µ(Kn) = 2−n−2.

We use the following fact: for any C > 0 there exists D > 0 such that, for any
interval J included in an interval Kn with |J | ≥ C−1|Kn|, then µ(J ) ≥ D−1µ(Kn).
To prove this fact, we apply the map T once, which sends Kn to Y1, and J to an interval
J ′ satisfying |J ′| ≥ C−1K−1|Y1| by quasi conformality. Hence, µ(J ′) is uniformly
bounded from below. As µ(J ′)/µ(Y1) = µ(J )/µ(Kn), this proves the fact.

We can now prove assumption (3) of Proposition 6.1 on Y0. Let C̄ > 1. We
construct inverse branches h1, . . . , h�, balls B(x1, C̄η), . . . , B(xk, C̄η), and sets
A1, . . . , Ak as follows if η is small enough.

Let N be maximal such that |Kn| ≥ C̄η for n ≤ N . We take � = N , and we let
h1, . . . , h� be the inverse branches of T whose images are the intervals K1, . . . , K�.
Then hi is defined on Y1, of length 1/6, and the length of its image Ki is ≥ C̄η. Hence
there exists a point yi ∈ Y1 with h′

i(yi) ≥ 6C̄η. This proves (6.1).
We decompose the remaining interval as a union of intervals of length 2C̄η,

except maybe the first one whose length belongs to [2C̄η, 4C̄η). Let us denote this
decomposition by J0, . . . , Jp. Since |KN | = o

( ∑
n>N |Kn|

)
when N → ∞, we have

p ≥ 2 if η is small enough. Let us define sets A1, . . . , Ap by Ai = Ji for i > 1, and
A1 = J0 ∪ J1. Let B(xi, C̄η) = Ji−1 for i > 1, and let B(x1, C̄η) be the leftmost
part of J0. For i > 1, the ball B(xi, C̄η) is not included in the set Ai ; it is strictly
to its left. The balls are disjoint, and Ai ⊂ B(xi, 5C̄η). Let us show that they satisfy
the desired conclusion: we have to prove, for any interval J of length 2η included in
B(xi, C̄η), that µ(J ) ≥ D̄−1µ(Ai) holds for some constant D̄ (independent of η).
Either J contains an interval Kn, or it intersects such an interval along a subinterval
of length at least η. Moreover, |Kn| ≤ C|KN+1| ≤ CC̄η. In both cases, the fact we
proved above implies that µ(J ) ≥ D−1µ(Kn).

We first deal with i = 1. As |Kn+1| ∼ |Kn|, the set A1 is covered by
⋃7

k=1 KN+k if
N is large enough (hence, if η is small enough). These seven intervals have comparable
measures since µ(Km) = 2−m−2, hence µ(A1) ≤ Cµ(KN+k) for 1 ≤ k ≤ 7.
As µ(J ) ≥ D−1µ(Kn) for at least one of these Kn’s, we indeed conclude that
µ(J ) ≥ C−1µ(A1).

Assume now that i > 1. There exists an interval Kn intersecting J with µ(J ) ≥
C−1µ(Kn). Since Ai is located to the right of Kn, we get

µ(Ai) ≤ C

∞∑
m=n

µ(Km) = C

∞∑
m=n

2−m−2 ≤ C2−n−2 ≤ Cµ(Kn). (6.10)

This also concludes the proof in this case. �
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LEMMA 6.5
The function φ is not cohomologous to a locally constant function.

Proof
Assume by contradiction that there exists a C1 function f such that φY − f + f ◦ TY

is constant on each interval Ii,j equal to some number ai,j . The interval I1,1 contains
the point x = 3/2 − √

5/2 with TY (x) = x. Necessarily, a1,1 = φY (x). In the
same way, the interval I2,1 contains x ′ = 1 − √

3/3, invariant under TY , which gives
a2,1 = φY (x ′).

Let now y = 1 − √
6/4. This point belongs to I1,1, but TY (y) ∈ I2,1, and

T 2
Y (y) = y. Then

φY (y) + φY (TY y) = a1,1 + a2,1 = φY (x) + φY (x ′). (6.11)

However, it is possible to compute explicitly φY (y) + φY (TY y) − φY (x) − φY (x ′),
and check that this quantity is nonzero (approximately equal to −0.013). This is a
contradiction. �

Proposition 6.4 and Lemma 6.5 show that the results of Section 1.3 apply to T.
However, this is not sufficient to prove Theorems 1.1 and 1.2 since these results
are pointwise, while the results of Section 1.3 are averaged. We therefore need an
additional ingredient. Let X(n) be the extension of X defined in Section 3.1, and let
π (n), π̃ (n) be the corresponding projections.

LEMMA 6.6
For any n ∈ N, there exists a constant C(n) such that, for any integrable function
u : X × S1 → C, for almost all (x, ω) ∈ X × S1, and for any k ∈ N, we have

T̂ku(x, ω) = C(n)
∑

π (n)(x ′)=x

2−h(x ′)Ûk(u ◦ π̃ (n))(x ′, ω). (6.12)

Proof
Let B be the σ -algebra of Borel measurable subsets of X × S1, and let B′ =
(π̃ (n))−1(B). This is a sub-σ -algebra of the Borel σ -algebra on X(n) × S1. A function
v on X(n) × S1 can be written as u ◦ π̃ (n) if and only if v is B′-measurable.

Let us first prove that

(T̂ku) ◦ π̃ (n) = E
(
Ûk(u ◦ π̃ (n))

∣∣ B′). (6.13)
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To do this, let us write E(Ûk(u◦π̃ (n)) | B′) = v◦π̃ (n). As µ̃⊗Leb = π̃ (n)
∗ (µ̃(n) ⊗Leb),

for any measurable function f on X × S1 we have
∫

X×S1

vf =
∫

X(n)×S1

v ◦ π̃ (n)f ◦ π̃ (n) =
∫

X(n)×S1

E
(
Ûk(u ◦ π̃ (n))

∣∣ B′)f ◦ π̃ (n). (6.14)

As f ◦ π̃ (n) is B′-measurable, we get
∫

X×S1

vf =
∫

X(n)×S1

Ûk(u ◦ π̃ (n))f ◦ π̃ (n) =
∫

X(n)×S1

u ◦ π̃ (n)f ◦ π̃ (n) ◦ Uk

=
∫

X(n)×S1

u ◦ π̃ (n)f ◦ Tk ◦ π̃ (n) =
∫

X×S1

uf ◦ Tk.

This last equality shows that v = T̂ku and concludes the proof of (6.13).
The set X(n) is endowed with a countable partition A such that π (n) is injective on

each element of the partition. Let us define a function F on X(n) as follows: on each
set a ∈ A, let F = dµ̃(n)/ d(µ̃ ◦ π

(n)
|a ). This is the local Radon-Nikodym derivative

of µ̃(n) with respect to (π (n))∗µ̃. As π (n)
∗ µ̃(n) = µ̃, we have

∑
π (n)(x ′)=x F (x ′) = 1 for

almost every x ∈ X. Let us show that the conditional expectation with respect to B′

is given by

E(v | B′)(x, ω) =
∑

π (n)(x ′)=π (n)(x)

F (x ′)v(x ′, ω). (6.15)

Let us indeed define a function w on X × S1 by

w(x, ω) =
∑

π (n)(x ′)=x

F (x ′)v(x ′, ω) =
∑
a∈A

1x∈π (n)aF
(
(π (n)

|a )−1x
)
v
(
(π (n)

|a )−1x, ω
)
.

(6.16)
If f is a measurable function on X × S1, then

∫
X×S1

f w =
∑
a∈A

∫
π (n)(a)

f (x, ω)F
(
(π (n)

|a )−1x
)
v
(
(π (n)

|a )−1x, ω
)

dµ̃(x) dω

=
∑
a∈A

∫
a

f (π (n)x ′, ω)v(x ′, ω) dµ̃(n)(x ′) dω =
∫

X(n)×S1

f ◦ π̃ (n)v.

This proves (6.15). Together with (6.13), this implies the lemma if we can prove that

F (x ′) = C(n)2−h(x ′). (6.17)

As TY is the first-return map to Y , the Jacobian of π (1) for the measure µ̃(1) on Y is
equal to 1. Since µ̃(n) is proportional to µ̃(1) on Y , this implies that F is constant on Y

equal to a constant C(n). This proves (6.17) for points with zero height.



266 SÉBASTIEN GOUËZEL

The Jacobian of T for µ̃ is equal to 2, while the Jacobian of U is equal to 1 on the
set of points that do not come back to the basis. By induction over h(x ′), this implies
(6.17). �

COROLLARY 6.7
There exist constants C > 0 and θ̄ < 1 such that, for any C6 function f : X×S1 → C

and for any (x, ω) ∈ X × S1, we have

∣∣∣T̂nf (x, ω) −
∫

f

∣∣∣ ≤ Cθ̄n ‖f ‖C6 . (6.18)

Proof
Since everything is symmetric with respect to 1/2 and continuous, it is sufficient to
prove the assertion for almost every x ∈ (1/2, 1).

We work in X(N), where N is given by Theorem 2.3. Note that d (N) is equal to
1, since r (N) takes the values 2N and 2N + 1. Applying Theorem 3.6 to the function
v = f ◦ π̃ (N), we get, for any n ∈ N and for any x ′ ∈ X(N) with h(x ′) ≤ n/2,

∣∣∣Ûn(f ◦ π̃ (N))(x ′, ω) −
∫

f

∣∣∣ ≤ Cθ̄n ‖f ‖C6 . (6.19)

Together with Lemma 6.6, this yields

∣∣∣T̂nf (x, ω) −
∫

f

∣∣∣ ≤ C
( ∑

π (N)(x ′)=x,h(x ′)≤n/2

θ̄ n2−h(x ′) +
∑

π (N)(x ′)=x,h(x ′)>n/2

2−h(x ′)
)

‖f ‖C6 .

To conclude, it is thus sufficient to prove that, for x ∈ (1/2, 1), the cardinality of

{
x ′ ∣∣π (N)(x ′) = x, h(x ′) = k

}
(6.20)

grows at most polynomially with k. If we write a point of X(N) as a pair (x ′, j ) with
x ′ ∈ Y and j < r (N)(x ′), it is easy to check that Uk induces a bijection between the
set (6.20) and the set of points in T −k(x) ∩ Y whose first k iterates under T spend
a time t < N in Y . If t is fixed, such a point is determined by the combinatorics
(i1, j1, . . . , it , jt , it+1) of times spent in [1/2, 1], then in [0, 1/2], then in [1/2, 1],
and so on, with the constraint that the sum of these lengths is k (recall that we assume
that x ∈ (1/2, 1)). As a consequence,

Card
{
x ′ ∣∣ π (N)(x ′) = x, h(x ′) = k

} ≤
N−1∑
t=0

k2t+1 ≤ Ck2N. (6.21)

This quantity indeed grows polynomially with k. �
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Proof of Theorem 1.1
If f is a continuous function on [0, 1] × S1, then

∫
f dµ̄n = T̂nf (1, 0). Hence

Corollary 6.7 shows the theorem for C6 functions. The case of Cα functions is then
deduced by interpolation, just as was done at the end of the proof of Theorem 1.7. �

Proof of Theorem 1.2
If ψ is a C6 function that is not a coboundary, we show, as in the proof of Corollary
6.7 (but using Theorem 5.18 instead of Theorem 3.6), for |t | ≤ τ0, that

∣∣∣T̂n
t f (x, ω) −

(
1 − σ 2t2

2

)n
∫

f

∣∣∣ ≤ C
(
θ̄ n + |t |(1 − ct2)n

) ‖f ‖C6 . (6.22)

Moreover, if ψ is aperiodic, for τ0 ≤ |t | ≤ t0, then
∣∣∣T̂n

t f (x, ω)
∣∣∣ ≤ Cθ̄n ‖f ‖C6 . (6.23)

As T̂n
t 1(1, 0) = E(eit

∑n
k=1 ψ(Xk)), this implies the limit assertions in Theorem 1.2.

The automatic regularity properties still have to be checked. If ψ = f − f ◦ T
with f measurable, let us show that f is continuous on [0, 1]. Proposition 1.8 shows
that f is continuous on Y × S1. As T is a homeomorphism between Y × S1 and
[1/2, 1] × S1, we conclude from the equality f ◦ T = f − ψ that f is continuous
on [1/2, 1] × S1. Finally, as T is a homeomorphism between [1/2, 1] × S1 and
[0, 1]×S1, we obtain with the same argument the continuity of f on the whole space.

We argue in the same way for the cohomological equation in R/λZ, by using
Proposition 1.10. �

Appendix. Contraction properties of transfer operators

In this appendix, we prove Theorem 2.3 on the contraction properties (in C1 norm
or in Dolgopyat norm) of the transfer operator associated to a map TY , where T is a
nonuniformly expanding map of base Y . The notation and assumptions used are those
of Theorem 2.3.

A.1. Contraction in the C1 norm
In this section, we introduce the tools to prove the first part of Theorem 2.3. However,
the choices of the constants N and θ of Theorem 2.3 are only possible at the complete
end of the proof in Section A.2.

Several times, we use the following distortion lemma. Its proof is completely
standard and therefore omitted.
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LEMMA A.1
Let J (n)(x) be the inverse of the Jacobian of T n

Y at the point x. There exists C > 0
(independent of n) such that, for any h ∈ Hn and for any x, y ∈ Y , we have
‖D(J (n) ◦ h)(x)‖ ≤ CJ (n) ◦ h(x) and J (n) ◦ h(x) ≤ CJ (n) ◦ h(y).

For small enough ε, we define an operator Lε acting on functions from Y to C by
Lεu(x) = ∑

J (hx)u(hx)eεr(hx). If H0 ⊂ H, we also denote by Lε,H0 the same
operator with the exception that the sum is restricted to the inverse branches belong-
ing to H0. The following elementary estimates are used throughout the forthcoming
arguments.

LEMMA A.2
There exists a function α(ε) that tends to zero when ε → 0 such that ‖Lε‖L2→L2 ≤
eα(ε) and ‖Lε‖C0→C0 ≤ eα(ε).

Moreover, if ε0 > 0 is small enough, then for any γ > 0 there exists H0 ⊂ H
with a finite complement such that ‖Lε0,H0‖L2→L2 ≤ γ .

Proof
We have

|Lε,H0u(x)|2 =
∣∣∣ ∑

h∈H0

J (hx)u(hx)eεr(hx)
∣∣∣2

≤
( ∑

h∈H0

J (hx)|u(hx)|2
)( ∑

h∈H0

J (hx)e2εr(hx)
)
.

Consequently, ‖Lε,H0u‖L2 ≤ ‖u‖L2 · supx∈Y

( ∑
h∈H0

J (hx)e2εr(hx)
)1/2

. We have
J (hx) ≤ CJ (hy) for any h ∈ H and all x, y ∈ Y , hence

∑
J (hx)e2εr(hx) ≤

C
∑

J (hy)e2εr(hy). Integrating this inequality with respect to y, we get

∑
h∈H0

J (hx)e2εr(hx) ≤ C
∑
h∈H0

∫
Y

J (hy)e2εr(hy) dµY (y) = C

∫
H0(Y )

e2εr(y) dµY (y).

(A.1)

This quantity is finite if ε is small enough, by assumption (4) of Definition 1.4. Taking
the complement of H0 large enough, it can even be made arbitrarily small. This proves
the second point of the lemma.

For the first point, we have to be slightly more precise. For any x, we have
e2εr(hx) ≤ 1 + 2εr(hx)e2εr(hx). Hence, using the inequality J (hx) ≤ CJ (hy) for any
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h ∈ H and x, y ∈ Y , we get
∑
h∈H

J (hx)e2εr(hx) ≤
∑
h∈H

J (hx) + 2ε
∑
h∈H

J (hx)r(hx)e2εr(hx)

≤ 1 + Cε
∑
h∈H

J (hy)r(hy)e2εr(hy).

Integrating with respect to y,

∑
h∈H

J (hx)e2εr(hx) ≤ 1 + Cε

∫
Y

r(y)e2εr(y) dµY (y), (A.2)

and this last integral is uniformly bounded if ε is small enough. This gives the desired
estimate for the action of Lε on L2 and C0. �

Let us prove a lemma that easily implies (2.5).

LEMMA A.3
There exist ε0 > 0 and θ0 < 1 such that, for any A > 0, n ∈ N, and ε < ε0, there
exists C > 0 such that, for any ψ ∈ CA,ε

n and v ∈ C1(Y ), we have

‖Ln(ψv)‖C1 ≤ θn
0

(
sup
x∈Y

|ψ(x)|/eεr (n)(x)
) ‖v‖C1 + C ‖ψ‖CA,ε

n
‖v‖C0 . (A.3)

Proof
First, since |ψ(x)| ≤ ‖ψ‖CA,ε

n
eεr (n)(x), we have

‖Ln(ψv)‖C0 ≤ ‖Ln(|ψ | · |v|)‖C0 ≤ ‖ψ‖CA,ε
n

‖Ln(eεr (n)(x)|v|)‖C0

= ‖ψ‖CA,ε
n

‖Ln
ε |v|‖C0 ≤ ‖ψ‖CA,ε

n
enα(ε) ‖v‖C0

by Lemma A.2. This gives the desired control in the C0 norm. For the C1 norm, we
differentiate Ln(ψv) = ∑

h∈Hn
J (n)(hx)ψ(hx)v(hx). If we differentiate J (n)(hx),

we use the estimate ‖D(J (n) ◦ h)(x)‖ ≤ CJ (n)(hx) given by Lemma A.1 and get the
same bound as for the C0 norm. If we differentiate ψ(hx), its derivative is bounded
by A ‖ψ‖CA,ε

n
eεr (n)(hx); and using the same argument as for the C0 norm, we obtain the

same bound (with an additional factor A, which is not a problem since C is allowed
to depend on A in the statement of the lemma).

Finally, if we differentiate v ◦ h, we have ‖D(v ◦ h)(x)‖ ≤ κ−n ‖Dv(hx)‖, and
we therefore get a bound

κ−n ‖Dv‖C0 Ln|ψ | ≤ κ−n ‖v‖C1

(
sup
x∈Y

|ψ(x)|/eεr (n)(x)
)
Ln(eεr (n)

)

≤ κ−n ‖v‖C1

(
sup
x∈Y

|ψ(x)|/eεr (n)(x)
)
enα(ε).
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If ε is small enough, κ−1eα(ε) < 1. This concludes the proof. �

We now turn to the proof of (2.6). As a preliminary estimate, let us first consider in
the following lemma the case ψi = eεr (N)

for all i.

LEMMA A.4
There exist N0 > 0, θ0 < 1, C > 0, ε0 > 0, and a function α : (0, ε0) → R+ tending
to 0 when ε → 0, which satisfy the following property. For any N ≥ N0 and ε < ε0,
for any C1 function v : Y → C, we have

‖D(LN
ε v)‖C0 ≤ θN

0 ‖Dv‖C0 + CeNα(ε) ‖v‖L2 . (A.4)

Proof
We have LN

ε v = ∑
h∈HN

J (N)(hx)eεr (N)(hx)v(hx). By Lemma A.1, J (N)(hx) ≤
CJ (N)(hy), and ‖D(J (N) ◦ h)(x)‖ ≤ CJ (N)(hx). Moreover, since h contracts the
distances by at least κN , |v(hx)| ≤ |v(hy)| + Cκ−N ‖Dv‖. Hence

J (N)(hx)eεr (N)(hx)|v(hx)| ≤ CJ (N)(hy)eεr (N)(hy)|v(hy)|
+ Cκ−NJ (N)(hy)eεr (N)(hy) ‖Dv‖C0 .

Integrating this equation over y and summing over the inverse branches, we conclude
that

LN
ε |v|(x) ≤ C

∫
eεr (N) |v| + Cκ−N ‖Dv‖C0

∫
eεr (N)

. (A.5)

But
∫

eεr (N) = ∫
LN

ε 1 ≤ eNα(ε) by Lemma A.2. In the same way,
∫

eεr (N) |v| ≤ ‖v‖L2

( ∫
e2εr (N)

)1/2
≤ ‖v‖L2 eNα(2ε)/2. (A.6)

We obtain (for some different function α(ε))

LN
ε |v|(x) ≤ CeNα(ε) ‖v‖L2 + Cκ−NeNα(ε) ‖Dv‖C0 . (A.7)

Let us now bound D(LN
ε v). We can differentiate J (N)(hx). As ‖D(J (N) ◦ h)(x)‖ ≤

CJ (N) ◦ h, we obtain a term bounded by CLN
ε |v|. If we differentiate v ◦ h(x), the

resulting term is bounded by

κ−N
∑

J (N)(hx)eεr (N)(hx) ‖Dv‖C0 ≤ Cκ−N ‖Dv‖C0

∫
eεr (N)

, (A.8)
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bounded by Cκ−NeNα(ε) ‖Dv‖C0 . We have proved that

‖D(LN
ε v)‖C0 ≤ Cκ−NeNα(ε) ‖Dv‖C0 + CeNα(ε) ‖v‖L2 . (A.9)

Taking ε0 small enough so that κ−1eα(ε0) < 1 and taking N0 large enough, this implies
the lemma. �

The following lemma essentially proves (2.6).

LEMMA A.5
There exist N0 > 0, θ0 < 1, C > 0, ε0 > 0, and a function α : (0, ε0) → R+ tending
to zero when ε → 0 such that, for any N ≥ N0 and for any A ≥ 1, the following
holds. Let ε < ε0, let ψ1, . . . , ψn ∈ CA,ε

N , and let v : Y → C be a C1 function. Let
v0 = v, and let vi = LN (ψiv

i−1). Then

‖vn‖C1 ≤ CA
( n∏

i=1

‖ψi‖CA,ε
N

)(
θNn

0 ‖v‖C1 + eNnα(ε) ‖v‖L2

)
. (A.10)

Proof
Note first that two points x and y of Y can be joined by a path of uniformly
bounded length, since diam(Y ) < ∞. If v is a C1 function, this implies that
|v(x)| ≤ C ‖Dv‖C0 + |v(y)|. Integrating with respect to y, we get

‖v‖C0 ≤ C ‖Dv‖C0 +
∫

|v|. (A.11)

Let us first prove a preliminary inequality. For any C1 function w and any inte-
ger i,

‖D(LNi
ε w)‖C0 ≤ θNi

0 ‖Dw‖C0 + CeNiα(ε) ‖w‖L2 (A.12)

by Lemma A.4 (applied to the time Ni). Applying (A.11) to LNi
ε w, we obtain

‖LNi
ε w‖C0 ≤ CθNi

0 ‖Dw‖C0 + CeNiα(ε) ‖w‖L2 . (A.13)

Let now w be a Lipschitz function. It is a uniform limit of C1 functions wn, with
‖Dwn‖C0 ≤ C Lip(w). Taking limits in the previous equation for wn, we get

‖LNi
ε w‖C0 ≤ CθNi

0 Lip(w) + CeNiα(ε) ‖w‖L2 . (A.14)

Finally, let v be a C1 function. The function |v| is Lipschitz, and its Lipschitz coefficient
is bounded by ‖Dv‖C0 . We conclude that

‖LNi
ε |v|‖C0 ≤ CθNi

0 ‖Dv‖C0 + CeNiα(ε) ‖v‖L2 . (A.15)
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We can now prove the lemma itself. We write γi = ‖ψi‖CA,ε
N

. In par-

ticular, |ψi(x)| ≤ γie
εr (N)(x). Hence |vi | ≤ γi · · · γ1LNi

ε |v0|. As vi(x) =∑
h∈HN

J (N)(hx)ψi(hx)vi−1(hx), we have

‖Dvi(x)‖ ≤ γi

(∑
‖D(J (N) ◦ h)(x)‖eεr (N)(hx)|vi−1(hx)|

+
∑

J (N)(hx)Aeεr (N)(hx)|vi−1(hx)|

+
∑

J (N)(hx)eεr (N)(hx) ‖Dh(x)‖ ‖Dvi−1(hx)‖
)
.

We bound these three terms. For the first one, ‖D(J (N) ◦ h)(x)‖ ≤ CJ (N)(hx). This
term is therefore bounded by Cγi · · · γ1‖LNi

ε |v0|‖C0 , which can be estimated with
(A.15). For the second term, we have a similar bound, with an additional factor A.

For the third term, we bound ‖Dh(x)‖ by κ−N , and
∑

J (N)(hx)eεr (N)(hx) =
LN

ε 1(x) ≤ eNα(ε) by Lemma A.2. Taking ε small enough, we can ensure that
κ−1eα(ε) ≤ θ0 (increasing θ0, if necessary).

We have proved that

‖Dvi‖C0 ≤ Aγi · · · γ1(CθNi
0 ‖Dv‖C0 + CeNiα(ε) ‖v‖L2 ) + γiθ

N
0 ‖Dvi−1‖C0 . (A.16)

Iterating this equation inductively over i yields

‖Dvn‖C0

≤
( n∏

i=1

γi

)(
A

n∑
i=1

θ
N(n−i)
0 (CθNi

0 ‖Dv‖C0 + CeNiα(ε) ‖v‖L2 ) + θNn
0 ‖Dv‖C0

)

≤
( n∏

i=1

γi

)(
CAnθNn

0 ‖Dv‖C0 + CAeNnα(ε) ‖v‖L2 + θNn
0 ‖Dv‖C0

)

≤ CA
( n∏

i=1

γi

)(
θ

Nn/2
0 ‖Dv‖C0 + eNnα(ε) ‖v‖L2

)
.

This gives the estimate of the lemma for ‖Dvn‖C0 . Thanks to (A.11), this also implies
the desired bound for ‖vn‖C0 . �

The following technical lemma is needed later.

LEMMA A.6
There exists a constant C1 > 0 such that, for any n ∈ N and for any x ∈ Y , we have

∑
h∈Hn

J (n)(hx)‖D(SY
n φY ◦ h)(x)‖4 ≤ C4

1 .
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Proof
If h = hn ◦ · · · ◦ h1, then SY

n φY (hx) = ∑n

i=1(φY ◦ hi)(hi−1 · · ·h1x). Thus,

∥∥D(SY
n φY ◦ h)(x)

∥∥4 ≤ C
( n∑

i=1

r(hi · · · h1x)κ−i+1
)4

. (A.17)

We use the convexity inequality (
∑

aixi)4 ≤ (
∑

ai)3
∑

aix
4
k , which comes from the

convexity of x �→ x4 when
∑

ai = 1 (the general case can be reduced to that specific
case). We take ai = κ−i+1 and xi = r(hi · · ·h1x), and we obtain

‖D(SY
n φY ◦ h)(x)‖4 ≤ C

∑
κ−ir(hi · · · h1x)4. (A.18)

Let Fn(x) = ∑
h1,...,hn∈H

(∑n

i=1 κ−ir(hi · · · h1x)4
)
J (n)(hn · · · h1x); the sum that we

want to estimate is bounded by CFn(x). As J (n)(hn · · ·h1x) ≤ CJ (n)(hn · · · h1y) by
Lemma A.1, we have Fn(x) ≤ CFn(y). Hence, Fn(x) ≤ C

∫
Fn. Finally, a change of

variables yields

∫
Fn =

n∑
i=1

κ−i

∫
Y

r(T n−i
Y x)4 dµY (x) =

n∑
i=1

κ−i

∫
Y

r4 ≤
∫

Y
r4

κ − 1
. (A.19)

�

A.2. Contraction for Dolgopyat’s norms
To prove the contraction for Dolgopyat’s norms, we essentially follow Dolgopyat’s
arguments as presented in [AGY, Section 7], with additional technical complications
due to the facts that the involved functions are unbounded and that we want estimates
that are uniform in M in Theorem 2.3.

We need the following lemma, proved in [AGY, Lemma 7.5].

LEMMA A.7
There exist constants C2 > 1 and C3 > 0 such that, for any ball B(x, C2r) that is
compactly included in Y , there exists a C1 function ρ : Y → [0, 1], vanishing outside
B(x, C2r), equal to 1 on B(x, r), and with ‖ρ‖C1 ≤ C3/r .

Later, we use oscillatory integral arguments. To do that, it is important that the phases
of eikSY

N φY ◦h vary at various speeds when one uses different inverse branches h. This is
ensured by the following lemma.

LEMMA A.8
There exist C4 > 0 and an integer N0 > 0 such that, for any N ≥ N0, there exist
inverse branches h1, h2 ∈ HN and a continuous unitary vector field y(x) on Y such
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that, for any x ∈ Y , we have

|D(SY
NφY ◦ h1)(x) · y(x) − D(SY

NφY ◦ h2)(x) · y(x)| ≥ C4. (A.20)

Proof
Step 1. Let us show that there exist C ′ and N ′ such that, for any N ≥ N ′, there exist
inverse branches h1, h2 ∈ HN , a point x ∈ Y , and a unit tangent vector y at x such
that

|D(SY
NφY ◦ h1)(x) · y − D(SY

NφY ◦ h2)(x) · y| > C ′. (A.21)

We argue by contradiction, so assume that this is not the case.
Let us fix an inverse branch h ∈ H, and consider the sequence of inverse branches

hn. Then D(SY
n φY ◦hn)(x)·y = ∑n

k=1 D(φY ◦h)(hk−1x)Dhk−1(x)·y. As ‖D(φY ◦ h)‖
is bounded and ‖Dhk−1(x)‖ ≤ κ−k+1, this series converges normally to a continuous
1-form ω(x) · y. Let x0 be any point in Y ; the series

∑∞
k=1(φY ◦ hk − φY ◦ hk(x0))

even converges in C1, and its sum ψ is a C1 function with Dψ = ω.
Now let h′ ∈ H be another inverse branch. Let us consider hn = hn−1 ◦h′ ∈ Hn.

Since we assume that (A.21) does not hold, D(SY
n φY ◦hn) −D(SY

n φY ◦hn) converges
pointwise to zero along a subsequence of the integers. But D(SY

n φY ◦ hn) = D(φY ◦
h′) + ∑n−1

k=1 D(φY ◦ h)Dhk−1Dh′. Letting n tend to infinity, we get

Dψ(x) · y = D(φY ◦ h′)(x) · y + Dψ(h′x)Dh′(x) · y. (A.22)

Hence D((φY + ψ − ψ ◦ TY ) ◦ h′) = 0. Therefore, the function φY + ψ − ψ ◦ TY

is constant on each set h′(Y ), h′ ∈ H. This contradicts the fact that φY is not
cohomologous to a locally constant function and concludes the proof of the first step.

Step 2. Let us fix an arbitrary branch h ∈ H. Then D(SY
p φY ◦ hp) = ∑p−1

k=0 D(φY ◦
h)Dhk is uniformly bounded independently of p, by a constant c0. Fix N ≥ N ′ (given
by the first step) such that c0κ

−N ≤ C ′/4. Let h1 and h2 be the inverse branches given
by the first step, at time N , and let x0 and y0 be a point in Y and a tangent vector at
this point which satisfy the conclusions of the first step. We extend y0 to a continuous
vector field on a neighborhood U of x0, still satisfying (A.21).

Since µY has full support in Y , µY (U ) > 0. Hence U intersects
⋂

k>0

⋃
h∈Hk

h(Y )
since µY is supported on this last set. Let x1 be a point in the intersection, and let
�k ∈ Hk be the inverse branch of T k

Y such that x1 ∈ �k(Y ). Since the diameter of
�k(Y ) tends to zero when k → ∞, �k(Y ) is included in U for large enough k. In
particular, there exist k > 0 and an inverse branch � ∈ Hk such that �(Y ) ⊂ U .



LOCAL LIMIT THEOREM AND FAREY SEQUENCES 275

Let y1(x) = D�(x)−1 · y0(�x). For any p ∈ N and for any j ∈ {1, 2}, we have

|D(SY
p+N+kφY ◦ hp ◦ hj ◦ �)(x) · y1(x) − D(SY

N+kφY ◦ hj ◦ �)(x) · y1(x)|
= |D(SY

p φY ◦ hp)(hj�x)Dhj (�x) · y0(�x)| ≤ c0‖Dhj (�x)‖ ≤ c0κ
−N ≤ C ′/4.

Moreover,

|D(SY
N+kφY ◦ h1 ◦ �)(x) · y1(x) − D(SY

N+kφY ◦ h2 ◦ �)(x) · y1(x)|
= |D(SY

NφY ◦ h1)(x) · y0(x) − D(SY
NφY ◦ h2)(x) · y0(x)| ≥ C ′.

Adding these estimates, we obtain

|D(SY
p+N+kφY ◦hp ◦h1 ◦�)(x) ·y1(x)−D(SY

p+N+kφY ◦hp ◦h2 ◦�)(x) ·y1(x)| ≥ C ′/2.

We conclude the proof by taking y(x) = y1(x)/ ‖y1(x)‖. �

We recall that we defined a constant C1 in Lemma A.6 and a constant C4 in Lem-
ma A.8.

We fix once and for all a constant C0 ≥ max(4C1, 10). We also fix an integer
N that is larger than the integers N0 given by Lemmas A.5 and A.8 and such that
κ−N ≤ 1/1000 and C4 ≥ 20κ−NC0.

For the remainder of this article, the Dk norms and the cones Ek are always defined
with respect to the constant C0. The following lemma essentially proves (2.8).

LEMMA A.9
There exists a function α : (0, ε0) → R+ which tends to zero when ε tends to zero
such that, for any ε < ε0, M > 0, and A > 0, there exists K > 0 such that, for any
|�| ≥ |k| ≥ K , for any C1 function v : Y → C, and for any function ψ ∈ CA,ε

MN , we
have

‖LMN
k (ψv)‖D�

≤ ‖ψ‖CA,ε
MN

eMNα(ε) ‖v‖D2M �
. (A.23)

Proof
Let u be such that (u, v) ∈ E2M�(C0). Let

ũ = ‖ψ‖CA,ε
MN

( ∑
h∈HMN

J (MN)(hx)u(hx)2
)1/2

. (A.24)

We show that there exists α(ε) (independent of M) such that (eMNα(ε)ũ, LMN
k (ψv)) ∈

E�(C0).



276 SÉBASTIEN GOUËZEL

We have

|LMN
k (ψv)| ≤

∑
h∈HMN

J (MN)(hx)ψ(hx)u(hx). (A.25)

We bound ψ(hx) by ‖ψ‖CA,ε
MN

eεr (MN )(hx), and we use Cauchy-Schwarz inequality. We
conclude that

|LMN
k (ψv)| ≤ ‖ψ‖CA,ε

MN

( ∑
J (MN)(hx)e2εr (MN )(hx)

)1/2
·
(∑

J (MN)(hx)u(hx)2
)1/2

= LMN
2ε 1(x)1/2 · ũ(x).

The coefficient LMN
2ε 1(x)1/2 is bounded by a coefficient of the form eMNα(ε) by Lem-

ma A.2.
Let us now estimate the derivative of

LMN
k (ψv)(x) =

∑
h∈HMN

J (MN)(hx)e−ikSY
MN φY (hx)ψ(hx)v(hx). (A.26)

If we differentiate J (MN)(hx), its derivative is bounded by CJ (MN)(hx) by Lemma
A.1, and the resulting term is therefore bounded by par CeMNα(ε)ũ(x), as above. If
we differentiate e−ikSY

MN φY (hx), we use Cauchy-Schwarz inequality and Lemma A.6 to
obtain a bound

|k| ‖ψ‖CA,ε
MN

(∑
J (MN)(hx)‖D(SY

MNφY ◦ h)(x)‖4
)1/4

×
( ∑

J (MN)(hx)e4εr (MN )(hx)
)1/4

·
( ∑

J (MN)(hx)u(hx)2
)1/2

≤ C1|k|eMNα(ε)ũ(x).

The derivative of ψ ◦ h is bounded by Aeεr (MN )(hx) ‖ψ‖CA,ε
MN

, and the resulting term
is therefore bounded by AeMNα(ε)ũ(x). Finally, if we differentiate v(hx), we use the
inequality ‖Dv(hx)‖ ≤ C0κ

−MN2M |�|u(hx), so that the resulting term is bounded
by C0κ

−MN2M |�|eMNα(ε)ũ(x). Finally,

∥∥D
(
LMN

k (ψv)
)
(x)

∥∥ ≤ (C + A + C1|k| + C0κ
−MN2M |�|)eMNα(ε)ũ(x). (A.27)

The choice of N and C0 implies that this term is bounded by C0|�|eMNα(ε)ũ(x) if K

is large enough.
Let us finally bound the derivative of ũ, or rather of ũ2(x) =

‖ψ‖2
CA,ε

MN

∑
J (MN)(hx)u(hx)2. If we differentiate the Jacobian, the resulting term is
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bounded by Cũ2. If we differentiate u2, this is bounded by

2 ‖ψ‖2
CA,ε

MN

∑
J (MN)(hx)κ−MNu(hx) ‖Du(hx)‖

≤ 2 ‖ψ‖2
CA,ε

MN

κ−MN · 2M |�|C0

∑
J (MN)(hx)u(hx)2 = 2|�|2Mκ−MNC0ũ

2.

Hence

2ũ(x) ‖Dũ(x)‖ = ‖Dũ2(x)‖ ≤ 2(C/2 + 2Mκ−MNC0|�|)ũ(x)2. (A.28)

Dividing by 2ũ(x) and using κ−N ≤ 1/1000, we obtain the desired bound ‖Dũ(x)‖ ≤
C0|�|ũ(x) if |�| is large enough.

We have proved that (eMNα(ε)ũ, LMN
k (ψv)) ∈ E�(C0). Hence

‖LMN
k (ψv)‖D�

≤ eMNα(ε) ‖ũ‖L4 ≤ eMNα(ε) ‖ψ‖CA,ε
MN

‖u‖L4 . (A.29)

Taking the infimum over the quantities ‖u‖L4 for (u, v) ∈ E2M�(C0), we obtain the
lemma. �

From this point on, we concentrate on the proof of (2.7). For v ∈ C1(Y ) and ψ ∈ CA,4ε
MN ,

we estimate LMN
k (ψv) by starting from ψv and applying M times the operator LN

k ,
which has good contraction properties thanks to the phase compensation phenomenon
given by Lemma A.8. A technical issue in this argument is the fact that the functions
ψv, LN

k (ψv), . . . , L(M−1)N
k (ψv) are not C1 on Y , since the function ψ is quite wild

at the beginning (it is only bounded by e4εr (MN)(x), so smoothness is only regained
after application of LMN

k ). To deal with this issue, we introduce intermediate degrees
of smoothness, keeping track of the smoothness that has not yet been regained, as
follows.

If Z is a subset of Y , n ∈ N, and ε ≥ 0, we say that (u, v) ∈ Ek(C0, Z, n, ε)
if the functions u and v are C1 on Z and |v| ≤ eεr (n)

u, ‖Du‖ ≤ C0|k|u and
‖Dv‖ ≤ C0|k|eεr (n)

u on Z. In particular, Ek = Ek(C0, Y, 0, ε) for any ε ≥ 0.
We also write ‖v‖Dk(Z,n,ε) for the infimum of ‖u‖L4 over the functions u such that
(u, v) ∈ Ek(C0, Z, n, ε).

LEMMA A.10
There exists a function α : (0, ε0) → R+ which tends to zero when ε → 0 such
that, for any A > 0, n > 0, ε < ε0, and Z ⊂ Y , there exists K > 0 such that, for
any |�| ≥ |k| ≥ K , for any pair of functions (u, v) ∈ E9�(C0, T

−N
Y Z, nN, ε), for

any C1 function χ : T −N
Y Z → [3/4, 1] with ‖Dχ‖C0 ≤ |k| such that |LN

k v(x)| ≤
LN (eεr (Nn)

χu)(x), we have

(
eNα(ε)LN (χ2u2)1/2, LN

k v
) ∈ E�

(
C0, Z, (n − 1)N, ε

)
. (A.30)
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Note that the lemma also applies for (u, v) ∈ E�(C0, T
−N
Y Z, nN, ε) or

E3�(C0, T
−N
Y Z, nN, ε), since these cones are contained in E9�(C0, T

−N
Y Z, nN, ε).

Proof of Lemma A.10
The proof is similar to the proof of Lemma A.9. One should check only that the
additional terms coming from the function χ are harmless in the estimates. This is
ensured by the choice of N and C0. �

By Lemma A.8, we can fix two inverse branches h1 and h2 of T N
Y as well as a vector

field y0(x) satisfying the conclusion of the lemma. Smoothing it, we obtain a C1 vector
field y such that 1 ≤ ‖y‖ ≤ 2 and such that, for any x ∈ Y ,

|D(SY
NφY ◦ h1)(x) · y(x) − D(SY

NφY ◦ h2)(x) · y(x)| ≥ C4/2.

Since ‖Dhj (x)‖ ≤ κ−N and C4 ≥ 20κ−NC0, this implies that

|D(SY
NφY ◦ h1)(x) · y(x) − D(SY

NφY ◦ h2)(x) · y(x)|
≥ 5C0 max(‖Dh1(x) · y(x)‖ , ‖Dh2(x) · y(x)‖).

Informally, this equation ensures that the difference between the arguments of
e−ikSY

N φY (h1x) and e−ikSY
N φY (h2x) varies quickly when x moves slightly in the direction of

y(x). Using this, it is possible to prove the following lemma (see [AGY, Lemma 7.13]
for a detailed proof ).

LEMMA A.11
There exist δ > 0 and ζ > 0 satisfying the following property. Let |k| ≥ 10 and x0 ∈ Y

be such that the ball B = B(x0, (ζ + δ)/|k|) is compactly contained in Y . Consider
(u, v) ∈ E3k(C0, h1B ∪ h2B, 0, 0). Then there exist x1 with d(x0, x1) ≤ ζ/|k| and
j ∈ {1, 2} such that, for any x ∈ B(x1, δ/|k|), we have

|e−ikSY
N φY (hj x)J (N)(hjx)v(hjx) + e−ikSY

N φY (h2−j x)J (N)(h2−j x)v(h2−j x)|

≤ 3

4
J (N)(hjx)u(hjx) + J (N)(h2−j x)u(h2−j x).

If H is a set of inverse branches of T n
Y , we write H (Y ) = ⋃

h∈H h(Y ).

LEMMA A.12
There exist θ1 < 1 and a function α : (0, ε0) → R+ tending to zero when ε → 0
satisfying the following property. Let n > 0, and let H be a finite subset of HnN .
Denote by H (n−1)N ⊂ H(n−1)N the set of inverse branches T N

Y ◦ h for h ∈ H . Then,
for any H , there exists K(H ) such that, for any |k| ≥ K(H ), for any function v, and
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for any ε < ε0, we have

‖LN
k v‖Dk(H (n−1)N (Y ),ε,(n−1)N) ≤ θN

1 eNα(ε) ‖v‖D3k(H (Y ),ε,nN) . (A.31)

Proof
Increasing H if necessary, we can assume that, for any h ∈ H (n−1)N , the branches
h1 ◦ h and h2 ◦ h belong to H . Let (u, v) ∈ E3k(C0, H (Y ), ε, nN ).

Let h ∈ H (n−1)N ; we work on h(Y ) and use the weak Federer property for the
constant C = C2(ζ/δ+1) (where C2 is given by Lemma A.7). Definition 1.3 provides
us with constants D > 0 and η0(h(Y ), C). Since the weak Federer property is uniform
over the inverse branches of TY , we can even choose D depending only on C and not
on h.

We apply the definition of the weak Federer property to η = δ/(C2|k|). If
|k| is large enough, we indeed have η < η0(h(Y ), C) for any h ∈ H (n−1)N

(here, the finiteness of H is crucial). We obtain disjoint balls B(x1, C2(ζ/δ +
1)η), . . . , B(xk, C2(ζ/δ + 1)η) compactly contained in h(Y ) and sets A1, . . . , Ak

contained in B(xi, CDη), whose union covers h(Y ) and which are such that, for any
x ′

i ∈ B(xi, (C2(ζ/δ + 1) − 1)η), we have µY (B(x ′
i , η)) ≥ µY (Ai)/D.

On each ball B = B(xi, C2(ζ/δ + 1)η) = B(xi, (ζ + δ)/|k|), we ap-
ply Lemma A.11 to the pair of functions (u(x)eεr (nN)(x), v(x)) (which belongs to
E3k(C0, T

−N
Y B, 0, 0)). The conclusion of this lemma gives a ball B ′

i = B(x ′
i , δ/|k|)

as well as an index j ∈ {1, 2}. We write type(B ′
i) = j . Let B ′′

i = B(x ′
i , δ/(C2|k|)) =

B(x ′
i , η). By Lemma A.7, there exists a function ρi equal to 1 on B ′′

i and vanishing
outside of B ′

i , whose C1 norm is bounded by C|k|.
Let us then define a function ρ on T −N

Y (hY ) by ρ = (
∑

type(B ′
i )=j ρi) ◦ T N

Y

on hj (hY ) (for j = 1, 2) and ρ = 0 elsewhere. Finally, let χ = 1 − cρ

where c is small enough. Then ‖χ‖C1 ≤ |k| if c is small enough and |LN
k v| ≤

LN (χueεr (nN)
) by construction (using Lemma A.11). Hence, Lemma A.10 implies

that (eNα(ε)LN (χ2u2)1/2, LN
k v) ∈ Ek(C0, h(Y ), (n − 1)N, ε).

We glue together the different functions χ obtained by varying h to obtain a func-
tion (that we still denote by χ ) on H (Y ). We still have (eNα(ε)LN (χ2u2)1/2, LN

k v) ∈
Ek(C0, H

(n−1)N (Y ), (n − 1)N, ε). If we can prove that ‖LN (χ2u2)1/2‖L4 ≤ β ‖u‖L4 ,
where β < 1 is a constant that is independent of everything else, then the proof is
finished.

Let ũ = LN (χ2u2)1/2. We have

ũ(x)4 =
( ∑

h∈Hn

J (N)(hx)χ(hx)2u(hx)2
)2

≤
( ∑

h∈HN

J (N)(hx)χ(hx)4
)

·
( ∑

h∈HN

J (N)(hx)u(hx)4
)
.
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Let Y1 = ⋃
B ′′

i , and let Y2 be its complement. On Y1, the factor∑
h∈HN

J (N)(hx)χ(hx)4 is bounded by a uniform constant β0 < 1, hence ũ(x)4 ≤
β0LN (u4)(x). On Y2, we have only ũ(x)4 ≤ LN (u4)(x).

Let w = LN (u4). Since ‖Du‖ ≤ 3C0|k|u, there exists a constant C such that
‖Dw‖ ≤ C|k|w. Integrating this inequality along a path between two points yields
w(x) ≤ eC|k|d(x,y)w(y) for any x, y. In particular, since Ai ⊂ B(xi, CDδ/(C2|k|)),
there exists C such that, for any x ∈ Ai and y ∈ B ′′

i , we have w(x) ≤ Cw(y).
Integrating this inequality,

∫
Ai

w

µY (Ai)
≤ C

∫
B ′′

i

w

µY (B ′′
i )

.

But µY (Ai) ≤ DµY (B ′′
i ) by definition of the sets Ai , hence

∫
Ai

w ≤ C
∫

B ′′
i

w. The

balls B ′′
i are pairwise disjoint, so we conclude that

∫
Y2

w ≤ C ′ ∫
Y1

w for some constant
C ′.

Let E be large enough so that (E + 1)β0 + C ′ ≤ E. Then

(E + 1)
∫

ũ4 ≤ (E + 1)
∫

Y1

β0w + (E + 1)
∫

Y2

w

≤ (E + 1)β0

∫
Y1

w + E

∫
Y2

w + C ′
∫

Y1

w ≤ E

∫
w.

Hence, ‖ũ‖4
L4 ≤ (E/(E + 1))

∫
w = (E/(E + 1))

∫
u4. This is the desired in-

equality. �

LEMMA A.13
There exist θ2 < 1 and a function α : (0, ε0) → R+ (which tends to zero when ε → 0)
satisfying the following property. For any M > 0, ε < ε0, and A > 0, there exists
K > 0 such that, for any C1 function v : Y → C, for any ψ ∈ CA,ε

MN , and for any
|k| ≥ K , we have

‖LMN
k (ψv)‖Dk

≤ eMNα(ε)θMN
2 ‖ψ‖CA,ε

MN
‖v‖D2M k

. (A.32)

Proof
We give the proof for odd M (the proof for even M is analogous and even simpler).

We decompose HMN as the union of a finite set H1 (to which we apply Lem-
ma A.12) and a set H2 which yields a small enough contribution. Let H ⊂ H have
finite complement. We take for H1 the set of inverse branches in HMN which are the
composition of branches not belonging to H , and we take for H2 its complement.

Let w = 1H1(Y )ψv, and let w′ = 1H2(Y )ψv. We first estimate ‖LMN
k w′‖Dk

. Let

u be such that (u, v) ∈ E2Mk . Let ũ = ‖ψ‖CA,ε
MN

( ∑
h∈H2

J (MN)(hx)u(hx)2
)1/2

. The
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computation made in the proof of Lemma A.9 shows that (eMNα(ε)ũ, LMN
k w′) ∈

Ek(C0).
We have

ũ2 = ‖ψ‖2
CA,ε

MN

∑
h1,...,hMN ∈H

∃i,hi∈H

J (MN)(hMN . . . h1x)u(hMN . . . h1x)2

≤ ‖ψ‖2
CA,ε

MN

MN∑
i=1

∑
h1,...,hMN ∈H

hi∈H

J (MN)(hMN . . . h1x)u(hMN . . . h1x)2

= ‖ψ‖2
CA,ε

MN

MN∑
i=1

Li−1L0,H LMN−iu2(x),

where L0,H is similar to the operator L, but the sum is only done over branches
belonging to H (this operator has already been defined before Lemma A.2). This
lemma shows that, if H is chosen small enough, then ‖L0,H‖L2→L2 can be made
arbitrarily small. Hence, if H is small enough (in terms of M and ε), we have

‖LMN
k w′‖Dk

≤ (θMN/3
1 − θ

MN/2
1 ) ‖ψ‖CA,ε

MN
‖v‖D2M k

. (A.33)

Let us fix such an H . Since M is odd, it can be written as M = 2m + 1. The
set H1 is finite and fixed. In particular, there exists a constant B such that, for any
x ∈ H1(Y ), we have ‖Dψ(x)‖ ≤ B ‖ψ‖CA,ε

MN
. If |k| is large enough (in terms of B),

this yields

‖w‖D3M k(H1(Y ),MN,ε) ≤ ‖ψ‖CA,ε
MN

‖v‖D2M k
. (A.34)

Iterating m times Lemma A.10 (with χ = 1), we obtain

‖LmN
k w‖D3k(H (m+1)N

1 (Y ),(m+1)N,ε) ≤ emNα(ε) ‖ψ‖CA,ε
MN

‖v‖D2M k
. (A.35)

We then apply inductively Lemma A.12. If |k| is large enough, we obtain, for i > m,

‖LiN
k w‖Dk(H (M−i)N

1 (Y ),(M−i)N,ε) ≤ eiNα(ε) ‖ψ‖CA,ε
MN

θ
(i−m)N
1 ‖v‖D2M k

. (A.36)

For i = M = 2m + 1, we conclude

‖LMN
k w‖Dk

≤ eMNα(ε) ‖ψ‖CA,ε
MN

θ
MN/2
1 ‖v‖D2M k

. (A.37)

Adding up the inequalities (A.33) and (A.37), we get the conclusion of the
lemma. �
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Proof of Theorem 2.3
We choose θ ∈ (2−1/(1010N), 1) such that θ100 is larger than the constants θ0 given by
Lemmas A.3 and A.5 and larger than θ2 given by Lemma A.13. If ε > 0 is small
enough, Lemma A.5 (applied to MN ) shows (2.6). Moreover, (2.5) is implied by
Lemma A.3. Finally, (2.8) is a consequence of Lemma A.9, and (2.7) follows from
Lemma A.13. �
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Poincaré Anal. Non Linéaire 22 (2005), 817 – 839. MR 2172861 204

[An] N. ANANTHARAMAN, Precise counting results for closed orbits of Anosov flows, Ann.
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