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Exponential bounds for random walks
on hyperbolic spaces without moment conditions

Sébastien Gouëzel

We consider nonelementary random walks on general hyperbolic spaces. Without
any moment condition on the walk, we show that it escapes linearly to infinity,
with exponential error bounds. We even get such exponential bounds up to the
escape rate of the walk. Our proof relies on an inductive decomposition of the
walk, recording times at which it could go to infinity in several independent
directions, and using these times to control further backtracking.

1. Introduction

Let X be a Gromov-hyperbolic space, with a fixed basepoint o. Fix a discrete
probability measure µ on the space of isometries of X . We assume that µ is
nonelementary: in the semigroup generated by the support of µ, there are two
loxodromic elements with disjoint fixed points. Let g0, g1, . . . be independent
isometries of X distributed according to µ. One can then define a random walk on
X given by Zn · o, where Zn = g0 · · · gn−1.

In general, results in the literature fall into two classes, qualitative and quantitative,
where the second class requires more stringent assumptions on the walk.

Without any moment assumption, it is known that Zn ·o converges almost surely
to a point on the boundary ∂X , thanks to a beautiful nonconstructive argument
originally due to Furstenberg [1963] in a matrix setting but that works in our setting
when X is proper, and extended to the general situation above by Maher and Tiozzo
[2018]. The idea is to use a stationary measure on the boundary of X and the
martingale convergence theorem there to obtain the convergence of the random
walk. When X is not proper, the boundary is not compact, and showing the existence
of a stationary measure on it is a difficult part of [Maher and Tiozzo 2018]. In that
article, the authors also show linear progress, in the following sense: there exists
κ > 0 such that, almost surely, lim inf 1

n d(o, Zn · o) ⩾ κ .
Assuming additional moment conditions, one gets stronger results. From [Maher

and Tiozzo 2018], if µ has finite support, then P(d(o, Zn ·o)⩽ κn) is exponentially
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small, for some κ > 0, and we say that the walk makes linear progress with expo-
nential decay. The finite support assumption has been weakened to an exponential
moment condition in [Sunderland 2020]. More recently, still under an exponential
moment condition, [Boulanger et al. 2021] shows (among many other results)
that the exponential bound holds for any κ strictly smaller than the escape rate
ℓ = lim 1

n E(d(o, Zn · o)).
When X is a hyperbolic group, one has in fact linear progress with exponential

decay without any moment assumption: this follows from nonamenability of the
group, and the fact that the cardinality of balls is at most exponential. This argument
breaks down when the space is nonproper, though, as in many interesting examples
such as the curve complex.

Our goal in this paper is to show that, to have linear progress with exponential
decay, even in its strongest versions, there is no need for any moment condition.
Define the escape rate of the walk ℓ(µ) = lim 1

n E(d(o, Zn · o)) if µ has a moment
of order 1, i.e.,

∑
µ(g)d(o, g · o) < ∞, and ℓ(µ) = ∞ otherwise.

Our first result is that the escape rate is positive, with an exponential error term.

Theorem 1.1. Consider a discrete nonelementary measure on the space of isome-
tries of a Gromov-hyperbolic space X with a basepoint o. Then there exists κ > 0
such that, for all n,

P(d(o, Zn · o) ⩽ κn) ⩽ e−κn.

One recovers in particular that ℓ(µ) > 0, a fact already proved in [Maher and
Tiozzo 2018]. The control in the previous theorem can in fact be established up to
the escape rate:

Theorem 1.2. Under the assumptions of Theorem 1.1, consider r < ℓ(µ). Then
there exists κ > 0 such that, for all n,

P(d(o, Zn · o) ⩽ rn) ⩽ e−κn.

In particular, when µ has no moment of order 1, this implies that 1
n d(o, Zn ·o)→

+∞ almost surely.
We also get the corresponding statement concerning directional convergence to

infinity. For ξ ∈ ∂X and x, y ∈ X , denote the corresponding Gromov product by

(x, ξ)y = inf
zn→ξ

lim inf
n

(x, zn)y, (1-1)

where (x, zn)y =
1
2(d(y, x) + d(y, zn) − d(x, zn)) is the usual Gromov product

inside the space (see Section 3 for more background on Gromov-hyperbolic spaces).
The limit only depends on the choice of the sequence zn up to 2δ. Intuitively,
(x, ξ)y would be roughly the distance from y to a geodesic between x and ξ if the
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space were geodesic. It is also the amount that x has moved in the direction of ξ

compared to y. A sequence xn converges to ξ if and only if (xn, ξ)o → ∞.

Theorem 1.3. Under the assumptions of Theorem 1.2, Zn · o converges almost
surely to a point Z∞ ∈ ∂X. Moreover, for any r < ℓ(µ), there exists κ > 0 such
that, for all n,

P((Zn · o, Z∞)o ⩽ rn) ⩽ e−κn.

Theorem 1.3 readily implies Theorem 1.2 as (Zn ·o, Z∞)o ⩽ d(o, Zn ·o), which
follows directly from the definition.

The convergence statement in Theorem 1.3 is due to [Maher and Tiozzo 2018].
The novelty is the quantitative exponential bound, without any moment assumption.
Note that, in both theorems, when µ has no moment of order 1, one may take any
r ⩾ 0, so the conclusion is superlinear growth with exponential decay.

It follows from subadditivity that the sequence −
1
n log(P(d(o, Zn · o) ⩽ rn))

converges to a limit I (r), for any r ⩽ ℓ. This is a rate function in the classical
sense of large deviations in probability theory. Theorem 1.2 shows that the rate
function is strictly positive for r < ℓ, recovering part of [Boulanger et al. 2021,
Theorem 1.1] while removing their exponential moment assumption. Note that
[Boulanger et al. 2021] also obtains exponential estimates for upper deviation
inequalities P(d(o, Zn · o) ⩾ rn) for r > ℓ. These estimates can not hold without
exponential moments, since exponential controls for lower and upper deviation
probabilities imply an exponential moment for the measure, see [Boulanger et al.
2021, Section 3.1].

Remark 1.4. The fact that we use discrete measures in the above theorems is for
convenience only, to avoid discussing measurability issues and conditioning on zero
measure sets. Suitable versions removing discreteness, but adding measurability
and separability conditions, hold with the same proofs.

Also, it is not essential to our argument that the isometries we consider are onto:
if the measure µ is supported on the space of isometric embeddings of X into itself,
our proof goes through since we never use the reversed random walk. Note however
that, to define the fact that µ is nonelementary, we still need to have two loxodromic
(surjective) isometries with disjoint fixed points in the semigroup generated by µ.

Remark 1.5. The explicit nature of our estimates makes them robust under pertur-
bations: it follows from our proof that Theorem 1.3 holds uniformly, with the same
κ , over all measures in a neighborhood of µ. We state this in Proposition 5.15, and
recover from this the (already known) continuity of the escape rate as a function of
the driving measure.

Our approach is elementary, in the spirit of [Mathieu and Sisto 2020] and
[Boulanger et al. 2021], the latter article being a strong inspiration for our work, and
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does not rely on any boundary theory. The main intuition is the following. In the
hyperbolic plane, we define a path as follows: walk straight on during a distance d1,
then turn by an angle θ1 ⩽ θ̄ < π , then walk straight on during a distance d2, then
turn by an angle θ2 ⩽ θ̄ , and so on. If all the lengths di are larger than a constant
D = D(θ̄), then this path is essentially going straight to infinity, and at time n it is
roughly at distance d1 + · · ·+ dn of the origin. The problem when doing a random
walk is that the analogues of the angles θi could be equal to π , i.e., the walker could
come back exactly along its footsteps. But this should not happen often. Our main
input is a technical way to justify that indeed it does not happen often, in a precise
quantitative version. We will keep track of some times (called pivotal times below)
at which the random walk can choose some direction, with most choices leading to
progress towards infinity, which will be implemented through the notion of Schottky
set coming from [Boulanger et al. 2021], and at which we will keep some degree of
freedom in an inductive construction. Of course, backtracking can happen later on,
and we will spend the degree of freedom we had kept to still control the behavior
after backtracking.

We could give directly the proof of Theorem 1.3, but it would be very hard
to follow. Instead, we will start with proofs of easier statements, and add new
ingredients in increasingly complicated proofs. Section 2 is devoted to the simplest
instance of our proof, in the free group, where everything is as transparent as
possible. Then, Section 3 introduces some tools of Gromov-hyperbolic geometry
(notably chains, shadows and Schottky sets) that will be used to extend the previous
proof to a nontree setting. Section 4 uses these tools in a crude way to prove
Theorem 1.1, that is, linear escape with exponential decay, and also convergence at
infinity with exponential bounds. Section 5 follows the same strategy but in a more
refined way, to get Theorems 1.2 and 1.3.

2. Linear escape with exponential decay on free groups

The goal of this section is to illustrate the concept of pivotal times in the simplest
possible setting. We show that, for a class of measures without moments on the
free group, there is linear escape with exponential decay. Of course, this follows
from nonamenability. Instead of the result, what matters here is the proof: the
rest of the paper is an extension of the same idea to technically more involved
contexts (general measures, Gromov-hyperbolic spaces), but the main insight can
be explained much more transparently in a tree setting.

Theorem 2.1. Let d ⩾ 3. Let µ be a probability measure on Fd that can be written
as µS ∗ ν, where µS is the uniform probability measure on the canonical generators
of Fd , and ν is a probability measure with ν(e) = 0. Let Zn = g1 · · · gn , where the
gi are independent and distributed according to µ. There exists κ > 0 (independent
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of ν and of d) such that, for all n,

P(|Zn| ⩽ κn) ⩽ e−κn.

Remark 2.2. The fact that κ can be chosen independently of ν and of d does not
follow from nonamenability, and is really a byproduct of our proof technique. Indeed,
for fixed d and ν the nonamenability shows that the conclusion of Theorem 2.1
holds for some κ > 0, but it does not provide any a priori bound on κ without
further work.

Remark 2.3. The restrictions d ⩾ 3 and ν(e) = 0 are simplifying assumptions to
have a proof that is as streamlined as possible. In the next sections, we will prove
analogous theorems but for general measures, on general hyperbolic spaces.

The key point in the proof of Theorem 2.1 is the next lemma.

Lemma 2.4. There exists κ > 0 satisfying the following. Consider d ⩾ 3 and n ⩾ 0.
Fix w1, . . . , wn nontrivial words in Fd , and let Zn = s1w1 · · · snwn , where the si are
generators of Fd , chosen uniformly and independently. Then P(|Zn| ⩽ κn) ⩽ e−κn .

This lemma directly implies Theorem 2.1, by conditioning with respect to the
realizations of ν and just keeping the randomness coming from the factor µS in
µ = µS ∗ ν.

To prove the lemma, one wants to argue that the walk does not backtrack too
much. Of course, the walk can backtrack completely: as the size of wi is not
controlled, it may happen that wn is exactly inverse to s1w1 · · · sn and therefore that
Zn = e. However, this is unlikely to happen for most choices of s1, . . . , sn .

A difficulty is that the control of the distance to the origin is not well behaved
under the walk. For instance, assume that Zn−2 = e, that wn−1 is very long (of
length 2n, say) and that for some generators s and t , one has twn = (swn−1)

−1.
Then Zn−1 is far away from the origin, and in particular it satisfies the inequality
|Zn−1| > n. However, Zn is equal to the origin if sn−1 = s and sn = t , which
happens with probability 1/(2d)2. This is not exponentially small, even though the
distance control at time n − 1 is good.

For this reason, we will not try to control inductively the distribution of the
distance to the origin. Instead, we will control a number of branching points of the
random walk up to time n, that we call pivotal points. In the general case of random
walks in hyperbolic spaces, the definition will be quite involved, but for trees one
can give a direct definition as follows. Denote by γn the path in the Cayley graph
of Fd corresponding to the walk up to Zn , i.e., the concatenation of the geodesics
from e to s1 then to s1w1 then to s1w1s2 and so on until s1w1s2w2 · · · snwn = Zn .

Definition 2.5. A time k ∈ [1, n] is a pivotal time (with respect to n) if sk is the
inverse neither of the last letter of Zk−1, nor of the first letter (wk)0 of wk , so that
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the path γn is locally geodesic of length 3 around Zk−1, and moreover the path γn

does not come back to Zk−1sk afterwards.
We will denote by Pn the set of pivotal times with respect to n.

In other words, k is pivotal if the walk at time k goes away from the origin
during two steps (sk and then (wk)0) and then remains stuck in the subtree based at
Zk−1sk(wk)0.

The evolution of the set of pivotal times is not monotone: if the walk backtracks
a lot, then many times that were pivotal with respect to n will not be anymore
pivotal with respect to n + 1, since the nonbacktracking condition is not satisfied
anymore. On the other hand, the only possible new pivotal point is the last one:
Pn+1 ⊆ Pn ∪ {n + 1}.

We will say that a sequence (s ′

1, . . . , s ′
n) is pivoted from s̄ = (s1, . . . , sn) if they

have the same pivotal times and, additionally, s ′

k = sk for all k which is not a pivotal
time. This is an equivalence relation. Moreover, a sequence has many pivoted
sequences: if k is a pivotal time and one changes sk to s ′

k which still satisfies the
local geodesic condition (the inverse of s ′

k is different from the last letter of Zk−1

and from the first letter of wk), then we claim that (s1, . . . , s ′

k, . . . , sn) is pivoted
from (s1, . . . , sn). Indeed, the part of γn originating from Zk−1sk(wk)0 never comes
back on the edge from Zk−1 to Zk−1sk , not even on its endpoints, so changing
sk to s ′

k does not change this fact. Thus the behavior of γ ′
n after Zk−1 is exactly

the same as that of γn , but in a different subtree — one has pivoted the end of γn

around Zk−1sk , hence the name. In particular, subsequent pivotal times are the
same. Moreover, since the trajectory never comes back before Zk−1sk , pivotal times
before k are not affected, and are the same for γn and γ ′

n .
More generally, denoting the pivotal times by p1 < · · · < pq , then changing the

spi
to s ′

pi
still satisfying the local geodesic condition gives a pivoted sequence. Let

En(s̄) be the set of sequences which are pivoted from s̄. Conditionally on En(s̄), the
previous discussion shows that the random variables s ′

pi
are independent, but not

identically distributed as each of them is drawn from some subset of the generators
depending on i , of cardinality |S| − 1 or |S| − 2.

Proposition 2.6. Let An = |Pn| be the number of pivotal times. Then, in distri-
bution, An+1 ⩾ An + U where U is a random variable independent from An and
distributed as

P(U = − j) =
2d − 3

d(2d − 2) j for j > 0, P(U = 0) = 0 and P(U = 1) =
d − 1

d
.

In other words, P(An+1 ⩾ i) ⩾ P(An + U ⩾ i) for all i .

Proof. Let us fix a sequence s̄ = (s1, . . . , sn), and let q = |Pn| be its number of
pivotal times. We will prove the estimate by conditioning on En(s̄). Let s̄ ′

∈ En(s̄).
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First, assume there are no pivotal points, so q = 0. Then for each s̄ ′ there are at
least 2d − 2 generators whose inverses are different from the last letter of Z ′

n and
from the first letter of wn+1, giving rise to one pivotal time in P ′

n+1 with probability
at least (2d −2)/(2d) = P(U = 1). Otherwise, |P ′

n+1| = 0. Conditionally on En(s̄),
it follows that the conclusion of the lemma holds.

Assume now that there is at least one pivotal point. From the last pivotal time
onward, the behavior is the same over all the equivalence class En(s̄), so the last
letter of Z ′

n does not depend on s̄ ′. There are at least 2d −2 generators of Fd whose
inverses are different from the last letter of Z ′

n and from the first letter of wn+1. If
s ′

n+1 is such a generator, then P ′

n+1 = P ′
n ∪ {n + 1}. Therefore,

P(An+1 ⩾ q + 1 | En(s̄)) ⩾
2d − 2

2d
.

We have adjusted the definition of U so that the right-hand side is P(U ⩾ 1).
Fix now s ′

n+1 which is not such a nice generator. Then s ′

n+1wn+1 may backtrack,
possibly until the last pivotal point Z ′

pq
, thereby decreasing the number of pivotal

points with respect to n +1. However, it may only backtrack further if the generator
s ′

pq
is exactly the inverse of the corresponding letter in wn+1. This can happen

for s ′, but then it will not happen for all the pivoted configurations of s ′ obtained
by changing s ′

pq
to another generator still satisfying the local geodesic condition.

Therefore,

P(An+1 ⩽ q − 2 | En(s̄)) ⩽
2

2d
·

1
2d − 2

,

where the first factor corresponds to the choice of a generator s ′

n+1 which does not
satisfy the local geodesic condition, and the second factor corresponds to the choice
of the specific generator for s ′

pq
to make sure that one backtracks further.

More generally, to cross j pivotal times, there is one specific choice of generator
at each of these pivotal times, which can only happen with a probability at most
1/(2d − 2) at each of these times. Therefore, for j ⩾ 1,

P(An+1 ⩽ q − j | En(s̄)) ⩽
2

2d
·

1
(2d − 2) j−1 .

We have adjusted the distribution of U so that the right-hand side is exactly
P(U ⩽ − j).

Finally, for j > 0, we obtain the inequalities

P(An+1 ⩽q− j |En(s̄))⩽P(U ⩽− j) and P(An+1 ⩾q+1 |En(s̄))⩾P(U ⩾1).

Taking the complement in the first inequality yields P(An+1 ⩾ q + k | En(s̄)) ⩾
P(U ⩾ k) for all k ∈ Z. As An is constant equal to q on En(s̄), the right-hand side
is P(An + U ⩾ q + k | En(s̄)). Writing i = q + k, we have obtained for all i the
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inequality
P(An+1 ⩾ i | En(s̄)) ⩾ P(An + U ⩾ i | En(s̄)).

As this inequality is uniform over the conditioning, it gives the conclusion of the
proposition. □

Proof of Lemma 2.4. Let U1, U2, . . . be a sequence of i.i.d. random variables
distributed like U in Proposition 2.6. Iterating the proposition, one gets P(An ⩾ k)⩾
P(U1 + · · · + Un ⩾ k). The random variables Ui have an exponential moment.
Moreover, when d ⩾ 3, their expectation equals (2d −5) · (d −1)/((2d −3) ·d) and
is therefore positive. Large deviations for sums of i.i.d. real random variables with an
exponential moment ensure the existence of κ >0 such that P(U1+· · ·+Un ⩽κn)⩽
e−κn for all n. Then P(An ⩽ κn) ⩽ e−κn . As the distance to the origin is bounded
from below by the number of pivotal points, this proves Lemma 2.4, except that
the constant κ depends on the number of generators d. However, the random
variables U = U (d) depending on d increase with d, in the sense that if d ⩾ d ′,
then P(U (d) ⩾ k) ⩾ P(U (d ′) ⩾ k) for all k. Therefore, one can use the random
variables U (3) to obtain a lower bound in all free groups Fd with d ⩾ 3. □

The rest of the paper is devoted to the extension of this argument to general
measures and general Gromov-hyperbolic spaces. While the intuition will remain
the same, the definition of pivotal times will need to be adjusted, as there is no
well-defined concept of subtree. Instead, we will use a suitable notion of shadow,
and require that the walk after the pivotal time remain in the shadow. Also, to
separate possible directions, we will rely on the notion of Schottky sets introduced
by [Boulanger et al. 2021], instead of just using the generators as in the free group.
These notions are explained in the next section.

3. Prerequisites on Gromov-hyperbolic spaces

Let X be a metric space, and x,y, z ∈ X . Their Gromov product is defined by

(x, z)y =
1
2(d(x, y) + d(y, z) − d(x, z)).

Let δ ⩾ 0. A metric space is δ-Gromov hyperbolic if, for all x,y, z, a,

(x, z)a ⩾ min((x, y)a, (y, z)a) − δ. (3-1)

When the space is geodesic, this is equivalent (up to changing δ) to the fact that
geodesic triangles are thin, i.e., each side is contained in the δ-neighborhood of the
other two sides.

In the rest of the paper, X is a δ-hyperbolic metric space (without any geodesicity
or properness or separability condition). We also fix a basepoint o ∈ X . We
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will sometimes mention geodesics to give some geometric intuition, but all our
definitions and results work as well when the space is not geodesic.

3A. Boundary at infinity. We recall a few basic facts on the boundary at infinity
of a Gromov-hyperbolic space that we will need later on.

A sequence (xn)n∈N is converging at infinity if (xn, xm)o tends to infinity when
m, n → ∞. Two sequences (xn) and (yn) which are converging at infinity are
converging to the same limit if (xn, yn)o → ∞. This is an equivalence relation,
thanks to the hyperbolicity inequality. Quotienting by this equivalence relation, one
gets the boundary at infinity of the space X denoted ∂X .

The C-shadow of a point x , seen from o, is the set of points y such that (y, o)x ⩽C.
We denote it with So(x; C). Geometrically, this would mean that a geodesic from
o to y would go within distance C + O(δ) of x if the space were geodesic, but it
makes sense even when the space is not geodesic. Let us record a few classical
properties of shadows.

Lemma 3.1. For y ∈ So(x; C), one has d(y, o) ⩾ d(x, o) − C.

Proof. We have

d(y, o) = d(y, x) + d(x, o) − 2(y, o)x ⩾ (d(x, o) − d(y, o)) + d(x, o) − 2C.

Passing −d(y, o) from the right-hand side to the left-hand side and dividing by 2
gives the conclusion. □

Lemma 3.2. Let C > 0, and let xn ∈ X be such that d(o, xn) → ∞. Consider
another sequence yp such that, for all n, eventually yp ∈ So(xn; C). Then yp

converges at infinity.

Proof. Fix n large. For large enough p, one has yp ∈ So(xn; C), thus (o, yp)xn ⩽ C.
As (o, yp)xn + (xn, yp)o = d(o, xn), this gives (xn, yp)o ⩾ d(o, xn) − C.

For large enough p, q , we get, using hyperbolicity for the first inequality,

(yp, yq)o ⩾ min((yp, xn)o, (yq , xn)o) − δ ⩾ d(o, xn) − C − δ. (3-2)

As d(o, xn) → ∞ by assumption, it follows that (yp, yq)o → ∞, as claimed. □

Lemma 3.3. Let C > 0 and x ∈ X. Consider y ∈ So(x; C), and a point ξ ∈ ∂X
which is a limit of points in So(x; C). Then

(y, ξ)o ⩾ d(o, x) − C − 3δ.

Proof. Let zn ∈ So(x; C) be a sequence converging to ξ . As the Gromov product at
infinity does not depend on the sequence up to 2δ, we have (y, ξ)o⩾ lim inf(y, zn)o−

2δ. Moreover, as both y and zn belong to So(x; C), the inequality (3-2) gives
(y, zn)o ⩾ d(o, x) − C − δ. The conclusion follows. □
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3B. Chains and shadows. In a geodesic hyperbolic space, (x, z)y is roughly the
distance from y to a geodesic between x and z. In particular, if (x, z)y ⩽ C for
some constant C , this means that the points x,y, z are roughly aligned in this order,
up to an error C. We will say that the points are C-aligned when they satisfy this
condition, even when the space is not geodesic.

In a hyperbolic space, if in a sequence of points all consecutive points are C-
aligned, and the points are separated enough, then the sequence is progressing
linearly, and all points in the sequence are C + O(δ)-aligned (see for instance
[Ghys and de la Harpe 1990, Theorem 5.3.16]). We will need variations around
this classical idea.

We start with distance estimates for three points.

Lemma 3.4. Consider x,y, z with (x, z)y ⩽ C. Then d(x, z) ⩾ d(x, y) − C and
d(x, z) ⩾ d(y, z) − C.

Proof. By symmetry, it suffices to prove the first inequality. We claim that d(x, z)⩾
d(x, y)− (x, z)y , which implies the result. Expanding the definition of the Gromov
product, this inequality holds if and only if

1
2(d(y, x) + d(y, z) − d(x, z)) + d(x, z) ⩾ d(x, y).

This reduces to d(y, z) + d(x, z) ⩾ d(x, y), which is the triangular inequality. □

The next lemma gives estimates for four points, from which results for more
points will follow by induction.

Lemma 3.5. Consider w, x,y, z ∈ X , and C ⩾ 0. Assume (w, y)x ⩽ C and
(x, z)y ⩽ C + δ and d(x, y) ⩾ 2C + 2δ + 1. Then (w, z)x ⩽ C + δ.

Proof. By definition of the Gromov product, (x, z)y + (y, z)x = d(x, y). As
(x, z)y ⩽ C + δ, we get (y, z)x ⩾ d(x, y)− C − δ. As d(x, y) ⩾ 2C + 2δ + 1, this
gives (y, z)x ⩾ C + δ + 1. Writing down the first condition and the hyperbolicity
condition, we get

C ⩾ (w, y)x ⩾ min((w, z)x , (z, y)x) − δ.

If the minimum were realized by (z, y)x , we would get C ⩾ (C + δ + 1) − δ, a
contradiction. Therefore, it is realized by (w, z)x , which gives (w, z)x ⩽ C + δ. □

Definition 3.6. For C, D ⩾ 0, a sequence of points x0, . . . , xn is a (C, D)-chain if
one has (xi−1, xi+1)xi ⩽ C for all 0 < i < n, and d(xi , xi+1) ⩾ D for all 0 ⩽ i < n.

Lemma 3.7. Let x0, . . . , xn be a (C, D)-chain with D ⩾ 2C + 2δ + 1. Then
(x0, xn)x1 ⩽ C + δ, and

d(x0, xn) ⩾
n−1∑
i=0

(d(xi , xi+1) − (2C + 2δ)) ⩾ n. (3-3)
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Proof. Let us show by decreasing induction on i that (xi−1, xn)xi ⩽ C + δ, the
result being true for i = n − 1 by assumption. Assume it holds for i + 1. Then
the points xi−1, xi , xi+1, xn satisfy the assumptions of Lemma 3.5, which gives
(xi−1, xn)xi ⩽ C + δ as desired.

Let us now show that d(x j , xn)⩾
∑n−1

i= j (d(xi , xi+1)− (2C +2δ)) by decreasing
induction on j , the case j = n being trivial and the case j = 0 being (3-3). We have

d(x j , xn) = d(x j , x j+1) + d(x j+1, xn) − 2(x j , xn)x j+1

⩾ d(x j , x j+1) + d(x j+1, xn) − (2C + 2δ),

which concludes the induction. □

Lemma 3.8. Let x0, . . . , xn be a (C, D)-chain with D ⩾ 2C + 4δ + 1. Then for
all i , one has (x0, xn)xi ⩽ C + 2δ.

Proof. Lemma 3.7 applied to the (C, D)-chain xi , xi+1, . . . , xn allows to show
(xi , xn)xi+1 ⩽ C + δ. The same lemma applied to the (C, D)-chain xi+1, xi , . . . , x0

gives (xi+1, x0)xi ⩽ C + δ. Therefore, the points x0, xi , xi+1, xn are (C + δ)-
aligned. Let us apply Lemma 3.5 to these points, with C + δ instead of C. It gives
(x0, xn)xi ⩽ C + 2δ, as claimed. □

We will need to say that a point z belongs to a half-space based at a point y
and directed towards a point y+. The usual definition for this is the shadow of y+

seen from y, defined as the set Sy(y+
; C) of points z with (y, z)y+ ⩽ C for some

suitable C. Unfortunately, this definition is not robust enough for our purposes as
we need the property that being in a half-space and walking again from z, one stays
in the half-space, which is not satisfied by this definition due to the loss of δ when
one applies the hyperbolicity inequality.

A more robust definition can be given in terms of chains. If we have a chain,
which goes roughly in a straight direction by the previous lemma, and if we prescribe
the direction of its first jump, then we are essentially prescribing the direction of
the whole chain. This makes it possible to define another notion that we call chain-
shadow, as follows. The choice of the minimal distance 2C +2δ+1 between points
in the chain in this definition is somewhat arbitrary, it should just be large enough
that lemmas on the linear progress of chains apply.

Definition 3.9. Let C ⩾ 0 and y, y+, z ∈ X . We say that z belongs to the C-chain-
shadow of y+ seen from y if there is a (C, 2C +2δ+1)-chain x0 = y, x1, . . . , xn = z
satisfying additionally (x0, x1)y+ ⩽C. We denote the chain-shadow by CSy(y+

; C).

The next lemma shows that this definition of shadow is roughly equivalent to the
usual definition in terms of the Gromov product (y, z)y+ .

Lemma 3.10. If z ∈ CSy(y+
; C), then (y, z)y+

⩽ 2C + δ and d(y, z)⩾ d(y, y+)−

2C − δ.
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Proof. Let x0 = y, x1, . . . , xn = z be a (C, 2C + 2δ + 1)-chain as in the definition
of chain-shadows. We have

d(y, z) = d(y, x1) + d(x1, z) − 2(y, z)x1

= d(y, y+) + d(y+, x1) − 2(y, x1)y+
+ d(x1, z) − 2(y, z)x1 .

Let us bound (y, x1)y+
with C (by the definition of chain-shadows) and (y, z)x1 by

C + δ (thanks to Lemma 3.7 applied to the chain x0, . . . , xn). Let us also bound
from below d(y+, x1) + d(x1, z) with d(y+, z). We get

d(y, z) ⩾ d(y, y+) + d(y+, z) − 4C − 2δ.

Expanding the definition of the Gromov product, this gives (y, z)y+ ⩽ 2C +δ. Then
we get d(y, z) ⩾ d(y, y+) − 2C − δ by applying Lemma 3.4 to y, y+, z. □

3C. Schottky sets. To be able to prescribe enough directions at pivotal points, we
will use a variation around the notion of Schottky set in [Boulanger et al. 2021].
This is essentially a finite set of isometries such that, for all x and y, most of these
isometries put x and sy in general position with respect to o, i.e., such that x, o, sy
are C-aligned for some given C.

Definition 3.11. Let η, C, D ⩾ 0. A finite set S of isometries of X is (η, C, D)-
Schottky if:

• For all x, y ∈ X , we have |{s ∈ S, (x, sy)o ⩽ C}| ⩾ (1 − η)|S|.

• For all x, y ∈ X , we have |{s ∈ S, (x, s−1 y)o ⩽ C}| ⩾ (1 − η)|S|.

• For all s ∈ S, we have d(o, so) ⩾ D.

We could define analogously a notion of an (η, C, D)-probability measure, where
the previous definition would be this property for the uniform measure on S.

The next proposition shows that one can find Schottky sets by using powers of
two loxodromic isometries.

Proposition 3.12. Fix two loxodromic isometries u and v of X , with disjoint sets of
fixed points at infinity. For all η > 0, there exists C > 0 such that, for all D > 0,
there exist n ∈ N and an (η, C, D)-Schottky set in {w1 · · · wn : wi ∈ {u, v}}.

Proof. This is essentially a classical application of the ping-pong method. Proposi-
tion A.2 in [Boulanger et al. 2021] contains a slightly less precise statement, but
their proof also gives our stronger version, as we explain now. Let Sn = {w1 · · · wn :

wi ∈ {u, v}}.
The ping-pong argument at infinity shows that one can choose n large enough so

that for all m, the elements w1 · · · wm for wi ∈ {un, vn
} are all different, loxodromic,

with disjoint sets of fixed points at infinity. Let us fix such an n, and then an m with



EXPONENTIAL BOUNDS FOR RANDOM WALKS WITHOUT MOMENT CONDITION 647

2−m < η/2, and denote these 2m isometries with g1, . . . , g2m . They all belong to
Snm . Let g+

i and g−

i be their attractive and repulsive fixed points.
Let K be large enough. Define a neighborhood V (g+

i ) = {x ∈ X : (x, g+

i )o ⩾ K }

and a smaller neighborhood V ′(g+

i ) = {x ∈ X : (x, g+

i )o ⩾ K + δ}. In the
same way, define V (g−

i ) and V ′(g−

i ). If K is large enough, then the 2m+1 sets
(V (g±

i ))i=1,...,2m are disjoint as the fixed points at infinity of the gi are all different.
Moreover, for large enough p, then g p

i maps the complement of V (g−

i ) to V ′(g+

i ),
and the complement of V (g+

i ) to V ′(g−

i ).
We claim that, for all D, if p is large enough, then S = {g p

1 , . . . , g p
2m } is an

(η, K + δ, D)-Schottky set. As all these elements belong to Snmp, this will prove
the theorem. First, the condition d(o, so)⩾ D for s = g p

i is true if p is large enough,
as gi is loxodromic. Let us show that |{s ∈ S, (x, sy)o ⩽ K + δ}| ⩾ (1 − η)|S| for
all x,y (the corresponding inequality with s−1 is similar). There is at most one
s = gi for which y ∈ V (g−

i ), as all these sets are disjoint. There is also at most one
s = gj for which x ∈ V (g+

j ), again by disjointness. If s = gk is not one of these
two, we claim that (x, sy)o ⩽ K + δ. This will prove the result, since this implies

|{s ∈ S, (x, sy)o ⩽ K + δ}| ⩾ |S| − 2 = 2m
− 2 = |S|(1 − 2 · 2−m) ⩾ (1 − η)|S|.

As x /∈ V (g+

k ), we have (x, g+

k )o < K . As y /∈ V (g−

k ), we have sy = gk y ∈ V ′(g+

k ),
i.e., (sy, g+

k )o ⩾ K + δ. By hyperbolicity, we obtain

K > (x, g+

k )o ⩾ min((x, sy)o, (sy, g+

k )o) − δ.

Note that the hyperbolicity inequality (3-1), initially stated inside the space, remains
true for the Gromov product at infinity as we have used inf in its definition (1-1). If
the minimum were realized by (sy, g+

k )o ⩾ K + δ, we would get K > (K + δ)− δ,
a contradiction. Therefore, the minimum is realized by (x, sy)o, yielding K >

(x, sy)o − δ as claimed. □

Corollary 3.13. Let µ be a nonelementary discrete measure on the set of isometries
of X. For all η > 0, there exists C > 0 such that, for all D > 0, there exist M > 0
and an (η, C, D)-Schottky set in the support of µM.

Proof. By definition of a nonelementary measure, one can find loxodromic elements
u0 and v0 with disjoint fixed points in the support of µa and µb for some a, b > 0.
Then u = ub

0 and v = va
0 belong to the support of µab and have disjoint fixed points.

Applying Proposition 3.12, we obtain an (η, C, D)-Schottky set in the support of
µabn as desired. □

4. Linear escape

In this section, we prove Theorem 1.1, in other words, the random walk on X driven
by a nonelementary measure escapes linearly towards infinity, with exponential
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bounds. We copy the proof of Section 2, replacing subtrees with chain-shadows in
the definition of pivotal times, and generators with elements of a Schottky set. The
reader who would prefer to use shadows instead of chain-shadows may do so for
intuition, but should be warned that the argument will then barely fail (at a single
place, the backtracking step in the proof of Lemma 4.8).

Like in Section 2, the main technical part is to understand what happens for
walks of the form w0 s1w1 · · · wn−1snwn , where the wi are fixed, while the si are
random and drawn from a Schottky set. This will be done in Section 4A, while the
application to prove Theorem 1.1 is done in Section 4B.

4A. A simple model. In this section, we fix isometries w0, w1, . . . of X , a constant
C0 > 0, and S a

( 1
100 , C0, D

)
-Schottky set of isometries of X . We will assume

that D is large enough compared to C0; for definiteness, D ⩾ 20C0 + 100δ + 1
will do. Let µS be the uniform measure on S. Let ai , bi be i.i.d. random variables
distributed like µS and set si = ai bi .

We form a random process on X by composing the wi and si and applying them to
the basepoint o. Our goal is to understand the behavior of y−

n+1 =w0 s1w1 · · · snwn ·o
when n tends to infinity. The main result of this subsection is the following propo-
sition.

Proposition 4.1. There exists a universal constant κ > 0, not depending on X , S,
C0, D, δ, such that, for all n,

P(d(o, y−

n+1) ⩽ κn) ⩽ e−κn.

To prove this proposition, we will first describe an inductive construction in
a deterministic setting. To a finite or infinite sequence (w0, s1 = a1b1, w1, s2 =

a2b2, . . . ), where ai , bi ∈ S and the decomposition of si as ai bi is part of the data of
the sequence, we will associate a set of pivotal times. Then we will obtain estimates
on the behavior of this construction in the random setting, where ai , bi will be
random, while the wi will still be fixed, as in the setting of Proposition 4.1.

We define

y−

i = w0 s1w1 · · · si−1wi−1 · o, yi = w0 s1w1 · · · wi−1ai · o,

y+

i = w0 s1w1 · · · wi−1ai bi · o,

the three points visited during the transition around i . We have d(y−

i , yi ) =

d(o, ai · o) ⩾ D as ai belongs to the
( 1

100 , C0, D
)
-Schottky set S. In the same way,

d(yi , y+

i ) ⩾ D. A difficulty that we will need to handle is that d(y+

i , y−

i+1) may be
short, as there is no lower bound on wi , while we need long jumps everywhere to
apply the results on chains of Section 3B.

We will define a sequence of pivotal times Pn ⊆ {1, . . . , n}, evolving with time:
when going from n − 1 to n, we will either add a pivotal time at time n (so that
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Pn = Pn−1 ∪ {n}, if the walk is going more towards infinity), or we will remove
a few pivotal times at the end because the walk has backtracked (in this case,
Pn = Pn−1 ∩ {1, . . . , m} for some m).

Let us define inductively the pivotal times, starting from P0 = ∅. Assume that
Pn−1 is defined, and let us define Pn . Let k = k(n) be the last pivotal time before n,
i.e., k = max(Pn−1). If Pn−1 = ∅, take k = 0 and let yk = o — we will essentially
ignore the minor adjustments to be made in this special case in the forthcoming
discussion. Let us say that the local geodesic condition is satisfied at time n if

(yk, yn)y−
n
⩽ C0, (y−

n , y+

n )yn ⩽ C0 and (yn, y−

n+1)y+
n
⩽ C0. (4-1)

In other words, the points yk, y−
n , yn, y+

n , y−

n+1 follow each other successively, with
a C0-alignment condition. As the points are well separated by the definition of
Schottky sets, this will guarantee that we have a chain, progressing in a definite
direction. We stress that Pn only depends on the walk up to time n, that is on
w0, s1, . . . , wn−1, sn, wn .

If the local geodesic condition is satisfied at time n, then we say that n is a pivotal
time, and we set Pn = Pn−1∪{n}. Otherwise, we backtrack to the largest pivotal time
m ∈ Pn−1 for which y−

n+1 belongs to the (C0 + δ)-chain-shadow of y+
m seen from

ym . In this case, we erase all later pivotal times, so we set Pn = Pn−1 ∩ {1, . . . , m}.
If there is no such pivotal time m, we set Pn = ∅.

Lemma 4.2. Assume that Pn is nonempty. Let m be its maximum. Then y−

n+1
belongs to the (C0 + δ)-chain-shadow of y+

m seen from ym .

Proof. If Pn has been defined from Pn−1 by backtracking, then the conclusion of
the lemma is a direct consequence of the definition. Otherwise, the last pivotal time
is n. In this case, let us show that y−

n+1 belongs to the (C0 + δ)-chain-shadow of y+
n

seen from yn , by considering the chain yn, y−

n+1. By definition of the chain-shadow,
we should check that (yn, y−

n+1)y+
n
⩽ C0 + δ and d(yn, y−

n+1) ⩾ 2C0 + 4δ + 1. The
first inequality is obvious as (yn, y−

n+1)y+
n
⩽ C0 ⩽ C0 + δ by the local geodesic

condition (4-1). Moreover, since (yn, y−

n+1)y+
n
⩽ C0 by (4-1), Lemma 3.4 gives

d(yn, y−

n+1)⩾d(yn, y+
n )−C0⩾ D−C0, which is greater than or equal to 2C0+4δ+1

if D is large enough. □

Lemma 4.3. Let Pn ={k1 < · · ·<kp}. The sequence y−

k1
, yk1

, y−

k2
, yk2

, . . . , ykp
, y−

n+1
is a (2C0 + 3δ, D − 2C0 − 3δ)-chain.

Proof. Let us first check the condition on Gromov products. We have to show
that (yki−1, yki )y−

ki
⩽ 2C0 + 3δ and (y−

ki
, y−

ki+1
)yki

⩽ 2C0 + 3δ. The first inequality
is obvious, as it follows from the first property in the local geodesic condition
when introducing the pivotal time ki . Let us show the second one. Lemma 4.2
applied to the time ki+1 − 1 shows that y−

ki+1
belongs to the (C0 + δ)-chain-shadow

of y+

ki
seen from yki . Lemma 3.10 thus yields (yki+1, yki )y+

ki
⩽ 2C0 + 3δ. Moreover,
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(y−

ki
, y+

ki
)yki

⩽ C0 by the local geodesic condition when introducing the pivotal time
ki . We apply Lemma 3.5 with the points y−

ki
, yki

, y+

ki
, y−

ki+1
, with C = 2C0 + 2δ.

As d(yki
, y+

ki
) ⩾ D is large enough, this lemma applies and gives (y−

ki
, y−

ki+1
)yki

⩽
2C0 + 3δ. This is the desired inequality.

Let us check the condition on distances. We have to show that d(y−

ki
, yki

) ⩾
D − 2C0 − 3δ and d(yki

, y−

ki+1
) ⩾ D − 2C0 − 3δ. The first condition is obvious as

d(y−

ki
, yki

) ⩾ D. For the second, Lemma 3.10 gives d(yki
, y−

ki+1
) ⩾ d(yki

, y+

ki
) −

2C0 − 3δ ⩾ D − 2C0 − 3δ. □

The first point in the previous chain can be replaced with o:

Lemma 4.4. Let Pn = {k1 < · · · < kp}. The sequence o, yk1
, y−

k2
, yk2

, . . . , ykp
, y−

n+1
is a (2C0 + 4δ, D − 2C0 − 3δ)-chain.

Proof. We have to control d(o, yk1) and (o, y−

k2
)yk1

as the other quantities are
controlled by Lemma 4.3. For this, we will apply Lemma 3.5 to the points
y−

k2
, yk1

, y−

k1
, o with C = 2C0 +3δ. We have (y−

k2
, y−

k1
)yk1

⩽ 2C0 +3δ by Lemma 4.3,
and (yk1, o)y−

k1
⩽ C0, this being the first property in the local geodesic condition

when introducing the pivotal time k1, and d(yk1
, y−

k1
)⩾ D ⩾ 2C + δ +1. Therefore,

Lemma 3.5 gives (y−

k2
, o)yk1

⩽ 2C0 + 4δ. Moreover, Lemma 3.4 gives

d(yk1, o) ⩾ d(yk1
, y−

k1
) − (yk1, o)y−

k1
⩾ D − C0 ⩾ D − 2C0 − 3δ. □

Proposition 4.5. We have d(o, y−

n+1) ⩾ |Pn|.

Proof. This follows from Lemma 4.4, saying that we have a chain of length at least
|Pn| between o and y−

n+1, and from Lemma 3.7, saying that the distance grows
linearly along a chain. □

This proposition shows that, to obtain the linear escape rate with exponential
decay, it suffices to show that there are linearly many pivotal times. We note that,
in the above deterministic construction, the set of pivotal times Pn associated to a
sequence (si = ai bi )i∈N only depends on si for i ⩽ n. Let us now turn to estimates
in the random setting.

Lemma 4.6. Fix s1, . . . , sn , and draw sn+1 according to µ2
S . The probability that

|Pn+1| = |Pn| + 1 (i.e., that n + 1 gets added as a pivotal time) is at least 9
10 .

Proof. In the local geodesic condition (4-1), the last property reads (g·o, gbn+1wn+1·

o)gbn+1·o ⩽ C0 for g = w0 s1 · · · wnan+1. Composing with b−1
n+1g−1, it becomes

(b−1
n+1 · o, wn+1 · o)o ⩽ C0. By the definition of a Schottky set, this inequality is

satisfied with probability at least 1−η=
99

100 when choosing bn+1. Once bn+1 is fixed,
the other two properties in the local geodesic condition only depend on an+1, and
each of them is satisfied with probability at least 99

100 , again by the Schottky property.
They are satisfied simultaneously with probability at least 98

100 . As 99
100 ·

98
100 ⩾ 9

10 ,
this concludes the proof. □
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The key point is to control the backtracking length. For this, we will see that for
one configuration that backtracks a lot, there are many configurations that do not.
Given s̄ = (s1, . . . , sn), let us say that another sequence s̄ ′

= (s ′

1, . . . , s ′
n) is pivoted

from s̄ if they have the same pivotal times, b′

k = bk for all k, and a′

k = ak when k is
not a pivotal time.

Lemma 4.7. Let i be a pivotal time of s̄ = (s1, . . . , sn). Replace si = ai bi with
s ′

i = a′

i bi which still satisfies the local geodesic condition (4-1) with n replaced by i .
Then (s1, . . . , s ′

i , . . . , sn) is pivoted from s̄.

Proof. We need to show that the pivotal times of s̄ ′ are the same as those of s̄.
Until time i , the sequences are the same, hence they have the same pivotal times:
Pi−1(s̄)= Pi−1(s̄ ′). Then i is added as a pivotal time for both s̄ and s̄ ′ by assumption,
therefore Pi (s̄) = Pi (s̄ ′). Then the remaining part of the trajectory for s̄ never
backtracks beyond i , as i remains a pivotal time. This backtracking property is
defined in terms of the relative position of the trajectory compared to yi and y+

i ,
and therefore it depends on bi but not on the beginning of the trajectory (and in
particular it does not depend on ai ). Hence, replacing ai with a′

i does not change
the backtrackings, which are the same for s̄ and s̄ ′ until time n. □

Lemma 4.7 shows that, if a trajectory has p pivotal times, then it has a lot of
pivoted trajectories (exponentially many in p) as one can change ai to a′

i at each
pivotal time. Denote by En(s̄) the set of trajectories which are pivoted from s̄.
Conditionally on En(s̄), the random variables a′

i for i a pivotal time are independent,
but not identically distributed, as they are each drawn from a subset of S depending
on i , of large cardinality.

Lemma 4.8. Let s̄ = (s1, . . . , sn) be a trajectory with q pivotal times. We condition
on En(s̄), and we draw sn+1 according to µ2

S . Then, for all j ⩾ 0,

P(|Pn+1| < q − j | En(s̄)) ⩽
( 1

10

) j+1
.

Proof. If q = 0, then there is nothing to prove. Assume q > 0.
First, the probability that sn+1 creates a new pivotal time is at least 9

10 , by
Lemma 4.6 (and the elements sn+1 that create a new pivotal time are the same over
the whole equivalence class En(s̄) as q > 0). Let us now fix a bad sn+1, giving rise
to backtracking.

We will first show the lemma for j = 1. Let m < k be the last two pivotal times.
We have to show that

P(|Pn+1| < q − 1 | En(s̄), sn+1) ⩽
1
10 , (4-2)

i.e., most trajectories do not backtrack beyond k: for many choices of ak , then y−

n+1
should belong to the (C0 + δ)-chain-shadow of y+

m seen from ym . By Lemma 4.2
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applied at time k − 1, we already know that y−

k belongs to this set. Therefore, there
exists a chain x0 = ym, x1, . . . , xi = y−

k pointing in the chain-shadow. With a good
choice of ak , we will increase the chain by adding y−

n+1 at its end.
Let us consider a′

k so that the points xi−1, y−

k , yk, y−

n+1 are C0-aligned, so that
(xi−1, yk)y−

k
⩽ C0 and (y−

k , y−

n+1)yk ⩽ C0. By the Schottky property, there are at
least 98

100 |S| such a′

k . We show that, with this choice, y−

n+1 belongs to the chain-
shadow of y+

m seen from ym , and therefore backtracking stops here. For this, it is
enough to see that x0, . . . , xi−1, y−

k , y−

n+1 is a (C0 + δ, 2C0 + 4δ + 1)-chain. We
have to see that d(y−

k , y−

n+1) ⩾ 2C0 + 4δ + 1 and (xi−1, y−

n+1)y−

k
⩽ C0 + δ. For

this, apply Lemma 3.5 to the points xi−1, y−

k , yk, y−

n+1, which are C0-aligned. As
d(y−

k , yk)⩾ D is large enough, this lemma gives (xi−1, y−

n+1)y−

k
⩽C0+δ. Moreover,

Lemma 3.4 gives d(y−

k , y−

n+1)⩾ d(y−

k , yk)−(y−

k , y−

n+1)yk ⩾ D−C0 ⩾ 2C0+4δ+1,
as claimed.

In the equivalence class, the number of possible choices for a′

k when introducing
the pivotal time k is at least 98

100 |S|, since most choices satisfy the local geodesic
condition (see the proof of Lemma 4.6). The number of choices of a′

k that ensure
there is no further backtracking is also bounded below by 98

100 |S|, by the previous
discussion, so that the number of bad choices is at most

(
1 −

98
100

)
|S|. Finally, the

proportion of bad choices that lead to further backtracking is at most(
1 −

98
100

)
|S|

98
100 |S|

<
1
10

.

This proves (4-2) for j = 1.
To prove the lemma for j = 2, let us fix sn+1 as well as a bad choice of a′

k that
gives rise to backtracking beyond k, which happens with probability at most 1

10 .
We have to show that, once these quantities are fixed, the probability to backtrack
past the previous pivotal time is at most 1

10 . This is the same argument as above.
The case of general j is proved analogously by induction. □

Lemma 4.9. Let An = |Pn| be the number of pivotal times. Then, in distribution,
An+1 ⩾ An + U where U is a random variable independent from An distributed as

P(U = − j) = 9
( 1

10

) j+1 for j > 0, P(U = 0) = 0 and P(U = 1) =
9

10 .

In other words, P(An+1 ⩾ i) ⩾ P(An + U ⩾ i) for all i .

Proof. Conditionally on En(s̄), this follows from Lemma 4.8, just like in the proof
of Proposition 2.6: one shows that

P(An+1 ⩾ i | En(s̄)) ⩾ P(An + U ⩾ i | En(s̄)).

As the inequality is uniform over the conditioning, the unconditioned version
follows. □
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Proposition 4.10. There exists a universal constant κ > 0 such that, for all n,

P(|Pn| ⩽ κn) ⩽ e−κn.

Proof. Let U1, U2, . . . be a sequence of independent copies of the variable U from
Lemma 4.9. Iterating this lemma gives

P(|Pn| ⩾ i) ⩾ P(U1 + · · · + Un ⩾ i)

for all i . In particular, P(|Pn| ⩽ κn) ⩽ P(U1 + · · · + Un ⩽ κn). As the Ui

are real random variables with an exponential moment and positive expectation,
P(U1 + · · · + Un ⩽ κn) is exponentially small if κ is small enough. □

Proof of Proposition 4.1. The linear escape with exponential error term follows
from Proposition 4.5 giving d(o, y−

n+1) ⩾ |Pn|, and from Proposition 4.10 ensuring
that |Pn| grows linearly outside of a set of exponentially small probability. □

4B. Proof of linear escape and convergence at infinity. Let µ be a nonelementary
measure on the set of isometries of the space X . In this subsection, we prove
Theorem 1.1: the µ-random walk goes to infinity linearly, with an exponential error
term. The techniques we develop along the way will also prove convergence of the
walk at infinity.

We apply Corollary 3.13 with η =
1

100 . Let C = C0 be given by this corollary.
Choose D = D(C0, δ) large enough, so that the results of Section 4A apply (D =

20C0+100δ+1 suffices). The corollary gives an (η, C0, D) Schottky set S included
in the support of µM for some M. For α > 0 small enough and N = 2M, we may
write µN

=αµ2
S +(1−α)ν for some probability measure ν, where µS is the uniform

measure on S.
As in [Boulanger et al. 2021, Section 6], let us reconstruct in a slightly indirect

way the random walk, as follows, on a space � containing Bernoulli random
variables εi satisfying P(εi = 1) = α and P(εi = 0) = 1−α, variables hi distributed
according to ν and variables ai , bi distributed according to µS , all independent.
Define γi = si := ai bi if εi = 1, and γi = hi if εi = 0. Then the γi are inde-
pendent random variables on �, and each of them is distributed as the product
of N independent random variables with distribution µ. In particular, γ0 · · · γn−1

is distributed like Z Nn . Extending � if necessary, we can also construct on � a
sequence of independent random variables g0, g1, . . . with distribution µ such that
γi = gi N · · · gi N+N−1.

Let us give more details on this construction. Let �′ be another probability
space containing i.i.d. random variables g0, g1, . . . distributed according to µ. Let
γ ′

i = gi N · · · gi N+N−1 on �′. Then the random variables (γi )i∈N on � and (γ ′

i )i∈N

on �′ have the same distribution. Then a standard coupling argument (see, e.g.,
[Berkes and Philipp 1979, Lemma A.1]) ensures that it is possible to realize all
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the random variables εi , hi , ai , bi and gi on a common probability space such that
γi = γ ′

i . This entails the equality γi = gi N · · · gi N+N−1 as claimed.
Let t1 < t2 < · · · be the times where εi = 1. Fix n ∈ N. We let τ = τ(n) be

the last index j such that N (tj + 1) ⩽ n, so that the interval [Ntj , N (tj + 1)) is
contained in [0, n). We will decompose the product g0 · · · gn−1 as a product of
the elements s ′

j = stj = atj btj = a′

j b
′

j , the product of all gi for i ∈ [Ntj , N (tj + 1)),
interspersed with other words that we will consider as fixed, in order to be in the
framework of Section 4A. Let wj = gN (tj +1) · · · gNtj+1−1, where by convention
t0 = −1, and let w′

= w′(n) = gN (tτ(n)+1) · · · gn−1 be the last missing word, which
really depends on n, contrary to the previous words that just fill the gaps between
blocks corresponding to εi = 1. By construction,

Zn · o = w0 s ′

1w1 · · · wτ(n)−1s ′

τ(n)w
′(n) · o.

We can associate to the sequence (w0, s ′

1 = a′

1b′

1, w1, s ′

2 = a′

2b′

2, . . . , w
′(n)) in

this decomposition a sequence of pivotal times P (n)
1 , . . . , P (n)

τ (n), as in Section 4A,
where the exponent (n) is here to emphasize that all this is done for a fixed n, and
that the objects we introduce may therefore depend on n. In fact, the words wj for
j < τ(n) only depend on j as they are given by wj = g(N+1)tj · · · gNtj+1−1, which
does not involve n. Hence, the sequence of inductively constructed pivotal times is
rather

P1, P2, . . . , Pτ(n)−1, P (n)
τ (n). (4-3)

The main quantity we will control is

un := |P (n)
τ (n)|,

the final number of pivotal times after n steps of the initial random walk.

Proposition 4.11. There exists κ > 0 such that P(un ⩽ κn) ⩽ e−κn .

Proof. The sequence tj+1 − tj is a sequence of independent random variables with
an exponential tail. Therefore, there exist C > 0 and κ > 0 such that

P(tj − t0 ⩾ C j) = P

( j−1∑
i=1

(ti+1 − ti ) ⩾ C j
)
⩽ e−κ j .

Hence, if β > 0 is small enough, we have N (t⌊βn⌋ + 1) ⩽ n outside of a set with
exponentially small probability. This gives

P(τ (n) < βn) ⩽ e−κn

for some κ > 0. For any c > 0, we get

P(un ⩽ cn) ⩽ e−κn
+ P(un ⩽ cn, τ ⩾ βn).
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Let us concentrate on the second set. We condition with respect to the εi (which
fixes the ti and τ ) and with respect to the gi outside of the intervals [Ntj , N (tj +1))

(which fixes the wj and w′). Once these are fixed, we are in the framework of
Section 4A. We may therefore apply Proposition 4.10 and deduce that, conditionally
on these quantities, we have

P(un ⩽ cτ | (εi )i , (gi )i /∈
⋃

j [Ntj ,N (tj +1))) ⩽ e−cτ ,

for some c > 0. When τ ⩾ βn, the left-hand side bounds the conditional probability
that un ⩽ cβn, and the right-hand side is bounded by e−cβn . As this is uniform on
the conditioning, this implies that P(un ⩽ cβn, τ ⩾ βn) ⩽ e−cβn , concluding the
proof. □

Proof of Theorem 1.1. Outside of a set with exponentially small probability, the
number of pivotal times at the n-th step of the random walk is at least κn for some
κ > 0, by Proposition 4.11. As the distance to the origin is bounded below by the
number of pivotal times, by Proposition 4.5, this concludes the proof. □

This argument enables us to recover a theorem of [Maher and Tiozzo 2018], the
convergence of the walk at infinity. We even get exponential error terms in the
speed of convergence. We start with a lemma ensuring that positions of the random
walk stay in a shadow.

Lemma 4.12. Let n ∈ N and C > 0. Assume that, for all k ⩾ n, one has uk > C. Let
x be the position of the walk at the C-th pivotal time in P (n)

τ (n). Then, for all k ⩾ n,
the point Zk · o belongs to the (2C0 + 6δ)-shadow of x seen from o.

Proof. For k ⩾ n, the set P (k)
τ (k) has strictly more than C points by assumption. In

particular, the C-th pivotal time is not introduced at the last step, and the last step
does not backtrack beyond this point. The set of pivotal times before the last index
does not depend on k, as explained before (4-3). It follows that the C-th pivotal
time in P (k)

τ (k) is independent of k ⩾ n. In particular, x is the position of the walk at
a pivotal time in P (k)

τ (k), for any k ⩾ n.
For k ⩾ n, Lemma 4.4 shows that there is a (2C0 +4δ, D−2C0 −3δ)-chain from

o to Zk ·o going through x . By Lemma 3.8, we deduce that (o, Zk ·o)x ⩽ 2C0 +6δ.
In other words, all the points Zk ·o remain in the (2C0 +6δ)-shadow of x seen from
o, as claimed. □

Proposition 4.13. Almost surely, there is a point Z∞ ∈ ∂X such that Zn ·o converges
to Z∞. Moreover, there exists κ > 0 such that for all n,

P((Zn · o, Z∞)o ⩽ κn) ⩽ e−κn. (4-4)

Proof. Fix c > 0 such that P(un ⩽ cn) ⩽ e−cn for all n, by Proposition 4.11. Since
P(un ⩽ cn) is exponentially small, Borel–Cantelli ensures that almost surely one
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has eventually un > cn. Lemma 4.12 then applies, with C = ⌊cn⌋ − 1. Let xn

denote the position of the walk at the (⌊cn⌋−1)-th pivotal time in P (n)
τ (n) for large n.

By Proposition 4.5, it satisfies

d(o, xn) ⩾ ⌊cn⌋ − 1. (4-5)

The sequence Zk · o is eventually trapped in the shadow of xn seen from o by
Lemma 4.12. This implies the convergence at infinity of Zk · o, by Lemma 3.2.

Finally, let us show the quantitative estimate (4-4). Assume that for all k ⩾ n,
one has uk > ck, which happens with probability at least 1 − Ce−cn . In this case,
all the points Zk · o for k ⩾ n belong to the (2C0 + 6δ)-shadow of xn . Therefore,
Lemma 3.3 applies and gives

(Zn · o, Z∞)o ⩾ d(o, xn) − (2C0 + 6δ) − 3δ. (4-6)

Together with (4-5), this gives a linear lower bound for the Gromov product, that
holds outside of an exponentially small set. □

We will also need the following lemma, that follows from the same techniques.

Lemma 4.14. Let µ be a nonelementary discrete measure on the set of isometries
of a Gromov-hyperbolic space X with basepoint o. Let Zn = g0 · · · gn−1 where the
gi are i.i.d. with distribution µ. Let ε > 0. There exists C > 0 such that, for any
isometry g,

P(∀n, d(o, gZn · o) ⩾ d(o, g · o) − C) ⩾ 1 − ε.

The point of the lemma is that the possible loss C is uniform in g. Without
moment assumptions on µ, it is not possible to get a better bound, contrary to the
case of walks with an exponential moment; compare with [Boulanger et al. 2021,
Theorem 2.6].

Proof. We follow the same construction as at the beginning of this subsection to
reconstruct the random walk, but adding the isometry g before the first step of the
random walk. Since the estimates of Section 4A are uniform in w0, replacing w0

with gw0 does not change them. Therefore, the number un := |P (n)
τ (n)| of pivotal

times for the random walk at time n still satisfies the estimate of Proposition 4.11:
there exists κ > 0 (independent of g) such that P(un ⩽ κn) ⩽ e−κn .

Let us fix n such that
∑

i⩾n e−κi < ε/2. On a set Ag of probability at least
1 − ε/2, which may depend on g, one has for all i ⩾ n the inequality ui > κi ⩾ κn.
As in the proof of Proposition 4.13, one can then find a point xn such that, for all
i ⩾ n, the points gZi · o belong to the (2C0 + 6δ)-shadow of xn seen from o. In
particular, by Lemma 3.1,

d(gZi · o, o) ⩾ d(o, xn) − 2C0 − 6δ.
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Moreover, xn is of the form gZk · o for some k ⩽ n.
By measurability, we can find a set A of measure at least 1−ε/2 and a constant C

(both independent of g) such that, for all ω ∈ A and all k ⩽ n, holds d(o, Zk ·o)⩽C.
Consider ω ∈ Ag ∩ A (this set has measure at least 1 − ε). Then

d(o,xn) = d(o,gZk · o) ⩾ d(o,g · o) − d(g · o,gZk · o) = d(o,g · o) − d(o, Zk · o)

⩾ d(o,g · o) − C.

For all i ⩾ n, we get d(gZi · o, o) ⩾ d(o, g · o) − C − 2C0 − 6δ. For i < n, this
estimate also holds as d(o, Zi · o) ⩽ C. This proves the lemma, for the constant
C + 2C0 + 6δ which is independent of g. □

5. Precise estimates

5A. A more complicated model. To obtain precise estimates on the rate of conver-
gence to infinity, we will need to compare the distance to the origin with the sum
of independent real valued random variables corresponding to the size of jumps of
the random walk. This is done in the next proposition.

Proposition 5.1. For η ∈
(
0, 1

100

]
, there exists κ = κ(η) > 0 with the following

property.
Let S be an (η, C0, D)-Schottky set of isometries of a δ-hyperbolic space X

with basepoint o, where D is large enough compared to C0; for definiteness, D ⩾
20C0 + 100δ + 1 is enough. Let ρ1, ρ2, . . . be discrete probability measures on the
isometry set of X. Let R be a nonnegative real random variable such that for all i
and all M ⩾ 0, one has

ρi {g : d(o, g · o) ⩾ M} ⩾ P(R ⩾ M),

i.e., for all i the distance with respect to the origin for ρi dominates stochastically R.
Let w0, w1, . . . be fixed isometries of X. Let s1, s2, . . . be independent ran-

dom variables, where si is sampled according to µ2
S ∗ ρi ∗ µ2

S . Define y−

n+1 =

w0 s1w1 · · · snwn · o. Then for all M ⩾ 0,

P(d(o, y−

n+1) ⩽ M) ⩽ P(R1 + · · · + R⌊(1−22η)n⌋ ⩽ M) + e−κn,

where R1, R2, . . . are independent copies of R.

When all the ρi are the Dirac mass at the origin, then the setting of the proposition
is essentially the same as the simple model of Section 4A, except that we are
sampling the si according to µ4

S instead of µ2
S , which does not really make a

difference. The conclusion in the general setting of Proposition 5.1 is that the
growth rate of the distance to the origin is at least the growth rate of sums of i.i.d.
random variables distributed like the ρi , up to a minor loss that tends to 0 when the
proportion η of bad elements in the Schottky set tends to 0 and an exponentially
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small error term. This model will be precise enough to capture the right growth rate
of a general random walk, to prove Theorems 1.2 and 1.3 in the next paragraphs, in
the same way that we have deduced linear escape with exponential estimates from
the results on the simple model of Section 4A. The possibility to have different
measures ρi at the different jumps will be important in the application of this
proposition in Section 5C, but for the proof the reader may pretend for simplicity
that they are all equal to a fixed measure ρ, and then one can take R to be the
distribution of d(o, g · o) with respect to ρ.

To prove Proposition 5.1, let us introduce a refined notion of pivotal times, in
which we will keep the randomness coming from the ρi . Write si = ai biri ci di ,
where ai , bi , ci , di are distributed according to µS while ri is distributed according
to ρi . This gives rise to six successive points at the i-th transition:

y(0)
i = w0 s1 · · · si−1wi−1 · o = y−

i , y(3)
i = w0 s1 · · · si−1wi−1ai biri · o,

y(1)
i = w0 s1 · · · si−1wi−1ai · o, y(4)

i = w0 s1 · · · si−1wi−1ai biri ci · o = yi ,

y(2)
i = w0 s1 · · · si−1wi−1ai bi · o, y(5)

i = w0 s1 · · · si−1wi−1ai biri ci di · o = y+

i .

The distances between two successive points in this list is at least D as it comes
from the application of an element of the Schottky set S, except for the distance
between y(2)

i and y(3)
i for which we have no lower bound as ri is drawn according

to ρi .
Let us define inductively a set of refined pivotal times associated in a de-

terministic way to a finite or infinite sequence (w0, s1 = a1b1r1c1d1, w1, s2 =

a2b2r2c2d2, w2, . . . ), that we will denote by Pn to differentiate it from the previous
unrefined notion. We copy the definition of Section 4A. We start from P0 = ∅.
Assume that Pn−1 is defined, and let us define Pn . Let k = k(n) be the last
pivotal time before n, i.e., k = max(Pn−1). (If Pn−1 = ∅, take k = 0 and let
yk = o.) Let us say that the local geodesic condition is satisfied at time n if in the
sequence yk, y(0)

n , y(1)
n , y(2)

n , y(3)
n , y(4)

n , y(5)
n , y−

n+1, all successive points are C0-aligned,
and moreover y(1)

n , y(3)
n , y(4)

n are C0-aligned, the latter condition being useful to
compensate the fact that the jump from y(2)

n to y(3)
n may be small, preventing us to

apply the results on chains of Section 3B. If the local geodesic condition is satisfied
at time n, then we say that n is a refined pivotal time, and we set Pn = Pn−1 ∪ {n}.
Otherwise, we backtrack to the largest refined pivotal time m ∈ Pn−1 for which
y−

n+1 belongs to the (C0 + δ)-chain-shadow of y+
m seen from ym . In this case, we

erase all later pivotal times, so we set Pn = Pn−1 ∩ {1, . . . , m}. If there is no such
pivotal time m, we set Pn = ∅.

For the refined notion, we can prove the analogues of the lemmas of Section 4A.

Lemma 5.2. Assume that Pn is nonempty. Let m be its maximum. Then y−

n+1
belongs to the (C0 + δ)-chain-shadow of y+

m seen from ym .
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Proof. The proof is exactly the same as for Lemma 4.2: when there is backtracking,
this follows from the definition, and when there is no backtracking (the last pivotal
time is n), then the chain yn, y−

n+1 satisfies all the properties to show that y−

n+1 is in
the chain-shadow. □

Lemma 5.3. Let Pn ={k1 < · · ·<kp}. The sequence y−

k1
, yk1

, y−

k2
, yk2

, . . . , ykp
, y−

n+1
is a (2C0 + 3δ, D − 2C0 − 3δ)-chain. Moreover, d(y−

ki
, yki

) ⩾ d(o, rki · o) + D for
all i .

Proof. This differs a little bit from the proof of Lemma 4.3 as there are more
points involved at each pivotal time. It is still basic chain manipulations, with the
only difficulty that the jumps corresponding to ri and wi may be short, but since
they are surrounded by big jumps with controlled alignment conditions this can be
circumvented easily.

By definition, the points yki−1
, y−

ki
, y(1)

ki
, y(2)

ki
, y(3)

ki
, y(4)

ki
, y(5)

ki
are C0-aligned. How-

ever, the distances between yki−1
and y−

ki
on the one hand, and between y(2)

ki
and y(3)

ki

on the other hand, are not obviously bounded below, contrary to the other distances,
which are greater than or equal to D, so one can not apply the results on chains to
these points. However, we can fix this by removing one point: we claim that

yki−1
, y−

ki
, y(1)

ki
, y(3)

ki
, y(4)

ki
(= yki

), y(5)
ki

form a (C0 + δ, D − 2C0 − 3δ)-chain. (5-1)

Let us prove this claim. We may apply Lemma 3.5 to the points y−

ki
, y(1)

ki
, y(2)

ki
, y(3)

ki
,

with C = C0, to deduce that (y−

ki
, y(3)

ki
)y(1)

ki
⩽ C0 + δ. Moreover, Lemma 3.4 gives

d(y(1)
ki

, y(3)
ki

) ⩾ d(y(1)
ki

, y(2)
ki

) − (y(1)
ki

, y(3)
ki

)y(2)
ki

⩾ D − C0,

and furthermore, d(yki−1, y−

ki
) ⩾ D − 2C0 − 3δ by Lemma 3.10, as y−

ki
is in the

(C0 + δ)-chain-shadow of y+

ki−1
seen from yki−1 , by Lemma 5.2. Finally, note that

(y(1)
ki

, y(4)
ki

)y(3)
ki

⩽ C0 by the last assumption in the local geodesic condition. We have
checked all the nontrivial properties in (5-1), completing its proof.

We have in particular d(yki−1
, y−

ki
) ⩾ D − 2C0 − 3δ, and also by (3-3),

d(y−

ki
, yki

) = d(y−

ki
, y(4)

ki
)

⩾ d(y−

ki
, y(1)

ki
) + d(y(1)

ki
, y(3)

ki
) + d(y(3)

ki
, y(4)

ki
) − 3(2C0 + 4δ). (5-2)

By Lemma 3.4 applied to y(1)
ki

, y(2)
ki

, y(3)
ki

,

d(y(1)
ki

, y(3)
ki

) ⩾ d(y(2)
ki

, y(3)
ki

) − (y(1)
ki

, y(3)
ki

)y(2)
ki

⩾ d(o, rki · o) − C0.

The two other distances in (5-2) are bounded below by D. Given that D ⩾
3(2C0 + 4δ) + C0, we obtain

d(y−

ki
, yki

) ⩾ D + d(o, rki · o).
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This proves all the distance conditions in the claim of the lemma.
Let us now check the estimates on the Gromov products. Applying Lemma 3.7

to the chain (5-1), we get (yki−1, yki )y−

ki
⩽ C0 + 2δ ⩽ 2C0 + 3δ, proving one of

the desired estimates. The other one is (y−

ki
, y−

ki+1
)yki

⩽ 2C0 + 3δ. To prove it, let
us apply Lemma 3.5 to the points y−

ki
, yki

, y+

ki
, y−

ki+1
. The Gromov product of the

last three is at most 2C0 + 3δ by Lemmas 5.2 and 3.10, and the Gromov product
of the first three is at most C0 + 2δ by applying Lemma 3.7 to the reverse of the
chain (5-1). Moreover, the distance d(yki , y+

ki
) is at least D, large enough. Therefore,

Lemma 3.5 indeed applies with C = 2C0 + 2δ, and gives (y−

ki
, y−

ki+1
)yki

⩽ 2C0 + 3δ

as claimed. □

The first point in the previous chain can be replaced with o:

Lemma 5.4. Let Pn = {k1 < · · · < kp}. The sequence o, yk1
, y−

k2
, yk2

, . . . , ykp
, y−

n+1
is a (2C0+4δ, D−2C0−3δ)-chain. Moreover, d(o, yk1)⩾d(o, rk1 ·o)+D−C0−3δ.

Proof. The only difference compared to the proof of Lemma 4.4 is that we do
not have the inequality (yk1, o)y−

k1
⩽ C0 due to the more complicated definition

of refined pivotal times. If we can prove that (yk1, o)y−

k1
⩽ C0 + 3δ, the proof of

Lemma 4.4 goes through. Let us check this inequality.
By (5-1), the points y−

k1
, y(1)

k1
, y(3)

k1
, y(4)

k1
(= yk1

), y(5)
k1

form a (C0+δ, D−2C0−3δ)-
chain, and thus (y−

k1
, yk1

)y(1)
k1
⩽C0+2δ by Lemma 3.7. Moreover, (o, y(1)

k1
)y−

k1
⩽C0 by

the definition of pivotal times. As d(y−

k1
, y(1)

k1
)⩾ D is large, it follows that Lemma 3.5

applies to the points o, y−

k1
, y(1)

k1
, yk1

with C = C0 +2δ. It gives (yk1, o)y−

k1
⩽C0 +3δ,

concluding the proof that we have a chain.
Moreover, Lemma 3.4 together with Lemma 5.3 give

d(o, yk1) ⩾ d(y−

k1
, yk1

) − (o, yk1)y−

k1
⩾ (d(o, rk1 · o) + D) − (C0 + 3δ),

proving the last claim. □

Proposition 5.5. Let Pn = {k1 < · · · < kp}. We have d(o, y−

n+1) ⩾
∑

i d(o, rki · o).

Proof. This follows from Lemmas 5.3 and 5.4, saying that we have a chain between
o and y−

n+1 with jumps of size at least d(o, rki ·o)+D−C0−3δ, and from Lemma 3.7
saying that the distance grows at least as the size of the jumps along a chain. □

This completes the discussion of the deterministic properties of the refined pivotal
times. Let us turn to their behavior in the random setting, to prove Proposition 5.1.
We should show that there are many refined pivotal times with overwhelming
probability. For this, we follow the same strategy as in Section 4A.

Lemma 5.6. Fix s1, . . . , sn , and draw sn+1 according to µ2
S ∗ ρn+1 ∗ µ2

S . The
probability that |Pn+1| = |Pn| + 1 (that n + 1 gets added as a refined pivotal time)
is at least 1 − 7η.
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Proof. In the local geodesic condition, there are seven alignment conditions to
be satisfied. When drawing sn+1 according to µ2

S ∗ ρn+1 ∗ µ2
S , each of them is

satisfied with probability at least 1 −η (for each of them, this can be seen by fixing
all variables but one and using that the last one is picked from a Schottky set).
Therefore, they are simultaneously satisfied with probability at least 1 − 7η. □

To control the backtracking, we defined pivoted sequences. Given s̄ =(s1, . . . , sn),
let us say that another sequence s̄ ′

= (s ′

1, . . . , s ′
n) is pivoted from s̄ if they have the

same refined pivotal times, d ′

k = dk at all times, and a′

k =ak, b′

k = bk, r ′

k = rk, c′

k = ck
at times which are not a refined pivotal time. In other words, we freeze the last
jump dk , but keep the freedom in the other parts of sk at refined pivotal times only.

The next lemma is proved exactly like Lemma 4.7.

Lemma 5.7. Let i be a refined pivotal time of s̄ = (s1, . . . , sn). Replace si =

ai biri ci di with s ′

i = a′

i b
′

ir
′

i c
′

i di which still satisfies the local geodesic condition (with
n replaced by i). Then (s1, . . . , s ′

i , . . . , sn) is pivoted from s̄.

Denote by En(s̄) the sequences which are pivoted from s̄. Conditionally on En(s̄),
the variables s ′

i over pivotal times i are independent, but drawn from distributions
that depend on i .

Lemma 5.8. Let s̄ = (s1, . . . , sn) be a trajectory with q refined pivotal times. We
condition on En(s̄), and draw sn+1 according to µ2

S ∗ρn+1 ∗µ2
S . Then, for all j ⩾ 0,

P(|Pn+1| < q − j | En(s̄)) ⩽ (7η) j+1.

Proof. The proof is essentially the same as for Lemma 4.8. Assume that sn+1 is fixed
and gives rise to some backtracking. Let us show that further backtracking happens
with probability at most 7η, from which the estimate follows inductively. Let m < k
be the last two refined pivotal times, and let xi−1 be the last point in a chain from
ym to y−

k witnessing that y−

k ∈ CSym (y+
m ; C0 + δ) as guaranteed by Lemma 5.2.

In s ′

k , let us condition also with respect to b′

k, r ′

k, c′

k compatible with the local
geodesic condition. Then the total number of possible values for a′

k that give rise
to s ′

k satisfying the local geodesic condition is at least (1 − η)|S|, as one should
ensure the condition ((a′

k)
−1

· o, b′

k · o)o ⩽ C0 and S is a Schottky set. Among
these, the values of a′

k that may give rise to further backtracking are those for which
the points xi−1, y−

k , y(1)
k , y−

n+1 are not C0-aligned, because this alignment would
imply y−

n+1 ∈ CSym (y+
m ; C0 + δ) as in the proof of Lemma 4.8 and would block the

backtracking. By the Schottky condition applied twice, there are at most 2η|S| such
a′

k . Therefore, the probability of further backtracking is at most 2η/(1−η)⩽ 7η. □

Lemma 5.9. Let An = |Pn| be the number of pivotal times. Then, in distribution,
An+1 ⩾ An + U where U is a random variable independent from An distributed as

P(U =− j)= (1−7η)(7η) j for j >0, P(U =0)=0 and P(U =1)=1−7η.
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In other words, P(An+1 ⩾ i) ⩾ P(An + U ⩾ i) for all i .

Proof. This is proved exactly like Lemma 4.9 using Lemma 5.8. □

Proposition 5.10. There exists κ > 0 only depending on η such that for all n,

P(|Pn| ⩽ (1 − 15η)n) ⩽ e−κn.

Proof. Let U1, U2, . . . be a sequence of independent copies of the variable U from
Lemma 5.9. Iterating this lemma gives

P(|Pn| ⩾ i) ⩾ P(U1 + · · · + Un ⩾ i)

for all i . In particular, P(|Pn| ⩽ (1 − 15η)n) ⩽ P(U1 + · · · + Un ⩽ (1 − 15η)n).
The Ui are real random variables with an exponential moment, and expectation
1 − 7η − 7η/(1 − 7η) > 1 − 15η. Large deviations for sums of i.i.d. real random
variables ensure that P(U1 + · · · + Un ⩽ (1 − 15η)n) is exponentially small. □

Proof of Proposition 5.1. We wish to bound P(d(o, y−

n+1)⩽M). By Proposition 5.10,

P(d(o, y−

n+1) ⩽ M) ⩽ P
(
d(o, y−

n+1) ⩽ M, |Pn| ⩾ (1 − 15η)n
)
+ e−κn. (5-3)

Therefore, we may focus on trajectories with |Pn|⩾ (1−15η)n. Let s̄ = (s1, . . . , sn)

be such a trajectory, and En(s̄) its equivalence class under the pivotal relation. We
will estimate P(d(o, y−

n+1) ⩽ M | En(s̄)).
Along En(s̄), we have d(o, y−

n+1) ⩾
∑p

i=1 d(o, rki · o) where the pivotal times
are k1 < · · · < kp, by Proposition 5.5. As p ⩾ (1 − 15η)n, we obtain in particular

d(o, y−

n+1) ⩾
⌊(1−15η)n⌋∑

i=1

d(o, rki · o). (5-4)

Along En(s̄), the random variables rki are independent, as what happens at different
pivotal times is independent by construction, but they are not distributed like ρki a
priori, since the local geodesic condition may twist its distribution. Denoting by Lki

the set of (a, b, r, c) that satisfy the local geodesic condition, then the distribution of
(a, b, r, c) is (µ2

S ∗ρki ∗µS)1Lki
/(µ2

S ∗ρki ∗µS)(Lki ). In particular, the probability
that rki equals a given r is

ρki (r)µ3
S{(a, b, c) : (a, b, r, c) ∈ Lki }

(µ2
S ∗ ρki ∗ µS)(Lki )

⩾ ρki (r)µ3
S{(a, b, c) : (a, b, r, c) ∈ Lki }.

Once r is fixed, there are six alignment relations to be satisfied for a, b, c to make
sure that (a, b, r, c) satisfies the local geodesic condition. Each of them is satisfied
with probability at least 1−η, so we get µ3

S{(a, b, c) such that (a, b, r, c) ∈ Lki }⩾
1 − 6η. Finally,

P(rki = r | En(s̄)) ⩾ (1 − 6η)ρki (r).
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As the distance d(o, r ·o) for r drawn according to ρki dominates the random variable
R in the assumptions of the lemma, it follows that the conditional distribution in
En(s̄) dominates BR, where B is a Bernoulli random variable independent of R,
equal to 1 with probability 1 − 6η and to 0 with probability 6η. Conditionally on
En(s̄), it follows from (5-4) that d(o, y−

n+1) dominates
∑⌊(1−15η)n⌋

i=1 Bi Ri where the
Bi are copies of B and the Ri are copies of R, all independent. As this estimate is
uniform over the equivalence classes, we get from (5-3) the inequality

P(d(o, y−

n+1) ⩽ M) ⩽ P

( ⌊(1−15η)n⌋∑
i=1

Bi Ri ⩽ M
)

+ e−κn.

Since the Bi have expectation 1 − 6η, the probability P
(∑n

i=1 Bi ⩽ (1 − 7η)n
)

is exponentially small. We get

P(d(o, y−

n+1) ⩽ M) ⩽ P

( ⌊(1−15η)n⌋∑
i=1

Bi Ri ⩽ M,

n∑
i=1

Bi ⩾ (1 − 7η)n
)

+ e−κ ′n.

To estimate the probability on the right, let us condition with respect to the Bi .
There are at most 7ηn of them that vanish. Therefore,

∑
Bi Ri is a sum of at least

(1 − 22η)n independent copies of R, and the probability that the sum is at most M
is bounded by P

(∑⌊(1−22η)n⌋

i=1 Ri ⩽ M
)
. As this estimate is uniform over the choice

of the Bi , this concludes the proof. □

5B. Precise estimates for walks without first moment. In this paragraph, we con-
sider a discrete probability measure µ on the set of isometries of X which has no
first moment: E(d(o, g · o)) = ∞ when g is drawn according to µ. We will prove
Theorems 1.2 and 1.3 under this assumption. It suffices to prove the latter, as the
former follows readily.

Let r > 0 be arbitrary. We have to show the existence of κ > 0 such that

P((Zn · o, Z∞)o ⩽ rn) ⩽ e−κn.

Let η =
1

100 . Let S be an (η, C0, D)-Schottky set in the support of µM for some
M > 0, where D is large enough compared to C0, as given by Corollary 3.13. We
follow the construction in Section 4B to reconstruct the µ-random walk, except
that instead of sampling the specific jumps from µ2

S , we will sample them from
µ2

S ∗µ∗µ2
S: for N = 4M +1 and some α > 0, we may write µN

= αµ2
S ∗µ∗µ2

S +

(1 − α)ν for some probability measure ν, where µS is the uniform measure on S.
The random walk is reconstructed by starting from Bernoulli random variables εi

satisfying P(εi = 1)=α and P(εi = 0)= 1−α, and sampling from µ2
S ∗µ∗µ2

S when
εi = 1 and from ν when εi = 0. Conditioning on (εi ) and on the jumps when εi = 0,
we are left with a walk as in Proposition 5.1. For this walk, we define a sequence of
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refined pivotal times as in Section 5A. Let t1, t2, . . . be the successive times where
εi = 1. Let τ = τ(n) be the last index j such that N (tj +1)⩽ n, so that the interval
[Ntj , N (tj + 1)) is contained in [0, n). Then the sequence of refined pivotal times
associated to the walk until time n has the form P1, P2, . . . , Pτ−1, P (n)

τ . Moreover,
un := |P (n)

τ (n)| satisfies
P(un ⩽ κn) ⩽ e−κn, (5-5)

for some κ > 0: this is proved as Proposition 4.11, just using Proposition 5.10
instead of Proposition 4.10 inside the proof.

Assume now that the walk converges at infinity, which is true almost everywhere,
and that uk > κk for all k ⩾ n, which is true outside of a set of exponentially small
measure, by summing the estimates in (5-5). Let x = xn be the position of the walk
at the (⌊κn⌋ − 1)-th refined pivotal time in P (n)

τ (n). Then for all k ⩾ n, the point
Zk · o belongs to the (2C0 + 6δ)-shadow of x seen from o (this is proved just like
Lemma 4.12, using Lemma 5.4). As in (4-6), this implies the inequality

(Zn · o, Z∞)o ⩾ d(o, xn) − (2C0 + 9δ).

Finally, we have

P
(
(Zn · o, Z∞)o ⩽ rn

)
⩽ e−κn

+ P
(
un ⩾ κn, d(o, xn) ⩽ rn + (2C0 + 9δ)

)
.

Let us estimate the rightmost probability when n is large enough so that 2C0 +

9δ ⩽ n. We condition on the (εi ), which fixes τ , and on the jumps when εi = 0, to
be in the setting of Section 5A. As x is one of the points y−

k+1 for 1
2κn ⩽ k ⩽ n, we

can sum the estimates of Proposition 5.1 (applied to k instead of n), to get a bound
of the form

n P(R1 + · · · + R
⌊

1
2 (1−22η)κn⌋

⩽ (r + 1)n),

where the Ri are independent random variables distributed like d(o, g · o) where g
is drawn according to µ. Letting β =

1
2(1 − 22η)κ > 0, we get

P((Zn · o, Z∞)o ⩽ rn) ⩽ e−κn
+ n P(R1 + · · · + R⌊βn⌋ ⩽ (r + 1)n).

Since we are assuming that µ has no first moment, the nonnegative random
variables Ri are not integrable. Applying the usual large deviations estimate to a trun-
cated version of R, we deduce that for any A > 0, there exists c(A) such that P(R1+

· · · + Rk ⩽ Ak) ⩽ e−c(A)k . Together with the previous equation, this gives an expo-
nential bound on P((Zn · o, Z∞)o ⩽ rn). This concludes the proof of Theorem 1.3
(and therefore also of Theorem 1.2) when there is no first moment. □

5C. Precise estimates for walks with a first moment. Assume now that µ is a
measure with a finite first moment. Then 1

n

∑
g µn(g)d(o, g · o) converges by

subadditivity to ℓ, the escape rate of the walk. Let r < ℓ. Our goal in this paragraph
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is to prove Theorem 1.3, and therefore also Theorem 1.2, in this setting: we will
show that, for some κ > 0, we have

P((Zn · o, Z∞)o ⩽ rn) ⩽ e−κn.

To prove this estimate, we will again use the refined model of Section 5A, but
we will have to do so in a careful enough way.

Fix η > 0 small enough depending only on r and ℓ (how small will be prescribed
at the very end of the proof). By Corollary 3.13, there exists an (η, C0, D)-Schottky
set S in the support of µM for some M >0, where D is large enough compared to C0.
For N = 2M, we may write µN

= αµ2
S + (1 −α)ν for some probability measure ν.

Replacing α with α/2 if necessary, we can also assume that ν is nonelementary.
Let us now fix A > 0 very large (how large will be described in the course of

the proof, depending on η, α and ν). Let εi be a sequence of Bernoulli random
variables, equal to 1 with probability α and to 0 with probability 1 − α. Define
inductively a sequence of times t1, t ′

1, t2, t ′

2, . . . as follows. First, t1 is the first time
with εt1 = 1. Then t ′

1 is the smallest time strictly after t1 + A with εt ′1 = 1. Then
t2 is the smallest time strictly after t ′

1 with εt2 = 1. And so on, picking the first
times where εi = 1 but keeping a gap at least A between ti and t ′

i . Then, pick γn

distributed according to the following measure: if n is of the form ti or t ′

i , use µ2
S .

If n is in [ti + 1, ti + A], use µN. Otherwise, use ν.

Claim 5.11. With this construction, the γi are independent random variables dis-
tributed according to µN. In particular, γ0 · · · γn−1 is distributed like Z Nn .

Proof. Conditionally on the ε0, . . . , εn−1 and on γ0, . . . , γn−1, we will show that γn

is distributed according to µN , from which the result follows. Consider the maximal
tj or t ′

j before n. If it is a tj and n ⩽ tj + A, then γn is picked according to µN by
definition, and there is nothing left to prove. Otherwise, the choice of the measure
for γn depends on εn: we use µ2

S if εn = 1 (with probability α) or ν if εn = 0 (with
probability 1 − α). Altogether, γn is drawn according to αµ2

S + (1 − α)ν = µN,
proving the claim. □

With a coupling argument as in Section 4B, extending � if necessary, we can
also construct on � a sequence of independent random variables g0, g1, . . . , with
distribution µ such that γi = gi N · · · gi N+N−1.

The intuition behind the use of this decomposition is the following. Since α is
possibly small, the times with εi = 1, which have frequency 1/α, may be sparse.
However, if A is much larger than 1/α, the waiting time between ti + A and t ′

i ,
or between t ′

i and ti+1, will be comparatively much shorter. Therefore, the walk
will be essentially a concatenation of long jumps corresponding to µNA, and short
jumps coming from the Schottky sets. The long jumps essentially go in independent
directions (this is formalized precisely by Proposition 5.1), so the size of the walk
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at time NAk will be bounded below by the sum of (1 − 22η)k independent random
variables distributed like jumps of µNA, which are of order NAℓ. Altogether, the
probability to have size smaller than (1 − 22η)NAkℓ at time roughly NAk will be
exponentially small, proving Theorem 1.2 in this setting.

To make this precise, we will need to control quantitatively the waiting times.
Also, the distribution of the jumps between ti and t ′

i is not µNA, but µNA
∗νt ′i −(ti +A).

We will have to show that the jumps of this family of measures are uniformly
controlled from below, to be able to apply Proposition 5.1. Note that this application
motivates why we had to formulate this proposition using different measures ρi for
the different jumps, instead of one single measure ρ.

Let us start the proof, adapting the formalism of Section 4B to our current
setting. Fix n ∈ N. We let τ = τ(n) be the last index j such that N (t ′

j + 1) ⩽ n,
so that the interval [Ntj , N (t ′

j + 1)) is contained in [0, n). We will decompose
the product g0 · · · gn−1 as a product of the elements s ′

j , the product of all gi for
i ∈ [Ntj , N (t ′

j + 1)), interspersed with other words that we will consider as fixed,
to be in the framework of Section 5A. Let wj = gN (t ′j +1) · · · gNtj+1−1, where by
convention t ′

0 = −1, and let w′
= w′(n) = gN (t ′τ(n)+1) · · · gn−1 be the last missing

word, which really depends on n, contrary to the previous words that just fill the
gaps between blocks [tj , t ′

j ]. By construction,

Zn · o = w0 s ′

1w1 · · · wτ−1s ′

τw
′(n) · o,

where each s ′

j is decomposed as a′

j b
′

jr
′

j c
′

j d
′

j , with a′

j , b′

j , c′

j , d ′

j independent and
distributed according to µS .

We can associate to the sequence

(w0, s ′

1 = a′

1b′

1r ′

1c′

1d ′

1, w1, s ′

2 = a′

2b′

2r ′

2c′

2d ′

2, . . . , w
′(n))

in this decomposition a sequence of refined pivotal times P (n)
1 , . . . , P (n)

τ (n), where
the exponent (n) is here to emphasize that all this is done for a fixed n, and that
the objects we introduce may therefore depend on n. Note however that the words
wj for j < τ(n) only depend on j as they are given by wj = gN (t ′j +1) · · · gNtj+1−1.
Hence, the sequence of refined pivotal times is rather

P1, P2, . . . , Pτ(n)−1, P (n)
τ (n).

If we condition on the εi , which fixes the ti and t ′

i , and on the gi for i not belonging
to

⋃
[Ntj , N (t ′

j + 1)), which fixes the wi and w′(n), then we are in the setting of
Proposition 5.1, with ρi = µNA

∗ ν
t ′j −(tj +A). To apply this proposition, we need to

check that jumps with respect to such a measure are uniformly bounded below.

Lemma 5.12. Assume that A is large enough. Let RNA be the distribution of the
size of jumps for µNA. Let B be a Bernoulli random variable, equal to 1 with
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probability 1 − η and to 0 with probability η, independent of RNA. Then, for any
i ⩾ 0 and for any M ⩾ 0,

(µNA
∗ νi ){g : d(o, g · o) ⩾ M} ⩾ P(BRNA ⩾ M + ηNA).

In other words, the jumps for µNA
∗ νi dominate stochastically BRNA − ηNA,

uniformly in i , and therefore by nonnegativity they also dominate (BRNA−ηNA)∨0.

Proof. We have

(µNA
∗ νi ){g : d(o, g · o) ⩾ M} =

∑
h

µNA(h) · νi
{g : d(o, hg · o) ⩾ M}.

Let us apply Lemma 4.14 to the nonelementary measure ν and to ε = η. There
exists C > 0 such that, for any isometry h, for any integer i , an element g drawn
according to νi satisfies d(o, hg ·o)⩾ d(o, h ·o)−C with probability at least 1−η.
This gives

νi
{g : d(o, hg · o) ⩾ M} ⩾ (1 − η)1d(o,h·o)⩾M+C .

Therefore,

(µNA
∗ νi ){g : d(o, g · o) ⩾ M} ⩾

∑
d(o,h·o)⩾M+C

µNA(h) · (1 − η)

= (1 − η)µNA
{h : d(o, h · o) ⩾ M + C}

= (1 − η) P(RNA ⩾ M + C)

= P(BRNA ⩾ M + C).

Taking A large enough so that ηNA⩾C , this is bounded from below by P(BRNA ⩾
M + ηNA). □

From now on, we will assume that A is large enough, so that Lemma 5.12 holds.

Lemma 5.13. Assume that A is large enough. The sequence τ(n) grows like
n/(NA) with high probability. More precisely, there exists c > 0 such that

P
(
τ(n) ⩽ (1−η)n

NA

)
⩽ e−cn.

Proof. We have

t ′

j − t ′

0 = Aj +

j∑
i=1

(t ′

i − (ti + A)) +

j∑
i=1

(ti − t ′

i−1).

The random variables t ′

i − (ti + A) and ti − t ′

i−1 are independent and identically
distributed, and have an exponential tail just depending on α. Therefore, there exist
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C > 0 and c > 0 not depending on A such that

P

( j∑
i=1

(t ′

i − (ti + A)) +

j∑
i=1

(ti − t ′

i−1) ⩾ C j
)
⩽ e−cj .

Outside of a set Oj with exponentially small probability, we obtain t ′

j +1⩽ Aj +C j .
Therefore, N (t ′

j + 1) ⩽ N (Aj + C j), which is bounded by NAj/(1 − η) if A is
large enough compared to C. Take j = j (n) = ⌊(1 − η)n/(NA)⌋. It satisfies
NAj/(1−η)⩽ n. On the complement of Oj , we have N (t ′

j +1)⩽ n, and therefore
τ(n)⩾ j . Hence, the inequality τ(n)⩽ (1−η)n/(NA) can only hold on Oj , whose
probability is exponentially small in terms of n. □

Let un := |P (n)
τ (n)| be the number of refined pivotal times up to time n.

Lemma 5.14. There exists c > 0 such that P(un ⩽ (1 − 16η)n/(NA)) ⩽ e−cn .

Proof. By Lemma 5.13, we have

P
(

un ⩽
(1−16η)n

NA

)
⩽ e−cn

+ P
(

un ⩽
(1−16η)n

NA
, τ (n) ⩾ (1−η)n

NA

)
.

Let us concentrate on the second set. We condition with respect to εi , which fixes the
ti , the t ′

i , and τ , and with respect to the gi outside of the intervals [Ntj , N (t ′

j + 1)),
which fixes the wj and w′. Once these are fixed, we are in the framework of
Section 5A. We may therefore apply Proposition 5.10 and deduce that, conditionally
on these quantities, we have

P(un ⩽ (1 − 15η)τ | (εi )i , (gi )i /∈
⋃

j [Ntj ,N (t ′j +1))) ⩽ e−cτ ,

for some c > 0. When τ ⩾ (1−η)n/(NA), the left-hand side bounds the conditional
probability that un ⩽ (1−15η)(1−η)n/(NA), and the right-hand side is bounded by
e−c(1−η)n/(NA). As 1−16η⩽ (1−η)(1−15η) and the previous bound is uniform on
the conditioning, this implies that P

(
un ⩽ (1−16η)n/(NA), τ (n)⩾ (1−η)n/(NA)

)
is exponentially small, concluding the proof of the lemma. □

Let us proceed with the proof of Theorem 1.3 when µ has a finite first moment.
Assume that Zk · o converges to a point Z∞ at infinity and moreover, for all k ⩾ n,
we have uk ⩾ (1 − 16η)k/(NA), which happens outside of a set of exponentially
small probability, by Lemma 5.14. Let t̄ = t̄(n) = ⌊(1 − 17η)n/(NA)⌋ < |P (n)

τ (n)|,
and let x = xn be the walk’s position at the t̄-th refined pivotal time in P (n)

τ (n). An
adaptation of Lemma 4.12 to this setting (based on Lemma 5.4) shows that, for all
k ⩾ n, the point Zk · o belongs to the (2C0 + 6δ)-shadow of x seen from o. In turn,
as in (4-6), this implies the inequality

(Zn · o, Z∞)o ⩾ d(o, xn) − (2C0 + 9δ).
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Finally, we have

P
(
(Zn · o, Z∞)o ⩽ rn

)
⩽ e−cn

+ P
(
d(o, xn) ⩽ rn + (2C0 + 9δ)

)
.

For large enough n, we have rn+(2C0+9δ)⩽ (r +η)n. Together with Lemma 5.14,
we get

P
(
(Zn · o, Z∞)o ⩽ rn

)
⩽ e−cn

+ P
(

d(o, xn) ⩽ (r + η)n, un ⩾
(1−16η)n

NA

)
.

for some c > 0.
To conclude, it suffices to show that the rightmost probability is exponentially

small. Let us condition on the εi , which fixes the ti , the t ′

i and τ , and on the gi

for i not belonging to
⋃

[Ntj , N (t ′

j + 1)), to be again in the setting of Section 5A.
Note that t̄ is not fixed by this conditioning. However, xn is one of the points
y−

m+1 = w0 s ′

1 · · · s ′
mwm , for some m ⩾ (1 − 17η)n/(NA). We claim that it suffices

to show that, for such an m, we have

P
(
d(o, y−

m+1) ⩽ (r + η)n | (εi )i , (gi )i /∈
⋃

j [Ntj ,N (t ′j +1))

)
⩽ e−cm . (5-6)

Indeed, the right-hand side is exponentially small in terms of n. Summing over
m ∈ [(1 − 17η)n/(NA), n/(NA)], we get a bound at most ne−c′n , which is again
exponentially small as desired.

To prove the inequality (5-6), we apply Proposition 5.1 at the time m. Lemma 5.12
shows that the stochastic domination assumptions of this proposition are satisfied,
for R = (BRNA − NAη) ∨ 0 where B is a (1 − η)-Bernoulli random variable
independent of RNA. This proposition gives

P
(
d(o, y−

m+1) ⩽ (r + η)n | (εi )i , (gi )i /∈
⋃

j [Ntj ,N (t ′j +1))

)
⩽ P

(
R1 + · · · + R⌊(1−22η)m⌋ ⩽ (r + η)n

)
+ e−cm,

where the Ri are independent copies of R. The last term is compatible with (5-6).
For the first term, we will apply large deviations for sums of i.i.d. real random
variables. We have

E(Ri ) = E(R) ⩾ (1 − η)E(RNA) − NAη ⩾ (1 − η)NAℓ − ηNA,

as E(RNA)/(NA) is the average drift at time NA, which converges to ℓ from above
by subadditivity. For z = (1−η)NAℓ−2ηNA < E(R), large deviations ensure that
P(R1 +· · ·+ Rk ⩽ zk) is exponentially small in terms of k. Therefore, it is enough
to show that (r + η)n ⩽ z(1 − 22η)m to conclude. As m ⩾ (1 − 17η)n/(NA), we
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have

(r + η)n
z(1 − 22η)m

⩽
(r + η)n

((1 − η)NAℓ − 2ηNA)(1 − 22η)(1 − 17η)n/(NA)

=
r + η

((1 − η)ℓ − 2η)(1 − 22η)(1 − 17η)
.

When η converges to 0, this converges to r/ℓ < 1. Therefore, for small enough η, it
is smaller or equal to 1 as desired. This concludes the proof of Theorem 1.3 when
µ has a finite first moment. □

5D. Continuity of the escape rate. As an illustration of the power of the tools we
have introduced above, we can recover the fact that the escape rate ℓ(µ) depends
continuously on the measure µ, a fact that was originally proved in hyperbolic
groups by Erschler and Kaimanovich [2013], and which, in the general setting of
nonproper hyperbolic spaces, follows from their proof together with the tools of
[Maher and Tiozzo 2018].

Proposition 5.15. Consider a discrete nonelementary measure µ on the space of
isometries of a Gromov-hyperbolic space X with a basepoint o. Let r < ℓ(µ). There
exist ε > 0 and a finite subset K of the support of µ with the following property. Let
µ′ be a probability measure with µ′(g) ⩾ µ(g) − ε for all g ∈ K . Then ℓ(µ′) ⩾ r .

Furthermore, there exists κ > 0 such that, for any µ′ as above, the corresponding
random walk Z ′

n satisfies for any n ∈ N the inequality

P(d(o, Z ′

n · o) ⩽ rn) ⩽ e−κn. (5-7)

Indeed, all the constants in the proofs in Section 5C are completely explicit.
Once K is chosen large enough and ε small enough to ensure that µ′M gives a
weight bounded from below to all the elements in the Schottky set S chosen at the
beginning of this subsection, then all the estimates go through for µ′ just like for
µ. In the end, this gives (5-7) with a uniform κ . This exponential estimate implies
ℓ(µ′) ⩾ r as 1

n d(o, Z ′
n · o) converges almost surely to ℓ(µ′).

It follows from the proposition that, when µn converges simply to µ, then
lim inf ℓ(µn) ⩾ ℓ(µ). This is the nontrivial direction to prove that ℓ(µn) → ℓ(µ).

The other direction is easy and classical: if µn converges in L1 norm to µ (so∑
g d(o, g · o)|µn(g) − µ(g)| → 0), then lim sup ℓ(µn) ⩽ ℓ(µ). Indeed, for any

measure µ′ one has ℓ(µ′) = Infk
( 1

k E(d(o, Z ′

k · o))
)

by Kingman’s theorem, and
each of these quantities for fixed k is continuous in µ′ for the L1 topology. The
claim follows. Thus, we recover the following corollary.

Corollary 5.16. Consider a discrete nonelementary measure µ on the space of
isometries of a Gromov-hyperbolic space X with a basepoint o, and a sequence of
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probability measures µn converging to µ in the L1-sense, i.e.,∑
g

d(o, g · o)|µn(g) − µ(g)| → 0.

Then ℓ(µn) converges to ℓ(µ).
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