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Abstract

We introduce a weak transversality condition for piecewise C1+α and piecewise hyperbolic maps which admit a C1+α stable
distribution. We show bounds on the essential spectral radius of the associated transfer operators acting on classical anisotropic
Sobolev spaces of Triebel–Lizorkin type which are better than previously known estimates (when our assumption on the stable
distribution holds). In many cases, we obtain a spectral gap from which we deduce the existence of finitely many physical measures
with basin of total measure. The analysis relies on standard techniques (in particular complex interpolation) but gives a new result
on bounded multipliers. Our method applies also to piecewise expanding maps and to Anosov diffeomorphisms, giving a unifying
picture of several previous results on a simpler scale of Banach spaces.
© 2009 Elsevier Masson SAS. All rights reserved.
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Proving the existence of physical measures and studying their statistical properties is an important task in dynamical
systems. In this paper, we shall be concerned with maps with singularities (that is, discontinuities in the map or its
derivatives). We shall assume that the map is piecewise smooth relative to a finite partition, and the most challenging
case is when this partition does not have a Markov-type property.

For one-dimensional piecewise expanding maps, the space of functions of bounded variation has proved a very
powerful tool, since the transfer operator acting on it has a spectral gap. This readily implies the existence of finitely
many physical measures whose basins have full measure, as well as numerous other consequences. This functional
approach has been extended to higher dimensional piecewise expanding maps, under stronger assumptions (the
counter-examples of Tsujii [30] and Buzzi [11] show that some additional assumption is necessary), by consider-
ing various functional spaces (see the work of Keller, Góra and Boyarsky, Saussol, Buzzi, Tsujii, Cowieson [23,19,25,
10,31,17]). On the other hand, a more elementary approach, involving a more detailed study of the dynamics and how
sets are cut by the discontinuities, was developed by Young and Chernov [34,14], culminating in the article of Buzzi
and Maume-Deschamps [12] where the existence of physical measures (or more generally equilibrium measures) was
proved under very weak additional assumptions.
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For piecewise hyperbolic maps, finding good functional spaces on which the transfer operator has a spectral gap is
a more complicated task, and the story went in the other direction, with the elementary (but very involved) arguments
of Chernov and Young [13,34,14] coming first. Indeed, even for smooth hyperbolic dynamics, good spaces of distri-
butions were only introduced a few years ago by Gouëzel and Liverani and Baladi and Tsujii [20,5,21,6], following
the pioneering work of Blank, Keller and Liverani [8]. These spaces cannot be used for piecewise hyperbolic systems
because they are not invariant under multiplication by the characteristic function of a set with smooth boundary. Only
very recently, a good functional space was constructed by Demers and Liverani [18], for two-dimensional piecewise
hyperbolic maps. However, the arguments in this last paper are close in spirit to the previous ones [34,14], in the sense
that pieces of stable or unstable manifolds are iterated by the dynamics, and the way they are cut by the discontinuities
has to be studied in a very careful way. In particular, to ensure sufficiently precise control, an essential assumption in
[34,14,18] is transversality between stable or unstable manifolds and discontinuity hypersurfaces.

In this paper, we show that, under mild additional assumptions, the transfer operator of piecewise hyperbolic maps
in arbitrary dimensions has a spectral gap on classical functional spaces Ht,t−

p , for suitable indices t− < 0 < t and
1 < p < ∞. These spaces are anisotropic Sobolev spaces in the Triebel–Lizorkin class [33,27]. Moreover, we are able
to replace the strong transversality assumption from [34,14,18] with a much weaker one, formulated in terms of the
geometry of stable manifolds and discontinuity hypersurfaces: for instance, we allow discontinuity sets coinciding
with pieces of stable manifolds. Of course, this implicitly assumes the existence of stable manifolds, and this may
be the main current restriction of our approach: we require stable manifolds to exist everywhere, and to depend in a
piecewise C1+α way on the point for some α > 0. (See also Remarks 3 and 11.)

The main novelty in this work is that, as in [25,17], we do not need to study precisely the dynamics. (It suffices
that the hyperbolicity dominates the complexity growth, as measured by (3) and (4).) In particular, we do not iterate
single stable or unstable manifolds (contrary to [34,14,18]), and we do not need to match nearby stable or unstable
manifolds. Indeed, everything comes from the functional analytic framework. This makes it possible to get a short
self-contained proof working in any dimension and with very weak transversality assumptions.

Our spaces Ht,t−
p (or more precisely their H̃t+,t

p version, see Remark 11) are the same the first named author
considered in [4] (with the notation Wt,t+,p) to study smooth hyperbolic maps. The main new observation that we
shall use is (Lemma 23) that these spaces are stable under multiplication by characteristic functions of nice sets, if the
smoothness indices in the definition of the space are small enough with respect to the integrability index (0 < t < 1/p

and 0 > t− > −1 + 1/p). This property is well known (see the thesis [26] of Strichartz, and also [24, §4.6.3]) for
classical Sobolev spaces where t− = 0, and we will exploit some ideas in [26] to prove that it extends to our spaces.
For this, we use complex interpolation arguments to extend easily to our spaces estimates that are straightforward for
the standard Sobolev spaces. Interpolation also makes it possible to generalize the basic estimates in [4] to arbitrary
differentiability (see Appendix A). Another helpful technical ingredient is the use of a “zooming” norm (45) (based
on a rather standard localization principle, see Lemma 28) which allows us to go further than [4], which only dealt
with specific transfer operators.

We do not believe that our upper bounds on the essential spectral radius are also lower bounds in general. However,
we note that for a (nonnecessarily Markov) piecewise linear map of the unit square given by a hyperbolic matrix A

of maximal eigenvalue λ > 1 (see Section 2.2), we find for each ε > 0 a space on which the essential spectral radius
of the ordinary (Perron–Frobenius) transfer operator is � λ−1/2+ε . This is sharper than the results in [18] (which
give a bound of λ−1/3+ε ), and may well be the optimal bound (in the strong sense of meromorphic extensions of
the corresponding zeta function or essential decorrelation rate [15]). We refer also to Subsection 2.2 for examples of
conservative and dissipative (sloppy) baker maps to which our results apply. (Note that none of the previous results
apply to sloppy baker maps, because the transversality assumption needed in [34,18], etc. is not satisfied.)

Our proof extends the results of [4] to C1+α Anosov diffeomorphisms with C1+α stable and/or unstable distribu-
tions, and general Cα weights (see Remark 27). Let us also mention that our results apply to piecewise expanding and
piecewise C1+α maps for 0 < α < 1 (without transversality assumptions, but under the hypothesis that the dynamical
complexity does not grow too fast), giving yet another functional space on which the results of Saussol and Cowieson
[25,17], e.g., hold. This space is simply the usual Sobolev space Ht

p for 1 < p < ∞ and 0 < t < min(1/p,α). Hence,
introducing exotic spaces to study piecewise expanding maps is not necessary. This remark seems to be new even
for one-dimensional piecewise expanding maps. (For smooth expanding maps in arbitrary dimensions, the transfer
operator was studied on Sobolev spaces in [3].)
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The paper is organized as follows. Section 1 contains the definitions (Definition 1) of the dynamics T considered (in
particular, the condition on the stable foliation) and the spaces (Definition 9) Ht,t−

p , as well as our weak transversality
condition (Definition 5), and our main result. This main result, Theorem 12, gives a bound on the essential spectral
radius of the transfer operator acting on Ht,t−

p . We give in Corollary 13 the consequences of our main result on the
existence of finitely many physical measures with total ergodic basin (based on a key result given in Appendix B), as
well as variants of this main result under assumptions on the unstable foliation. Section 2 is devoted to a discussion
of several examples, illustrating our conditions. In Section 3, we recall various classical results in functional analysis.
Section 4 is the heart of the paper: it contains the basic bounds (multiplication by a function, composition by a smooth
map preserving the stable foliation, multiplication by the characteristic function of a nice set) which lead to Lasota–
Yorke type inequalities. In Section 5, we exploit these bounds, using a new “zooming” trick made possible by the
localization property of our spaces, to prove Theorem 12.

1. Statements

Notations. If B is a Banach space, we denote the norm of an element f of B by ‖f ‖B . In this paper, a function
defined on a closed subset of a manifold is said to be Ck or C∞ if it admits an extension to a neighborhood of this
closed subset, which is Ck or C∞ in the usual sense.

1.1. The setting

Let X be a Riemannian manifold of dimension d , and let X0 be a compact subset of X. Let also 0 � ds � d and
α > 0. We call C1 hypersurface with boundary a codimension one C1 submanifold of X with boundary (i.e., every
point of this set has a neighborhood diffeomorphic either to R

d−1 or R
d−2 × [0,∞)). For a closed subset K of X0

we shall consider integrable C1+α distributions of ds -dimensional subspaces Es on K . By definition, this means that
for each x in a neighborhood of K , Es(x) is a ds -dimensional vector subspace of the tangent space TxX, the map
x �→ Es(x) is C1+α and, for any x ∈ K , there exists a unique submanifold of dimension ds containing x, defined on a
neighborhood of x, and everywhere tangent to Es . We will denote this local submanifold by Ws

loc(x), and by Ws
ε (x)

we will mean the ball of size ε around x in this submanifold.

Definition 1 (Piecewise hyperbolic maps with stable distribution). For α > 0, we say that a map T :X0 → X0 is a
piecewise C1+α hyperbolic map with smooth stable distribution if

• There exists an integrable C1+α distribution of ds -dimensional subspaces Es on a neighborhood of X0.
• There exists a finite number of disjoint open subsets O1, . . . ,OI of X0, covering Lebesgue-almost all X0, whose

boundaries are unions of finitely many compact C1 hypersurfaces with boundary.
• For 1 � i � I , there exists a C1+α map Ti defined on a neighborhood of Oi , which is a diffeomorphism onto its

image, such that T coincides with Ti on Oi .
• For any x ∈ Oi , there exists λs(x) < 1 such that, for any v ∈ Es(x), DTi(x)v ∈ Es(Ti(x)) and |DTi(x)v| �

λs(x)|v|.
• There exists a family of cones Cu(x), depending continuously on x ∈ X0, with Cu(x) + Es(x) = TxX, such that,

for any x ∈ Oi , DTi(x)Cu(x) ⊂ Cu(Ti(x)), and there exists λu(x) > 1 such that |DTi(x)v| � λu(x)|v| for any
v ∈ Cu(x).

See Remark 11 and Subsection 1.4 regarding the replacement of Es by Eu and Cu by Cs in the above definition.
Note that we do not assume that T is continuous or injective on X0.

When ds = 0, the map T is piecewise expanding. When du = 0, it is piecewise contracting (we shall see that our
results are not very useful in this case). In the intermediate case, there are at the same time contracted and expanded
directions. We will denote by λs,n(x) < 1 and λu,n(x) > 1 the weakest contraction and expansion constants of T n

at x.

Remark 2. The requirement that Es is defined everywhere and C1+α is extremely strong. Indeed, for a generic
piecewise hyperbolic map, the stable direction depends only measurably on the point: the examples to which our
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theory applies belong therefore to a very narrow class, including most notably piecewise expanding maps, and some
hyperbolic piecewise linear maps (see below for more details). However, when Es is C1+α , its integrability is not a
real issue, due to the hyperbolicity of the map. Indeed, if Es is C1+α , it is automatically integrable at points that have a
nontrivial stable manifold not cut by discontinuities (by the usual graph transform argument). When this set of points
is dense, then the distribution is integrable, since integrability of C1+α distributions is an infinitesimal property.

Remark 3. It is possible to weaken our assumption slightly, by requiring only that Es is C1+α on each set Oi (this
can be really weaker than requiring that Es is globally C1+α in some specific situations, for instance when T has a
Markov-like property, i.e., the preimage of a singularity set is contained in another singularity set). Indeed, our proofs
still work under this weaker assumption (one should just slightly modify the definition of the Banach space we use).
It is also possible to apply directly our results to this more general setting, by working on a different manifold, as
follows. Assume that T is a piecewise hyperbolic map for which Es is C1+α on each set Oi , but not globally. Start
from the disjoint union of the sets Oi , and glue them together at all the points x ∈ Oi ∩ Oj such that Es is C1+α

on a neighborhood of x. Then T induces a piecewise hyperbolic map on this new manifold, for which the stable
distribution is globally C1+α . Indeed, since T is C1+α on each set Oi , the set T (Oi) intersects the boundaries of the
sets Oj only at places where Es is C1+α . Hence, the places in the original manifold where Oi and Oj are cut apart
are not an obstruction to extending T to the new manifold. The assumption on the Cu can be similarly weakened.

We shall also need a weak transversality condition on the boundaries of the sets Oi . Some kind of transversality
condition appears in every work dealing with piecewise hyperbolic maps ([34,18], etc.), although we do not know any
“counter-examples”. We shall use the following notion.

Definition 4 (L-generic vector in Es ). Let K ⊂ X0 be a compact hypersurface with boundary and let L ∈ Z+. For
x ∈ K \ ∂K , we say that a vector a ∈ Es(x) is L-generic with respect to K if, for any C1 vector field v defined on a
neighborhood of x, with v(x) = a and v(y) ∈ Es(y) for any y, there exists a smaller neighborhood of x in which the
intersection of Lebesgue almost every integral line of v with K has at most L points.

By “Lebesgue almost every integral line of v has some property (P )”, we mean the following: let A be the set
of points x such that the integral line of v through x does not have property (P ), then A has Lebesgue measure 0.
Equivalently, this can be formulated by requiring that the intersection of A with a transversal to the vector field v has
zero measure in this transversal.

Definition 5 (Weak transversality condition for Es ). Let T :X0 → X0 be a piecewise hyperbolic map with smooth
stable distribution. We say that T satisfies the weak transversality condition if there exists L > 0 such that, for any
K ⊂ ⋃I

i=1 ∂Oi which is a hypersurface with boundary, there exists a larger hypersurface with boundary K ′ (contain-
ing K in its interior) such that, for any x ∈ K ′ \ ∂K ′, the set of tangent vectors at x that are L-generic with respect to
K ′ has full Lebesgue measure in Es(x).1

The small enlargement K ′ of K is simply a technical point in the definition, to avoid problems at the boundary
of K .

If the boundary of each Oi is a finite union of smooth hypersurfaces Ki1, . . . ,Kiki
, each of which is transversal

to the stable direction (in the sense that Es(x) is never contained in TxKij ), then T satisfies the weak transversality
condition. However, the converse does not hold. For instance, we have the following result:

Proposition 6. Assume that ds = 1 (so that the stable manifolds are curves), and that T is a piecewise hyperbolic map
with smooth stable distribution. Then T satisfies the weak transversality condition if there exists ε > 0 such that

sup
1�i�I

∥∥Card
(
Ws

ε (x) ∩ ∂Oi

)∥∥
L∞(Leb)

< ∞. (1)

1 We could replace “full Lebesgue measure” in this definition by “generic in the sense of Baire” (i.e., contains a countable intersection of dense
open sets), all the following results would hold true as well, with the same proofs.
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Hence, tangencies to the boundaries of the Oi ’s are allowed, and even flat tangencies or pieces of the boundary
coinciding with Ws . The only problematic situation is when a boundary oscillates around the stable manifold, cutting
it into infinitely many small pieces, as in the following pathological case: assume that d = 2, that Es is the vertical
direction, and that O = {(x, y) | x > y2 sin(1/y)}.

Remark 7. In fact, our proofs work even if the boundaries of the sets Oi are not piecewise smooth hypersurfaces,
allowing for instance conical points, and under even weaker transversality assumptions (one should only be able to
check the conclusion of our Lemma 31 below). However, it is unclear how to formulate the most general condition
which would be of practical interest.

To get a result on the physical measures of finitely differentiable maps T , it is necessary to add some assumption
on the asymptotic dynamical complexity, already for piecewise expanding maps in dimension two or higher (see
[25,12,16,30] and [11]). We shall use the following way to quantify the complexity.

Let i = (i0, . . . , in−1) ∈ {1, . . . , I }n. We define inductively sets Oi by O(i0) = Oi , and

O(i0,...,in−1) = {
x ∈ Oi0 | Ti0x ∈ O(i1,...,in−1)

}
. (2)

Let also Ti = Tin−1 ◦ · · · ◦ Ti0 , it is defined on a neighborhood of Oi.
We define the complexity at the beginning2

Db
n = max

x∈X0
Card

{
i = (i0, . . . , in−1) | x ∈ Oi

}
, (3)

and the complexity at the end

De
n = max

x∈X0
Card

{
i = (i0, . . . , in−1) | x ∈ T n(Oi)

}
. (4)

(For a globally invertible map T we have De
n(T , {Oi, i}) = Db

n(T −1, {T (Oi), i}). For T (x) = 2x mod 1 on [0,1] we
have De

n = 2n, but fortunately this quantity plays no role when ds = 0.)
In the piecewise expanding case, it is known that, for generic maps, the complexities Db

n increase slowly, and
therefore do not play an important role in the spectral formula (6) below (see [17]). Such a result should also hold for
piecewise hyperbolic map, although it is not proved yet.

1.2. The main spectral result

We shall use spaces Ht,t−
p which were first introduced in a dynamical setting in [4] (the local version of these

spaces belongs to the Triebel–Lizorkin class, see [33,2,27] for earlier mentions of these spaces in functional analysis).
Section 4 is devoted to a precise study of these spaces, and the statements in the following definition are justified there.

Let F denote the Fourier transform in R
d . We will write a point z ∈ R

d as z = (x, y) where x = (z1, . . . , zdu)

and y = (zdu+1, . . . , zd). In the same way, an element ζ of the dual space of Rd will be written as ζ = (ξ, η). The
subspaces {x} × R

ds of R
d will sometimes be referred to as the “stable leaves” in R

d . We say that a diffeomorphism
sends stable leaves to stable leaves if its derivative has this property.

Definition 8 (Local spaces H
t,t−
p ). For 1 < p < ∞, t, t− ∈ R, we define a space H

t,t−
p of distributions in R

d as the
(tempered) distributions u such that

F −1((1 + |ξ |2 + |η|2)t/2(1 + |η|2)t−/2 F u
) ∈ Lp,

with its canonical norm, i.e., the Lp norm of the expression above.

We will simply write Ht
p instead of H

t,0
p . This is the classical Sobolev space, see, e.g., [29] for many properties of

this very classical space.

2 In the language of [9], Db
n is the multiplicity of the collection of sets {Oi | i ∈ {1, . . . ,N}n}.
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If t � 0, t + t− � 0 and t + |t−| < α � 1, we shall see that H
t,t−
p is invariant under C1+α diffeomorphisms sending

stable leaves to stable leaves (Remark 26). Hence, we can glue such spaces locally together in appropriate coordinate
patches, to define a space Ht,t−

p of distributions on the manifold:

Definition 9 (Spaces Ht,t−
p of distributions on X). Let t � 0, t + t− � 0 and t + |t−| < α < 1. Fix a finite number of

C1+α charts κ1, . . . , κJ whose derivatives send Es to {0} × R
ds , and whose domains of definition cover a compact

neighborhood of X0, and a partition of unity ρ1, . . . , ρJ , such that the support of ρj is compactly contained in the
domain of definition of κj , and

∑
ρj = 1 on X0. The space Ht,t−

p is then the space of distributions3 u supported on
X0 such that (ρju) ◦ κ−1

j belongs to H
t,t−
p for all j , endowed with the norm

‖u‖Ht,t−
p

=
∑∥∥(ρju) ◦ κ−1

j

∥∥
H

t,t−
p

. (5)

Changing the charts and the partition of unity gives an equivalent norm on the same space of distributions by
Lemma 22 and Remark 26. To fix ideas, we shall view the charts and partition of unity as fixed.

Remark 10. The intuition behind this definition is that an element of H
t,t−
p is Ct+t− in the y direction (and the y

direction is coded in the definition of the space), and Ct in the direction transverse to y (but there is no preferred
transverse direction). Hence, an element of Ht,t−

p is roughly Ct+t− in the stable direction, and Ct in the transverse
direction (which corresponds intuitively to the unstable direction, even though it is not always properly defined). If
t + t− < 0 and t > 0, we may therefore hope that the transfer operator acting on Ht,t−

p has good spectral properties.

Remark 11. Note that [4] considers a slightly different space, where the stable and unstable direction and the signs of
t and t + t− are exchanged. This choice is completely innocent, we also get the same results for the space of [4] (for
maps with smooth unstable distribution) in Theorem 15. Intuitively, this space H̃t+,t is composed of functions which
are Ct+t+ in the unstable direction (when this direction is well defined), and Ct in the transverse direction. Hence,
this space behaves well when t + t+ > 0 and t < 0.

Finally, if the stable and unstable directions exist and are smooth, we also define below a space ˜̃Ht+,t− of functions
which are essentially Ct+ in the unstable direction and Ct− in the stable direction. This space behaves well when
t+ > 0 and t− < 0, and yields more precise estimates than the previous spaces (but under the stronger assumption of
the existence of both stable and unstable directions), see Theorem 16.

Our main result follows (recall the notation (3)–(4)):

Theorem 12 (Spectral theorem for smooth stable distributions). Let α ∈ (0,1]. Let T be a piecewise C1+α hyperbolic
map with smooth stable distribution, satisfying the weak transversality condition. Let 1 < p < ∞ and let t, t− be so
that 1/p − 1 < t− < 0 < t < 1/p, t + t− < 0 and t + |t−| < α.

Let g :X0 → C be a function such that the restriction of g to any Oi admits a Cα extension to Oi . Define an
operator Lg acting on bounded functions by (Lgu)(x) = ∑

Ty=x g(y)u(y). Then Lg acts continuously on Ht,t−
p .

Moreover, its essential spectral radius is at most

lim
n→∞

(
Db

n

)1/(pn)(
De

n

)(1/n)(1−1/p)∥∥g(n)
∣∣detDT n

∣∣1/p max
(
λ−t

u,n, λ
−(t+t−)
s,n

)∥∥1/n

L∞ , (6)

where g(n) = ∏n−1
j=0 g ◦ T j .

When we say that Lg acts continuously on Ht,t−
p , we should be more precise. We mean that, for any u ∈

Ht,t−
p ∩L∞(Leb), then Lgu, which is defined as a bounded function, still belongs to Ht,t−

p and satisfies ‖Lgu‖Ht,t−
p

�

3 On a manifold, the space of generalized functions supported in X0, i.e., elements in the dual of the space of measures with smooth densities with
respect to Lebesgue measure, and the space of generalized densities supported in X0, i.e., elements in the dual of the space of smooth functions,
are isomorphic if X0 is compact: taking Leb any smooth Riemannian measure then f �→ f dLeb gives an isomorphism. “Distributions supported
in X0” (not to be confused with the integrable distributions of subspaces in Definition 1) refers in this paper to generalized functions (this avoids
some Jacobians when changing variables).
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C‖u‖Ht,t−
p

. Since the set of bounded functions is dense in Ht,t−
p (by Lemma 18), the operator Lg can therefore be

extended to a continuous operator on Ht,t−
p .

Note that the limit in (6) exists by submultiplicativity. Of course, we can bound λs,n and λ−1
u,n by λn, where λ < 1 is

the weakest rate of contraction/expansion of T . In some cases, it will be important to use the more precise expression
given above (see, e.g., Example 3 below).

The restriction 1/p−1 < t− < 0 < t < 1/p is exactly designed so that the space Ht,t−
p is stable under multiplication

by characteristic functions of nice sets, see Lemma 23. While this feature will be used in an essential way in the proof,
it also implies (see Remark 35 in Appendix B) that Dirac measures (or more generally measures supported on nice
hypersurfaces) do not belong to the space Ht,t−

p . We cannot exclude that measures supported on nasty hypersurfaces
belong to Ht,t−

p , but this will not be a problem.

1.3. Physical measures

The physical measures of T are by definition the probability measures μ such that there exists a set A of positive
Lebesgue measure such that, for all x ∈ A, 1/n

∑n−1
k=0 δT kx converges weakly to μ.

The physical measures of T are often studied through the transfer operator L1/|detDT |. (Note that the dual of
L1/|detDT | preserves Lebesgue measure.) Theorem 12 becomes in this setting:

Corollary 13. Under the assumptions of Theorem 12, assume that

lim
n→∞

(
Db

n

)1/(np)(
De

n

)(1/n)(1−1/p)∥∥max
(
λ−t

u,n, λ
−(t+t−)
s,n

)∣∣detDT n
∣∣1/p−1∥∥1/n

L∞ < 1. (7)

Then the essential spectral radius of L1/|detDT | acting on Ht,t−
p is < 1.

Together with classical arguments, this implies the following:

Theorem 14. Under the assumptions of Theorem 12, if (7) holds, then T has a finite number of physical measures,
which are invariant and ergodic, whose basins cover Lebesgue almost all X0. Moreover, if μ is one of these measures,
there exist an integer k and a decomposition μ = μ1 + · · · + μk such that T sends μj to μj+1 for j ∈ Z/kZ, and the
probability measures kμj are exponentially mixing for T k and Hölder test functions.

The deduction of this theorem from Corollary 13 is essentially folklore, but the proofs of similar results in the
literature (e.g., in [8,18]) rely on additional properties of the system (existence of stable manifolds almost everywhere,
and estimates of the measure of neighborhoods of singularities) that we have not established (although they certainly
hold true). Instead, we prove in Appendix B a general theorem (Theorem 33) that guarantees the existence of finitely
many physical measures whenever the transfer operator has a spectral gap on a space of distributions, and show
(Lemma 34) that this general theorem holds in our setting. The interest of this argument is that it also applies to
nonhyperbolic situations, such as (perturbations of the operators in) [32].

The results in this subsection answer the question in [4, Remark 1.1], in a much more general framework.

1.4. Hyperbolic maps with a smooth unstable distribution

Just like in Definition 1, we can define piecewise C1+α hyperbolic maps with smooth unstable distribution. More
precisely, we require the existence of an invariant integrable C1+α distribution of du-dimensional subspaces Eu(x)

along which the dynamics is uniformly expanding, and a transverse cone Cs(x) along which the dynamics is con-
tracting. (In particular, if T is noninvertible, we assume that the unstable manifolds are independent of a choice of
sequences of inverse branches.) We say that such a map satisfies the weak transversality condition for Eu if Defini-
tion 5 holds with Eu instead of Es .

Our results also apply to such maps (by the same techniques used to prove Theorem 12), but on the space of
distributions H̃t+,t whose norm is given in charts by ‖F −1((1 + |ξ |2)t+/2(1 + |ξ |2 + |η|2)t/2 F u)‖Lp . More precisely:
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Theorem 15 (Spectral theorem for smooth unstable distributions). Let α ∈ (0,1]. Let T be a piecewise C1+α hyper-
bolic map with smooth unstable distribution, satisfying the weak transversality condition with Es replaced by Eu. Let
1 < p < ∞ and let t+, t be so that 1/p − 1 < t < 0 < t+ < 1/p, t + t+ > 0 and |t | + t+ < α.

Let g :X0 → C be a function such that the restriction of g to any Oi admits a Cα extension to Oi . Define an
operator Lg acting on bounded functions by (Lgu)(x) = ∑

Ty=x g(y)u(y). Then Lg acts continuously on H̃t+,t
p .

Moreover, its essential spectral radius is at most

lim
n→∞

(
Db

n

)1/(pn)(
De

n

)(1/n)(1−1/p)∥∥g(n)
∣∣detDT n

∣∣1/p max
(
λ

−(t+t+)
u,n , λ−t

s,n

)∥∥1/n

L∞ .

In particular, if

lim
n→∞

(
Db

n

)1/(np)(
De

n

)(1/n)(1−1/p)∥∥max
(
λ

−(t+t+)
u,n , λ−t

s,n

)∣∣detDT n
∣∣1/p−1∥∥1/n

L∞ < 1,

then the spectral radius of L1/|detDT | acting on H̃t+,t
p is < 1. This implies that T has a finite number of ergodic

physical measures whose basins cover Lebesgue almost all X0. Moreover, if μ is one of these measures, there exist an
integer k and a decomposition μ = μ1 + · · · + μk such that T sends μj to μj+1 for j ∈ Z/kZ, and the probability
measures kμj are exponentially mixing for T k and Hölder test functions.

This theorem is proved just like Theorem 12. More precisely, the only nontrivial modification to be made is in the
first step of the proof of Lemma 25, where the computation for the linear contribution is slightly different.

Finally, similar results hold for maps that have at the same time smooth stable and unstable distributions (and

satisfy the weak transversality condition in both directions), as follows. Under this stronger assumption, let ˜̃Ht+,t−
p

be the space of distributions whose norm is given in charts by ‖F −1((1 + |ξ |2)t+/2(1 + |η|2)t−/2 F u)‖Lp . When
˜̃Ht+,t−

p is well-defined, we have Ht+,t−
p ⊂ ˜̃Ht+,t−

p and H̃t+,t−
p ⊂ ˜̃Ht+,t−

p . (For the first inclusion, note that (1 + |ξ |2)t+ �
(1 + |ξ |2 + |η|2)t+ if t+ � 0 and proceed as in the first step of the proof of Lemma 25.)

Theorem 16 (Spectral theorem when both distributions are smooth). Let T be a piecewise C1+α hyperbolic map with
smooth stable and unstable distributions, satisfying the weak transversality conditions for Es and Eu for α ∈ (0,1].
Let 1 < p < ∞ and let t+, t− be so that 1/p − 1 < t− < 0 < t+ < 1/p, and |t−| + t+ < α.

Let g :X0 → C be a function such that the restriction of g to any Oi admits a Cα extension to Oi . Define an

operator Lg acting on bounded functions by (Lgu)(x) = ∑
Ty=x g(y)u(y). Then Lg acts continuously on ˜̃Ht+,t−

p .
Moreover, its essential spectral radius is at most

lim
n→∞

(
Db

n

)1/(pn)(
De

n

)(1/n)(1−1/p)∥∥g(n)
∣∣detDT n

∣∣1/p max
(
λ

−t+
u,n , λ

−t−
s,n

)∥∥1/n

L∞ . (8)

The results on physical measures follow analogously. It should be noted that the results of Theorem 16 are stronger
than Theorems 12 and 15, since the exponents t+ and t− appear independently in the estimate (8).

Once again, this theorem follows from the techniques we will use to prove Theorem 12.

2. Examples

Let us look at some applications of our results to L1/|detDT |.

2.1. General examples

Example 1. On [−1,1] × {0,1}, let T (x, j) = (x/2, j) if x �= 0, and T (0, j) = (0,1 − j). This fits in our framework.
Since the complexities Db

n and De
n are always equal to 2, Theorem 12 gives the following bound for the essential

spectral radius of L1/|detDT | on the classical Sobolev space Ht−
p :

lim
n→∞

∥∥λ
−t−
s,n

∣∣detDT n
∣∣1/p−1∥∥1/n

L∞ = 2t−+1−1/p. (9)

Since t− < 0 is restricted by t− > 1/p − 1, this bound is > 1, hence useless. This is not surprising since the physical
measure, the Dirac masses at (0,0) and (0,1), do not belong to Ht−

p if 1/p − 1 < t− < 0 (see Remark 35).
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This was to be expected since the conclusion of Theorem 14 is false: the map T has two physical measures, the
Dirac masses at (0,0) and (0,1), but these measures are not invariant!

It is nevertheless interesting to see where precisely our arguments fail. Let T̃ (x, j) = (x/2, j), then the transfer
operators associated to T and T̃ acting on distributions coincide on C∞ functions (since the difference at 0 is not
seen by the integration against smooth functions). Since T̃ is continuous, there is no truncation term in its transfer
operator, hence the results of Theorem 12 hold for the full range t− < 0, without the restriction t− > 1/p − 1 (with
the same proof). In particular, for t− = −1 and p = 2, we get a bound 1/

√
2 for the essential spectral radius of

L1/detDT (T ) = L1/detDT̃
(T̃ ) acting on H−1

2 , and Corollary 13 holds. The problem comes up in the deduction of the
properties of physical measures from this bound on the essential spectral radius of L1/|detDT |: we need to check that
the physical measures do not give weight to the discontinuities of the map, to apply Theorem 33. This is ensured by
Lemma 34 when t− > 1/p − 1, but does not hold for t− = −1 and p = 2.

Example 2. Assume that ds = 0, i.e., T is piecewise expanding. In this case, we can take λs = 0, and the value of t−
is irrelevant (in fact, the space Ht,t−

p does not depend on t−, and is the classical Sobolev space Ht
p). The following

proposition is deduced from Corollary 13 by choosing carefully the parameters t and p.

Proposition. If T is piecewise C2, if ds = 0 and lim‖λ−1
u,n‖1/n

L∞ · lim(Db
n)1/n < 1, then there exist 0 < t < 1/p < 1 such

that the spectral radius of L1/|detDT | acting on Ht
p is < 1. In particular, Theorem 14 applies.

Proof. When ε tends to 0, the bound on the essential spectral radius of L1/|detDT | acting on H1−2ε

(1−ε)−1 , given by

Corollary 13, converges at most to limn→∞ ‖λ−1
u,n‖1/n

L∞ · limn→∞(Db
n)1/n. Hence, it is < 1 for small enough ε. �

In the proof of the above proposition, we use parameters t and p very close to 1, but we are “morally” working
with H1

1. This is not surprising since this space is essentially a space of functions with one derivative in L1, i.e.,
a space of functions of bounded variation. It is well known that functions of bounded variation are useful to study
piecewise expanding maps, see [16]. This proposition is analogous to results proved in [25,16] for different Banach
spaces.

Example 3. When detDT = 1 and De
n, Db

n grow subexponentially fast, then it is clear from Corollary 13 that the
essential spectral radius of L1/|detDT | is < 1 on any space Ht,t−

p (as soon as t > 0 and t + t− < 0). In some situations,
it is possible to weaken (or even remove) the assumption that detDT = 1. For example if the unstable direction is
smooth then Theorem 15 implies the following result.

Proposition. Let T be a piecewise C2 hyperbolic map with smooth unstable distribution satisfying the weak transver-
sality condition, and such that De

n and Db
n grow subexponentially. Assume that there exist N > 0 and γ < 1 such that

λs,N � γ |detDT N |. Then there exist p ∈ (1,∞) and 1/p − 1 < t < 0 < t+ < 1/p such that the essential spectral
radius of L1/|detDT | acting on H̃t+,t

p is < 1. In particular, T has finitely many physical measures whose basins contain
Lebesgue almost every point.

The assumption λs,N � γ |detDT N | is satisfied whenever ds = 1 and du > 0, or whenever detDT = 1.

Proof. We will take p very close to 1, t = 1/p − 1 + ε and t+ = 1/p − ε for ε > 0 very small.
We have∣∣detDT N

∣∣1/p−1
λ−t

s,N �
(
γ −1λs,N

)1/p−1
λ

−(1/p−1)−ε
s,N = γ 1−1/pλ−ε

s,N . (10)

Since γ < 1, this quantity is < 1 if ε is small enough (in terms of p).
Moreover,∣∣detDT N

∣∣1/p−1
λ

−(t++t)

u,N = ∣∣detDT N
∣∣1/p−1

λ
1−2/p
u,N . (11)

When p → 1, this quantity converges to λ−1 < 1.
u,N
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Hence, it is possible to choose p and ε such that∥∥∣∣detDT N
∣∣1/p−1 max

(
λ−t

s,N , λ
−(t+t+)

u,N

)∥∥
L∞ < 1. (12)

This concludes the proof. �
2.2. Piecewise linear maps

In this paragraph, we describe an explicit class of maps for which the assumptions of the previous theorems are
satisfied. Let A be a d × d matrix with no eigenvalue of modulus 1. It acts on R

d in a hyperbolic way, with best
expansion/contraction constants λu > 1 and λs < 1. Let X0 be a polyhedral region of R

d , and define a map T on X0
by cutting it into finitely many polyhedral subregions O1, . . . ,ON , applying A to each of them, and then mapping
AO1, . . . ,AON back into X0 by translations.

Let J (n) be the covering multiplicity of T n, i.e., the maximal number of preimages of a point under T n. It is
submultiplicative, hence the limit J = limn→∞ J (n)1/n exists.

Proposition 17. The map T is a piecewise hyperbolic map with smooth stable and unstable distributions (given by
the eigenspaces of A corresponding to eigenvalues of modulus < 1, resp. > 1). It satisfies the weak transversality
conditions for both stable and unstable distributions. Moreover, if Jλs < |detA|, there exist 1 < p < ∞, and t+, t− so

that 1/p − 1 < t− < 0 < t+ < 1/p and such that the essential spectral radius of L1/det |DT | acting on ˜̃Ht+,t−
p is < 1.

Therefore, T satisfies the conclusions of Theorem 14.

As an example of such a map, one can take A = ( 2 1
1 1

)
. Cutting the torus T

2 into finitely many squares, applying A

to each of these squares, and then permuting the images of the squares, one obtains a bijection of the torus (for which
J = 1). Hence, Proposition 17 applies. The novelty with respect to previous works such as [34,14,18] is that the sides
of the squares can be taken parallel to the stable or unstable directions.

Proof of Proposition 17. The weak transversality conditions are direct consequences of the definitions.
Let K be the total number of the sides of the polyhedra Oi . Around any point x, the boundaries of the sets

O(i0,...,in−1) are preimages of theses sides by one of the maps A, . . . ,An−1, which gives at most nK possible direc-
tions. Hence, the claim p. 105 in [9] gives Db

n � 2(nK)d . This quantity grows subexponentially. In the same way,
De

n � 2J (n)(nK)d .

By Theorem 16, the essential spectral radius of L1/detA acting on ˜̃Ht+,t−
p (for suitable values of p, t+, t−) is

bounded by J 1−1/p|detA|1/p−1 max(λ
−t+
u , λ

−t−
s ). Let us take t+ = 1/p − ε, t− = 1/p − 1 + ε and p close to 1.

Then 1/p − 1 < t− < 0 < t+ < 1/p, hence Theorem 16 applies and yields the following bound for the essential
spectral radius:

|detA|1/p−1J 1−1/p max
(
λ

−1/p+ε
u , λ

1−1/p−ε
s

)
. (13)

If p is close to 1 and ε is small enough, this quantity is < 1 under the assumptions of the proposition. (Note that if
detA = J = 1, choosing p = 2 and t+ = 1/2 − ε, t− = −1/2 + ε gives better bounds.) �

The standard conservative (piecewise affine) baker’s map on the unit square is given by T (x, y) = (2x, y/2) for
0 � x < 1/2 and T (x, y) = (2x − 1, (y + 1)/2) for 1/2 � x � 1. It fits in the model of this subsection, for a diagonal
matrix A with eigenvalues 2 and 1/2. The baker has an obvious Markov partition with two pieces, and can thus be
analyzed by a (Lipschitz) symbolic model, which gives an essential decorrelation rate of 2−1/2 for Lipschitz observ-
ables. (The physical measure is just Lebesgue measure.) The proof of the previous proposition gives a bound 2−1/2+ε

for the essential spectral radius of L1/detA on ˜̃H1/2−ε,−1/2+ε

2 for arbitrarily small ε > 0 (here J = 1, detA = 1,
λu = 2 and λs = 1/2). For a dissipative baker T (x, y) = (2x, y/3) for 0 � x < 1/2 and T (x, y) = (2x − 1, (y + 2)/3)

for 1/2 � x � 1 (λu = 2 and λs = 1/3, detA = 2/3 and J = 1), the proof of the above proposition gives a bound

2−1+ε+(log 3/ log 6) for the essential spectral radius on ˜̃H1/p−ε,1/p−1+ε
p for p = log 6/ log 3. (Note that the dimension

of the attractor is strictly between 1 and 2 in this case.) The above two examples are piecewise affine hyperbolic maps



V. Baladi, S. Gouëzel / Ann. I. H. Poincaré – AN 26 (2009) 1453–1481 1463
with a finite Markov partition. But the following variant, that we shall call a “sloppy baker”, does not have a finite
Markov partition: let (a, b) be a point in the interior of the unit square and put T (x, y) = (2x + a, y/2 + b) mod 1 for
0 � x < 1/2 and T (x, y) = (2x − 1 + a, (y + 1)/2 + b) mod 1 for 0 � x < 1. For almost all (a, b), the sloppy baker
does not have a finite Markov partition. However, our estimate gives the same bound 2−1/2+ε for the essential spectral

radius on ˜̃H1/2−ε,−1/2+ε

2 . Similarly, one may consider a dissipative sloppy baker, and we recover the same estimates.

3. Tools of functional analysis

In this section, we recall some classical notions of functional analysis (interpolation theory and properties of Triebel
spaces), that will be useful in the next sections to study the space H

t,t−
p and to prove our main result.

3.1. Complex interpolation

We first recall some notations and definitions from the classical complex interpolation theory of Lions, Calderón
and Krejn (see, e.g., [28]). A pair (B0, B1) of Banach spaces is called an interpolation couple if they are both contin-
uously embedded in a linear Hausdorff space B. For any interpolation couple (B0, B1), we let L(B0, B1) be the space
of all linear operators L mapping B0 + B1 to itself so that L|Bj

is continuous from Bj to itself for j = 0,1. For an
interpolation couple (B0, B1) and 0 < θ < 1, we denote by [B0, B1]θ the complex interpolation space of parameter θ .
We recall the definition: set S = {z ∈ C | 0 < �z < 1}, and introduce the normed vector space

F(B0, B1) =
{
f :S → B0 + B1, analytic, extending continuously to S, with sup

z∈S

∥∥f (z)
∥∥

B0+B1
< ∞, and

t �→ f (j + it) is continuous from (−∞,∞) to Bj , j = 0,1,

and ‖f ‖F(B0,B1) := max
j=0,1

(
sup

t

∥∥f (j + it)
∥∥

Bj

)
< ∞

}
.

Then the complex interpolation space is defined for θ ∈ (0,1) by

[B0, B1]θ := {
u ∈ B0 + B1 | ∃f ∈ F(B0, B1) with f (θ) = u

}
, (14)

normed by

‖u‖[B0,B1]θ = inf
f (θ)=u

‖f ‖F(B0,B1). (15)

It is well known (see, e.g., [28, §1.9]) that (B0, B1) �→ [B0, B1]θ is an exact interpolation functor of type θ , in the
following sense: for any interpolation couple (B0, B1) and every L ∈ L(B0, B1) we have

‖L‖[B0,B1]θ→[B0,B1]θ � ‖L‖1−θ
B0→B0

‖L‖θ
B1→B1

∀θ ∈ (0,1). (16)

The above bound will be used several times throughout this work.

3.2. A class of Sobolev-like spaces containing the local spaces H
t,t−
p

Let S be the Schwartz space of C∞ rapidly decaying functions. Its dual S′ is the space of tempered distributions.
Let M be the set of functions a from Rd to R+ such that there exists C > 0 such that, for all multi-indices

γ = (γ1, . . . , γd) with γj ∈ {0,1}, and all ζ ∈ R
d ,∣∣∣∣∣

d∏
j=1

(
1 + ζ 2

j

)γj /2
Dγ a(ζ )

∣∣∣∣∣ � Ca(ζ ). (17)

For a ∈ M and p ∈ (1,∞), let us define a space Ha
p as the space of all tempered distributions u such that F −1(aF u)

belongs to Lp , with its canonical norm

‖u‖Ha = ∥∥F −1(aF u)
∥∥

d . (18)

p Lp(R )
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These spaces were introduced and studied by Triebel in [27], in a slightly more general setting involving another
parameter q (under a different form [27, Definition 2.3/4], but Theorem 5.1/2 and Remark 5.1 there shows that it is
equivalent to the previous description for q = 2).

Among other things, Triebel proved the following results concerning these spaces:

Lemma 18. For any a ∈ M and 1 < p < ∞, the space S is contained in Ha
p , and dense.

Proof. This is proved in Theorem 3.2/2 and Remark 3.2/2 in [27]. �
For t , t− ∈ R, the function

at,t−(ξ, η) = (
1 + |ξ |2 + |η|2)t/2(1 + |η|2)t−/2 (19)

belongs to M . Then H
t,t−
p from Definition 8 is just H

at,t−
p , and the previous lemma says that S is dense in H

t,t−
p .

Proposition 19 (Interpolation). For any a0, a1 ∈ M , p0, p1 ∈ (1,∞) and θ ∈ (0,1), the interpolation space
[Ha0

p0 ,H
a1
p1 ]θ is equal to Ha

p for a = a1−θ
0 aθ

1 and 1/p = (1 − θ)/p0 + θ/p1.

Proof. This is [27, Theorem 4.2/2]. �
We will also use the following straightforward lemma. (Note that if a ∈ M then 1/a ∈ M , see, e.g., [27,

Lemma 2.1/1].)

Lemma 20 (Duality). For any a ∈ M and 1 < p < ∞, the dual of the space Ha
p is H

1/a

p′ for 1/p + 1/p′ = 1.

3.3. Multiplier theorems

In order to understand the spaces Ha
p , an essential tool is provided by Fourier multiplier theorems. The following

Marcinkiewicz multiplier theorem (see, e.g., [27, Theorem 2.4/2]) will be sufficient for our purposes.

Theorem 21. Let b ∈ Cd(Rd) satisfy |ζ γ Dγ b(ζ )| � B for all multi-indices γ = (γ1, . . . , γd) with γj ∈ {0,1}, and all
ζ ∈ R

d . Then, for all p ∈ (1,∞), there exists a constant C(p,d) such that, for any u ∈ Lp ,∥∥F −1(bF u)
∥∥

Lp
� CB‖u‖Lp . (20)

4. Towards Lasota–Yorke bounds on the local space H
t,t−
p

Aiming at the proof of Theorem 12 on transfer operators, we describe in Subsections 4.1 and 4.2 how the local
spaces H

t,t−
p , which are the building blocks of our spaces of distributions, behave under multiplication by a smooth

function or by the characteristic function of a nice set, as well as under composition with a smooth map preserving the
stable leaves. Then, in Section 4.3, we state and prove a localization principle on H

t,t−
p that we were not able to find

in the literature and which plays a key part in the “zooming” procedure in the proof of Theorem 12. Note for further

use that since X0 is compact, [4, Lemma 2.2] (e.g.) gives that the inclusion Ht,t−
p ⊂ Ht ′,t ′−

p for t ′ � t and t ′− � t− is
compact if t ′ < t .

To study H
t,t−
p , we will mainly study H

t,0
p and H

0,t−
p and use interpolation (via Proposition 19). It is therefore

useful to recall some classical properties of these spaces.
When t � 0, the space Ht

p is the classical Sobolev space. By [26, Theorem I.4.1], it satisfies a Fubini property: if

u is a function on R
d , define a function uj on R

d−1 as follows: uj (x1, . . . , xj−1, xj+1, . . . , xd) is the Ht
p(R)-norm

of the restriction of u to the line {(x1, . . . , xj−1, x, xj+1, . . . , xd) | x ∈ R}. Then u belongs to Ht
p(Rd) if and only if

each uj belongs to Lp(Rd−1), and the norms ‖u‖Ht
p

and
∑d

j=1 ‖uj‖Lp are equivalent. (This is true for any set of
coordinates, but for simplicity we shall use a fixed system of coordinates.) This makes it often possible to study only
the one-dimensional situation, and extend it readily to d dimensions.
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For t− > 0, the space H
0,t−
p also has a Fubini-type property: the norm ‖u‖

H
0,t−
p

is equivalent to
∑d

j=du+1 ‖uj‖Lp

where uj is the H
t−
p (R)-norm of a restriction of u as above (the proof of [26, Theorem I.4.1] directly applies, we may

take any coordinates on R
d which preserve the stable leaves of the original coordinate system used to define H

0,t−
p ,

for simplicity we shall fix this original coordinate system). In particular, the study of H
0,t−
p reduces to the study of the

usual Sobolev space in one dimension.
Finally, for t− ∈ R, the space H

0,t−
p also has a slightly different Fubini-type property. Let u be a function on

R
d , and define a function v on R

du as follows: v(x) is the H
t−
p (Rds )-norm of the restriction of u to {x} × R

ds . Then
‖u‖

H
0,t−
p (Rd )

= ‖v‖Lp(Rdu ): this follows from the fact that the function (1+|η|2)t−/2 does not depend on the variable ξ ,

which makes it possible to integrate away the variable x using the Fourier inversion formula (see [26, p. 1045] for
details).

We will refer to these properties respectively as the one-dimensional and the ds -dimensional Fubini properties
of H

0,t−
p .

4.1. Multiplication by functions

Lemma 22. Let t > 0, t− < 0 and α > 0 be real numbers with t +|t−| < α. For any p ∈ (1,∞), there exists a constant
C# such that for any Cα function g : Rd → C, for any distribution u ∈ H

t,t−
p , the distribution gu also belongs to H

t,t−
p

and satisfies

‖g · u‖
H

t,t−
p

� C#‖g‖Cα‖u‖
H

t,t−
p

.

The assertion gu ∈ H
t,t−
p should be interpreted as explained after Theorem 12.

Proof. Let t0 = t + |t−|, t0− = −t0 and θ = t/t0, so that (t, t−) = (θt0, (1 − θ)t0−) and max(t0, |t0−|) < α. We will

write H
t,t−
p as an interpolation space with parameter θ between Ht0

p and H
0,t0−
p , thereby reducing the proof to the study

of Ht0

p and H
0,t0−
p .

First, since Ht0

p is the classical Sobolev space, [29, Corollary 4.2.2] shows that

‖gu‖
Ht0

p
� C#‖g‖Cα‖u‖

Ht0
p

, (21)

where C# depends only on t0 and α, whenever |t0| < α.

Together with the ds -dimensional Fubini-type property of H
0,t0−
p , this readily implies

‖gu‖
H

0,t0−
p

� C#‖g‖Cα‖u‖
H

0,t0−
p

(22)

whenever |t0−| < α.
Interpolating between (21) and (22) via Proposition 19, we get the conclusion of the lemma. �
The following extension of a classical result of Strichartz is the key to our results:

Lemma 23. Let 1 < p < ∞ and 1/p − 1 < t− � 0 � t < 1/p. There exists a constant C# satisfying the following
property. Let N � 1, and let O be a set in R

d whose intersection with almost every line parallel to some coordinate
axis has at most N connected components. Then, for any u ∈ H

t,t−
p , the distribution 1Ou also belongs to H

t,t−
p , and

satisfies

‖1Ou‖
H

t,t−
p

� C#N‖u‖
H

t,t−
p

. (23)

Proof. If t ∈ [0,1/p) and the dimension is 1, a result of Strichartz [26, Corollary II.4.2] shows that, for any interval
I of R and any function u ∈ Ht

p(R), then 1I u belongs to Ht
p(R) and its norm is bounded by C#‖u‖Ht

p(R), for some
universal constant C# depending only on t, p. If O is a union of N intervals I1, . . . , IN , this yields

‖1Ou‖Ht (R) �
∑

‖1Ii
u‖Ht (R) � C#N‖u‖Ht (R). (24)
p p p
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For d > 1, the Fubini property of Ht
p(Rd) (described at the beginning of Section 4) shows that the previous property

extends from R to R
d : if a set O intersects almost every line parallel to a coordinate axis along at most N connected

components, then ‖1Ou‖Ht
p

� C#N‖u‖Ht
p
. See also [24, §4.6.3] for alternative sufficient conditions on O and p, t

ensuring that 1O is a multiplier of Ht
p .

Assume now that t = 0 and t− ∈ (0,1/p). Since the space H
0,t−
p also has the Fubini property, the previous argument

still applies, and gives ‖1Ou‖
H

0,t−
p

� C#N‖u‖
H

0,t−
p

. If t = 0 and t− ∈ (1/p − 1,0), the same result follows by duality.

Interpolating via Proposition 19, the set of parameters (1/p, t, t−) for which the conclusion of the lemma holds
is convex. It therefore contains the convex hull of {(1/p, t,0) | 0 � t < 1/p} and {(1/p,0, t−) | 1/p − 1 < t− � 0},
which coincides with the set {(1/p, t, t−) | 1/p − 1 < t− � 0 � t < 1/p}. �
4.2. Composition with smooth maps preserving the stable leaves

In this paragraph, we study the behavior of H
t,t−
p under the composition with smooth maps preserving the stable

leaves.
Let us start with a very rough and easy to prove lemma.

Lemma 24. Let 1 < p < ∞, and t , t− be real numbers with |t | + |t−| � 1. There exists a constant C# such that, for
any invertible matrix A on R

d , sending {0} × R
ds to itself, and for any u ∈ H

t,t−
p ,

‖u ◦ A‖
H

t,t−
p

� C#|detA|−1/p max
(‖A‖,∥∥A−1

∥∥)‖u‖
H

t,t−
p

. (25)

Proof. By [24, Proposition 2.1.2(iv)+(vii)], the H 1
p -norm is equivalent to the norm ‖u‖Lp + ‖Du‖Lp . Hence,

‖u◦A‖
H

1,0
p

� C#|detA|− 1
p max(‖A‖,1)‖u‖

H
1,0
p

. Similarly, ‖|detA|−1u◦A−1‖
H

0,1
p′

� C#|detA|−1+ 1
p′ max(‖A−1‖,1)

× ‖u‖
H

0,1
p′

, by a ds -dimensional Fubini-type argument. Since the adjoint of u �→ |detA|−1u ◦ A−1 is u �→ u ◦ A, the

general case follows by duality (Lemma 20) and interpolation (Proposition 19). �
Lemma 25. Let α ∈ (0,1), let F : Rd → Rd be a C1+α diffeomorphism sending stable leaves to stable leaves, and let
A be a matrix such that, for all z ∈ R

d , ‖A−1 ◦ DF(z)‖ � 2 and ‖DF(z)−1 ◦ A‖ � 2.
Assume moreover that A can be written as M−1

0

(
Au 0
0 As

)
M1, where M0 and M1 are matrices sending stable leaves

to stable leaves, and μu := ‖Au‖ � 1, μs := ‖(As)−1‖−1 � 1.4

Then, for all t > 0 and t− < 0 with t + |t−| < α and t + t− < 0, for all p ∈ (1,∞), there exists a constant
C# depending only on max(‖M0‖,‖M−1

0 ‖,‖M1‖,‖M−1
1 ‖) and t , t−, p, and a constant C(A,F ) such that, for all

u ∈ H
t,t−
p ,

‖u ◦ F‖
H

t,t−
p

� C#‖detA/detDF‖Cα |detA|−1/p max
(
μt

u,μ
t+t−
s

)‖u‖
H

t,t−
p

+ C‖u‖
H

0,t−
p

.

In the applications to transfer operators, F will be the local inverse of some iterate T n of a piecewise hyperbolic
map. Since T n is contracting along Es and expanding along Eu, the map F will therefore satisfy the assumptions of
the lemma regarding μs and μu.

Proof of Lemma 25. We will write u ◦ F = u ◦ A ◦ A−1 ◦ F . Hence, we need to study the composition with A and
A−1 ◦ F . We claim that

‖u ◦ A‖
H

t,t−
p

� |detA|−1/pC# max
(
μt

u,μ
t+t−
s

)‖u‖
H

t,t−
p

+ C‖u‖
H

0,t−
p

(26)

and

4 The matrix norms are the operator norms with respect to the usual euclidean metric on Rd , so that the norm of a matrix equals the norm of its
transpose.
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∥∥u ◦ A−1 ◦ F
∥∥

H
t,t−
p

� C#‖detA/detDF‖Cα‖u‖
H

t,t−
p

. (27)

Together, these equations prove the lemma.
First step. Let us prove (26). This is a special case of [4, Lemma 2.10] (replacing (0, t−) by (t − 1/2, t−)). We

will give the proof for the convenience of the reader, since it is at the same time very simple and at the heart of our
argument. Lemma 24 deals with the composition with M−1

0 and M1, hence we can assume that M0 = M1 = Id.
We want to estimate ‖u ◦A‖

H
t,t−
p

= ‖F −1(at,t− F (u ◦A))‖Lp , where at,t− is defined in (19). A change of variables

readily gives F −1(at,t− F (u ◦ A)) = F −1(at,t− ◦ tA · F u) ◦ A. Hence, we have to show that∥∥F −1(at,t− ◦ tA · F u
)∥∥

Lp
� C# max

(
μt

u,μ
t+t−
s

)‖u‖
H

t,t−
p

+ C‖u‖
H

0,t−
p

. (28)

Write tA = (
U 0
0 S

)
with |Uξ | � μu|ξ | and |Sη| � μs |η| by definition of μu,μs . Let

b(ξ, η) = at,t− ◦ tA(ξ, η) = (
1 + |Uξ |2 + |Sη|2)t/2(1 + |Sη|2)t−/2

. (29)

Let us prove that, if C is large enough, we have

b � C# max
(
μt

u,μ
t+t−
s

)
at,t− + Ca0,t− . (30)

Assume that we can prove this equation, as well as the corresponding estimates for the successive derivatives of b,
i.e., |ζ γ Dγ (b/(C# max(μt

u,μ
t+t−
s )at,t− + Ca0,t−))| � C# for any γ = (γ1, . . . , γd) with γj ∈ {0,1}, and any ζ ∈ R

d .
Then Theorem 21 applied to b/(C# max(μt

u,μ
t+t−
s )at,t− + Ca0,t−) gives∥∥F −1(bF u)

∥∥
Lp

� C#
∥∥F −1((C# max

(
μt

u,μ
t+t−
s

)
at,t− + Ca0,t−

)
F u

)∥∥
Lp

, (31)

which yields (28).
Let us now prove (30) (the proof for the derivatives of b is similar). We will freely use the following trivial

inequalities: for x � 1 and λ � 1,

1

λ
(1 + λx) � 1 + x � 2

λ
(1 + λx). (32)

Assume first |Uξ |2 � |Sη|2 and |Sη|2 � 1. Then, since t > 0 and t + t− < 0,

b(ξ, η) �
(
1 + 2|Sη|2)t/2(1 + |Sη|2)t−/2 � 2t/2(1 + |Sη|2)t/2(1 + |Sη|2)t−/2

� 2t/2(1 + μ2
s |η|2)(t+t−)/2 � 2t/2(μ2

s /2
)(t+t−)/2(1 + |η|2)(t+t−)/2

� 2−t−/2μ
(t+t−)
s at,t−(ξ, η).

If |Uξ |2 � |Sη|2 and |Uξ |2 � 1, then

b(ξ, η) �
(
1 + 2|Uξ |2)t/2(1 + |Sη|2)t−/2 � 2t/2(1 + |Uξ |2)t/2(1 + μ2

s |η|2)t−/2

� 2t/2(1 + μ2
u|ξ |2)t/2(

1 + |η|2)t−/2 � 2t/2(2μ2
u

)t/2(
1 + |ξ |2)t/2(

1 + |η|2)t−/2

� 2tμt
uat,t−(ξ, η).

In the remaining case, ξ and η are uniformly bounded, and (30) follows by choosing C large enough. This concludes
the proof of (26).

Second step. Let us now prove (27). We will write F̃ = A−1 ◦ F . As in the proof of Lemmas 22, 23, and 24,
we will study simpler spaces before concluding by interpolation. We thus write (t, t−) = (θt0, (1 − θ)t0−) for some
0 < θ < 1 and t0,−t0− ∈ (0, α). Let us note that the derivatives of F̃ and F̃−1 are everywhere bounded by 2, hence
their determinants are bounded by 2d .

By [24, Proposition 2.1.2(iv)+(vii)], the H 1
p -norm is equivalent to the norm ‖u‖Lp + ‖Du‖Lp . Since the derivative

of F̃ has norm everywhere bounded by 2 and |detDF̃ | � 2d by assumption, we get after a change of variables
‖u ◦ F̃‖H 1

p
� C#‖u‖H 1

p
. Since ‖u ◦ F̃‖Lp � C#‖u‖Lp , the interpolation inequality (16) between H 1

p and Lp = H 0
p

gives

‖u ◦ F̃‖
Ht0 � C#‖u‖

Ht0 . (33)

p p
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Applying the same argument via Fubini to F̃−1 on each leaf of the vertical direction, we also have ‖u◦ F̃−1‖
H

0,1
p′

�

C#‖u‖
H

0,1
p′

. The adjoint of the composition by F̃−1 is given by P (u) = detDF̃ · u ◦ F̃ . Hence, duality yields

‖P u‖
H

0,−1
p

� C#‖u‖
H

0,−1
p

. Since P is bounded by C# on Lp , we get by interpolation between H
0,−1
p and Lp = H

0,0
p

‖detDF̃ · u ◦ F̃‖
H

0,t0−
p

� C#‖u‖
H

0,t0−
p

. (34)

Together with (22), we obtain

‖u ◦ F̃‖
H

0,t0−
p

� C#‖1/detDF̃‖Cα‖detDF̃ · u ◦ F̃‖
H

0,t0−
p

� C#‖1/detDF̃‖Cα‖u‖
H

0,t0−
p

. (35)

Interpolating between (33) and (35), we get

‖u ◦ F̃‖
H

t,t−
p

� C#‖1/detDF̃‖1−θ
Cα ‖u‖

H
t,t−
p

. (36)

Finally, 1/detDF̃ = detA/detDF is bounded from below, and (27) follows. �
Remark 26 (Invariance). The arguments in the second step of the proof of Lemma 25 (with A = Id) also imply that,
whenever t > 0 and t− < 0 satisfy t + |t−| < α, then the space H

t,t−
p is invariant under the composition with C1+α

diffeomorphisms of R
d sending stable leaves to stable leaves.

Remark 27 (Extending [4] to C1+α Anosov diffeomorphisms). If 0 < α < 1 we can apply Lemma 25. If α � 1 and
t > 0, t + t− < 0 satisfy t +|t−| < α, letting m be the smallest integer � t +|t−|, [24, Proposition 2.1.2(iv)+(vii)], im-
plies that the Hm

p -norm is equivalent to the norm
∑

|γ |�m ‖∂γ u‖Lp . Thus, replacing the matrix A in Lemma 25
by a C∞ diffeomorphism A preserving stable leaves, with least expansion μs � 1 on the verticals, and whose
inverse preserves horizontal cones with least expansion μ−1

s � 1, and such that ‖DA−1 ◦ DF‖Cm−1 � 2 and
‖DF−1 ◦ DA‖Cm−1 � 2, we get, by applying [4, Lemma 2.10] to prove the analogue of (26), that

‖u ◦ F‖
H

t,t−
p

� C#‖detDA/detDF‖Cα |detDA|−1/p max
(
μt

u,μ
t+t−
s

)‖u‖
H

t,t−
p

+ C‖u‖
H

t−1/2,t−
p

.

The proof of Theorem 12 then applies to any C1+α Anosov diffeomorphism T with C1+α stable distribution, and to
any Cα weight g, with α > 0.

4.3. Localization

Lemma 28 (Localization principle). Let η : Rd → [0,1] be a C∞ function with compact support and write ηm(x) =
η(x + m). For any p ∈ (1,∞) and t , t− ∈ R, there exists C# > 0 so that for each u ∈ H

t,t−
p( ∑

m∈Zd

‖ηmu‖p

H
t,t−
p

)1/p

� C#‖u‖
H

t,t−
p

. (37)

Remark 29. If, in addition to the assumptions of Lemma 28, one supposes that
∑

m∈Zd ηm(x) = 1 for all x, then one
can show that there is C# so that for each u such that ηmu ∈ H

t,t−
p for all m we have

‖u‖
H

t,t−
p

� C#

( ∑
m∈Zd

‖ηmu‖p

H
t,t−
p

)1/p

.

(We shall not need the above bound.)

Proof of Lemma 28. For t− = 0 and arbitrary t , Lemma 28 is a result of Triebel [29, Theorem 2.4.7] based on a
Paley–Littlewood-type decomposition. Moreover, the constant C# depends only on the size of the support of η, and
its Ck-norm for some large enough k.

To handle t− ∈ R, we will (again) start from the result for the classical Sobolev space and use Fubini and interpo-
lation, as follows.
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Let us prove the lemma for t = 0 and t− ∈ R, using a ds -dimensional Fubini argument. We have∑
m∈Zd

‖ηmu‖p

H
0,t−
p (Rd )

=
∑

m∈Zd

∫
x∈Rdu

‖ηmu‖p

H
t−
p ({x}×Rds )

dx. (38)

For each x ∈ R
du , the values of m ∈ Z

d for which the restriction of ηmu to {x} × R
ds is nonzero are contained in a

set M(x) × Z
ds , where CardM(x) is bounded independently of x. Using the result of Triebel for the Sobolev space

H
t−
p (Rds ), we get∑

m∈Zd

‖ηmu‖p

H
t−
p ({x}×Rds )

� C#‖u‖p

H
t−
p ({x}×Rds )

. (39)

Integrating over x ∈ R
du and using the Fubini equality∫

x∈Rdu

‖u‖p

H
t−
p ({x}×Rds )

dx = ‖u‖p

H
0,t−
p

, (40)

we obtain the lemma for t = 0 and t− ∈ R.
Consider the map u �→ (ηmu)m∈Zd . We have shown that it sends continuously Ht

p to �p(H t
p) and H

0,t−
p to

�p(H
0,t−
p ). By interpolation, for any θ ∈ (0,1), it sends [Ht

p,H
0,t−
p ]θ to [�p(H t

p), �p(H
0,t−
p )]θ . By Proposition 19,

the first space is H
(1−θ)t,θt−
p . Moreover, [28, Theorem 1.18.1] shows that, for any pair of Banach spaces A,B , one has

[�p(A), �p(B)]θ = �p([A,B]θ ). Hence, again by Proposition 19, the second space is �p(H
(1−θ)t,θt−
p ). This proves the

lemma. �
5. Proof of the main theorem

In this section, we prove Theorem 12. Let us fix once and for all a piecewise C1+α hyperbolic map T and a Cα

function g, satisfying the assumptions of this theorem. We will denote by C# constants that depend only on p, t , t−
and T .

We recall that the norm on Ht,t−
p has been defined in (5) using a partition of unity ρ1, . . . , ρJ and charts κ1, . . . , κJ

subordinated to this partition of unity.
In the following arguments, when working on a set Oi or in a neighborhood of this set (with i of length n), then T n

will implicitly mean Ti. In the same way, g(n) will rather be a smooth extension of g(n)|Oi to a neighborhood of Oi.
This should not cause any confusion.

To study Ln
g , we will need, in addition to the estimates from Section 4, to iterate the inverse branches T −1

i , to
truncate the functions and to use partitions of unity. To do this, we will use the three following lemmas.

Lemma 30. There exists a constant C# such that, for any n and i = (i0, . . . , in−1), for any x ∈ Oi, for any j, k ∈ [1, J ]
such that x ∈ suppρj and y = Tix ∈ suppρk , there exists a neighborhood O of y and a C1+α diffeomorphism F

of R
d , coinciding with κj ◦ T −1

i ◦ κ−1
k on κk(O), and satisfying the assumptions of Lemma 25 with μu � C#λ

−1
u,n(x)

and μs � C−1
# λ−1

s,n(x), and

max
(‖M0‖,

∥∥M−1
0

∥∥,‖M1‖,
∥∥M−1

1

∥∥)
� C#.

Proof. Let F0 = κj ◦ T −1
i ◦ κ−1

k , it is defined on a neighborhood of κk(y). Moreover, let P be a du-dimensional
subspace of the unstable cone at x, and let M0, M1 be invertible matrices (with bounded norms) sending respectively
Dκj (x)P and Dκk(y)DTi(x)P to R

du × {0}, and stable leaves to stable leaves. Such matrices exist since the unstable
cone is uniformly bounded away from the stable direction.

Let A = DF0(κk(y)), then M0AM−1
1 sends R

du × {0} to itself, and {0} × R
ds to itself, i.e., it is block-diagonal.

Hence, the matrix A satisfies the assumptions of Lemma 25. Let F be a C1+α diffeomorphism of R
d coinciding with

F0 on a neighborhood of κk(y) and such that DF(z) is everywhere close to A. Up to taking a smaller neighborhood
O of y (depending on n), the claims of Lemma 30 hold for F . �
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Lemma 31. There exists C# such that, for any n, for any i = (i0, . . . , in−1), for any x ∈ Oi, for any j such that
x ∈ suppρj , there exists a neighborhood O ′ of x and a matrix M sending stable leaves to stable leaves, with

max
(‖M‖,∥∥M−1

∥∥)
� C#,

such that Mκj (O
′ ∩ Oi) intersects almost any line parallel to a coordinate axis along at most C#n connected compo-

nents.

Proof. Let L be as in Definition 5. Fix i = (i0, . . . , in−1) and x ∈ Oi. Let a1, . . . , ad be a basis of TxX, which is
close to an orthonormal basis, such that its last ds vectors form a basis of Es(x). We can ensure that, for any � < n,
DT �(x)ak is L-generic with respect to ∂Oij , for du < k � d . This is indeed a consequence of the definition of weak
transversality. Moving slightly the vectors ak for 1 � k � du, we can also ensure that DT �(x)ak is transversal to the
hypersurfaces defining ∂Oij at T �x for any � < n.

Let bk = Dκj (x) · ak , so that b1, . . . , bd is a basis of R
d . Multiplying ak by a scalar, we can ensure that bk has

norm 1. If O ′ is a small enough neighborhood of x, then κj (O
′ ∩ (Ti�−1 . . . Ti0)

−1Oi�) intersects almost any line
oriented by one of the vectors bk , du < k � d , along at most L connected components, by definition of L-genericity.
If A1, . . . ,An are subsets of R, each of which is the union of at most L intervals, then

⋂
Ai is a union of at most nL

intervals. Therefore, κj (O
′ ∩ Oi) intersects almost any line oriented by one of the vectors bk , du < k � d , along at

most nL connected components.
Moreover, it intersects any line oriented by one of the vectors bk , 1 � k � du, along at most one connected compo-

nent by construction.
Let M be the matrix sending b1, . . . , bd to the canonical basis of R

d , it satisfies the requirements of the lemma. �
If L = 1, we can replace in the previous lemma the bound C#n by a bound C#, since the intersection of n intervals

is always an interval, but this is not true in general.
The following lemma on partitions of unity is similar to [5, Lemma 7.1].

Lemma 32. Let t and t− be arbitrary real numbers. There exists a constant C# such that, for any distributions
v1, . . . , vl with compact support in R

d , belonging to H
t,t−
p , there exists a constant C depending only on the supports

of the distributions vi with∥∥∥∥∥
l∑

i=1

vi

∥∥∥∥∥
p

H
t,t−
p

� C#m
p−1

l∑
i=1

‖vi‖p

H
t,t−
p

+ C

l∑
i=1

‖vi‖p

H
t−1,t−
p

, (41)

where m is the intersection multiplicity of the supports of the vi ’s, i.e., m = supx∈Rd Card{i | x ∈ supp(vi)}.
Proof. Let A be the operator acting on distributions by Av = F −1((1 + |ξ |2 + |η|2)t/2(1 + |η|2)t−/2 F v), so that
‖v‖Ht,t−

p
= ‖Av‖Lp .

By [4, Lemma 2.7], for any distribution v with compact support K and any neighborhood K ′ of this support, there
exist C > 0 and a function Ψ : Rd → [0,1] equal to 1 on K and vanishing on the complement of K ′, with

‖Ψ Av − Av‖Lp � C‖v‖
H

t−1,t−
p

. (42)

Let v1, . . . , vl be distributions with compact supports whose intersection multiplicity is m. Choose neighborhoods
K ′

1, . . . ,K
′
l of the supports of the vis whose intersection multiplicity is also m, and functions Ψ1, . . . ,Ψl as above.

Then ∥∥∥∥∑
i

vi

∥∥∥∥
p

H
t,t−
p

=
∥∥∥∥∑

i

Avi

∥∥∥∥
p

Lp

�
∥∥∥∥∑

i

ΨiAvi

∥∥∥∥
p

Lp

+ C
∑

i

‖vi‖p

H
t−1,t−
p

. (43)

By convexity, the inequality (x1 +· · ·+ xm)p � mp−1 ∑
x

p
i holds for any nonnegative numbers x1, . . . , xm. Since the

multiplicity of the K ′
is is at most m, this yields∣∣∣∣∑

i

ΨiAvi

∣∣∣∣
p

� mp−1
∑

i

|Avi |p. (44)

Integrating this inequality and using (43), we get the lemma. �
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Proof of Theorem 12. Let p, t and t− be as in the assumptions of the theorem. Let n > 0, and let rn > 1 (the precise
value of rn will be chosen later). We define a dilation Rn on R

d by Rn(z) = rnz. Let ‖u‖n be another norm on Ht,t−
p ,

given by

‖u‖n =
J∑

j=1

∥∥(ρju) ◦ κ−1
j ◦ R−1

n

∥∥
H

t,t−
p

. (45)

The norm ‖u‖n is of course equivalent to the usual norm on Ht,t−
p , but we look at the space X0 at a smaller scale. Func-

tions are much flatter at this new scale, so that estimates involving their Cα norm, such as Lemma 22 or Lemma 25,
will not cause problems. This will also enable us to use partitions of unity with very small supports without spoiling
the estimates. The use of this “zooming” norm is similar to the good choice of ε0 in [25], or the use of weighted norms
in [18].

We will prove that, if n is fixed and rn is large enough, then∥∥Ln
gu

∥∥p

n
� C‖u‖p

H0,t−
p

+ C#n
pDb

n

(
De

n

)p−1∥∥∣∣detDT n
∣∣max

(
λ−t

u,n, λ
−(t+t−)
s,n

)p∣∣g(n)
∣∣p∥∥

L∞‖u‖p
n . (46)

The injection of Ht,t−
p into H0,t−

p is compact. Hence, by Hennion’s theorem [22], the essential spectral radius of Ln
g

acting on Ht,t−
p (for either ‖u‖Ht,t−

p
or ‖u‖n, since these norms are equivalent) is at most

[
C#n

pDb
n

(
De

n

)p−1∥∥∣∣detDT n
∣∣max

(
λ−t

u,n, λ
−(t+t−)
s,n

)p∣∣g(n)
∣∣p∥∥

L∞
]1/p

. (47)

Taking the power 1/n and letting n tend to ∞, we obtain Theorem 12 since the quantity (C#n
p)1/pn converges to 1

(here, it is essential that C# does not depend on n).
It remains to prove (46), for large enough rn. The estimate will be subdivided into three steps:

(1) Decomposing u into a sum of distributions vj,m with small supports and well controlled ‖ · ‖n norms.
(2) Estimating each term (1Oig

(n)vj,m) ◦ T −1
i , for i of length n.

(3) Adding all terms to obtain Ln
gu.

First step. For 1 � j � J and m ∈ Z
d , let ṽj,m = ηm · (ρju) ◦ κ−1

j ◦ R−1
n , where ηm(x) = η(x + m), with

η : Rd → [0,1] a compactly supported C∞ function so that
∑

m∈Zd ηm = 1. Since the intersection multiplicity of
the supports of the functions ηm is bounded, this is also the case for the ṽj,m. Moreover, if j is fixed, we get using
Lemma 28∑

m∈Zd

‖ṽj,m‖p

H
t,t−
p

=
∑

m∈Zd

∥∥ηm · (ρju) ◦ κ−1
j ◦ R−1

n

∥∥p

H
t,t−
p

� C#
∥∥(ρju) ◦ κ−1

j ◦ R−1
n

∥∥p

H
t,t−
p

� C#‖u‖p
n . (48)

Since Rn expands the distances by a factor rn while the size of the supports of the functions ηm is uniformly bounded,
the supports of the distributions

vj,m = ṽj,m ◦ Rn ◦ κj = ηm ◦ Rn ◦ κj · (ρju)

are arbitrarily small if rn is large enough. Finally

u =
∑
j

ρju =
∑
j,m

vj,m. (49)

Second step. Fix j, k ∈ {1, . . . , J }, m ∈ Z
d and i = (i0, . . . , in−1). We will prove that∥∥(

ρk

(
g(n)1Oivj,m

) ◦ T −1
i

) ◦ κ−1
k ◦ R−1

n

∥∥
H

t,t−
p

� C‖u‖ 0,t− + C#n
∥∥∣∣detDT n

∣∣1/p
g(n) max

(
λ−t

u,n, λ
−(t+t−)
s,n

)∥∥
L

‖ṽj,m‖
H

t,t− . (50)
Hp ∞ p
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First, if the support of vj,m is small enough (which can be ensured by taking rn large enough), there exists a
neighborhood O of this support and a matrix M satisfying the conclusion of Lemma 31: this follows from Lemma 31
and the compactness of X0. Therefore, the intersection of Rn(M(κj (O ∩ Oi))) with almost any line parallel to a
coordinate axis contains at most C#n connected components. Hence, Lemma 23 implies that the multiplication by
1O∩Oi ◦ κ−1

j ◦ M−1 ◦ R−1
n sends H

t,t−
p into itself, with a norm bounded by C#n. Using the fact that M and Rn

commute, the properties of M , and Lemma 24, we get∥∥1Oi ◦ κ−1
j ◦ R−1

n · ṽj,m

∥∥
H

t,t−
p

� C#n‖ṽj,m‖
H

t,t−
p

. (51)

(Recall that vj,m is supported inside O .) Next, let

ṽj,k,m = (
(ρk ◦ Ti)1Oi

) ◦ κ−1
j ◦ R−1

n · ṽj,m

(we suppress i from the notation for simplicity). Let also χ be a C∞ function supported in the neighborhood O of the
support of vj,m with χ ≡ 1 on this support. Up to taking larger rn we may ensure that∥∥(

χ(ρk ◦ Ti)
) ◦ κ−1

j ◦ R−1
n

∥∥
Cα � C#.

Then Lemma 22 and (51) imply

‖ṽj,k,m‖
H

t,t−
p

� C#n‖ṽj,m‖
H

t,t−
p

. (52)

In addition, we have(
(ρk ◦ Ti)1Oivj,m

) ◦ T −1
i ◦ κ−1

k ◦ R−1
n = ṽj,k,m ◦ Rn ◦ κj ◦ T −1

i ◦ κ−1
k ◦ R−1

n (53)

= ṽj,k,m ◦ Rn ◦ F ◦ R−1
n ,

where F is given by Lemma 30 (we use the fact that the support of vj,m ◦ T −1
i is contained in a very small

neighborhood O ′ if rn is large enough, and again the compactness of X0). The diffeomorphism F satisfies the as-
sumptions of Lemma 25. Since the dilations Rn commute with any matrix, this is also the case of the diffeomorphism
G = Rn ◦ F ◦ R−1

n . Applying Lemma 25 to G, we get (for some point x in the support of vj,m, and some matrix A of
the form DF(R−1

n (z)) for some z)∥∥ṽj,k,m ◦ Rn ◦ F ◦ R−1
n

∥∥
H

t,t−
p

� C‖u‖H0,t−
p

+ C#

∥∥∥∥ detA

detDG

∥∥∥∥
Cα

|detA|−1/p max
(
λu,n(x)−t , λs,n(x)−(t+t−)

)‖ṽj,k,m‖
H

t,t−
p

. (54)

The factor detA is close to detDTi(x)−1. Moreover, detDG = (detDF) ◦R−1
n . By choosing rn large enough, we can

make sure that the Cα norm of detDG is controlled by its sup norm, to ensure that ‖detA/detDG‖Cα is uniformly
bounded.

Let χ ′ be a C∞ function supported in O ′ with χ ′ ≡ 1 on the support of vj,m ◦ T −1
i . For δ > 0, we can ensure by

increasing rn that the Cα norm of (χ ′ · g(n) ◦ T −1
i ) ◦ κ−1

k ◦ R−1
n is bounded by |g(n)(x)| + δ for some x in the support

of vj,m. Choosing δ > 0 small enough, we deduce from (54), Lemma 22 and (52)∥∥(
ρk

(
g(n)1Oivj,m

) ◦ T −1
i

) ◦ κ−1
k ◦ R−1

n

∥∥
H

t,t−
p

� C‖u‖H0,t−
p

+ C#n
∥∥∣∣detDT n

∣∣1/p
g(n) max

(
λ−t

u,n, λ
−(t+t−)
s,n

)∥∥
L∞‖ṽj,m‖

H
t,t−
p

.

This proves (50).
Third step. We have Ln

gu = ∑
j,m

∑
i(1Oig

(n)vj,m) ◦ T −1
i . (Note that only finitely many terms in this sum are

nonzero by compactness of the support of each ρj .) We claim that the intersection multiplicity of the supports of the
functions (1Oig

(n)vj,m) ◦ T −1
i is bounded by C#D

e
n. Indeed, this follows from the fact that any point x ∈ X0 belongs

to at most De
n sets Ti(Oi), and that the intersection multiplicity of the supports of the functions vj,m is bounded.

To estimate ‖Ln
gu‖n, we have to bound each term ‖(ρk Ln

gu) ◦ κ−1
k ◦ R−1

n ‖
H

t,t−
p

, for 1 � k � J . Let us fix such a k.

By Lemma 32, we have



V. Baladi, S. Gouëzel / Ann. I. H. Poincaré – AN 26 (2009) 1453–1481 1473
∥∥(
ρk Ln

gu
) ◦ κ−1

k ◦ R−1
n

∥∥p

H
t,t−
p

� C‖u‖p

H0,t−
p

+ C#
(
C#D

e
n

)p−1 ∑
j,m,i

∥∥(
ρk

(
1Oig

(n)vj,m

) ◦ T −1
i

) ◦ κ−1
k ◦ R−1

n

∥∥p

H
t,t−
p

.

We can bound each term in the sum using (50) and the convexity inequality (a + b)p � 2p−1(ap + bp). Moreover,
for any (j,m), the number of parameters i for which the corresponding term is nonzero is bounded by the number
of sets Oi intersecting the support of vj,m. Choosing rn large enough, we can ensure that the supports of the vj,m

are small enough so that this number is bounded by Db
n . Together with (48), this concludes the proof of (46), and of

Theorem 12. �
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Appendix A. Corrigendum to [4, Lemma 2.8] – About interpolation

During the preparation of this paper, we realized that the statement of a lemma in [4] is not correct. This has no
consequence on the other claims in [4], and plays no role in the present paper, but let us nevertheless give the correct
statement as well as a sketch of proof, since it is related to some topics of the present paper.

The statement of [4, Lemma 2.8] should be replaced by: letting n = [|t |] + [|t + t−|] + d + 4, if g is Cn, then

‖gu‖Ht,t−
p

� C#‖g‖Cn−1(C1
s )‖u‖Ht,t−

p
+ C‖u‖Ht−1,t−

p
, (55)

where ‖g‖Cn−1(C1
s ) is the maximum between ‖g‖L∞ and the Cn−1 norm of the first derivatives of g along Es . It

was mistakenly claimed in [4, Lemma 2.8] that it is enough to take n = 3. The sentence “This can be shown by a
straightforward . . . oscillatory integral argument” in the proof there should be replaced by “This can be shown by
integrating by parts [|p|] + [|q|] + d + 1 times in total with respect to (u, v), noting that(

1 + |η − sθ |2 + |ξ − sω|2)p/2(1 + |ξ − sω|2)q/2(1 + |η|2 + |ξ |2)−p/2(1 + |ξ |2)−q/2

� 16
(
1 + |sω|2)|q|/2(1 + |sθ |2 + |sω|2)|p|/2

.

Since ∂γ ′′+γ ′
h has been differentiated up to 3 times including |γ ′| ∈ {1,2} times along x-directions, we get at most

[|p|] + [|q|] + d + 4 derivatives in total”. In particular [4, Lemma 2.8] only holds if g is sufficiently differentiable.
We derive via interpolation in Lemma 22 a simpler Leibniz-type bound which takes the place of [4, Lemma 2.8]

and is valid for g ∈ Cα for any α > 0. The “zooming” norm (45) then allows us to replace ‖g‖Cα by a sup-norm type
estimate for arbitrary g.

The interpolation estimates also yield a chain-rule-type bound (Lemma 25 and Remark 27) which extends
[4, Lemma 2.10] to arbitrary differentiability: the proof of [4, Lemma 2.10] uses that T is C∞ implicitly in sev-
eral places (when referring to arguments of [1]), although a modification of this proof along the lines given above
gives the claim for Ck dynamics, with k(d) large if d is large.

Appendix B. Properties of physical measures

In this section, we prove Theorem 14. In fact, we will prove a more general result in a more abstract context. Let X

be a manifold, X0 a compact subset of X with positive (and finite) Lebesgue measure, and T :X0 → X0 a measurable
transformation for which Lebesgue measure is nonsingular. We will denote in this appendix by L the corresponding
transfer operator, defined by duality on L1(Leb) by

∫
X0

Lf · g dLeb = ∫
X0

f · g ◦ T dLeb whenever g is bounded and
measurable.

Theorem 33. Let H be a Banach space of distributions supported on X0. Assume that

(1) There exist α > 0 and C > 0 such that, for any u ∈ H ∩ L∞(Leb) and f ∈ Cα(X), then f u ∈ H and ‖f u‖H �
C‖f ‖Cα‖u‖H .
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(2) The space H ∩ L∞(Leb) is dense in H .
(3) The transfer operator L associated to T sends continuously H ∩ L∞(Leb) into itself and satisfies, for any

u ∈ H ∩ L∞(Leb), the inequality ‖Lu‖H � C‖u‖H . Therefore, L admits a continuous extension to H (still
denoted by L). We assume that the essential spectral radius of this extension is < 1.

(4) There exist f0 ∈ H ∩L∞(Leb) taking its values in [0,1] and N0 > 0 such that, for any φ ∈ L∞(Leb), then f0 = 1
on the support of LN0φ.

(5) For any u ∈ H which is a limit (in the H topology) of nonnegative functions un ∈ H ∩ L∞(Leb) and for which
there exists a measure μu such that5 〈u,g dLeb〉 = ∫

g dμu for any C∞ function g, then the measure μu gives
zero mass to the discontinuity set of T .

Then there exist a finite number of probability measures μ1, . . . ,μl which are T -invariant and ergodic, and disjoint
sets A1, . . . ,Al such that μi(Ai) = 1, Leb(Ai) > 0, Leb(X0 \ ⋃l

i=1 Ai) = 0 and, for every x ∈ Ai and every function

f ∈ C0(X0) ∩ H (the closure of C0(X0) ∩ H in C0(X0)), then 1
n

∑n−1
j=0 f (T jx) → ∫

f dμi .
Moreover, for every i, there exist an integer ki and a decomposition μi = μi,1 + · · · + μi,ki

such that T sends μi,j

to μi,j+1 for j ∈ Z/kiZ, and the probability measures kiμi,j are exponentially mixing for T ki and Cα test functions.

The proof will also describe a direct relationship between the eigenfunctions of L for eigenvalues of modulus 1,
and the physical measures of T . The first part of the proof is directly borrowed from [8].

The first, second and fourth conditions say that the space H is sufficiently large. They are satisfied in the setting of
this paper (taking f0 = 1X0 , which belongs to Ht,t−

p ), but also in the case of an attractor, when T (X0) is contained in
the interior of X0 (the function f0 can be taken C∞, compactly supported in the interior of X0, equal to 1 on T (X0)).

The fifth condition is necessary, as shown by Example 1 in Section 2: taking for H the space of distributions in
the Sobolev space H−1

2 supported in [−1,1] × {0,1}, then all the assumptions of the theorem but the fifth one are
satisfied, and the conclusion of the theorem does not hold.

Proof of Theorem 33. Let us first prove the existence of C > 0 such that, for any n ∈ N,∥∥Ln
∥∥

H→H
� C. (56)

Otherwise, L has an eigenvalue of modulus > 1, or a nontrivial Jordan block for an eigenvalue of modulus 1. Let λ

be an eigenvalue of L of maximal modulus, with a Jordan block of maximal size d . Since L∞ ∩ H is dense in H ,
its image under the eigenprojections is dense in the eigenspaces, which are finite dimensional. Hence, it coincides
with the full eigenspaces. Therefore, there exists a bounded function f such that n−d

∑n−1
i=0 λ−i Lif converges to a

nonzero limit u. For any C∞ function g,

〈u,g dLeb〉 = lim
1

nd

n−1∑
i=0

λ−i
〈

Lif, g dLeb
〉 = lim

1

nd

n−1∑
i=0

λ−i

∫
f · g ◦ T i dLeb .

If |λ| > 1 or d � 2, this quantity converges to 0 when n → ∞ since
∫

f · g ◦ T i dLeb is uniformly bounded. This
contradicts the fact that u is nonzero, and proves (56).

For |λ| = 1, let Eλ denote the corresponding eigenspace, and Πλ : H → Eλ the corresponding eigenprojection. It
is given by

Πλf = lim
1

n

n−1∑
i=0

λ−i Lif, (57)

where the convergence holds in H . Since L∞(Leb) ∩ H is dense in H , Eλ = Πλ(L∞(Leb) ∩ H). For any f ∈
L∞(Leb) ∩ H and g ∈ C∞,

∣∣〈Πλf,g dLeb〉∣∣ � lim
1

n

n−1∑
i=0

∣∣∣∣
∫

f · g ◦ T i dLeb

∣∣∣∣ � C‖f ‖L∞‖g‖C0 . (58)

5 We write 〈u,g dLeb〉 and not 〈u,g〉, in accordance with the convention stated in the footnote 3, viewing distributions as generalized functions
which can only be integrated against smooth densities.
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By the Riesz representation theorem on the compact space X0, this implies that, for any u ∈ Eλ, there exists a finite
measure μu on X0 such that 〈u,g dLeb〉 = ∫

g dμu. Moreover, for any i � N0 and any bounded measurable function
g � 0,∣∣∣∣

∫
f · g ◦ T i dLeb

∣∣∣∣ =
∣∣∣∣
∫

LN0f · g ◦ T i−N0 dLeb

∣∣∣∣ =
∣∣∣∣
∫

LN0f · f0 · g ◦ T i−N0 dLeb

∣∣∣∣
� C‖f ‖L∞

∫
f0 · g ◦ T i−N0 dLeb = C‖f ‖L∞

∫
Li−N0f0 · g dLeb.

Averaging and taking the limit, we obtain∣∣∣∣
∫

g dμΠλf

∣∣∣∣ � C‖f ‖L∞

∫
g dμΠ1f0 . (59)

This means that the measures μu are all absolutely continuous with respect to the reference measure μ := μΠ1f0 , with
bounded density.

Let us show that the measure μ is invariant. This is formally trivial from the computation∫
g dμ = 〈Π1f0, g dLeb〉 = 〈LΠ1f0, g dLeb〉 = 〈Π1f0, g ◦ T dLeb〉 =

∫
g ◦ T dμ.

However, this argument is not correct since 〈Π1f0, g ◦ T dLeb〉 is not well defined since g is not smooth. More
importantly, even if we could define it, the equality between 〈Π1f0, g ◦ T dLeb〉 and

∫
g ◦ T dμ would not be trivial

since the relationship between Π1f0 and dμ is established only for continuous functions.
The rigorous proof relies on the fifth assumption of the theorem. By definition, if g is C∞, then

∫
g dμ =

lim
∫

g d( 1
n

∑n−1
i=0 T i∗ (f0 Leb)). By density, this equality extends to C0 functions, hence μ is the weak limit of the

sequence of measures 1
n

∑n−1
i=0 T i∗ (f0 Leb). In turn, a classical property of weak convergence [7, Theorem 5.2(iii)]

implies that, for any function h whose discontinuity set has zero measure for μ,

∫
hdμ = lim

∫
hd

(
1

n

n−1∑
i=0

T i∗ (f0 Leb)

)
. (60)

If g is a continuous function, then g ◦ T is continuous except on the discontinuity set of T . The fifth assumption of
the theorem shows that this set has zero measure for μ. Hence, (60) applies to g ◦ T . It also applies to g. Since the
right-hand side for g and g ◦ T coincide up to O(1/n), this yields

∫
g ◦ T dμ = ∫

g dμ and concludes the proof of the
invariance of μ.

In the following, we shall encounter several instances of similar equations that are formally trivial but need a
rigorous justification. Let us give a last justification of this type, and leave the remaining ones to the reader. We claim
that, if φ ∈ Cα and g ∈ C∞,

〈
Li (φΠ1f0), g dLeb

〉 = ∫
φ · g ◦ T i dμ. (61)

Indeed, Li (φΠ1f0) is the limit in H of Li (φ 1
n

∑n−1
j=0 Lj f0), hence

〈
Li (φΠ1f0), g dLeb

〉 = lim
1

n

n−1∑
j=0

〈
Li

(
φLj f0

)
, g dLeb

〉 = lim
1

n

n−1∑
j=0

∫
φLj f0 · g ◦ T i dLeb

= lim
∫

φ · g ◦ T i d

(
1

n

n−1∑
j=0

T
j∗ (f0 Leb)

)
.

The measure μ gives zero mass to the discontinuities of g ◦ T i (since it is invariant and gives zero mass to the
discontinuities of T ). Hence, (60) holds for φ · g ◦ T i . This concludes the proof of (61).

For any u ∈ Eλ, write μu = φuμ where φu ∈ L∞(μ) is defined μ-almost everywhere. The equation Lu = λu

translates into T∗(φuμ) = λφuμ. Hence, since μ is invariant,
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∫ ∣∣φu ◦ T − λ−1φu

∣∣2 dμ =
∫

|φu|2 ◦ T dμ +
∫

|φu|2 − 2�
∫

φu ◦ T λ−1φu dμ

= 2
∫

|φu|2 dμ − 2�
∫

λ−1φu dT∗(φuμ) = 0.

Let Fλ = {φ ∈ L∞(μ) | φ ◦ T = λ−1φ} (this is a space of equivalence classes of functions), then the map Φλ :u �→ φu

sends (injectively) Eλ to Fλ. Let us show that it is also surjective.
Let φ ∈ Fλ. By Lusin’s theorem, the measurable function φ can be approximated in L1(μ) by a continuous function,

which itself can be uniformly approximated by a C∞ function. Therefore, there exists a sequence of Cα functions φp

with ‖φ −φp‖L1(μ) � 1/p. Let up = Πλ(φpΠ1f0), and let μp = μup . Let us prove that the total mass of the measure
φdμ − dμp converges to 0. If g is a C∞ function,

∫
g dμp = 〈up,g dLeb〉 = lim

1

n

n−1∑
i=0

λ−i
〈

Li (φpΠ1f0), g dLeb
〉 = lim

1

n

n−1∑
i=0

λ−i

∫
φp · g ◦ T i dμ,

by (61). On the other hand, for any n, since μ is invariant and φ ◦ T = λ−1φ,∫
gφ dμ = 1

n

n−1∑
i=0

∫
g ◦ T iφ ◦ T i dμ = 1

n

n−1∑
i=0

λ−i

∫
g ◦ T iφ dμ.

Subtracting the two previous equations, we get∣∣∣∣
∫

gφ dμ −
∫

g dμp

∣∣∣∣ � ‖φ − φp‖L1(μ)‖g‖C0, (62)

which proves that the total mass of φ dμ − dμp converges to 0.
The sequence up belongs to the finite dimensional space Eλ, and the elements of Eλ are separated by the linear

forms given by the integration along C∞ densities (since H is a space of distributions). Since 〈up,g dLeb〉 converges
for any g, the sequence up is therefore converging to a limit u∞. By construction, Φλ(u∞) = φ. This concludes the
proof of the surjectivity of Φλ.

The eigenvalues of L of modulus 1 are exactly the λ such that Fλ is not reduced to 0. This set is a group, since
φλφλ′ ∈ Fλλ′ whenever φλ ∈ Fλ and φλ′ ∈ Fλ′ . Since L only has a finite number of eigenvalues of modulus 1, this
implies that these eigenvalues are roots of unity. In particular, there exists N > 0 such that λN = 1 for any eigenvalue λ.

Let us now assume that 1 is the only eigenvalue of L of modulus 1 (in the general case, this will be true for LN ,
so we will be able to deduce the general case from this particular case). Under this assumption, for any u ∈ H , Lnu

converges to Π1u.
Consider the subset of F1 (the bounded measurable T -invariant functions) given by the nonnegative functions with

integral 1. It is nonempty, since it contains the function 1. It is a convex cone in F1, whose extremal points are of the
form 1B for some minimal invariant set B . Such extremal points are automatically linearly independent. Since F1 is
finite dimensional, there is only a finite number of them, say 1B1, . . . ,1Bl

, and a function belongs to F1 if and only if
it can be written as φ = ∑

αi1Bi
for some scalars α1, . . . , αl . The decomposition of the function 1 ∈ F1 is given by

1 = ∑
1Bi

, hence the sets Bi cover the whole space up to a set of zero measure for μ. Moreover, since Bi is minimal,

the measure μi := 1Bi
μ

μ(Bi)
is an invariant ergodic probability measure.

Let ui = Φ−1
1 (1Bi

) ∈ H , then any element of E1 is a linear combination of the ui . In particular, this applies to
Π1(f ui) for any f ∈ Cα . Let us show that

Π1(f ui) =
(∫

f dμi

)
ui. (63)

We can write Π1(f ui) = ∑
j aij (f )uj . Let us fix once and for all l sequences of Cα functions φj,p taking values

in [0,1] and such that φj,p converges in L1(μ) to 1Bj
. Since 〈uj ,φj ′,p dLeb〉 = ∫

Bj
φj ′,p dμ → δjj ′μ(Bj ), we have

aij (f ) = 1
μ(Bj )

limp→∞〈Π1(f ui),φj,p dLeb〉. Moreover, if p is fixed,

〈
Π1(f ui),φj,p dLeb

〉 = lim
n→∞

〈
Ln(f ui),φj,p dLeb

〉 = lim
n→∞

∫
f φj,p ◦ T n dμ.
Bi
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Writing φj,p ◦ T n = 1Bj
◦ T n + (φj,p − 1Bj

) ◦ T n and using 1Bj
◦ T n = 1Bj

and ‖(φj,p − 1Bj
) ◦ T n‖L1(μ) = ‖φj,p −

1Bj
‖L1(μ) →p→∞ 0, we obtain (63).
This enables us to deduce that each measure μi is exponentially mixing, as follows. Let δ < 1 be such that

‖Ln − Π1‖H→H = O(δn). Then, if f,g are Cα functions,∫
f · g ◦ T n dμi = 1

μ(Bi)

〈
Ln(f ui), g dLeb

〉
= 1

μ(Bi)

〈
Π1(f ui), g dLeb

〉 + O
(
δn

)
=

( ∫
f dμi

)
1

μ(Bi)
〈ui, g dLeb〉 + O

(
δn

)
=

(∫
f dμi

)(∫
g dμi

)
+ O

(
δn

)
.

We now turn to the relationships between Lebesgue measure and the measures μi . For any function
f ∈ L∞(Leb) ∩ H , let us write

Π1(f ) =
l∑

i=1

bi(f )ui . (64)

We will need to describe the coefficients bi(f ). Let np be a sequence tending fast enough to ∞ so that
‖Lnp − Π1‖H→H ‖φi,p‖Cα →p→∞ 0. If f belongs to L∞(Leb) ∩ H ,∫

f · φi,p ◦ T np dLeb = 〈
Lnpf,φi,p dLeb

〉
= 〈

φi,p

(
Lnp − Π1

)
f,dLeb

〉 + 〈Π1f,φi,p dLeb〉

= o(1) +
l∑

j=1

bj (f )

∫
Bj

φi,p dμ = o(1) + bi(f )μ(Bi).

The same argument even shows that
∫

f · ( 1
np

∑2np−1
n=np

φi,p ◦ T n)dLeb → μ(Bi)bi(f ).

Moreover, the sequence 1
np

∑2np−1
n=np

φi,p ◦ T n is bounded by 1 (since φi,p takes its values in [0,1]), and asymptoti-

cally invariant. Let hi :X → [0,1] be one of its weak limits in L2(Leb), it is invariant and satisfies

bi(f ) = 1

μ(Bi)

∫
f hi dLeb . (65)

Since bi(f0) = 1, we have
∫

hif0 dLeb = μ(Bi).
Let us now compute

∫
hihjf0 dLeb. We have

μ(Bj )bj

(
φi,p Lnf0

) =
∫

φi,p Lnf0hj dLeb =
∫

f0φi,p ◦ T nhj ◦ T n dLeb =
∫

φi,p ◦ T nhjf0 dLeb.

Taking the average and the weak-limit, we obtain∫
hihjf0 dLeb = μ(Bj ) lim

p→∞
1

np

2np−1∑
n=np

bj

(
φi,p Lnf0

)
. (66)

Moreover, if n � np ,

φi,p Lnf0 = φi,p

(
Ln − Π1

)
f0 + φi,pΠ1f0. (67)

The first term converges to 0 in H , and the computation made in (62) shows that Π1(φi,pΠ1f0) converges to ui . This
implies that bj (φi,p Lnf0) converges to δij . This yields∫

hihjf0 dLeb = μ(Bj )δij . (68)
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Let X1 = {x | f0(x) > 0}. Taking i = j , we get
∫

h2
i f0 dLeb = μ(Bi) = ∫

hif0 dLeb. Since hi takes its values in [0,1],
this shows that there exists a subset C0

i of X1 such that hi1X1 = 1C0
i
, with

∫
C0

i
f0 dLeb = μ(Bi). Moreover, (68) shows

that Leb(C0
i ∩ C0

j ) = 0 if i �= j . Let Ci = T −N0C0
i , then these sets are disjoint. For any function f ∈ L∞(Leb) ∩ H ,

since LN0f is supported in X1,

bi(f ) = bi

(
LN0f

) = 1

μ(Bi)

∫
LN0f hi dLeb = 1

μ(Bi)

∫
LN0f · 1C0

i
dLeb

= 1

μ(Bi)

∫
f · 1C0

i
◦ T N0 dLeb = 1

μ(Bi)

∫
Ci

f dLeb.

Moreover, since LN01 is supported on the sets C0
i ,

Leb(X0) =
∫

1 dLeb =
∫

LN01 dLeb =
∫

LN01 · 1⋃
C0

i
dLeb =

∫
1⋃

C0
i
◦ T N0 dLeb =

∫
1⋃

Ci
dLeb.

This shows that the sets Ci form a partition of the space modulo a set of zero Lebesgue measure. We have proved that

Π1(f ) =
l∑

i=1

∫
Ci

f dLeb

μ(Bi)
ui . (69)

Let us now turn to the convergence of 1
n

∑n−1
j=0 f ◦ T j , for f ∈ L∞(Leb) ∩ H . Let Snf = ∑n−1

j=0 f ◦ T j , we will

estimate
∫ |Snf/n − Smf/m|2f0 dLeb. For i, j � 0, we have∫
f ◦ T i · f ◦ T i+j f0 dLeb =

∫
f Li (f0) · f ◦ T j dLeb

=
∫

Lj
(
f Lif0

)
f dLeb = 〈

Lj
(
f Lif0

)
, f

〉
= 〈

Lj (f Π1f0), f
〉 + O

(
δi

) = 〈
Π1(f Π1f0), f

〉 + O
(
δi

) + O
(
δj

)
,

where δ < 1 is given by the spectral gap of the operator L. Hence, for n,m > 0,∫
Snf · Smff0 dLeb = nm

〈
Π1(f Π1f0), f

〉 + ∑
0�i�n−1

0�j�m−1−i

O
(
δi

) + O
(
δj

) +
∑

0�i�m−1
0<j�n−1−i

O
(
δi

) + O
(
δj

)

= nm
〈
Π1(f Π1f0), f

〉 + O(n) + O(m).

Expanding the square in |Snf/n − Smf/m|2, we get using the previous equation∫
|Snf/n − Smf/m|2f0 dLeb = 1

n2

∫
Snf · Snff0 dLeb+ 1

m2

∫
Smf · Smff0 dLeb

− 2

nm

∫
Snf · Smff0 dLeb

= O(1/n) + O(1/m).

The functions gp = Sp4f/p4 therefore satisfy ‖gp+1 −gp‖L2(f0 dLeb) = O(1/p2), which is summable. This implies
that gp converges in L2(f0 dLeb) and almost everywhere for this measure. For a general n ∈ N, let p be such that
p4 � n < (p + 1)4, then Snf/n − Sp4f/p4 is uniformly small if n is large. Hence, Snf/n converges almost every-
where and in L2(f0 dLeb), to a function φf ∈ L2(f0 dLeb).

Let us now identify the function φf . For any smooth function φ,∫
φ · f ◦ T nf0 dLeb = 〈

Ln(φf0), f dLeb
〉 → 〈

Π1(φf0), f dLeb
〉 = l∑

i=1

bi(φf0)

∫
Bi

f dμ

=
l∑

i=1

∫
Ci

φf0 dLeb

μ(Bi)

∫
f dμ =

∫ (
l∑

i=1

1Ci

∫
Bi

f dμ

μ(Bi)

)
φf0 dLeb .
Bi
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This shows that, with respect to the measure f0 dLeb, the sequence of functions f ◦ T n converges weakly to the
function φ̃f := ∑l

i=1 1Ci
(
∫

f dμi). In turn, Snf/n converges weakly to φ̃f . However, Snf/n converges strongly
to φf , hence φf = φ̃f almost everywhere for f0 dLeb, and in particular on almost all

⋃l
i=1 C0

i .

Let A
f
i be the set of points for which Snf/n converges to

∫
f dμi . We have shown that A

f
i contains a full Lebesgue

measure subset of C0
i . However, A

f
i is T -invariant, hence it contains a full Lebesgue measure subset of Ci . Since the

sets Ci cover Lebesgue almost all the space, Leb(X \ ⋃l
i=1 A

f
i ) = 0. By the Birkhoff ergodic theorem, A

f
i is also

a full μ measure subset of Bi . Let fn be a countable sequence of functions in C0(X0) ∩ H , which is C0-dense in
C0(X0) ∩ H , and set Ai = ⋂

n∈N
A

fn

i . These sets satisfy the conclusion of the theorem.
This concludes the proof of the theorem when 1 is the only eigenvalue of modulus 1 of L. If L has other eigenvalues

of modulus 1, let N be such that λN = 1 for all these eigenvalues λ. The above result applies to T N , and gives sets
A1, . . . ,Al and probability measures μ1, . . . ,μl . The map T induces a permutation of the sets Ai (modulo sets of 0
measure for μ), say T (Ai) = Aσ(i) mod 0 for some permutation σ of {1, . . . , l}. For any orbit (i1, . . . , ik) of σ , the
measure 1

k
(μi1 + · · · + μik ) is T -invariant, and its basin of attraction contains

⋂N−1
j=0 T −j (Ai1 ∪ · · · ∪ Aik ). These

measures are the measures of the statement of the theorem, and their properties readily follow from the corresponding
properties for T N . �

To deduce Theorem 14 from Theorem 33, we just have to check the fifth condition of Theorem 33 since the other
ones are trivially satisfied. Working locally in a chart, it is sufficient to prove the following lemma:

Lemma 34. Let K be a compact smooth hypersurface with boundary in R
d , whose intersection with almost every line

parallel to a coordinate axis has at most L < ∞ points. Let 1/p − 1 < t− � 0 � t < 1/p, and let u ∈ H
t,t−
p be such

that

• there exists a sequence of nonnegative functions un ∈ H
t,t−
p ∩ L∞(Leb) converging in H

t,t−
p to u;

• there exists a measure μ with 〈u,g dLeb〉 = ∫
g dμ for any C∞ function g;

• the support of u does not intersect ∂K .

Then μ(K) = 0.

Proof. Let us first prove that there exists a sequence of neighborhoods Kn of K ∩ suppu, whose intersection with
almost every line parallel to a coordinate axis has at most L′ < ∞ connected components, and with Leb(Kn) → 0.

Working locally, we can assume that K is transversal to a coordinate direction, say the last one. Hence, we can
assume that u is supported in [−1/2,1/2]d−1 × R, and that K can be written as the graph of a smooth function f ,

K = {(
x1, . . . , xd−1, f (x1, . . . , xd−1)

) | (x1, . . . , xd−1) ∈ [−1,1]d−1}. (70)

Let Kn = {(x1, . . . , xd−1, f (x1, . . . , xd−1) + y) | (x1, . . . , xd−1) ∈ [−1,1]d−1, |y| < 1/n}. It is a neighborhood of
K ∩ suppu. It intersects any line parallel to the last coordinate axis along one connected component. Consider now
another coordinate axis, say the first one. Fix (x2, . . . , xd−1). Then the boundary of Kn ∩ (R × {(x2, . . . , xd−1)} × R)

is formed of two vertical segments and two translates of the graph of the function x �→ f (x, x2, . . . , xd). For almost
every (x2, . . . , xd), this graph intersects almost every horizontal line along at most L points. Hence, the intersection
of almost every horizontal line with the boundary of Kn ∩ (R × {(x2, . . . , xd−1)} × R) has at most 2L + 2 points. In
particular, Kn intersects almost every horizontal line along at most 2L+ 1 connected components. This concludes the
construction of Kn.

By Lemma 23, there exists a constant C such that, for any n ∈ N, the multiplication by 1Kn sends H
t,t−
p into itself,

with a norm bounded by C. In particular, 1Kn belongs to H
t,t−
p and is bounded in this space.

Let us show that 1Kn tends to 0 in H
t,t−
p . Let t ′ ∈ (t,1/p). Then 1Kn is also bounded in H

t ′,t−
p by the same

argument. Since the injection of H
t ′,t−
p in H

t,t−
p is compact, the sequence 1Kn is therefore relatively compact in H

t,t−
p .

Let v be one of its cluster values. For any smooth function g,

〈v,g dLeb〉 = lim〈1Kn, g dLeb〉 = lim
∫

1Kng dLeb = 0, (71)
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since Leb(Kn) tends to 0. Hence, v is the zero distribution. The sequence 1Kn is relatively compact in H
t,t−
p and its

only cluster value is zero, hence it converges to 0.
Let us now show that, for any v ∈ H

t,t−
p ,

‖1Knv‖
H

t,t−
p

→ 0. (72)

Choose a C∞ function φ with ‖v − φ‖
H

t,t−
p

� ε, then

‖1Knv‖
H

t,t−
p

�
∥∥1Kn(v − φ)

∥∥
H

t,t−
p

+ ‖1Knφ‖
H

t,t−
p

� C‖v − φ‖
H

t,t−
p

+ ‖φ‖C1‖1Kn‖H
t,t−
p

� Cε + o(1).

This proves (72).
Let g be a C∞ function supported in Kn, taking its values in [0,1], equal to 1 on K . We claim that∫

g dμ � 〈1Knu,dLeb〉. (73)

Indeed, write u = limum where um is a nonnegative function belonging to L∞(Leb) ∩ H
t,t−
p . Then 〈um,g dLeb〉 =∫

gum dLeb �
∫

1Knum dLeb = 〈1Knum,dLeb〉. Taking the limit over m, we get (73).
We can now conclude the proof: by (73), we have μ(K) � C‖1Knu‖

H
t,t−
p

. This quantity converges to 0 by (72). �
Remark 35. The proof of the previous lemma implies that Dirac masses cannot belong to H

t,t−
p if 1/p − 1 < t− �

0 � t < 1/p: assume for a contradiction that δ0, the Dirac mass at 0, belongs to H
t,t−
p . Take Kn the ball of radius 1/n

centered at 0. Then δ0 = 1Knδ0 for each n, but 1Knδ0 tends to zero in H
t,t−
p as n → ∞, a contradiction.
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