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LOCAL LIMIT THEOREM FOR SYMMETRIC RANDOM WALKS
IN GROMOV-HYPERBOLIC GROUPS

SÉBASTIEN GOUËZEL

1. Introduction

Consider a countable group Γ (with identity denoted by e), together with a
probability measure μ whose support generates Γ as a semigroup (we say that μ is
admissible). Multiplying random elements of Γ distributed independently accord-
ing to μ, one obtains a random walk on Γ. The local limit problem consists in
determining good asymptotics for the transition probabilities pn(x, y) of this ran-
dom walk. Let us assume for simplicity that μ is finitely supported. For Γ = Z

d,
simple Fourier computations show that pn(e, e) ∼ Cn−d/2 if the walk is centered,
and pn(e, e) ∼ CR−nn−d/2 for some R > 1 if the walk is not centered. Simi-
lar asymptotics hold in nilpotent groups by the deep results of Varopoulos and
Alexopoulos [Ale02].

When the group is not amenable, pn(e, e) decays exponentially fast. The situa-
tion is well understood for semisimple Lie groups and absolutely continuous mea-
sures since the work of Bougerol [Bou81]: the probability to return to a fixed
neighborhood of the identity behaves like CR−nn−a for some R > 1 (depending
on the measure one considers) and some a > 1 only depending on the geometry
of the group. In the simplest case of rank one groups, a = 3/2. It is reasonable
to conjecture that similar asymptotics (with the same a) hold for random walks
on cocompact lattices of such semisimple Lie groups, but the proofs of Bougerol
(based on representation theory) do not adapt well, and this question is essentially
open.

A notable exception is the case of free groups: in this situation, the generating
function of the transition probabilities (also called the Green function) Gr(x, y) =∑

rnpn(x, y) is an algebraic function of r. A careful study of its first singularity
then yields the asymptotics of pn(x, y). For free groups, this is due to Lalley [Lal93],
and the asymptotics is of the form pn(x, y) ∼ C(x, y)R−nn−3/2, in accordance with
the results of Bougerol in rank one Lie groups. Most free products can also be
treated similarly; see [Woe00, Chapter III] and references therein.

Recently, together with Lalley, we were able to treat in [GL13] some nonamenable
groups where the Green function is not expected to be algebraic. We proved that,
for a cocompact lattice of PSL(2,R), and for a finitely supported symmetric measure
μ, the above asymptotics pn(x, y) ∼ C(x, y)R−nn−3/2 still holds. Henceforth, we
will refer to this situation as the PSL(2,R)-case. The overall strategy can in fact be
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894 SÉBASTIEN GOUËZEL

formulated in any Gromov-hyperbolic group (including in particular all cocompact
lattices in rank one semisimple Lie groups), but a crucial point in the proof really
relies on two-dimensional geometry. In this article, we provide a completely different
argument for this crucial point, making it possible to extend the results of [GL13]
to any Gromov-hyperbolic group.

We say that the walk is aperiodic if there exists an odd integer n such that
pn(e, e) > 0. In this case, pn(e, e) > 0 for all large enough n.

Theorem 1.1. Let Γ be a finitely generated nonelementary Gromov-hyperbolic
group. Let μ be an admissible finitely supported symmetric probability measure on
Γ. Denote by R > 1 the inverse of the spectral radius of the corresponding random
walk. For any x, y ∈ Γ, there exists C(x, y) > 0 such that

pn(x, y) ∼ C(x, y)R−nn−3/2

if the walk is aperiodic. If the walk is periodic, this asymptotics holds for even (resp.
odd) n if the distance from x to y is even (resp. odd).

The proof of the analogous theorem in the PSL(2,R)-case in [GL13] is divided
into three steps, as follows:

(1) One shows that Ancona’s results [Anc87] on the Martin boundary extend
up to r = R. In particular, the Martin kernel Kr,ξ(x) = Gr(x, ξ)/Gr(e, ξ)
converges when ξ tends to a point in the geometric boundary of Γ, uniformly
in r ∈ [1, R].

(2) Using the Cannon automaton coding geodesics in the group, and thermody-
namic formalism in the resulting subshift of finite type, one gets estimates
for the sums

∑
x∈Γ Gr(e, x)Gr(x, e) when r → R in terms of a pressure func-

tion. This implies that r �→ Gr(e, e) almost satisfies a differential equation.
Asymptotics of this function follow.

(3) From the asymptotics of Gr(e, e), one deduces the asymptotics of pn(e, e)
using tauberian theorems (and a little bit of spectral theory). The asymp-
totics of pn(x, y) are proved in the same way.

From this point on, this article is subdivided into three sections, each devoted
to one of those three steps. We will give further comments, explain quickly the
arguments in [GL13], and insist on the differences between the PSL(2,R)-case and
the general case of Gromov-hyperbolic groups. The main difference is in the first
step: the proof of [GL13] is deeply two-dimensional, and the general argument
is completely different. For the second step, a significant technical complication
appears: in the PSL(2,R)-case, the Cannon automaton (a combinatorial object
coding the geodesics in the group) is transitive, while this is not the case in general.
To overcome this difficulty, we use additional information from the first step and
a technique of Calegari and Fujiwara [CF10]. Finally, the third step is exactly the
same in the PSL(2,R)-case or in the general case, and we will give some details
only for the convenience of the reader.

While we have tried to make this article as self-contained as possible, [GL13]
provides a good introduction to some concepts and techniques that we use. The
letter C denotes a constant that may vary from line to line. Since most arguments
work exactly in the same way for symmetric or nonsymmetric measures, we have
written most proofs without using the assumption of symmetry. It only plays a
role in the proof of Lemma 2.6 (the central lemma to obtain Ancona inequalities)
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LOCAL LIMIT THEOREM IN HYPERBOLIC GROUPS 895

and in Section 4. We expect that the first step (Ancona inequalities) should be
true without any symmetry assumption on the measure. While we are not able to
prove it in general, we are able to obtain it for cocompact discrete subgroups of
PSL(2,R). The identification of the Martin boundary at the spectral radius follows.
The argument is given in Appendix A.

2. Ancona inequalities up to the spectral radius

2.1. The Green function. Consider an admissible finitely supported probability
measure μ on a countable group Γ. It defines a random walk on Γ. Let R =
R(μ) = lim sup pn(e, e)

−1/n (when μ is symmetric, this is the inverse of the spectral
radius of the Markov operator associated to the random walk on �2). The Green
function is defined for 1 � r < R and x, y ∈ Γ by Gr(x, y) =

∑
rnpn(x, y). By a

result of Guivarc’h, it is convergent even for r = R if the group carries no recurrent
random walk (this is in particular true for nonamenable groups). One should think
of Gr(x, y) as the average number of passages in y if the random walk starts from
x, but for the measure rμ instead of μ. In particular, for larger r, Gr gives more
weight to longer paths.

If γ = (x, x1, . . . , xn−1, y) is a path of length n from x to y, its r-weight wr(γ) is
rn

∏n−1
i=0 p(xi, xi+1) [where x0 = x and xn = y by convention, and we write p(a, b) =

μ(a−1b) for the probability to jump from a to b]. By definition, Gr(x, y) =
∑

wr(γ),
where the sum is over all paths from x to y.

If Ω is a subset of Γ, one defines the restricted Green function Gr(x, y; Ω) as∑
wr(γ) where the sum is over all paths γ = (x, x1, . . . , xn−1, y) such that xi ∈ Ω

for 1 � i � n− 1. If A is a subset of Γ not containing x, y such that any trajectory
of the random walk from x to y has to go through A, one has

(2.1) Gr(x, y) =
∑
a∈A

Gr(x, a;A
c)Gr(a, y) =

∑
a∈A

Gr(x, a)Gr(a, y;A
c),

where Ac denotes the complement of A. Indeed, the first (resp. second) formula is
proved by splitting a path from x to y according to its first (resp. last) visit to A.
More generally, if Ω is a subset of Γ containing x and y, the above formula holds
restricted to Ω, i.e.,

Gr(x, y; Ω) =
∑

a∈A∩Ω

Gr(x, a;A
c∩Ω)Gr(a, y; Ω) =

∑
a∈A∩Ω

Gr(x, a; Ω)Gr(a, y;A
c∩Ω).

Assuming that Γ is finitely generated, we can consider a word distance d on Γ
coming from a finite symmetric generating set. If x and y are at distance d, there is
a path from x to y whose probability is bounded from below by C−d, and staying
close to a geodesic segment from x to y. We deduce that, for any z,

(2.2) C−d(x,y) � Gr(x, z)/Gr(y, z) � Cd(x,y),

and similar inequalities hold for the Green functions restricted to any set containing
a fixed size neighborhood of a geodesic segment from x to y. These inequalities are
called Harnack inequalities.

The first visit Green function is Fr(x, y) = Gr(x, y; {y}c). It takes into ac-
count only the first visits to y. For r = 1, this is the probability to reach y
starting from x. One has Gr(x, y) = Fr(x, y)Gr(y, y) = Fr(x, y)Gr(e, e). Moreover,
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896 SÉBASTIEN GOUËZEL

Fr(x, y)Gr(y, z) � Gr(x, z) (since the concatenation of a path from x to y with a
path from y to z gives a path from x to z). Dividing by Gr(e, e), one gets

(2.3) Fr(x, y)Fr(y, z) � Fr(x, z).

We also obtain

(2.4) Gr(x, y)Gr(y, z) � GR(e, e)Gr(x, z).

The Martin boundary is the set of pointwise limits of sequences of functions
Kr,yn

(x) = Gr(x, yn)/Gr(e, yn) when yn tends to infinity. Since these functions are
normalized by Kr,y(e) = 1, and r-harmonic except at y, limits exist, are nonzero,
and are r-harmonic everywhere (since the measure μ has finite support). Under-
standing the Martin boundary amounts to understanding for which sequences yn
the functions Kr,yn

converge.
The derivative of Gr with respect to r can be computed. Indeed,

(2.5) (rGr(x, y))
′ =

∑
z∈Γ

Gr(x, z)Gr(z, y),

where the prime indicates the derivative with respect to r. This equation for x =
y = e shows that

(2.6) η(r) :=
∑
z

Gr(e, z)Gr(z, e) < +∞ for all r < R.

Let us introduce a convenient notation: we shall write

(2.7) Hr(x, y) = Gr(x, y)Gr(y, x).

In the symmetric case, this is simply the square of the Green function. With this
notation, η(r) =

∑
z∈Γ Hr(e, z). Since Gr satisfies (2.4), Hr also satisfies this

inequality.

2.2. Ancona inequalities. Consider a finitely generated group Γ. Its Cayley
graph is endowed with the word metric coming from any finite set of generators.
One says that Γ is Gromov-hyperbolic (or simply hyperbolic) if there exists δ such
that any geodesic triangle in this Cayley graph is δ-thin; i.e., each side of the tri-
angle is contained in the δ-neighborhood of the union of the two other sides. This
notion is invariant under quasi-isometry, and therefore independent of the choice of
the generators (see [GdlH90] for more details on hyperbolic groups). The geometric
intuition to have is that any finite set of points in a hyperbolic group is isometric
to a finite set of points in a tree, up to some constant depending only on the num-
ber of points. In particular, statements regarding the relative positions of points
can be reduced to statements in trees that are easy to check combinatorially. This
intuition is made precise by the following theorem [GdlH90, Theorem 2.12].

Theorem 2.1. For any n ∈ N and δ > 0, there exists a constant C = C(n, δ) with
the following property. Consider a subset A of a δ-hyperbolic space of cardinality at
most n. There exists a map Φ from A to a metric tree such that, for any x, y ∈ A,

d(x, y)− C � d(Φ(x),Φ(y)) � d(x, y).

A hyperbolic group Γ (or more generally any geodesic Gromov-hyperbolic space)
has a well-defined geometric boundary ∂Γ: this is the set of semi-infinite geodesics,
where two such geodesics are identified if they stay a bounded distance away. This
boundary is a compact space, and Γ ∪ ∂Γ is also compact.
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LOCAL LIMIT THEOREM IN HYPERBOLIC GROUPS 897

Consider now an admissible finitely supported probability measure μ on a nonele-
mentary hyperbolic group Γ (i.e., not quasi-isometric to {0} or Z). Let R = R(μ),
which is strictly larger than 1 since Γ is not amenable. Ancona proved in [Anc87]
that, for any r < R, the Martin boundary for r-harmonic functions coincides with
the geometric boundary: Kr,yn

converges pointwise if and only if yn converges to a
point ξ ∈ ∂Γ, and the limits are different for different points of the boundary.

A crucial inequality in Ancona’s proof is the fact that the converse inequality
to (2.4) holds for any r < R whenever y is close to a geodesic from x to z (with a
constant a priori depending on r). In other words, typical trajectories from x to z
follow the geodesic sufficiently well so that they are likely to pass close to y. When
r increases, Gr gives more and more weight to long trajectories, which are more
likely to go further from the geodesic. Hence, this Ancona estimate is more and
more subtle when r increases. Proving such an estimate for r = R is a crucial step
in the proof of Theorem 1.1.

Definition 2.2. A probability measure μ on a Gromov-hyperbolic group Γ satisfies
uniform Ancona inequalities if there exists a constant C > 0 such that, for any
x, z ∈ Γ and for any y close to a geodesic segment from x to z, for any r ∈ [1, R(μ)],

Gr(x, z) � CGr(x, y)Gr(y, z).

Theorem 2.3. If μ is admissible, finitely supported, and symmetric on a nonele-
mentary Gromov-hyperbolic group, it satisfies uniform Ancona inequalities.

This result has been proved in [GL13] for cocompact lattices of PSL(2,R), using
very specific two-dimensional arguments. The main idea in the new argument to
follow is to combine a supermultiplicativity estimate (originating in [DPPS11] for
counting problems) with a geometric construction of random barriers in hyperbolic
space. We will write |x| for the distance of x to the identity e (for some fixed word
distance), and Sk for the sphere of radius k around e. The rest of this section is
devoted to the proof of Theorem 2.3. We fix a nonelementary Gromov-hyperbolic
group Γ and an admissible probability measure μ. We do not assume yet that μ is
symmetric, since it will only be important in Lemma 2.6 below.

Lemma 2.4. There exists C > 0 such that, for any x, y ∈ Γ, there exists a ∈ Γ of
length at most C such that |xay| � |x|+ |y|.

Proof. Fix C0 = C(4, δ) > 0 such that any configuration of at most four points can
be approximated by a tree with error at most C0, as in Theorem 2.1.

We will rely on the classical construction of free groups with two generators
in Γ as follows. A hyperbolic element of Γ is an element u of Γ such that the
left-multiplication by u has two fixed points at infinity, an attracting one and a
repelling one, denoted by u+ and u−. Consider two hyperbolic elements u, v in
Γ such that the four points u+, u−, v+, v− are distinct (this is possible since Γ is
nonelementary; see the proof of [GdlH90, Theorem 8.37]), and fix small disjoint
neighborhoods V (u+), V (u−), V (v+), V (v−) of those points in Γ∪ ∂Γ. If N is large
enough, any x in the complement of V (a+) (for a ∈ F = {u, u−1, v, v−1}) shares
only a short beginning with aN . More precisely, there exists K > 0 independent
of N such that, in a tree approximation Φ of e, x, aN with error at most C0, the
branches from Φ(e) leading to Φ(x) and Φ(aN ) split before time K. Increasing N ,
we can also assume that

∣∣aN ∣∣ � 4K + 3C0 for all a ∈ F .
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Φ(e)

Φ(x)

Φ(xaNy)

Φ(xaN )

� K

� K

� 2K + 2C0

Figure 1. Approximating tree for e, x, xaN , xaNy.

Consider now two points x, y ∈ Γ. One can choose a ∈ F such that x−1 	∈
V (a+) and y 	∈ V (a−). Consider a tree approximation Φ : {e, x, xaN , xaNy} →
T . The geodesic paths from Φ(x) to, respectively, Φ(e) and Φ(xaN ), split before
time K by construction since x−1 	∈ V (a+). In the same way, the paths from
Φ(xaN ) to, respectively, Φ(x) and Φ(xaNy) also split before time K since y 	∈ V (a−)
(see Figure 1). Hence,∣∣xaNy

∣∣ � d(Φ(e),Φ(xaNy))

� d(Φ(e),Φ(x)) + d(Φ(x),Φ(xaN)) + d(Φ(xaN ),Φ(xaNy))− 2 · 2K
� |x| − C0 +

∣∣aN ∣∣− C0 + |y| − C0 − 4K

� |x|+ |y| . �

We recall the notation Hr(x, y) = Gr(x, y)Gr(y, x) from (2.7).

Lemma 2.5. There exists C > 0 such that, for any k ∈ N,
∑

x∈Sk
HR(e, x) � C.

Proof. Fix r < R. Write uk(r) =
∑

x∈Sk
Hr(e, x). To x ∈ Sk and y ∈ S� one can

associate thanks to the previous lemma a point Ψ(x, y) = xay ∈
⋃

k+��i�k+�+C Si.
By (2.4), we have

Hr(e, x)Hr(e, y) � CHr(e, x)Hr(e, a)Hr(e, y) = CHr(e, x)Hr(x, xa)Hr(xa, xay)

� CHr(e, xay).

Let us estimate the number of preimages under Ψ of some point z. Let γz be
a geodesic segment from e to z. If z = xay and x is far away from γz, a tree
approximation shows that |z| is significantly smaller than |x| + |a| + |y|. This is
impossible by construction. Therefore, x is contained in a ball of fixed radius
B(γz(k), C). In particular, the number of possibilities for x is uniformly bounded.
Arguing in the same way for y, we deduce that, for some C > 0, each point has at
most C preimages under Ψ.

Finally,

uk(r)u�(r) =
∑

x∈Sk,y∈S�

Hr(e, x)Hr(e, y) � C
∑

x∈Sk,y∈S�

Hr(e,Ψ(x, y))

� C

k+�+C∑
i=k+�

∑
z∈Si

Hr(e, z) � C

k+�+C∑
i=k+�

ui(r).
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LOCAL LIMIT THEOREM IN HYPERBOLIC GROUPS 899

As r < R, the sum
∑

x∈Γ Hr(e, x) is finite by (2.6). In particular, the sequence
uk(r) is summable, and reaches its maximum M(r) at some index k0(r). Using
the previous equation with k = � = k0(r), we get M(r)2 � C(C + 1)M(r); hence
M(r) � C(C + 1) = D.

Finally, for every r < R, for every k ∈ N, one has
∑

x∈Sk
Hr(e, x) � D. The

lemma follows by letting r tend to R. �
The following lemma is the main estimate in the proof of Theorem 2.3. It

gives superexponentially small estimates for the R-probabilities of paths staying
too far away from geodesics, implying that such paths are very unlikely and will
not contribute a lot to GR.

Lemma 2.6. Assume that μ is finitely supported and symmetric. There exist n0 > 0
and ε > 0 such that, for any n � n0, for any x, y, z ∈ Γ on a geodesic segment (in
this order) with d(x, y) � n and d(y, z) � n,

GR(x, z;B(y, n)c) � 2−eεn .

Proof. Without loss of generality, one can assume y = e.
Fix some ε > 0 very small, and let N = 
eεn�. In this proof, we will write C for a

generic constant independent of ε. The idea of the proof is to construct N barriers
A1, . . . , AN such that any trajectory of the random walk going from x to z outside
of B(e, n) has to go through A1, then A2, and so on. Decomposing a trajectory
according to its first visit to A1, then A2, and so on, we obtain as in (2.1)

GR(x, z;B(e, n)c)(2.8)

�
∑

a1∈A1

· · ·
∑

aN∈AN

GR(x, a1)GR(a1, a2) · · ·GR(aN−1, aN )GR(aN , z).

We will construct the barriers so that, writing A0 = {x} and AN+1 = {z}, one has
for any 0 � i � N

(2.9)
∑
a∈Ai

∑
b∈Ai+1

GR(a, b)
2 � 1/4.

This implies the desired estimate on GR(x, z;B(y, n)c) by Cauchy-Schwarz, as fol-
lows. To write it formally, it is more convenient to express things in terms of
operators, as in [Ser83, Led13]. Define an operator Li : �2(Ai+1) → �2(Ai) by
Lif(a) =

∑
b∈Ai+1

GR(a, b)f(b). The sum to estimate in (2.8) is (L0 · · ·LNδz)(x);
it is therefore bounded by

∏
‖Li‖. Moreover,

‖Lif‖2�2 =
∑
a∈Ai

∣∣∣∣∣∣
∑

b∈Ai+1

GR(a, b)f(b)

∣∣∣∣∣∣
2

�
∑
a∈Ai

⎛
⎝ ∑

b∈Ai+1

GR(a, b)
2

⎞
⎠

⎛
⎝ ∑

b∈Ai+1

|f(b)|2
⎞
⎠

=

⎛
⎝∑

a∈Ai

∑
b∈Ai+1

GR(a, b)
2

⎞
⎠ ‖f‖2�2 .

With (2.9), we obtain ‖Li‖ �
(∑

a∈Ai

∑
b∈Ai+1

GR(a, b)
2
)1/2

� 1/2, and the result
of the lemma follows.

It remains to construct barriers satisfying (2.9). The construction is geometric
and is done in the hyperbolic space Hm for some m � 2 (or rather its model as the
euclidean unit ball in Rm, with the boundary at infinity identified with the unit
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900 SÉBASTIEN GOUËZEL

sphere Sm−1 in Rm). By [BS00], the group Γ with its word metric is roughly similar
to a subset of such a space: if m is large enough, there exist a mapping Ψ : Γ → Hm

and λ > 0, C > 0 such that |λdH(Ψ(u),Ψ(v))− d(u, v)| � C for all u, v ∈ Γ. The
image under Ψ of a geodesic in Γ is a quasigeodesic in Hm; therefore it remains
uniformly close to a true hyperbolic geodesic (see for instance [GdlH90, Theorem
5.11]). It follows that it does not make a serious difference to use geodesics in Γ or
in H

m.
The hyperbolic geodesic from Ψ(x) to Ψ(z) can be extended bi-infinitely. Com-

posing with a hyperbolic isometry, we can assume that this geodesic goes through
the center O of the ball model of Hm, and that Ψ(e) is a bounded distance away
from O. Let ξ be the endpoint of this hyperbolic geodesic in negative time. To
an angle θ ∈ [0, π], we associate the union of all the semi-infinite geodesics [Oζ)
(with ζ ∈ Sm−1) making an angle θ with [Oξ) (its boundary at infinity is the circle
of points at distance θ of ξ in Sm−1). Let then A(θ) be the set of points a in
B(e, n)c ⊂ Γ such that Ψ(a) is at a distance at most C0 of such a geodesic. If C0 is
chosen large enough, a path of the random walk going from x to z in B(e, n)c can
not jump over A(θ) since μ has finite support, so that A(θ) is a barrier.

In X = [0, π], consider Xi = [(2i− 1)/N, 2i/N ] (for 1 � i � N). Those intervals
are separated by 1/N ∼ e−εn. In each of them, we will choose an angle θi and let
Ai = A(θi). One should then ensure that (2.9) is satisfied. To do so, we will choose
each θi at random as follows. Let Ω =

∏N
i=1 Xi, endowed with the product of the

probability measures N dLeb on Xi. Define a function fi on Ω by

fi(θ1, . . . , θN ) =
∑

a∈A(θi),b∈A(θi+1)

GR(a, b)
2,

where by convention A(θ0) = {x} and A(θN+1) = {z}. One should find a value of
θ = (θ1, . . . , θN ) such that fi(θ) � 1/4 for all i. We will show that

(2.10)
∫

fi � Ce−ρn,

for some ρ > 0 independent of ε. It follows that
∫
(
∑

fi) � C(1 +N)e−ρn � C(1 +
eεn)e−ρn. Choosing ε small enough, this is exponentially small, and is in particular
bounded by 1/4 for large enough n. This yields a point θ with

∑
fi(θ) � 1/4, for

which the corresponding barriers satisfy (2.9).
Let us now prove (2.10). We will only give the argument for 1 � i � N − 1:

the case of f0 and fN is slightly different (since A0 = {x} and AN+1 = {z} are
fixed), and it turns out to be analogous to the general case, but simpler. Fix some
i ∈ [1, N − 1]. To each a ∈ Γ and j ∈ {i, i+1}, we associate the set Xj(a) of angles
θ in Xj such that a ∈ A(θ). By definition,∫

fi =
∑
a,b∈Γ

GR(a, b)
2 ·N Leb(Xi(a)) ·N Leb(Xi+1(b)).

For a ∈ Sk, its image under Ψ is at a distance at least αk of O in H
m, for some

α > 0. If one moves away from this point by at most C0, the visual angle from O
varies by at most Ce−αk. It follows that Leb(Xj(a)) � Ce−αk. Since N � eεn, we
obtain ∫

fi � Ce2εn
∑
a,b

GR(a, b)
2e−α|a|e−α|b|,
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LOCAL LIMIT THEOREM IN HYPERBOLIC GROUPS 901

where the sum is restricted to those a and b outside of B(e, n) and whose images
under Ψ belong to the C0-neighborhoods of the sectors delimited, respectively, by
Xi and Xi+1. Writing u = a−1b (with |u| � |a|+ |b|), we get∫

fi � Ce2εn
∑
u

GR(e, u)
2e−α|u|M(u),

where M(u) is the number of ways to decompose u as a−1b. Fix a point u, and
such a decomposition u = a−1b.

The hyperbolic geodesics from O to, respectively, Ψ(a) and Ψ(b), make an angle
at least e−εn/2. Therefore, they are far away from each other outside of the ball
B(O, 2εn). It follows from a tree approximation that

dH(Ψ(a),Ψ(b)) � |Ψ(a)|+ |Ψ(b)| − 4εn− C.

Since Ψ is a quasisimilarity, we deduce that |u| = d(a, b) � |a|+ |b| − Cεn− C. In
particular, if ε is small enough, since |a| � n and |b| � n, we obtain |u| � n. It also
follows from this argument that a geodesic in the group from a to b has to pass
through the ball B(e, Cεn), since geodesics in the group and in hyperbolic space
remain a bounded distance away. Let γ be a geodesic segment from e to u in Γ.
Then aγ is a geodesic segment from a to b. There exists a time j such that aγ(j) ∈
B(e, Cεn). Finally, a ∈

⋃|u|
j=0 γ(j)

−1B(e, Cεn), which gives at most (|u| + 1)CCεn

possibilities for a. Arguing similarly for b, we obtain M(u) � (|u| + 1)2eCεn for
some C > 0.

Finally, we have∫
fi � Ce2εn

∑
|u|�n

GR(e, u)
2e−α|u|(|u|+ 1)2eCεn

� Ce(C+2)εn
∑
|u|�n

GR(e, u)
2e−α|u|/2.

Since
∑

|u|=k GR(e, u)
2 equals

∑
|u|=k HR(e, u) by symmetry of μ, it is uniformly

bounded by Lemma 2.5. Therefore,
∫
fi is bounded by CeCεne−αn/2. If ε is small

enough, this is at most Ce−αn/4. This proves (2.10) and concludes the proof of the
lemma. �

The following lemma is proved in [GL13] and is elementary (see the proof of
Theorems 4.1 and 4.3 there).

Lemma 2.7. Let μ be an admissible measure on a Gromov-hyperbolic group. As-
sume that, for all K > 0, there exists n0 such that, for all n � n0, for all
points x, y, z on a geodesic segment (in this order) with d(x, y) ∈ [n, 100n] and
d(y, z) ∈ [n, 100n], one has GR(x, z;B(y, n)c) � K−n. Then μ satisfies uniform
Ancona inequalities. If it has finite support, it even satisfies strong uniform Ancona
inequalities (as defined below in Definition 2.8).

To prove this lemma, one uses recursively its assumptions to show that most
r-weight is concentrated on paths staying close enough to the geodesic from x to z,
and in particular passing in a ball of fixed radius around y. This lemma, together
with Lemma 2.6, proves uniform Ancona inequalities for symmetric measures, i.e.,
Theorem 2.3. For finitely supported measures, strong uniform Ancona inequalities
(see below) are then deduced as in [GL13, Theorem 4.6].
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902 SÉBASTIEN GOUËZEL

We need the following strengthening of Ancona inequalities.

Definition 2.8. A measure μ on a Gromov-hyperbolic group satisfies strong uni-
form Ancona inequalities if it satisfies uniform Ancona inequalities and, addition-
ally, there exist constants C > 0 and ρ > 0 such that, for all points x, x′, y, y′ whose
configuration is approximated by a tree as follows:

x

x′
y

y′
� n

for any r ∈ [1, R],

(2.11)
∣∣∣∣ Gr(x, y)/Gr(x

′, y)

Gr(x, y′)/Gr(x′, y′)
− 1

∣∣∣∣ � Ce−ρn.

Ancona inequalities ensure that the quantity Gr(x,y)/Gr(x
′,y)

Gr(x,y′)/Gr(x′,y′) in the definition
is bounded from above and from below. Strong Ancona inequalities ensure that
this quantity is exponentially close to 1 in terms of the distance between the sets
of points {x, x′} and {y, y′}. These bounds are not formal consequences of Ancona
inequalities, but they are consequences of Ancona inequalities in suitable domains
(that follow from Lemma 2.6). Applying Lemmas 2.6 and 2.7, we obtain the follow-
ing result, strengthening Theorem 2.3.

Theorem 2.9. If μ is admissible, finitely supported, and symmetric on a nonele-
mentary Gromov-hyperbolic group, it satisfies strong uniform Ancona inequalities.

When one takes x′ = e, then the quantity appearing in (2.11) is the ratio
Kr,y(x)/Kr,y′(x) of the Martin kernels. The theorem implies that, when yi tends
to a point ξ ∈ ∂Γ, the sequence Kr,yi

(x) is a Cauchy sequence (since the points x, e
and yi, yj satisfy the assumptions of the definition with a large n for large enough
i, j). Hence, it converges to a function Kr,ξ(x). This is the main step in the proof
that the Martin boundary for r-harmonic functions coincides with the geometric
boundary (one should also check that Kr,ξ 	= Kr,η for ξ 	= η, which is easy). We
omit the (classical) details; see, for instance, [INO08].

3. Asymptotics of the Green function

Let Γ be a nonelementary Gromov-hyperbolic group. Our goal in this section is
to prove the following theorem.

Theorem 3.1. Let μ be an admissible probability measure on Γ satisfying strong
uniform Ancona inequalities. For any x, y ∈ Γ, there exists C(x, y) > 0 such that,
when r tends to R = R(μ),

∂Gr(x, y)/∂r ∼ C(x, y)(R− r)−1/2.

Throughout this section, we fix a measure μ satisfying the assumptions of this
theorem. Theorem 2.9 shows that it is the case for finitely supported symmetric
measures, but symmetry or finite support will play no additional role in this section.
We will concentrate mainly on the proof of Theorem 3.1 for x = y = e, since the
general case will follow easily.

In a sense, the proof of Theorem 3.1 is essentially done in [GL13], but there is
an important technical difference: a (well-chosen) Markov automaton for a surface
group is transitive, while there can be several components in a general hyperbolic
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group. This means that, in the thermodynamic formalism, we will have to deal
with several dominating components. This problem is solved thanks to a technique
of Calegari and Fujiwara [CF10] and to Lemma 2.5. This sketch of the argument
might be sufficient for experts, but since there are several technical subtleties, we
will give most details below. There is a significant overlap with some arguments
in [GL13], but this seems necessary to keep the argument understandable. Two
significant differences with [GL13] (in addition to the existence of several dominat-
ing components in the automaton, and directly related to this issue) are that we
need some a priori estimates (proved in Subsection 3.1), and that for r < R we will
associate to Gr a measure living on the group, not on the boundary.

3.1. A priori estimates. The main idea behind the proof of Theorem 3.1, as
in [GL13], is that the function Gr(e, e) almost satisfies a differential equation.
By (2.5), its derivative with respect to r is essentially

∑
x Gr(e, x)Gr(x, e) =∑

x Hr(e, x) [recall the notation (2.7)], and its second derivative is essentially∑
x,y Gr(e, y)Gr(y, x)Gr(x, e). To prove that Gr(e, e) almost satisfies a differen-

tial equation, we should relate those quantities. The next proposition gives such a
(crude) relation.

Proposition 3.2. There exists C > 0 such that, for all r ∈ [1, R),

C−1 �
∑

x,y Gr(e, y)Gr(y, x)Gr(x, e)

(
∑

x Gr(e, x)Gr(x, e))
3 � C.

Proof. Consider two points x, y. The triangle with vertices e, x, y is thin, so
there exists a point w (defined uniquely up to a finite set) that is close to each
of its sides. By the Ancona inequality, we have Gr(e, y) = Gr(w

−1, w−1y)�
CGr(w

−1, e)Gr(e, w
−1y), since a geodesic segment from w−1 to w−1y passes close

to e by construction. Similar estimates hold along [y, x] and [x, e], and we obtain

Gr(e, y)Gr(y, x)Gr(x, e)

�CGr(w
−1, e)Gr(e, w

−1) ·Gr(w
−1x, e)Gr(e, w

−1x) ·Gr(w
−1y, e)Gr(e, w

−1y).

The points w−1, w−1x, and w−1y determine x and y. Using the notation Hr and
summing over x and y, we get∑

x,y

Gr(e, y)Gr(y, x)Gr(x, e) � C
∑
a,b,c

Hr(e, a)Hr(e, b)Hr(e, c).

This is one of the inequalities of the proposition.
For the reverse inequality, for any u ∈ Γ, write B(u) for the set of points x such

that a geodesic from e to x passes close to u. Lemma 2.4 ensures that, for any z ∈ Γ,
there exists a uniformly bounded a such that uaz ∈ B(u). Harnack inequalities (2.2)
give Gr(e, z) � C(u)Gr(e, uaz) (and Hr satisfies the same inequality). Hence,∑

z∈Γ Hr(e, z) � C(u)
∑

v∈B(u) Hr(e, v). Choose now three geodesic segments γ1,
γ2, and γ3 (with endpoints denoted by u1, u2, u3), long enough and going in three
different directions (this is possible since the group is nonelementary) so that the
sets B(ui) are pairwise disjoint, and so that any geodesic from B(ui) to B(uj)
(i 	= j) has to pass close to e. We get(∑

z

Hr(e, z)

)3

� C(u1, u2, u3)
∑

vi∈B(ui)

Hr(e, v1)Hr(e, v2)Hr(e, v3).
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904 SÉBASTIEN GOUËZEL

By (2.4), we have Gr(v1, e)Gr(e, v2) � CGr(v1, v2), and similarly for circular per-
mutations. This sum is therefore bounded by

∑
Gr(v1, v2)Gr(v2, v3)Gr(v3, v1). Let

y = v−1
1 v2 and x = v−1

1 v3. The point close to the three sides of a geodesic triangle
with vertices e, x, and y is close to v−1

1 by construction; hence x and y determine
v1 (and then v2 and v3) up to a finite number of possibilities. We finally get(∑

z

Hr(e, z)

)3

� C
∑
x,y

Gr(e, y)Gr(y, x)Gr(x, e),

proving the other inequality of the lemma. �

Corollary 3.3. There exist A � 0 and C > 0 such that, for all r ∈ [1, R),

C−1√
A+ (R− r)

�
∑
x∈Γ

Hr(e, x) � C√
A+ (R− r)

.

Moreover, A = 0 if and only if
∑

x∈Γ HR(e, x) = +∞.

Proof. Let η(r) =
∑

x Hr(e, x), and F (r) = r2η(r). By (2.5),

F ′(r) = 2r
∑
x,y

Gr(e, y)Gr(y, x)Gr(x, e).

Therefore, Proposition 3.2 shows that 2F ′(r)/F (r)3 = (−1/F (r)2)′ is bounded from
above and below. Integrating this estimate on an interval [r, s], we get

C−1(s− r) � 1/F (r)2 − 1/F (s)2 � C(s− r).

When s increases to R, F (s) converges either to a positive constant or to infinity.
Hence, 1/F (s)2 converges to A ∈ [0,∞). We get A + C−1(R − r) � 1/F (r)2 �
A+ C(R− r), from which the corollary follows. �

We shall see later that A is in fact equal to 0. Therefore, this corollary gives the
right order of magnitude 1/

√
R− r for the function η(r) =

∑
x∈Γ Hr(e, x). However,

to obtain Theorem 3.1, we need to get asymptotics, of the form η(r) ∼ C/
√
R − r.

The strategy will be the same, relying on the differential equation, but we will need
to improve Proposition 3.2, to get convergence instead of mere bounds. This is
most conveniently done using the transfer operator on a Markov automaton, as we
will explain in the next subsection. Before doing this, let us state a final technical
lemma that relies on Corollary 3.3 and will be important later on.

Lemma 3.4. Fix a ∈ Γ. There exists C > 0 such that, for any x ∈ Γ, for any
r ∈ [1, R], ∣∣∣∣log

(
Gr(e, x)

Gr(a, x)

)
− log

(
GR(e, x)

GR(a, x)

)∣∣∣∣ � C
√
R − r

and ∣∣∣∣log
(
Gr(x, e)

Gr(x, a)

)
− log

(
GR(x, e)

GR(x, a)

)∣∣∣∣ � C
√
R− r.

Proof. The second estimate of the lemma can be deduced from the first one applied
to the measure μ̌(g) = μ(g−1). We will therefore concentrate on the first one.

Fix some x ∈ Γ. Let f(r) = log(Gr(e, x)/Gr(a, x)). We will show that its
derivative is bounded in absolute value by C/

√
A+R− r, where C is a constant

that does not depend on x (of course, it may depend on a). By integration, this
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gives |f(r)− f(R)| � C(
√
A+R− r −

√
A), which is bounded by C

√
R− r as

desired.
We write f(r) = log(rGr(e, x))− log(rGr(a, x)). With the formula (2.5) for the

derivative of rGr, we get

f ′(r) =

∑
y Gr(e, y)Gr(y, x)

rGr(e, x)
−

∑
y Gr(a, y)Gr(y, x)

rGr(a, x)

=
1

r

∑
y

(
1− Gr(a, y)/Gr(e, y)

Gr(a, x)/Gr(e, x)

)
Gr(e, y)Gr(y, x)

Gr(e, x)
.

Consider a geodesic segment γ from e to x and write γ(n) (0 � n � |x|) for the point
on γ at distance n of e. Let Γn denote the set of points y ∈ Γ whose projection on
γ is γ(n), i.e., d(y, γ(n)) � d(y, γ(i)) for i 	= n. Note that there can be several such
projections—in the following argument, the multiplicity is not important; otherwise
one can avoid it by using only the first projection. For y ∈ Γn, the points e, a and
x, y are in the configuration of Definition 2.8, with a separating distance at least
n− C (for some C depending only on a). Since μ satisfies strong uniform Ancona
inequalities by assumption, we obtain

|f ′(r)| � C

|x|∑
n=0

∑
y∈Γn

e−ρnGr(e, y)Gr(y, x)

Gr(e, x)
.

For y ∈ Γn, geodesics from e to y and from y to x pass close to γ(n). Hence, Ancona
inequalities give

Gr(e, y)Gr(y, x) � CGr(e, γ(n))Gr(γ(n), y)Gr(y, γ(n))Gr(γ(n), x)

� CGr(e, x)Hr(γ(n), y).

Finally,

|f ′(r)| � C

|x|∑
n=0

∑
y∈Γn

e−ρnHr(γ(n), y) � C

|x|∑
n=0

e−ρn
∑
y∈Γ

Hr(e, γ(n)
−1y).

Since
∑

z∈Γ Hr(e, z) � C/
√
A+R − r by Corollary 3.3 and e−ρn is summable, this

proves the lemma. �
3.2. Symbolic dynamics. For a nice introduction to the topics of this paragraph
and the next one, see [CF10].

Let S be a finite symmetric generating set of the group Γ. A rooted S-labeled
automaton (or simply automaton) is a finite directed graph A = (V,E, s∗) with
distinguished vertex s∗ (“start”), and a labeling α : E → S of edges by generators
of the group.

A path in the graph is a sequence of edges e0, . . . , em−1 such that the endpoint
of ei is the starting point of ei+1. To such a path γ, one can associate a path α(γ)
in the Cayley graph of Γ by multiplying successively the generators read along the
edges of the path. Let α∗(γ) be the endpoint of α(γ).

Definition 3.5. An automaton is a strongly Markov automatic structure for Γ if
(1) Every vertex v ∈ V is accessible from the start state s∗.
(2) For every path γ, the path α(γ) is a geodesic path in Γ.
(3) The endpoint mapping α∗ induced by α is a bijection of the set of paths

starting at s∗ onto Γ.
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906 SÉBASTIEN GOUËZEL

In particular, the sphere Sk of Γ is in bijection with the set of paths of length k
starting from s∗.

Every Gromov-hyperbolic group admits such a strongly Markov automatic struc-
ture, by a theorem of Cannon [Can84]. Let us fix once and for all such an automaton.
An infinite path in the graph A determines a semi-infinite geodesic in the group
starting from e, and therefore a point on the boundary at infinity. In this way, we
extend α∗ to a map from infinite paths to ∂Γ.

We will denote by Σ∗ the set of finite paths in the graph, by Σ the set of semi-
infinite paths, and Σ = Σ∗∪Σ. These sets are endowed with a metric d(ω, ω′) = 2−n

where n is the first time the paths ω and ω′ differ. With this metric, Σ∗ is a dense
open subset of the compact space Σ. The map α∗ is continuous from Σ to Γ ∪ ∂Γ.

Denote by Hβ the space of β-Hölder continuous functions on Σ. For 0 < β < β′,
one has the following basic inequality (which is true in any metric space):

(3.1) ‖f‖Hβ � 2 ‖f‖1−β/β′

C0 ‖f‖β/β
′

Hβ′ .

In particular, if a sequence of functions fn converges in C0 and remains bounded
in Hβ′

, then it converges in Hβ.
Note that a Hölder-continuous function on Σ∗ uniquely extends to a Hölder-

continuous function on Σ. Finally, let σ : Σ → Σ be the left shift, forgetting the
first edge of a path.

When a statement is true in all Hölder spaces Hβ for small enough β, we will
simply say that it is true in Hölder spaces, without specifying β. We will also write
‖f‖ for ‖f‖Hβ , unless the specific value of β is important.

The connectedness properties of the graph A will play an important role below.
A component of the automaton is a maximal subset of the set V of vertices in
which any vertex can be reached from any other vertex by a finite-length path.
The simplest case is when there is a single component of the graph with cardinality
bigger than 1: all nontrivial behavior takes place in this component. This is the case
for well-chosen automata for subgroups of PSL(2,R), but not for general hyperbolic
groups. Identifying points belonging to the same component, one obtains a new
directed graph, the components graph, in which there is no loop. This graph
encodes how different components interact.

3.3. Peripheral spectrum of transfer operators. Since the spectral description
of transfer operators is very classical, we will only sketch the proofs in this section,
referring to [PP90] for more details.

Consider a finite directed graph A, let Σ be the set of finite or infinite paths in
A, and let σ be the left shift. (If one is uncomfortable with the idea of considering
finite paths in the graph, one can equivalently add a cemetery to the graph, which
can be reached from any vertex, and extend a finite path by infinitely many steps
in the cemetery.) To any real-valued Hölder-continuous function ϕ : Σ → R (called
a potential), one associates the so-called transfer operator Lϕ, defined on the set of
Hölder-continuous functions by

Lϕf(ω) =
∑

σ(ω′)=ω

eϕ(ω
′)f(ω′),

where for ω = ∅ the empty path we consider only the nonempty preimages of
ω. The iterates of this operator encode a lot of information on the Birkhoff sums
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Snϕ(ω) =
∑n−1

j=0 ϕ(σjω) of the potential ϕ. For instance, one has

Ln
ϕ1(∅) =

∑
eSnϕ(ω),

where the sum is over all paths of length n.
In the case of hyperbolic groups, we will be interested in the asymptotics of such

sums, since for suitable potentials ϕr they correspond to the sum of Hr over the
sphere of radius n in Γ (this is one of the quantities we want to estimate precisely
to improve on Proposition 3.2). Such asymptotics can be read from the spectrum
of Lϕ that we now describe.

The simplest situation is when the graph is topologically mixing—i.e., one can
go from any vertex to any other vertex (one says that the graph is recurrent) and
for any a, b ∈ A, for any large enough n, there is a path of length exactly n from a
to b. In this case, the spectral description of Lϕ is very simple and is given by the
following theorem (called the Ruelle-Perron-Frobenius theorem).

Theorem 3.6. Assume A is topologically mixing. The operator Lϕ acting on the
space of Hölder-continuous functions has a unique eigenvalue of maximal modulus
denoted by ePr(ϕ), and the rest of its spectrum is contained in a disk of strictly
smaller radius. Moreover, the corresponding eigenfunction h (suitably normalized)
is strictly positive everywhere, and the eigenprojector is given by Πf =

(∫
f dλ

)
h

for some probability measure λ whose support is the set Σ of infinite paths. Finally,
the probability measure h dλ is invariant under σ and ergodic.

In other words, one has∥∥∥∥Ln
ϕf − enPr(ϕ)

(∫
f dλ

)
h

∥∥∥∥ � C ‖f‖ e−nεenPr(ϕ),

for some C > 0 and ε > 0. This is Theorem 2.2 in [PP90] (the statement there
is only given on Σ, but the proofs readily adapt to Σ). The real number Pr(ϕ) is
called the pressure of the potential ϕ.

Assume now that A is recurrent, but not mixing: there is a minimal period p > 1
such that any path from a vertex to itself has length np for some integer n. In this
case, the set V of vertices of A is a disjoint union

⊔p−1
j=0 Vj , where for any j ∈ Z/pZ

an outgoing edge of Vj is an ingoing edge of Vj+1 (we call this decomposition a cyclic
decomposition of V ). Denoting by Σj the set of paths beginning from a vertex in
Vj and the empty path, then σ maps Σj to Σj+1. Moreover, the restriction of σp

to any Σj is a topologically mixing subshift of finite type, to which Theorem 3.6
applies. This readily implies that the eigenvalues of maximal modulus of Lϕ are
of the form e2ikπ/pePr(ϕ) for some real number Pr(ϕ), they are all simple, and the
rest of the spectrum of Lϕ is contained in a disk of strictly smaller radius. More
specifically, there exist positive functions hj on Σj and probability measures λj

with support equal to Σj such that∥∥∥∥∥∥Ln
ϕf − enPr(ϕ)

p−1∑
j=0

(∫
f dλ(j−n mod p)

)
hj

∥∥∥∥∥∥ � C ‖f‖ e−nεenPr(ϕ).

Assume finally that A is not even recurrent. In this case, one can associate to
any component C the restriction of ϕ to paths staying in C and the corresponding
transfer operator LC. The previous description applies to LC : it has finitely many
eigenvalues of maximal modulus ePrC(ϕ), they are of the form e2ikπ/pCePrC(ϕ) for
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908 SÉBASTIEN GOUËZEL

some k ∈ Z/pCZ, and LC has a spectral gap. Let Pr(ϕ) be the maximum of PrC(ϕ)
over all components. We call a component maximal if PrC(ϕ) = Pr(ϕ). The
dominating terms in Ln

ϕ come from the maximal components. We will say that ϕ
is semisimple if there is no directed path from a maximal component to a different
maximal component. Otherwise, the eigenvalue ePr(ϕ) has nontrivial Jordan blocks,
which makes the precise spectral description more cumbersome.

Lemma 3.7. Consider some edge e0, and let k > 0 be such that there is a path from
e0 to successively k different maximal components. For any nonnegative function
f with f � 1 on the set of paths starting with e0, one has Ln

ϕf(∅) � Cnk−1enPr(ϕ).

In the semisimple case, the asymptotics of Ln
ϕ can be described as follows.

Theorem 3.8. Assume that ϕ is semisimple. Denote by C1, . . . , CI the maximal
components, with corresponding period pi, and consider for each i a cyclic de-
composition Ci =

⊔
j∈Z/piZ

Ci,j . There exist functions hi,j and measures λi,j with∫
hi,j dλi,j = 1 such that

(3.2)

∥∥∥∥∥∥Ln
ϕf − enPr(ϕ)

I∑
i=1

pi−1∑
j=0

(∫
f dλi,(j−n mod pi)

)
hi,j

∥∥∥∥∥∥ � C ‖f‖ e−nεenPr(ϕ).

The probability measures dμi = 1
pi

∑pi−1
j=0 hi,j dλi,j are invariant under σ and

ergodic.
Denote by C→,i,j the set of edges from which one can reach Ci,j with a path of

length in piN, and by Ci,j,→ the set of edges that can be reached from Ci,j by a
path of length in piN. The function hi,j is bounded from below on paths beginning
by an edge in Ci,j,→ (and the empty path) and vanishes elsewhere. The support of
the measure λi,j is the set of infinite paths beginning in C→,i,j with infinitely many
coordinates in Ci.

Proof of Lemma 3.7 and Theorem 3.8. The lemma and the theorem will follow from
the decomposition of L into parts coming from the various components, since this
decomposition is upper-triangular. Adding a constant to ϕ if necessary, we can
without loss of generality assume that Pr(ϕ) = 0.

It will be convenient to add one fake component to the components graph, cor-
responding to the empty word, that can be reached from any true component. For
any Hölder function f and any true component C, let fC(ω) = f(ω) if the begin-
ning of ω is in C, and fC(ω) = 0 otherwise. Let also f∅(ω) = f(∅) if ω = ∅, and
0 otherwise. We get a decomposition f =

∑
C fC (where C ranges among all com-

ponents), corresponding to a decomposition of the space H of Hölder functions as⊕
C HC . Denoting by ΠC the projection f �→ fC , we can split the operator L into

pieces LC′→C = ΠCLΠC′ , mapping functions supported on paths starting in C′ to
functions supported on paths starting in C. This gives a block decomposition of L
into positive operators, which is upper-triangular since the components graph has
no loop. It follows that one can read the spectrum of L from the spectrum of the
diagonal components LC→C (which we simply denote by LC).

Note that HC is not the space of Hölder functions defined on paths staying in
C (denoted by H̃C): a function in HC can also be nonzero on paths starting in C,
but exiting after some time. Nevertheless, one easily checks that the dominating
eigenvalue of LC→C coincides on HC and H̃C .
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Let us now give the details of the proof of Lemma 3.7. It can be written using the
above formalism, but it turns out to be simpler with respect to periodicity problems
to give a direct elementary proof (although the intuition to keep in mind is the above
one, of an upper-triangular matrix). We fix some paths u0, . . . , uk−1, connecting
successive maximal components C1, . . . , Ck, with u0 starting with the edge e0. We
can then form paths in the automaton of the form ω = (u0, v1, u1, . . . , uk−1, vk),
where the path vi is in Ci, starts at the end of ui−1, and ends at the beginning of ui

(except for vk, for which there is no condition on its end). Let f be a nonnegative
function with f � 1 on the set of paths starting with e0. We get

Ln
ϕf(∅) �

∑
ω

eSnϕ(ω),

where the sum is restricted to those ω as above of length n. For such an ω, we have
since ϕ is Hölder-continuous

Snϕ(ω) �
∑
i

S|vi|ϕ(vi, ui, vi+1, . . .)− C �
∑
i

S|vi|ϕ(vi)− C ′.

Hence, writing ai for |vi| and b for
∑

|ui|, we get

Ln
ϕf(∅) � e−C′ ∑

a1+···+ak=n−b

⎛
⎝ ∑

|v1|=a1

eSa1
ϕ(v1)

⎞
⎠ · · ·

⎛
⎝ ∑

|vk|=ak

eSak
ϕ(vk)

⎞
⎠ .

For i < k, denoting by pi the period of Ci, we restrict now to values qi of ai mod pi
so that there are trajectories of length ai from the end of ui−1 to the start of ui.
For such an ai, the spectral properties of the transfer operator restricted to Ci give∑

eSai
ϕ(vi) � Ceai Pr(ϕ) = C since Pr(ϕ) = 0. Summing over i, we obtain

Ln
ϕf(∅) � C

∑
a1+···+ak=n−b

∀i<k, ai=qi mod pi

1.

This grows at least like Cnk−1, proving the lemma.
Let us now prove Theorem 3.8. For f ∈ H, we decompose Lnf as

(3.3)
∑

τ=(C1→···→Ck)

∑
a1+···+ak=n−k+1

Lak

Ck
LCk−1→Ck

Lak−1

Ck−1
· · · La1

C1
f,

where the first sum is over all paths τ in the components graph. (Note that there
are finitely many such paths since there is no loop in the components graph.) If
such a path does not involve any maximal component, then the norm of each
factor La�

C�
is bounded by Ce−a�ε for some ε > 0, yielding a bound Ce−nε ‖f‖

for this contribution. On the other hand, if there is a maximal component, it
has to be unique by semisimplicity, say at the index i. Denote by pi the period
of Ci and by Ci =

⊔pi−1
j=0 Ci,j the cyclic decomposition of Ci. We have Lai

Ci
g =∑pi−1

j=0

(∫
g dλCi

j−ai mod pi

)
hCi
j + O(e−aiε ‖g‖) for any g ∈ HCi

, where the nonnega-

tive function hCi
j is supported on paths starting with a point in Ci,j , and the measure

λCi
j is supported on infinite paths staying in Ci and starting with a point in Ci,j . It

readily follows that the term in (3.3) corresponding to the path τ = (C1 → · · · → Ck)
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910 SÉBASTIEN GOUËZEL

gives a contribution
pi−1∑
j=0

(∫
f dλτ

j−n mod pi

)
hτ
j +O(e−nε ‖f‖),

where

hτ
j =

∑
ai+1+···+ak+k−i=0 mod pi

Lak

Ck
LCk−1→Ck

Lak−1

Ck−1
· · · LCi→Ci+1

hCi

j

[note that this series is well-defined since
∥∥Laj

Cj

∥∥ = O(e−ajε)] and

λτ
j =

∑
a1+···+ai−1+i=0 mod pi

(LCi−1→Ci
Lai−1

Ci−1
· · · La1

C1
)∗λCi

j ,

this series being again finite. The result follows by adding the contributions of all
such paths τ . �

We will need the following simple lemma later on.

Lemma 3.9. Under the assumptions of the above theorem, let βi =
∑

j λi,j . Then
σ∗βi is absolutely continuous with respect to βi.

Proof. The measures λi,j are constructed as eigenmeasures of the operator (L∗
ϕ)

pi .
More precisely, they satisfy L∗

ϕλi,j = ePr(ϕ)λi,(j−1 mod pi). In particular, L∗
ϕβi =

ePr(ϕ)βi.
Consider a cylinder [ω0, . . . , ωn], i.e., the set of paths that start with those sym-

bols. The function Lϕ1[ω0,...,ωn] is uniformly bounded on the image of this cylinder
under σ, i.e., [ω1, . . . , ωn], and it vanishes elsewhere. Hence,

βi([ω0, . . . , ωn]) = e−Pr(ϕ)L∗
ϕβi(1[ω0,...,ωn]) = e−Pr(ϕ)βi(Lϕ1[ω0,...,ωn])

� Cβi([ω1, . . . , ωn]).

Since σ−1([ω1, . . . , ωn]) is a finite union of cylinders of the form [ω0, . . . , ωn], we
obtain βi(σ

−1[ω1, . . . , ωn]) � Cβi([ω1, . . . , ωn]). As cylinders generate the topology,
it follows that βi(σ

−1A) � Cβi(A) for any measurable set A. �

Finally, we will need to describe what happens under perturbations of the po-
tential.

Proposition 3.10. Let ϕ ∈ Hβ be a semisimple Hölder potential, with maximal
components C1, . . . , CI and a spectral description as in Theorem 3.8. There exist
ε > 0 and C > 0 such that, for any ψ that is small enough in Hβ, there exist
functions hψ

i,j and measures λψ
i,j (with the same support as, respectively, hi,j and

λi,j) and numbers Pri(ϕ+ ψ) with∥∥∥∥∥∥Ln
ϕ+ψf −

I∑
i=1

enPri(ϕ+ψ)

pi−1∑
j=0

(∫
f dλψ

i,(j−n mod pi)

)
hψ
i,j

∥∥∥∥∥∥ � C ‖f‖ e−nεenPr(ϕ).

The maps ψ �→ Pri(ϕ+ ψ), ψ �→ hψ
i,j, and ψ �→ λψ

i,j are real analytic (in the norm
sense) from a small ball around 0 in Hβ to, respectively, R, Hβ and the dual of Hβ.
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LOCAL LIMIT THEOREM IN HYPERBOLIC GROUPS 911

Finally,

Pri(ϕ+ ψ) = Pr(ϕ) +

∫
ψ dμi +O(‖ψ‖2Hβ ),

where dμi =
1
pi

∑pi−1
j=0 hi,j dλi,j.

Proof. Let us first assume that the shift is topologically mixing. In this case, the
dominating eigenvalue ePr(ϕ) of Lϕ is simple. Simple isolated eigenvalues and the
corresponding eigenprojectors and eigenfunctions depend in an analytic way on the
operator, by classical perturbation theory [Kat66, Theorem VII.1.8]. Moreover, by
semicontinuity of the spectrum, the perturbed operators Lϕ+ψ also have a spectral
gap, uniformly in ψ close enough to 0. One gets

Ln
ϕ+ψf = enPr(ϕ+ψ)

(∫
f dλψ

)
hψ +O(e−nεenPr(ϕ))

for some Pr(ϕ + ψ), λψ, and hψ that depend analytically on ψ. This almost
completes the proof of the theorem in this case; it only remains to show that
Pr(ϕ + ψ) = Pr(ϕ) +

∫
ψh dλ + O(‖ψ‖2). By analyticity, it is sufficient to show

that the derivative of the pressure at 0 is given by the integral with respect to the
measure h dλ. This is [PP90, Proposition 4.10].

The topologically transitive case readily reduces to the mixing case by consider-
ing σp where p is the period.

In the general case, one obtains different pressures Pri(ϕ+ψ) on each component
Ci. On other components that were not maximal for ϕ, the pressure of ϕ+ψ remains
bounded away from Pr(ϕ). It follows that the maximal components of ϕ + ψ are
contained in those of ϕ if ψ is small enough. In particular, ϕ + ψ is semisimple,
and Pr(ϕ+ψ) = maxPri(ϕ+ψ). Finally, the spectral description of Lϕ+ψ follows
from the description on each component Ci separately. �

3.4. Transfer operators in hyperbolic groups. Let Γ be a nonelementary
Gromov-hyperbolic group, and μ a probability measure satisfying strong Ancona
inequalities. Consider a strongly Markov automatic structure for Γ, given by a
directed graph A = (V,E, s∗) and a labeling α : E → S of edges by generators of
the group. We will use freely the notations of Paragraph 3.2.

For r ∈ [1, R], let us define a potential ϕr on the set Σ∗ of finite paths in the
automaton by

ϕr(ω) = log

(
Hr(e, α∗(ω))

Hr(e, α∗(σω))

)
.

Consider a path ω = ω0 · · ·ωn−1 of length n. Then

eSnϕr(ω) =
Hr(e, α∗(ω0 · · ·ωn−1))

Hr(e, e)
.

Let E∗ be the set of edges starting from the vertex s∗ of the graph A, and let 1[E∗]

be the function equal to 1 on paths starting with an edge in E∗, and 0 elsewhere.
Using the language of transfer operators, we have

Hr(e, e) · Ln
ϕr
1[E∗](∅) = Hr(e, e)

∑
ω=ω0···ωn−1

eSnϕr(ω)1(ω0 ∈ E∗)

=
∑

Hr(e, α∗(ω0 · · ·ωn−1))1(ω0 ∈ E∗).
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Since α∗ induces a bijection between the paths of length n starting from s∗ and the
sphere Sn of radius n in Γ, we obtain∑

x∈Sn

Hr(e, x) = Hr(e, e)Ln
ϕr
1[E∗](∅).

Therefore, the spectrum of Lϕr
will give asymptotics for

∑
x∈Sn

Hr(e, x). To be
able to use the results of the previous paragraph, one should check that ϕr is
Hölder-continuous.

Lemma 3.11. There exists β > 0 such that, for any r ∈ [1, R], the function
ϕr is Hölder-continuous of exponent β on Σ∗. Therefore, it extends to a Hölder-
continuous function on Σ that we still denote by ϕr. It satisfies ‖ϕr‖Hβ � C,
uniformly in r ∈ [1, R]. Moreover,

(3.4) ‖ϕr − ϕR‖Hβ � C(R− r)1/3.

Proof. Consider two finite paths ω and ω′ with d(ω, ω′) = 2−n < 1; by defini-
tion they match up to length n � 1. In particular, ω0 = ω′

0. Let x = α∗(ω),
x′ = α∗(ω

′), and a = α∗(ω0), so that ϕr(ω) = log(Hr(e, x)/Hr(a, x)) and ϕr(ω
′) =

log(Hr(e, x
′)/Hr(a, x

′)). The points e, a and x, x′ are in the situation of strong An-
cona inequalities (Definition 2.8) with a separating distance n− 1. Since μ satisfies
strong uniform Ancona inequalities, it follows that |ϕr(ω)− ϕr(ω

′)| � Ce−ρn for
some ρ > 0. Hence, for some β′ > 0, ϕr belongs to Hβ′

and is uniformly bounded
in this space.

Lemma 3.4 implies that ‖ϕr − ϕR‖C0 � C(R−r)1/2. Together with the uniform
boundedness of ϕr in Hβ′

, this shows that ‖ϕr − ϕR‖Hβ � C(R−r)1/3 if β is small
enough, by (3.1).

Finally, we have proved all those inequalities on the space Σ∗ of finite paths.
Since Hölder-continuous functions on Σ∗ extend to Hölder-continuous functions on
Σ, the result follows. �

Remark 3.12. One could in fact show that ‖ϕr − ϕR‖Hβ � C(R−r)1/2 by mimick-
ing the proof of Lemma 3.4 at the level of Hölder exponents. Since this computation
is lengthy and (3.4) will be sufficient for our purposes, we omit it.

Lemma 3.13. We have Pr(ϕR) = 0. Moreover, ϕR is semisimple.

Proof. Suppose Pr(ϕR) < 0. Then Ln
ϕR

1[E∗] goes to zero exponentially fast in the
space of Hölder functions. In particular,

∑
x∈Sn

HR(e, x) = HR(e, e)Ln
ϕR

1[E∗](∅) is
exponentially small. One can use this estimate to prove that the series GR+ε(e, e)
converges for some ε > 0: this is the content of the proof of Proposition 7.1 in [GL13]
(the proof is written for symmetric measures, but it applies equally well in nonsym-
metric situations). This is a contradiction since, by definition, R is the radius of
convergence of the series Gr(e, e). Hence, Pr(ϕR) � 0.

If Pr(ϕR) were strictly positive, or Pr(ϕR) = 0 but ϕR were not semisimple, then
Lemma 3.7 would imply that Ln

ϕR
1[E∗](∅) would tend to infinity. This quantity is

equal to HR(e, e)
−1

∑
x∈Sn

HR(e, x). Since it remains bounded by Lemma 2.5, we
obtain a contradiction. �

One can now come back to Corollary 3.3. Since Pr(ϕR) = 0 and ϕR is semisimple,
Theorem 3.8 implies in particular that Ln

ϕR
1[E∗](∅) is bounded from below. Since
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it coincides with HR(e, e)
−1

∑
x∈Sn

HR(e, x), we get
∑

x∈Γ HR(e, x) = +∞. This
shows that the constant A in Corollary 3.3 vanishes, and therefore

(3.5)
C−1

√
R− r

�
∑
x∈Γ

Hr(e, x) � C√
R− r

.

Let us introduce a convenient notation: we will reserve the notation τ (r) (possi-
bly with some indices) for continuous functions of r taking values in (0,+∞) that
extend continuously up to r = R and are bounded away from zero.

We will now use the spectral perturbation given by Proposition 3.10 to study
Lϕr

. If r is close to R, then ϕr − ϕR is small in Hβ by Lemma 3.11. Applying the
proposition on spectral perturbation to the function f = 1[E∗], we get the following.
Let p be the least common multiple of the periods of the maximal components of
ϕR. For any q ∈ [0, p), one has [since Pr(ϕR) = 0]

Lnp+q
ϕr

1[E∗](∅) =
I∑

i=1

e(np+q) Pri(ϕr)τ0(q, i, r) +O(e−nε),

for some functions τ0(q, i, r) (as in the notation we introduced in the previous
paragraph). This is equal to Hr(e, e)

−1
∑

x∈Snp+q
Hr(e, x). Since

∑
x∈Γ Hr(e, x) <

∞, it follows in particular that Pri(ϕr) is strictly negative for all i.
Summing over n and q, we get∑

x∈Γ

Hr(e, x) = Hr(e, e)
∑
n,q

Lnp+q
ϕr

1[E∗](∅)

= Hr(e, e)

p−1∑
q=0

I∑
i=1

eq Pri(ϕr)

1− epPri(ϕr)
τ0(q, i, r) +O(1)

=

I∑
i=1

τ1(i, r)

|Pri(ϕr)|
+O(1),(3.6)

for some functions τ1(i, r).
By (3.5), |Pr(ϕr)| = infi |Pri(ϕr)| is comparable to

√
R− r. It will be important

to show that all the |Pri(ϕr)| are of the same order of magnitude: otherwise, some
components would not play a significant role for r < R while they would become
important at r = R, ruining the continuity properties we are seeking. This is the
main difference with the transitive situation, where there is only one eigenvalue to
consider.

Theorem 3.14. For any i ∈ [1, I], the ratio Pri(ϕr)/Pr(ϕr) tends to 1 when
r → R.

We will prove this theorem in the next subsection. It follows from this result
that

(3.7)
∑
x∈Γ

Hr(e, x) =
τ2(r)

|Pr(ϕr)|
+O(1).

Hence, the spectral data of Lϕr
are related to the function η(r) =

∑
x∈Γ Hr(e, x).
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914 SÉBASTIEN GOUËZEL

3.5. Pressure does not depend on the component. In this subsection, we
prove Theorem 3.14. We will in particular rely on the estimate ‖ϕr − ϕR‖Hβ �
C(R − r)1/3 from (3.4) that in turn was proved using the a priori estimates from
Lemma 3.4.

By Proposition 3.10, the variation of the pressure mainly depends on the integral∫
(ϕr − ϕR) dμi. We will show that this integral does not depend on i, using a

geometric argument in the group due to [CF10].
Fix some r ∈ [1, R]. For c ∈ R, we define a set U(c) ⊂ ∂Γ as the set of points ξ

such that, along some geodesic from e to ξ, logHr(e, x)/d(e, x) → c. Equivalently,
this convergence holds along any geodesic tending to ξ, and one can replace Hr(e, x)
with Hr(a, x) and d(e, x) with d(b, x) for any a, b ∈ Γ. Indeed, geodesics tending to
ξ remain within a bounded distance from each other, by [GdlH90, Proposition 7.2]
(therefore, by Harnack inequalities Hr varies by at most a multiplicative constant
when one changes geodesics), and the ratio Hr(e, x)/Hr(a, x) also remains bounded
from above and from below again by Harnack inequalities. In particular, U(c) is
invariant under the action of Γ: for any g ∈ Γ, g · U(c) = U(c).

Let ci =
∫
ϕr dμi, we will show that, for all i 	= i′, g · U(ci) intersects U(ci′) for

some g ∈ Γ. This will give U(ci) = U(ci′), and hence ci = ci′ as desired. To prove
this, we will show that the sets U(ci) all have positive measures for some measure
on ∂Γ that is ergodic under the action of Γ.

Let us first construct the measure. Let p be the least common multiple of the
periods pi, and fix q ∈ [0, p). It follows from the spectral description of LϕR

(Theorem 3.8) that, for any Hölder-continuous function f on Σ, Lnp+q
ϕR

f(∅) con-
verges when n → ∞. In turn, this convergence follows for any continuous func-
tion, by approximation (since the iterates of LϕR

on C0 remain bounded, since
Ln
ϕR

1 itself remains bounded). If f is a continuous function on Γ ∪ ∂Γ, then∑
x∈Sn

HR(e, x)f(x) = HR(e, e)Ln
ϕR

(1[E∗] · f ◦ α∗)(∅), and f ◦ α∗ is continuous.
Let us define a measure mn supported on Sn by mn =

∑
x∈Sn

HR(e, x)δx; this
shows that the sequence of measures mnp+q converges to a limiting measure (which
is supported on ∂Γ and has mass bounded from above and from below). We deduce
that the measures (

∑N
1 mn)/(

∑N
1 mn(Γ)) converge to a probability measure on ∂Γ,

which we denote by νR. It also follows that this measure can be constructed using
the Patterson-Sullivan technique: the measures

θs =
∑
x∈Γ

HR(e, x)e
−s|x|δx/

∑
x∈Γ

HR(e, x)e
−s|x|

are well-defined for s > 0, and they converge when s tends to 0 toward νR.
For g ∈ Γ, let us denote by Lg the left multiplication by Γ. Then, for any x ∈ Γ,

(Lg)∗θs(x) = θs(g
−1x) =

HR(e, g
−1x)

HR(e, x)
e−s(|g−1x|−|x|)θs(x)

= K̃x(g)e
−s(|g−1x|−|x|)θs(x),

where K̃x(g) = HR(g, x)/HR(e, x) is the Martin Kernel associated to HR. When x

tends to a point ξ ∈ ∂Γ, this quantity converges to a limit denoted by K̃ξ(g). Since∣∣g−1x
∣∣− |x| is uniformly bounded when x varies in Γ, we deduce letting s tend to

0 that

(3.8)
d(Lg)∗νR

dνR
(ξ) = K̃ξ(g).
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Following the classical arguments of Patterson-Sullivan (due in this context
to [Coo93] and [BHM11]), we deduce the following.

Proposition 3.15. The measure νR is ergodic for the action of Γ.

Proof. We want to apply the results of [Coo93] and [BHM11] saying that a Patterson-
Sullivan measure is ergodic. Thus, we should interpret the function K̃ξ(g) in (3.8) as
the exponential of a Busemann cocycle. As K̃ξ(g) is the limit of HR(g, x)/HR(e, x),
the function log K̃ξ would be the Busemann cocycle associated to a distance d̃

if HR(x, y) = Ce−d̃(x,y), for some constant C. Let us therefore set d̃(x, y) =
− log(FR(x, y)FR(y, x)), where FR is the first visit Green function. We should show
that d̃ is a distance, that it is equivalent to d, and that it is hyperbolic, to be able
to apply the results of [Coo93] and [BHM11].

The subadditivity (2.3) of FR shows that d̃ satisfies the triangular inequality.
For x 	= y, considering n concatenations of paths from x to y then to x, one gets

GR(x, x) �
∞∑

n=0

(FR(x, y)FR(y, x))
n.

Since GR(x, x) is finite, this shows that FR(x, y)FR(y, x) < 1. Hence, d̃ is a distance.
It is a variant of the Green distance studied in [BHM11].

The quantity GR(e, e), which is finite, equals
∑

γ wR(γ) [where the sum is over
all paths from e to itself, and the notation wR(γ) for the R-weight of a path γ has
been introduced in Subsection 2.1]. Excluding finitely many paths, one can make
the remaining sum arbitrarily small. If x is not on one of those finitely many paths,
then FR(e, x)FR(x, e) is bounded by the remaining sum and is therefore arbitrarily
small. This shows that d̃(e, x) tends to infinity when x → ∞ in Γ.

Since GR (or, equivalently, FR) satisfies Ancona inequalities, there exists D > 0

such that d̃(x, z) � d̃(x, y) + d̃(y, z)−D whenever x, y, z are on a geodesic segment
in this order. Let L be such that d̃(e, x) � 2D for |x| � L. By induction, this
implies that d̃(e, x) � (n+ 1)D for |x| � nL. In particular, there exists a constant
C > 0 such that, for all x, d̃(e, x) � C−1 |x|. By Harnack inequalities (2.2), we
also have d̃(e, x) � C |x|. This shows that the distance d̃ is equivalent to the word
distance d.

The word distance is hyperbolic. It does not immediately follow that d̃ is hy-
perbolic, since the metric space (Γ, d̃) is usually not geodesic (while the invariance
of hyperbolicity under quasi-isometries requires such an assumption). However,
[BHM11] proves that if Ancona inequalities hold, then d̃ is hyperbolic (the proof
given in their Theorem 1.1 is for the usual Green metric, but it applies verbatim in
our setting).

Finally, we can apply the results of Paragraphs 2.2 and 2.3 in [BHM11]. Equa-
tion (3.8) shows that νR is quasiconformal for a distance at infinity coming from
the hyperbolic distance d̃ on Γ. Therefore, [BHM11, Theorem 2.7] implies that νR
is ergodic. �

Proposition 3.16. For i 	= i′, one has
∫
ϕr dμi =

∫
ϕr dμi′ .

Proof. The limit of Lnp+q
ϕR

f(∅) is given by
∑I

i=1

∑pi−1
j=0

(∫
f dλi,(j−q mod pi)

)
hi,j(∅).

Since hi,j(∅) is bounded from above and from below, we deduce that νR is equivalent
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to the push-forward under α∗ of the measure
∑

i,j λi,j restricted to the set of paths
beginning with an edge in E∗.

The probability measure dμi =
1
pi

∑pi−1
j=0 hi,j dλi,j is invariant and ergodic for the

left shift σ. Let Oi ⊂ Σ denote the set of points such that the normalized Birkhoff
sums Snf/n converge to

∫
f dμi for any continuous function f . By the Birkhoff

ergodic theorem, μi(Oi) = 1. Since μi is equivalent to βi =
∑

j λi,j restricted to
the set Σi of paths staying in the component Ci, we get βi(O

c
i ∩Σi) = 0 (where Oc

i

denotes the complement of Oi). We deduce that

(3.9) βi(O
c
i ) = 0.

Otherwise, since βi almost every point ends up in Σi after finitely many iterations,
we would have βi(O

c
i ∩ σ−kΣi) > 0 for some k � 0; hence βi(σ

−k(σkOc
i ∩ Σi)) > 0.

Since σk
∗βi is absolutely continuous with respect to βi by Lemma 3.9, and σkOc

i ⊂
Oc

i , this gives βi(O
c
i ∩ Σi) > 0, a contradiction.

Let us now show that

(3.10) νR(α∗(Oi ∩ [E∗])) > 0,

where Oi ∩ [E∗] denotes the set of paths in Oi beginning with an edge in E∗.
Otherwise, since the image of βi(· ∩ [E∗]) is absolutely continuous with respect
to νR, we would get (α∗βi)(α∗(Oi ∩ [E∗])) = 0; hence βi(Oi ∩ [E∗]) = 0. Since
βi(O

c
i ) = 0 by (3.9), we get βi([E∗]) = 0. This is a contradiction since Theorem 3.8

shows that βi gives positive weight to [E∗].
Consider now ω ∈ Oi ∩ [E∗], and let ξ = α∗(ω) ∈ ∂Γ. The path α(ω) is a

geodesic converging to ξ. In particular, denoting by ω̄n the beginning of ω of
length n, xn = α∗(ω̄n) is a sequence of points converging to ξ along a geodesic ray.
Moreover,

logHr(e, xn) = Snϕr(ω̄n) + logHr(e, e).

Since ϕr is Hölder-continuous, Snϕr(ω̄n) − Snϕr(ω) remains uniformly bounded.
Hence, logHr(e, xn)/n = Snϕr(ω)/n+ o(1) tends to ci =

∫
ϕr dμi by definition of

Oi. This shows that ξ ∈ U(ci). Therefore, α∗(Oi ∩ [E∗]) ⊂ U(ci). With (3.10), this
gives νR(U(ci)) > 0.

Since νR is ergodic for the action of Γ by Proposition 3.15, and the sets U(c) are
Γ-invariant, we deduce that U(ci) has full measure. Therefore, all those sets have
to coincide. �

Proof of Theorem 3.14. By Proposition 3.10, the pressure Pri(ϕr) on the compo-
nent Ci is equal to

∫
(ϕr −ϕR) dμi+O(‖ϕr − ϕR‖)2. The integral does not depend

on i, by Proposition 3.16. Considering i′ such that the pressure is maximal, we
obtain

Pri(ϕr) = Pr(ϕr) +O(‖ϕr − ϕR‖)2.
Moreover, by (3.5) and (3.6), the ratio between Pr(ϕr) and −

√
R− r is bounded

from above and below. Since ‖ϕr − ϕR‖2 = O(R−r)2/3 by Lemma 3.11, we obtain
Pri(ϕr) = Pr(ϕr) + o(Pr(ϕr)). This concludes the proof. �

3.6. Estimating the second derivative of the Green function. To improve
on Proposition 3.2, one should get asymptotics for

∑
x,y Gr(e, y)Gr(y, x)Gr(x, e)

in terms of η(r) =
∑

Gr(e, x)Gr(x, e) =
∑

Hr(e, x) or, equivalently, in terms of
Pr(ϕr).
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Proposition 3.17. One has when r → R

(3.11)
∑
x,y

Gr(e, y)Gr(y, x)Gr(x, e) = c(r)η(r)3 +O(η(r)2),

for some nonnegative function c(r) that extends continuously to r = R.

This subsection is devoted to the proof of this proposition. We will need to
express things in terms of transfer operators on the symbolic space. Let

(3.12) Φr(x) =

∑
y Gr(e, y)Gr(y, x)

Gr(e, x)
,

and define for r < R a probability measure νr on Γ by

(3.13)
∫

f dνr =

∑
x∈Γ Hr(e, x)f(x)∑

x∈Γ Hr(e, x)
.

The sum in (3.11) is equal to

η(r)

∫
Φr dνr.

To estimate it, we should understand Φr and νr.

Proposition 3.18. When r → R, the sequence of probability measures νr on the
compact space Γ ∪ ∂Γ converges weakly to a probability measure νR, which is sup-
ported on ∂Γ.

Proof. If νr converges weakly, then the limiting measure can give no weight to Γ,
since νr(x) = Hr(e, x)/

∑
y∈Γ Hr(e, y) tends to 0 by (3.5).

Therefore, we just have to prove the convergence of νr(f) for any continuous
function, or even for f in a dense set of functions. We will consider those f such
that the function f̃ defined on Σ∗ by f̃(ω) = f(α∗(ω)) belongs to Hβ . For such a
function, we have∑

x∈Γ

Hr(e, x)f(x) = Hr(e, e)
∑
n∈N

Ln
ϕr
(1[E∗]f̃)(∅).

Using the spectral description of Proposition 3.10, we deduce that this can be
written as

I∑
i=1

cf̃ (i, r)/ |Pri(ϕr)|+O(1),

as in (3.6), for some functions cf̃ (i, r) that extend continuously up to r = R. There-
fore, by (3.7),

νr(f) =

∑I
i=1 cf̃ (i, r)/ |Pri(ϕr)|+O(1)

τ2(r)/ |Pr(ϕr)|+O(1)
.

Since all the quantities |Pri(ϕr)| are asymptotic to |Pr(ϕr)| by Theorem 3.14 and
tend to 0, this converges when r tends to R, to

∑I
i=1 cf̃ (i, R)/τ2(R). �

Remark 3.19. One can easily check that the measure νR in Proposition 3.18 is
the same as the measure we constructed in Subsection 3.5 and was already denoted
by νR. This will have no importance for our purposes.

To estimate Φr [defined in (3.12)], let us first note the following estimate.

Lemma 3.20. We have
Φr(x) � C(1 + |x|)η(r).
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918 SÉBASTIEN GOUËZEL

Proof. The proof relies on the same argument as Lemma 3.4. Denote by γ a geodesic
segment from e to x, and by Γn (for 0 � n � |x|) the set of points whose first
projection on γ is the point γ(n), at distance n of e. For y ∈ Γn, one has by
Ancona inequalities

Gr(e, y)Gr(y, x) � CGr(e, γ(n))Gr(γ(n), y)Gr(y, γ(n))Gr(γ(n), x)

� CHr(γ(n), y)Gr(e, x).

Therefore,

Φr(x) =

|x|∑
n=0

∑
y∈Γn

Gr(e, y)Gr(y, x)

Gr(e, x)
� C

|x|∑
n=0

∑
y∈Γn

Hr(γ(n), y) � C(|x|+ 1)η(r). �

To obtain a convergence instead of bounds, we will use a similar argument, but
we will need to replace the wild sets Γn by a nicer version given by partitions of
unity, as in Lemma 8.5 of [GL13] (that we recall for the convenience of the reader).

Lemma 3.21. For K large enough, we can associate to any geodesic segment γ in
the Cayley graph of length 2K +1 centered around e a function κγ : Γ → [0, 1] with
the following properties:

(1) The function κγ extends continuously to Γ ∪ ∂Γ.
(2) Let πγ(y) be the set of points on γ that are closest to y ∈ Γ. Then κγ(y) = 0

if πγ(y) contains a point at distance � K/4 of e.
(3) Let γ′ be any bi-infinite geodesic passing through e. Adding the functions κγ

along the subsegments of γ′ of length 2K+1 one gets the function identically
equal to 1. More formally, for all y ∈ Γ,

(3.14)
∑
n∈Z

κγ′(n)−1γ′[n−K,n+K](γ
′(n)−1y) = 1.

Let us now define for r ∈ [1, R) a function Ψr on geodesic segments γ through
e, as follows. Let a and b be the endpoints of γ. If d(e, a) � K or d(e, b) � K, let
Ψr(γ) = 0. Otherwise, let

Ψr(γ) = η(r)−1
∑
y∈Γ

κγ[−K,K](y)Gr(a, y)Gr(y, b)/Gr(a, b).

Consider a geodesic segment γ from e to a point x, and denote by σnγ the shifted
segment, i.e., γ(n)−1γ. Then we have

(3.15) Φr(x) = η(r)

|x|∑
n=0

Ψr(σ
nγ) +O(η(r)).

Indeed, by (3.14), when one adds all the quantities Ψr(σ
nγ), one counts every point

in the group with a coefficient 1, except those whose projection on γ is close to e
or x. They contribute to the sum by an amount at most Cη(r), as explained in the
proof of Lemma 3.20.

Lemma 3.22. The functions Ψr are uniformly bounded and Hölder-continuous for
r ∈ [1, R). They converge uniformly when r tends to R.

By Hölder-continuous, we mean that, if two geodesics γ and γ′ coincide on a ball
of size n around e, then |Ψr(γ)−Ψr(γ

′)| � Ce−ρn for some ρ > 0.
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Proof. This is essentially Lemma 8.6 in [GL13]. The uniform Hölder continuity is
proved there and relies uniquely on strong Ancona inequalities. On the other hand,
the proof of the convergence when r → R has to be modified slightly due to the
presence of several maximal components.

Since the functions Ψr are uniformly Hölder-continuous, it is sufficient to show
that they converge simply to get uniform convergence. Fix some geodesic segment
γ through e, with endpoints a and b at distance at least K of e. We have

Gr(a, b)Ψr(γ) =
1

η(r)

∑
y∈Γ

κγ[−K,K](y)
Gr(a, y)Gr(y, b)

Gr(e, y)Gr(y, e)
Hr(e, y) =

∫
fr(y) dνr,

where fr(y) = κγ[−K,K](y)
Gr(a,y)Gr(y,b)
Gr(e,y)Gr(y,e)

. This is a function on Γ that extends
continuously to ∂Γ by the strong Ancona inequalities (and since κγ[−K,K] is contin-
uous). Moreover, fr converges uniformly to a function fR when r tends to R, by
Lemma 3.4. Since νr converges weakly by Proposition 3.18, it follows that

∫
fr dνr

converges. �

Lemma 3.23. There exists a family of functions hr on Σ for r ∈ [1, R) with the
following properties:

(1) The functions hr are Hölder-continuous, and they converge in the Hölder
topology to a function hR when r → R.

(2) For any ω ∈ Σ∗ of length n,

(3.16) Φr(α∗(ω)) = η(r)Snhr(ω) +O(η(r)).

We recall that Snhr is the Birkhoff sum
∑n−1

k=0 hr ◦ σk.

Proof. We will need to work with the bilateral shift σZ on the space ΣZ of bilateral
paths in the automaton (that may be infinite in zero, one, or both directions). We
define a function gr on the set Σ∗

Z
of finite paths by gr(ω) = 0 if the length of ω

in the future or in the past is less than K, and gr(ω) = Ψr(α(ω)) otherwise, where
α(ω) is the geodesic segment going through

. . . , α(ω−1)
−1α(ω−2)

−1, α(ω−1)
−1, e, α(ω0), α(ω0)α(ω1), . . . .

Lemma 3.22 ensures that the functions gr are Hölder-continuous and that they
converge uniformly when r tends to R. By (3.1), they also converge in some Hölder
topology. Moreover, they extend to Hölder-continuous functions on ΣZ.

Consider now a finite path ω in Σ∗, of length n. One may consider it as a path
in Σ∗

Z
with empty coordinates for negative time. Equation (3.15) reads

Φr(α∗(ω)) = η(r)
n∑

k=0

gr(σ
k
Zω) +O(η(r)).

This is almost the required property, but the function gr is defined on the bilat-
eral shift instead of the unilateral shift as desired. This problem is solved using a
classical coboundary trick: for any Hölder-continuous function g on ΣZ, there exist
two Hölder-continuous functions h and u on ΣZ (for a smaller Hölder exponent)
such that g = h+u−u◦σZ, and h depends only on positive coordinates. Moreover,
h and u depend linearly (and continuously) on g. This is Proposition 1.2 in [PP90].
The proof is given there for subshifts where one only allows infinite paths, but it
readily adapts to the situation where finite paths are allowed (or one can reduce to

Licensed to Universite de Rennes I. Prepared on Fri May 23 11:34:01 EDT 2014 for download from IP 129.20.39.135.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



920 SÉBASTIEN GOUËZEL

the infinite paths situation by adding two cemeteries, one for the past and one for
the future).

Writing gr = hr + ur − ur ◦ σZ as above, we obtain

Φr(α∗(ω)) = η(r)

n∑
k=0

hr(σ
k
Zω) + η(r)(ur(ω)− ur(σ

n+1
Z

ω)) +O(η(r)).

Since ur is uniformly bounded, this is the desired decomposition. �

Proof of Proposition 3.17. The sum in (3.11) can be written as
∑

x∈Γ Hr(e, x)Φr(x).
Since α∗ induces a bijection between the finite paths in the automaton starting
from s∗ and the group, this is equal to

∑
Hr(e, α∗(ω))Φr(α∗(ω)), where the sum

is restricted to those paths with ω0 ∈ E∗.
Consider now, in this sum, the contribution of paths of length n. By definition

of the transfer operator Lϕr
, it is equal to Hr(e, e)Ln

ϕr
(1[E∗] ·Φr ◦α∗)(∅). Using the

decomposition (3.16) for Φr ◦ α∗, we get∑
x,y∈Γ

Gr(e, y)Gr(y, x)Gr(x, e) = η(r)
∑
n∈N

Ln
ϕr
(1[E∗]Snhr +O(1))(∅).

The contribution of the error term O(1) in this equation is bounded by

η(r)
∑∥∥Ln

ϕr
1
∥∥ � Cη(r)/ |Pr(ϕr)| � Cη(r)2.

It is therefore compatible with the error term in the statement of Proposition 3.17.
Since Lϕr

(u ·v◦σ) = vLϕr
u, we have Ln

ϕr
(1[E∗]Snhr) =

∑n
k=1 Lk

ϕr
(hrLn−k

ϕr
1[E∗]).

Therefore, the previous equation becomes

η(r)
∞∑
n=0

n∑
k=1

Lk
ϕr
(hrLn−k

ϕr
1[E∗])(∅) +O(η(r)2)

= η(r)

∞∑
k=1

Lk
ϕr

(
hr

∞∑
�=0

L�
ϕr
1[E∗]

)
(∅) +O(η(r)2).

Using the spectral description of Proposition 3.10, one can write

∞∑
�=0

L�
ϕr
1[E∗] =

I∑
i=1

fi,r/ |Pri(ϕr)|+O(1),

for some Hölder-continuous functions fi,r that converge when r tends to R. Again,
the O(1) results in an error O(η(r)2) in the final formula. It remains to understand∑∞

k=1 Lk
ϕr
(hrfi,r). Using again the spectral description of Lϕr

, one may write it
as

∑I
j=1 gi,j,r/ |Prj(ϕr)| for some Hölder-continuous functions gi,j,r that depend

continuously on r. Finally, we have obtained

∑
x,y∈Γ

Gr(e, y)Gr(y, x)Gr(x, e) = η(r)

I∑
i=1

I∑
j=1

gi,j,r(∅)
|Pri(ϕr)| |Prj(ϕr)|

+O(η(r)2).

By Theorem 3.14 and (3.7), |Pri(ϕr)| is asymptotic to τ2(r)/η(r) for some contin-
uous function τ2 that admits a positive limit at r = R. Since all the quantities
gi,j,r(∅) converge when r tends to R, the proposition follows. �
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3.7. Asymptotics of the Green function. In this subsection, we prove The-
orem 3.1. We rely on the asymptotics for

∑
Gr(e, y)Gr(y, x)Gr(x, e) that were

obtained in Proposition 3.17 and the differential equation for Gr(e, e).
More precisely, define as in the proof of Corollary 3.3 a function F (r) = r2η(r), so

that F ′(r) = 2r
∑

x,y Gr(e, y)Gr(y, x)Gr(x, e). By Proposition 3.17, 2F ′(r)/F (r)3

converges to a constant c when r tends to R. By Proposition 3.2, c is nonzero. By
integration, it follows that 1/F (r)2 − 1/F (R)2 ∼ c(R− r). Since F (R) = +∞, we
get F (r) ∼ c−1/2(R− r)−1/2. This proves the desired asymptotics of ∂Gr(e, e)/∂r.

Fix now a point a ∈ Γ, and let us compute the asymptotics of ∂Gr(e, a)/∂r or,
equivalently, of

∑
x Gr(e, x)Gr(x, a). We write this sum as∑

x

Hr(e, x)
Gr(x, a)

Gr(x, e)
= η(r)

∫
Γ

fr dνr,

where fr(x) = Gr(x, a)/Gr(x, e) and the measure νr has been defined in (3.13). The
functions fr extend continuously to Γ ∪ ∂Γ by the strong Ancona inequalities and
converge uniformly when r tends to R, by Lemma 3.4. Since νr converges weakly
when r → R by Proposition 3.18, we deduce that

∫
fr dνr converges. Therefore,

the asymptotics of ∂Gr(e, a)/∂r follow from those of η(r). �

4. Asymptotics of transition probabilities

Theorem 1.1 follows directly from the asymptotics of the Green function proved
in Theorem 3.1 and from Theorem 9.1 in [GL13]: this theorem shows that, for
symmetric measures, one can read the behavior of transition probabilities from the
behavior of the Green function.

Let us explain quickly why symmetry matters. The Green function is Gr(x, y) =∑
rnpn(x, y), and its derivative is

∑
nrn−1pn(x, y). If ∂Gr(x, y)/∂r ∼ C(R −

r)−1/2, it follows from Karamata’s tauberian theorem that
n∑

k=1

kRkpk(x, y) ∼ C ′n1/2.

This is a local limit theorem in Cesaro average. If Rnpn(x, y) were monotone, the
desired asymptotics of pn(x, y) would follow readily. Symmetry is used to obtain
almost monotonicity: up to an exponentially small error (that does not matter in
the estimates), Rnpn(x, y) is indeed decreasing when the random walk is aperiodic
and the measure is symmetric. This is a consequence of spectral results for the
(self-adjoint) Markov operator associated to the random walk.

From Theorem 1.1, one can also derive asymptotics for the first return proba-
bilities. We describe the result in the aperiodic case; the periodic one is handled
similarly by looking at μ2.

Proposition 4.1. Consider a probability measure μ on a countable group Γ such
that the associated transition probabilities satisfy pn(x, y) ∼ C(x, y)R−nn−β for
some R � 1 and β > 1. Let fn(x, y) be the first visit probabilities from x to y at
time n, i.e.,

fn(x, y) = Px(X1, . . . , Xn−1 	= y,Xn = y).

Then fn(x, y) ∼ C ′(x, y)R−nn−β for some constants C ′(x, y).

For the proof, we will mainly rely on the following theorem [CNW73, Theorem 1].
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Theorem 4.2. Consider a function A(z) =
∑∞

n=0 anz
n with an � 0 and an ∼

cR−nn−β with β > 1. Consider also a function Φ that is analytic on a neighborhood
of {A(z) : |z| � R}. Then the coefficients bn of the series expansion Φ(A(z)) =∑

bnz
n satisfy

bn ∼ anΦ
′
(∑

anR
n
)
.

Proof of Proposition 4.1. Decomposing a path from e to itself into successive ex-
cursions, one gets the renewal equation

(4.1)
∞∑

n=0

pn(e, e)z
n =

1

1−
∑∞

n=1 fn(e, e)z
n
.

Since
∑

pn(e, e)R
n = GR(e, e) < ∞, one deduces

∑
fn(e, e)R

n < 1. Therefore,
1 −

∑
fn(e, e)z

n does not vanish for |z| � R, and
∑

pn(e, e)z
n is well-defined and

nonzero for any such z. From (4.1), one gets∑
fn(e, e)z

n = 1− 1/
(∑

pn(e, e)z
n
)
= Φ

(∑
pn(e, e)z

n
)
,

where we set Φ(t) = 1−1/t. Since pn(e, e) ∼ CR−nn−β, we may apply Theorem 4.2
to obtain fn(e, e) ∼ C ′R−nn−β.

For x 	= y, one has
∑

pn(x, y)z
n = (

∑
fn(x, y)z

n)·(
∑

pn(e, e)z
n). The functions∑

pn(x, y)z
n and 1/

∑
pn(e, e)z

n both have coefficients that are asymptotic to a
constant times R−nn−β. Since the set of all functions with this property is closed
under multiplication (see [CNW73, Lemma 1]), we get fn(x, y) ∼ C ′(x, y)R−nn−β

as desired. �

Appendix A. Ancona inequalities for surface groups

In this appendix, we prove Ancona inequalities for surface groups without any
symmetry assumption on the measure.

Theorem A.1. Let Γ be a cocompact Fuchsian group, i.e., a cocompact discrete
subgroup of PSL(2,R). Let μ be an admissible finitely supported probability measure
on Γ. Then it satisfies strong uniform Ancona inequalities.

This theorem has several corollaries.

Corollary A.2. Under the assumptions of the theorem, the Martin boundary for
R-harmonic functions coincides with the geometric boundary of the group, i.e., the
unit circle S1.

Corollary A.3. Under the assumptions of the theorem, for any x, y ∈ Γ, there
exists C(x, y) > 0 such that

∑n
k=1 kR

kpk(x, y) ∼ C(x, y)n1/2.

The first corollary is a classical consequence of Ancona inequalities. For the
second corollary, we rely on Section 3 (or on [GL13], since the Cannon automaton
is transitive) to deduce that the Green function satisfies ∂Gr(x, y)/∂r ∼ C(x, y)/√
R− r when r tends to R. Using Karamata’s tauberian theorem, this readily

implies the statement of the corollary (see the arguments in Section 4). Note that
we are unable to deduce the true local limit theorem from this estimate since we
do not know if Rnpn(x, y) is decreasing, or sufficiently well approximated by a
decreasing sequence, as in the symmetric situation.
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The strong uniform Ancona inequalities of Theorem A.1 are a consequence of
estimates for the weight of paths avoiding a ball, given in the following proposition,
and of Lemma 2.7.

Proposition A.4. Let Γ be a cocompact Fuchsian group in PSL(2,R). Let μ be an
admissible finitely supported probability measure on Γ. For any K > 0, there exists
n0 > 0 such that, for any n � n0, for any points x, y, z on a geodesic segment (in
this order) with d(x, y) ∈ [n, 100n] and d(y, z) ∈ [n, 100n],

GR(x, z;B(y, n)c) � K−n.

The rest of this section is devoted to the proof of the proposition. The main
tool in this proof is superadditivity (as in Lemma 2.6, which relies on Lemma 2.5).
This time, it is in the form of Kingman’s subadditive ergodic theorem, or rather a
bilateral version of this theorem that we now give.

Theorem A.5. Let T : Ω → Ω be an ergodic probability preserving invertible
automorphism of a probability space (Ω,P). Consider for each bounded interval
I ⊂ Z an integrable function ΦI : Ω → R with the following properties:

(1) If I is the disjoint union of two intervals I1 and I2, then ΦI(ω) � ΦI1(ω)+
ΦI2(ω).

(2) One has Φ[m,n](ω) = Φ[m−1,n−1](Tω).
(3) The quantity n−1

∫
Φ[0,n)(ω) dP(ω) is bounded from below.

Then, for almost every ω, the quantity (m+n)−1Φ[−m,n)(ω) converges when m+n →
∞ (and m,n � 0) toward inf n−1

∫
Φ[0,n)(ω) dP(ω) = limn−1

∫
Φ[0,n)(ω) dP(ω).

Proof. Let Ψn(ω) = Φ[0,n)(ω). The assumptions give, for any m,n � 0,

Ψm+n(ω) = Φ[0,m+n)(ω) � Φ[0,n)(ω) + Φ[n,n+m)(ω) = Φ[0,n)(ω) + Φ[0,m)(T
nω)

= Ψn(ω) + Ψm(Tnω).

This shows that Ψn is a subadditive cocycle in the usual sense of Kingman’s
ergodic theorem (see for instance [Kre85, Theorem I.5.3]). Therefore, n−1Ψn

converges almost surely and in L1 to the limit c = inf n−1
∫
Φ[0,n)(ω) dP(ω) =

limn−1
∫
Φ[0,n)(ω) dP(ω).

In the same way, Φ[−n,−1](ω) is a subadditive cocycle for the transformation T−1.
Hence, n−1Φ[−n,−1](ω) converges almost surely to limn−1

∫
Φ[−n,−1](ω) dP(ω).

Changing variables by ω′ = T−nω, this integral is equal to
∫
Φ[0,n)(ω

′) dP(ω′).
Therefore, the limit is again c.

Consider now a generic point ω, and m,n � 0. We want to show that if m+ n
is large, then (m + n)−1Φ[−m,n)(ω) is close to c. We will do so if m is large. The
case n large is handled similarly. Let ε > 0 be small. Since j−1Φ[0,j)(ω

′) converges
almost everywhere to c, it converges uniformly on a set A of a measure arbitrarily
close to 1. In particular, there exists N such that, for all j � N and for all ω′ ∈ A,
one has j−1Φ[0,j)(ω

′) ∈ [c − ε, c + ε]. Since ω is generic and P(A) is very close to
1, the orbit of ω spends a very large proportion of its time in A. In particular, one
may find for every large enough m an integer k ∈ [m + εm,m + 2εm] such that
T−kω ∈ A. We get for this k (and for any n � 0)

Φ[0,k+n)(T
−kω) � Φ[0,k−m)(T

−kω) + Φ[k−m,k+n)(T
−kω)

= Φ[0,k−m)(T
−kω) + Φ[−m,n)(ω).
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924 SÉBASTIEN GOUËZEL

If m is large enough, then k−m � εm is larger than N . Since T−kω belongs to A,
we obtain

Φ[−m,n)(ω) � (k + n)(c− ε)− (k −m)(c+ ε) = (m+ n)(c+O(ε)).

This shows that lim inf(m+ n)−1Φ[−m,n)(ω) � c. On the other hand,

Φ[−m,n)(ω) � Φ[−m,−1](ω) + Φ[0,n)(ω) = m(c+ o(1)) + n(c+ o(1)).

Therefore, lim sup(m+ n)−1Φ[−m,n)(ω) � c. This concludes the proof. �

Let us now start the proof of Proposition A.4. We can assume without loss of
generality that y = e. Let � > 0 be large (it will not depend on n). We will
construct � suitable barriers A1, . . . , A� between x and z such that

(A.1)
∑

a∈Ai,b∈Ai+1

GR(a, b)
2 � e−ρn

and

(A.2)
∑
a∈A1

GR(e, a)
2 � 1,

∑
a∈A�

GR(a, e)
2 � 1

for some ρ > 0 that does not depend on �, x, or z. From the last equation, we
obtain

∑
a∈A1

GR(x, a)
2 � Cn thanks to Harnack inequalities [and since d(x, e) �

100n], and
∑

a∈A�
GR(a, z)

2 � Cn. Arguing as in the beginning of the proof of
Lemma 2.6, we define operators Li from �2(Ai+1) to �2(Ai). They satisfy ‖L0‖ �
Cn/2, ‖L�+1‖ � Cn/2, and ‖Li‖ � e−ρn/2 for 1 � i � �. Therefore,

GR(x, z;B(e, n)c) �
∏

‖Li‖ � Cne−(�−1)ρn/2.

Taking � large, we can ensure that this is bounded by K−n as desired, for any
K > 0.

The key point of the argument is the construction of the barriers. The problem
with the argument in Lemma 2.6 is that we only have a control on GR(a, b)GR(b, a)
coming from Lemma 2.5, not GR(a, b)

2. The idea is that those controls would
be equivalent if GR(a, b) and GR(b, a) were of the same order of magnitude. For
symmetric measures, this is always the case. For nonsymmetric measures, we will
be able to enforce it by constructing the barriers using another, symmetric, random
walk. We will use the Kingman subadditive ergodic theorem to show that for typical
points both GR(a, b) and GR(b, a) grow at the same speed. It will then follow from
Lemma 2.5 that they are both exponentially small.

Let us stress that this kind of argument cannot work for all points. For instance,
consider in the free group on two generators a and b a random walk that goes
toward a with probability 1 − 3ε, and toward a−1, b, and b−1 with probability
ε, for some small enough ε. It is easy to check that GR(e, a

n) is exponentially
large [while GR(a

n, e) is exponentially small]. In particular,
∑

x∈Sn
GR(e, x)

2 grows
exponentially fast, but this growth is due to a rather small number of points. The
barriers we construct have to avoid those points.

We turn to details. The barriers we will construct will not depend on the points
x and z (but the order in which they will be encountered will depend on those
points, of course). Since Γ is a cocompact discrete subgroup of PSL(2,R), it acts
on the hyperbolic disk H

2. If O is a suitably chosen reference point in this disk,
the points γO (for γ ∈ Γ) are pairwise disjoint; hence Γ can be identified with ΓO.
Moreover, this identification is a quasi-isometry between Γ (with the word distance
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coming from its Cayley graph) and H2. In particular, the geometric boundary
of Γ is identified with S1 = ∂H2. We can assume that O is the center of the
hyperbolic disk.

Let us fix an admissible symmetric measure ν on Γ, supported on the set of
generators, and let us consider the corresponding random walk. We claim that the
following lemma holds. Here and henceforth, GR always denotes the Green function
associated to the original measure μ.

Lemma A.6. There exist ρ > 0 and v > 0 with the following properties.
(1) For almost every trajectory Xk of the random walk given by ν, d(Xk, e) ∼

kv.
(2) For almost every trajectory Xk, for all large enough k, GR(e,Xk) � e−ρk

and GR(Xk, e) � e−ρk.
(3) For almost every pair of independent trajectories Xk and Yk, for all large

enough k and k′, GR(Xk, Yk′) � e−ρ(k+k′).

Let us admit the lemma for the moment. We choose M� points in S1 that
are evenly spaced (for some large enough M), and M� small intervals Ii around
those points. The Poisson boundary of the random walk given by ν is S1, and the
hitting measure has full support. Therefore, there is positive probability to hit the
boundary in any of the intervals Ii. Let us choose for each i a trajectory X

(i)
k of

the random walk that ends up in Ii. We will also require each of those trajectories
to be typical, so that they satisfy the conclusions of Lemma A.6.

Since the trajectories X
(i)
k converge to different points on the boundaries, they

are disjoint outside of a large enough compact set. Let Γi(n) be the set of points
X

(i)
k that are at a distance at least n of e, and let Bi(n) be a thickening of Γi(n),

i.e., Bi(n) =
⋃

a∈Γi(n)
B(a, C0) for some large constant C0. If n is large enough, the

sets (Bi(n))i�2�+2 are mutually disjoint. Since d(X
(i)
k , e) ∼ vk, the set Γi(n) only

contains points among the X
(i)
k with k � n/(2v). Therefore,

∑
a∈Γi(n)

GR(e, a)
2 �

∞∑
k=n/(2v)

GR(e,X
(i)
k )2 �

∞∑
k=n/(2v)

e−2ρk � Ce−ρn/v.

Since any point in the thickening Bi(n) is a bounded distance away from a point
in Γi(n), a similar estimate holds with Bi(n) instead of Γi(n) thanks to Harnack
inequalities. Arguing in the same way for the other inequalities, we obtain∑

a∈Bi(n)

GR(e, a)
2 � Ce−ρn/v,

∑
a∈Bi(n)

GR(a, e)
2 � Ce−ρn/v,

∑
a∈Bi(n),b∈Bj(n)

GR(a, b)
2 � Ce−2ρn/v.(A.3)

Consider now two points x and z at a distance at least n of e such that e
is on a geodesic segment from x to z. The Cayley geodesic from x to z is a
quasigeodesic in hyperbolic space, which remains in a bounded size neighborhood
of a true hyperbolic geodesic (and this geodesic passes close to O). In particular,
the visual angle from O between x and z is bounded from below. Avoiding a ball
around O in H

2, one can go from x to z in two directions around this ball, clockwise
or counterclockwise. Since the limit intervals Ii are evenly spaced, it follows that,
in any of those directions, one meets successively at least � sets Bi(n) if M is large
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enough. Denote by A1 the union of the two sets Bi(n) that are closest to x (ignoring
the single set that might contain x), then by A2 the union of the next two ones,
and so on. We get barriers A1, . . . , A� between x and z as desired. Moreover, the
estimates (A.3) show that those barriers satisfy (A.1) and (A.2) if n is large enough
(for a different value of ρ). This concludes the proof of Proposition A.4, modulo
Lemma A.6. �

Proof of Lemma A.6. We will use Kingman’s theorem on the space Ω = ΓZ with
the product measure ν⊗Z. In other words, an element ω ∈ Ω is a sequence of
elements ωi of Γ that are drawn independently according to ν. Such an ω can
be viewed as the increments of a random walk distributed according to ν: let
Xn(ω) = ω0 · · ·ωn−1 for n � 0 and Xn(ω) = ω−1

−1 · · ·ω−1
n for n < 0, so that X0 = e

and Xn+1 = Xnωn. Let T be the left shift on Ω; it is ergodic, it preserves the
measure, and Xn(Tω) = ω−1

0 Xn+1(ω).
We define a subadditive cocycle Φ[m,n)(ω) = − logFR(Xm(ω), Xn(ω)), where

FR(x, y) = GR(x, y)/GR(e, e) is the first entrance Green function for the measure
μ, defined in Subsection 2.1. This function satisfies FR(x, y)FR(y, z) � FR(x, z)
by (2.3); hence Φ[m,n) is subadditive. By Harnack inequalities,

∣∣Φ[m,n)(ω)
∣∣ �

C |n−m|. Therefore, the integrability assumptions of Theorem A.5 are satis-
fied. We deduce that (m + n)−1 logFR(X−m, Xn) converges almost surely to c =
limn−1

∫
logFR(e,Xn(ω)) dP(ω). We can also apply Kingman’s theorem to the co-

cycle Φ̃[m,n)(ω) = − logFR(Xn(ω), Xm(ω)), to get that (m+n)−1 logFR(Xn, X−m)

almost surely converges, to c′ = limn−1
∫
logFR(Xn(ω), e) dP(ω). By left-invariance

of the Green function, FR(Xn, e) = FR(e,X
−1
n ). Since X−1

n is distributed like Xn

by symmetry of the random walk given by ν, this yields
∫
logFR(Xn(ω), e) dP(ω) =∫

logFR(e,Xn(ω)) dP(ω). Dividing by n and letting n tend to infinity gives c = c′.
The quantities (m+n)−1 logFR(X−m, Xn) and (m+n)−1 logFR(Xn, X−m) both

converge to c. Taking m = 0, we get in particular that n−1 logFR(e,Xn) and
n−1 logFR(Xn, e) almost surely converge to c.

We will now prove that c is strictly negative. There exists a real number h �
0 (the entropy of the ν-random walk) such that the random walk at time n is
essentially supported by ehn points, with a probability e−hn to reach each of those
points. More precisely (see for instance [Fur02, Theorem 2.28]), for any ε > 0, if n
is large enough, there exists a subset En of Ω, with probability at least 3/4, such
that for any ω ∈ En one has

P{ω′ : Xn(ω
′) = Xn(ω)} ∈ [e(−h−ε)n, e(−h+ε)n].

Since logFR(e,Xn) and logFR(Xn, e) almost surely converge to c, we can also
assume (shrinking En a little bit) that for any ω ∈ En one has FR(e,Xn) � e(c−ε)n

and FR(Xn, e) � e(c−ε)n. Let Ẽn ⊂ Γ be the set of points Xn(ω) for ω ∈ En. It
has cardinality at least Ce(h−ε)n, it is contained in B(e, n) (since the steps of the
ν-random walk have length at most 1 by definition), and for any x ∈ Ẽn one has
FR(e, x)FR(x, e) � e2(c−ε)n. Therefore,∑

x∈B(e,n)

FR(e, x)FR(x, e) �
∑
x∈Ẽn

FR(e, x)FR(x, e) � Card Ẽn · e2(c−ε)n

� Ce(h−ε)ne2(c−ε)n.
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By Lemma 2.5, the sum
∑

x∈Sk
FR(e, x)FR(x, e) is uniformly bounded [as FR(x, y) =

GR(x, y)/GR(e, e)]. Therefore,
∑

x∈B(e,n) FR(e, x)FR(x, e) � C(n+ 1). We deduce
that (h− ε) + 2(c− ε) is nonpositive. Finally, letting ε tend to 0, we get c � −h/2.
Since entropy is nonzero in nonamenable groups (see for instance [Fur02, Proposition
2.35]), we get c < 0 as desired.

Let us now prove the estimates of the lemma. The first item (positive escape
rate) is classical and follows from Kingman’s theorem for the existence of the escape
rate, and from the inequality h � vζ for its positivity (where ζ is the exponential
growth rate of the cardinality of balls); see [Fur02, Proposition 2.32]. For the second
item, consider a typical trajectory Xk of the random walk. Since logFR(e,Xk) ∼ ck
with c < 0, we deduce that for large enough k one has FR(e,Xk) � eck/2. Since
GR(x, y) = FR(x, y)GR(e, e), the exponential decay of GR(e,Xk) follows. The de-
cay of GR(Xk, e) is handled in the same way. Finally, consider two independent
trajectories Xk and Yk of the random walk. Define (for k > 0) X−k = Yk. By sym-
metry of ν, (Xk)k∈Z is a typical trajectory for the bilateral random walk. Applying
Theorem A.5, we deduce that logFR(X−m, Xn) ∼ (m+n)c, i.e., logFR(Ym, Xn) ∼
(m+ n)c when m+ n tends to infinity. This is the desired exponential decay. �
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