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ABSTRACT 

We generalize a method developed by Sarig to obtain polynomial lower 

bounds for correlation functions for maps with a countable Markov par- 

tition. A consequence is that  LS Young's estimates on towers me always 

optimal. Moreover, we show that,  for functions with zero average, the 

decay rate is better,  gaining a factor 1/n.  This implies a Central Limit 

Theorem in contexts where it was not expected, e.g., x + C x  1-l-a with 

1/2 ~< (~ < 1. The method is based on a general result on renewal 

sequences of operators, and gives an asymptotic estimate up to any pre- 

cision of such operators. 

1. S t a t e m e n t  o f  resul ts  

In recent years, several methods have been developed to obtain polynomial up- 

per bounds for the correlations of some dynamical systems. However, there was 

no general method to get polynomial lower bounds for the decay of correlations, 

until Omri Sarig's recent article [Sar02]. He used an abstract  result on renewal 

sequences of operators to obtain lower bounds on the decay of correlations for 

Markov maps. As an application, he proved that  the upper bounds obtained by 

Young oil tower maps in [You99] are in many cases optimal. Tile goat of this ar- 

ticle is to remove some unnecessary assumptions in [Sar02], and as a consequence 

to prove that  Young's estimates are optimal in full generality. 

In this article, D will always denote {z E C I Izl < 1}. The analogue of Sarig's 

theorem on renewal sequences that  we obtain is the following: 
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THEOREM 1.1: Let Tn be bounded operators on a Banach space £ such that 

T(z)  = I + ~>>.1 z~T~ converges in Hom(£,  £) for every z E D. Assume that: 

1. R e n e w a l  equat ion:  for every z • D, T(z)  = (I - R(z)) -1 where R(z)  = 

E~>>.l z~R~, Rn • n o m ( £ ,  C) and E IlRnll < +c~. 

2. S p e c t r a l  gap:  1 is a simple isolated eigenvalue of R(1). 

3. A p e r i o d i c i t y :  for every z E D - {1}, I - R(z)  is invertible. 

Let P be the eigenprojection of R(1) at 1. I f  }-~k>~ IIR~II  = O(1/n~) for some 
/~ > 1 and PR~(1)P ~ O, then for all n 

Tn 1 p  1 +o~ 
= + ~ P k + E n ,  

# ~ k=n+l 

where p is given by PR ' (1 )P  

satisfy 

JTE IJ = { 

= PP, Pn = ~-~4>~ P R I P  and En E Hom(/:,/2) 

O(1 /n  z) if/~ > 2, 
O(logn /n  2) if~3 = 2, 
O(1 /n  2~-2) i f 2 >  3 > 1 .  

Note that,  in all cases, I[Enll = o(1/n~- l ) ,  which is what is needed to obtain 

sharp asymptotics for the decay of correlations. This theorem extends Sarig's: 

he assumed/3 > 2 while we only need/3 > 1. Moreover, the result we obtain is 

slightly stronger than Sarig's even in the case 3 > 2 because the error term is a 

O(1/n  ~) instead of a O(1/n[~J). 

Finally, our aperiodicity assumption is weaker than Sarig's who needed to 

suppose that  the spectral radius of R(z)  was < 1 for every z 7~ 1. Our assumption 

is necessary because other eigenvalues equal to 1 would generate other terms 

in the asymptotic expression of Tn (which could be calculated using the same 

methods as in the following proof, and would involve the spectral projection at 

these points). For example, if R(z)  = z 2, then T2~ = 1 while T2n+l = 0, which 

shows that  the conclusions of the theorem are not valid any more (there is a 

periodicity problem). This less restrictive aperiodicity hypothesis will be useful, 

for example, when applied to tower maps (see Corollary 1.6). 

It  is in fact possible to give an asymptotic estimate of T,  up to an error term 

O(1/n  ~) even when/~ ~< 2. However, the result is quite technical to state, and 

will be deferred to Section 5. The following consequence of Theorem 5.4 will be 

sufficient for most dynamical applications. 

THEOREM 1.2: Under the hypotheses of Theorem 1.1, if f E £ is such that 

P f  = O, then IIT~fl I = O(1/n~).  
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These abstract results enable us to enhance the applications in [Sar02]. We 

state briefly the results we obtain, without recalling all the notation. In Section 

6, a precise meaning will be given to all the notions involved. The following 

theorem is stated more precisely as Theorem 6.3. 

THEOREM 1.3: Let ( X,  B, m, T, c~) be a topologically mixing probability preserv- 

ing Markov map, and let 7 be a subset of the partition ~. Denote by T. r the map 

induced by T on Y = ~ ¢ ~  a it is a Markov map for a subpartition 5 of 

7. Assume that the distortion of T~ is H61der and that Tv has the "big image" 

property, i.e., the measures of the images of the elements of the partition are 

bounded away from 0 (which is always true when 7 is finite). Assume, moreover, 

that m [ ~  > n] = O(1 /n  z) for some 3 > 1, where ~ is the first return time 

from Y to Y. 

Then 30 ¢ (0, 1), C > 0 such that Vf, g integrable and supported inside Y,  

C ° r ( f ' g o T n ) - (  L ln[~,~ > k ] ) / f / g ~ C F ~ ( n ) [ ] g ] ] ~ ] ] f ] ] ~  
\ k = n + l  

where Fz(n ) = 1In z if  /~ > 2, l ogn /n  2 if/3 = 2 and 1In 2z-2 i f2  > /3 > 1 (and 

f_. denotes the space of O-H61der functions o12 Y).  

Moreover, if f f = 0, then Cor(f,  g o T '~) = O(1/nZ). 

When m [ ~  > n] ~ 1/n ~ and f f ,  f g  ¢ O, Theorem 1.3 implies that 

Cor(f,  g o T '~) x l/n, z-1. Thus, the exact speed of decay of correlations is poly- 

nomiM, with exponent fl - 1. Surprisingly, the decay rate is better  for functions 

with zero integral, with a gain of 1 in tile exponent. This kind of result is (to 

the knowledge of the author) new, and does not seem to be obtainable by more 

crude estimates: the methods giving only upper bounds on the speed of decay of 

correlations do not distinguish between flmctions with zero or nonzero integral, 

since they do not "see" the higher order terms in the expansion of T~. 

As an application, we obtain the summability of the correlations for functions 

with zero integral (and supported in Y) even when/3 ~< 2, which gives a Central 

Limit Theorem in cases where it was not expected. Note that the condition of 

zero integral is important and cannot be eliminated by subtracting a constant, 

since the flmetions would not remain supported in Y. In fact, the estimate in the 

previous theorem shows that, when/3 ~< 2, the correlations are not summable for 

a function with nonzero integral supported in Y. In the same way, this speed of 

decay of correlations does not hold for general flmetions with zero integral but 

not supported in Y: take a flmetion f of nonzero integral supported in Y, the 
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function g := f - f f has zero integral but its correlations are the same as those 
of f ,  whence they decay at a rate ~ 1/n ~-1. 

The following Central Limit Theorem is stated more accurately as Theorem 
6.13. 

THEOREM 1.4: Under the same hypotheses as in Theorem 1.3, if f E £. is 
1 n--1 r k  supported in Y and f f = 0, then the sequence ~ ~-~k=o f o converges in 

distribution to a Gaussian random variable of zero mean and finite variance a 2, 
with 

O 0  

a2=-/f2dm+2n~o/f'f°Tndm'= 

Finally, even though Theorem 1.3 describes the speed of decay of correlations 

only for functions ] and g supported in Y, it is possible to drop this hypothesis 

on g. However, the results obtained are less precise and give only an upper bound 

on the decay of correlations, in O(1/n fl-1) if f f ¢ 0 and in O(1/n •) if f f = 0 

(see Theorem 6.9 and Proposition 6.11). This kind of result is useful in the proof 

of the Central Limit Theorem. 

The following corollaries are already present in weaker form in [Sar02], where 

the notations are explained. Some details on their proofs will be given in the 

last section of this article. The first corollary (stated more precisely as Corollary 

7.1) deals with an explicit one-dimensional Markov map with a neutral fixed 

point, while the second corollary (see section 7.2 and Corollary 7.2) is essentially 
Theorem 1.3 expressed in the framework of LS Young towers, which are devices 

built up from non-Markov maps which have proved very useful in studying their 

statistical properties (see [You99]). 

COROLLARY 1.5: In the case of the Liverani Saussol-Vaienti map T: [0, 1] 

[0, 1] defined by 
j ' x ( l + 2 ~ x  ~) if0~<x~< 1/2 

T(x) 2 x -  1 if 1/2 < x ~< 1 

(see [LSV99]), ifc~ E (0, 1), f is Lipschitz, g is bounded measurable, f f ,  f g ¢ 0 
and f ,g  = 0 in a neighborhood of O, then 

l h ( l ~ a - 1 / ~  Cor(f, g o T n ) ~  k - ~ ]  ( 1 - l ) - l n l - 1 / a / f  / g  

with respect to the invariant probability measure. 

Moreover, if f ] = 0 (and f,  g are still Lipschitz and zero in a neighborhood of 
0), then Cur(f, g o T n) = O(1/nl/a). Consequently, f satisfies a Central Limit 
Theorem. 
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This result is in fact not specific to this particular map and can easily be 

extended to a class of maps admitt ing a neutral fixed point in 0 with a prescribed 

behavior, and expanding outside of any neighborhood of 0, making use of the 

following corollary and the techniques of [You99]. Note that  Mark Holland has 

recently obtained upper bounds for the decay of correlations when the fixed point 

is more neutral ([Ho102]) .... the techniques of the present article are not sufficient 

to prove that  these upper bounds are always optimal. 

COROLLARY 1.6: Let (A, 13, m, F) be a probability preserving LS Young tower 

with gcd{Ri} = 1 and m[R > n] = O(1 /n  3) where/3 > 1. I f f  E Co(A), g E L ~ 

are supported inside UNo - 1 Ai for some N, then 

Cor(f, go F'~) = ~ m[R > k] / f f g + O(F~(n)). 
k>n 

Moreover, i f  f f = 0, then Cor( f ,g  o F ~) = O(1/n/3). Thus, f satisfies a 

Central Limit Theorem. 

The aperiodicity hypothesis on gcd{Ri} is the same as Young's, and cannot 

be omitted. In her paper [You99], Young proved that,  if m[R > n] = O(1/n~),  
then Cor ( f , g  o F n) = O(1 /n  3-1) for any f E Co(A), g E L °° (not necessarily 

supported in U N-1 Ai). Corollary 1.6 proves that  this upper estimate is in fact 

optimal, and gives additionally a Central Limit Theorem even if 1 </3  ~< 2. 

From this point on, the paper is divided into two parts: the first one (sections 

2, 3, 4 and 5) is devoted to the proof of the abstract  results on renewal sequences 

of operators, and the second one (sections 6 and 7) deals with the applications 

to Markov maps. 

2. Preliminary results 

2.1 C ~+~ FUNCTIONS IN BANACH ALGEBRAS. The results in this section are 

mainly straightforward computations, and most of them can be found in [Sar02]. 

Let A be a Banach algebra (in the applications, A = Horn(L;, L:)). Fix K a 

compact subset of C, ill which two points are always joined by a C 1 curve. The 

distance on K will not be the usual one, but the geodesic distance, i.e., d(x, y) is 

the infimum of the lengths of Cl -pa ths  in K joining x to y. We assume that  this 

distance is equivalent to tile usual one, which will be true for K = D or K = S l. 

Fix some 0 < ct < 1. For any f :  K- -+  A, we will say that  f is C a if there 

exists a constant C such that,  for any it, y E I (  with d(x, y) < 1, Ill(x) - .f(Y)II <~ 
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Cd(x, y)a. Let D~(f)  denote the least such constant. We write ]]f[[~ = []fll~ + 

D~(f) ,  and denote by Ca(K) the space of all functions such that  I]fll~ < + ~ -  

PROPOSITION 2.1: The space (Ca(K),  It [[~) is a Banach algebra. In fact, we 
even have, for f , g  E C a( I f ) ,  D~(fg)  <~ [Ifll~D~(g) + ][gll~D~(f). 

We say that  f :  K --4,4 is C 1 if there exists a continuous function g: K --+ .4 

such that  f ( x + h ) -  f ( x ) - h g ( x )  = o(h) for any x e If.  The function g is 

unique if it exists, and we write g = ft.  Contrary to the usual derivative of f ,  it 

is defined on the whole set K,  and not just on its interior. 

PROPOSITION 2.2: I f  f is C 1 on K, then Da( f )  <<, ]]f'Hoo. 

Proof." Let x, y E  K w i t h  d(x,y) < 1. Let 7 b e a C  1 path  i n k  f r o m x t o y .  

The Taylor-Lagrange inequality along this path  gives ]I f (x)- f (y)II  <. IIf ' l l~/(7)  • 
| 

We consider the geodesic distance on K instead of the usual one precisely to 

get the above proposition. 

Let C l+a (K) denote the space of all C 1 functions from K to `4 whose derivative 

is C a, endowed with the norm ]]f[]l+a = [[fH~ + ]lf '[t~ + 1D~t f  '~ 2 ~ /" 

PROPOSITION 2.3: The space (CI+a(K), I] ]11+~) is a Banach algebra. 

The following proposition will be used systematically in Section 3, often 

without explicit reference. 

PROPOSITION 2.4: Let f :  K --4.4 be a C l+a function such that, for every z E K,  

f ( z )  is invertible (as an element of,4).  I f  g(z) = f (z )  -1, then g is C l'ba and 
there is an inequality [[gHl+~ ~< F(Hg[[~, [If[[l+a) for some universal polynomial 
function F. 

Proof'. Differentiating g(z) = f (z )  -1, we get g'(z) = -g(z) f ' ( z )g(z ) ,  hence 

Ilg'll~ < Ilg[l~llf'll~. 
Then we note that  

Da(g') <~ Da(g)llf'lloollglto~ + Ilgll~Da(f')ltglloo + Ilglloollf'llo~Da(g) 

<~ 211g'll~lll'lloollglto, + Ilgll2~Da(f'). 

The control on IIg'll~ enables us to conclude. II 
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2.2 FOURIER SERIES IN BANACH ALGEBRAS. Let A be a Banach algebra. For 

f :  S 1 -+ ,4 a continuous function, we define the n th  Fourier coefficient of f to be 

the element of ,4 defined by 

1 f02~ Cn(f) = ~ f(eiO)e-inodO. 

Let us first recall a very useful result concerning functions from S 1 to C. 

THEOREM 2.5 (Wiener Lemma):  Let f :  S 1 -+ C be a continuous function, 

everywhere nonzero, whose Fourier coefficients are summable. Then the Fourier 

coel~cients of 1/ f are also summable. 

The classical proof of this result, which uses commutative Banach algebra tech- 

niques, can be found, for example, in [Nat68] (see also [New75] for an elementary 

proof). 

PROPOSITION 2.6: I f  f:  S 1 -+ A is continuous and satisfies ~ [[en(f)][ < +oc,  

then f ( e  i°) = ~ en(f)e  i"°, the series converging in norm. 

Proo~ Replacing f by f -  ~ c~(f)e ~"°, we can assume that  c~(f)  = 0 for every 

n, and we want to prove that  f = 0. 

Suppose on the contrary the existence of z such that  f ( z )  ¢ 0. There exists 

a bounded linear fimctional ~ on `4 with ~( f ( z ) )  ¢ 0. The linearity of ~ gives 

c ~ ( ~ o f )  = ~(Cn(f)) = 0 for every n. As ~ o f  is continuous and complex-valued, 

a classical result (proved, for example, using Parseval's equality) gives ~ o f = 0, 

which is a contradiction. | 

PROPOSITION 2.7: I f  the Fourier coefficients of f and g are summable, then it 
is also the case of f g. 

PROPOSITION 2.8: 

Ilcn(f)[[ ~< C - -  

for some universal constant C. 

I f  f :  S 1 ---) A is C l+a then 

Ilfll,+~ 
/ t l+a 

The classical proof for complex valued functions can be found in [Kat68] and 

is easily adapted to this context (see also [Sar02, Lemma 3]). 
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3. P r o o f  of  Sarig's  first m a i n  l e m m a  under  our weaker  a s s u m p t i o n s  

The following lemma, which is the analogue of Sarig's first main lemma, is crucial 

to the proof  of Theorem 1.1. 

LEMMA 3.1 (First Main Lemma):  Under the ass,zmptions of Theorem 1.1, 

  l l T n  - T n + , l l  < 

n = l  

As ( I -  R(z)) -1 = 7~Tnz n (where we write To = I) ,  we have 

A(z) :=  (1 - z)( I  - R ( z ) ) - '  = Z ( T n  - Tn_,)z  n. 

Our s t ra tegy is to s tudy A on S 1, and to see tha t  its Fourier coefficients are 

summable.  As 

A(z) = ( Y -  -R(--z) "~ -1  
1 - z  ] ' 

A is well controlled on S 1 outside of any neighborhood of  1. Near 1, the problem 

comes from the eigenvalue A(z) of R(z) closest to 1. To use Fourier series methods  

to control this eigenvalue, we must  be able to extend A(z) to the whole circle S1; 

tha t  is why we will have to modify R(z) and to construct  a funct ion/~(z)  on S 1, 

whose spec t rum will be "nice." 

Proof of Lemma 3.1: We will write ,2 = 1 + c~. We can assume 0 < c~ < 1, which 

amounts  only to weakening the hypotheses. 

STEP 1: R(z) is C l+a on II). 

Proof: As R ( z )  : Z R n  zn with E k > n  IIRkl] = O(1/nl+~), we have R,~ = 

O(1 /n l+~) ,  and the series defining R converges in norm on all ~.  Thus, R is 

continuous on lI). 

The sum F(z) = ~ n R n z  n-1 converges also in norm on D, as ~-:~n ~IIR,~LI = 

~n~>l Sn < +c~ (where we write S ,  = ~k~>~ IlRkll). Hence, this is the derivative 

of R and R is C t oil D (in the sense of Section 2.1). 

W h a t  remains to be checked is tha t  F is C a. Let z and z + h be two point.s in 

D; we estimate from above IlF(z + h) - F(z)l]. The Taylor-Lagrange inequality 
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gives, for every n e N, [(z 

IF(z  ÷ h) - F(z ) l  

~< 

+ h) ~ - znl <~ n lh  I. Let N ¢ N. We have 

N +e~  

n = l  n = N + l  

N + c ~  

E n2(s" - S'~+l)lhl + E 2n(S,~ - S n + l )  
n = l  n = N + l  

N- -1  + o o  

2nS~lhl + ~ 20% + 2(N + 1)SN+I. 
n = l  n = N + 2  

As n S n  = O ( 1 / n ~ ) ,  N - I  O ( 1 / N  ~) ~ = 1  n S ,  = O ( 1 / N " - I ) ,  while v ' + ~  S = . Z - ~ n = N +  1 n 

and N S N  = O ( 1 / N " ) .  Hence, for some constants C and D (independent of N 

or h), 
C D 

IF(z + h ) -  F(~)I ~< ~ : ~ l h l  + N--~. 

If we choose N close to 1/]hl,  we get a bound of the order of Ihl a. | 

STEP 2: ([l(Z) -- R ( 1 ) ) / ( z  - 1) can be continuously extended to S 1, and its 

Fourier coefficients are summable. 

Proof'. For z ~ 1, 

1 - z  1 - z  
n=l k=l 

K-,+~z {~-,+oe Rk)Zn hence Moreover, R(1)/(1 - z)  = z_~n=l~z-.~=l 

- 1 - -  R k  z ' .  

n = O  k = 7 , + l  

+ o o  The last sum converges in norm, since ~k=,~+i IIR~II = o(1 /~  ~+~) is summable. 

This guarantees a continuous extension to 1. Moreover, the nth Fourier coefficient, 

is ~ - = , + 1  Rk, which is smnmable. | 

STEP 3: Construction of a function/~ on S 1, equal to R in a neighborhood of 

1 in S 1, C 1+~, whose spectrum consists in an isolated eigenvalue ~(z) close to 1 

together with a compact subset of C -  {1}, with A(z) # 1 for z ¢ 1. Furthermore, 

fbr any e > 0 , / )  can be chosen such that Yz E S j, ]l/~(z) - R(1)II < c. 

Proof." We construct two candidates fo r / ) ,  U and V. The second one, i.e. V, 

will be the good one. 
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Fix some "~ > 0, very small. Let ~ + ~ be a C ~ partition of unity associated 

to the sets {8 C [0,~,)} and {0 E (?t - ~,7r/2]} where ~ is the angle on the circle 

(for some very small 0 < ~ < "y). We define U(z) = p(z)R(z) + ¢(z)R(e i'r) on 

{8 e [0, lr/2]}: U is equal to R on {8 C [0, 7 - ~ ] }  and to R(e i~) on {0 e [7, 7r/2]}. 

In particular, the spectrum of U(z) will be "almost the same" as the spectrum 

of R(1), if 7 is small enough. 

We define in the same way U on {0 e [-zr/2,0]}, equal to R(e -iv) on 

{0 • [-7r/2, -~/]} and to R on {0 • [ ~ + 71, 0]}. 

Finally, we construct U on the remaining half-circle by symmetrizing, i.e. 

U(e ~('~/2+~)) = U(e~(~/2-")), to ensure that everything fits well. 

Provided 7 is small enough, there is a well defined eigenvalue close to I for every 

U(z), depending continuously on z, which we denote by p(z). The problem would 

be solved if p(z) ~ 1 for z ~ 1, which is not the case since p ( -1 )  = p(1) = 1. 

Consequently, we have to perturb p a little. There exists a C °~ function v on 

{0 • [7r/2, 37r/2]} arbitrarily close to p. We can assume that v does not take the 

value 1. On {0 • [zr/2 + ~, 37r/2 - 7/]}, we define V(z) = ~(~)Ut~. its eigenvalue p(z) ~ J "  

close to 1 is ~,(z) ¢ 1. Finally, we glue U and V together on {0 • [zr/2, 7r/2 + ~]} 

and (0 • [37r/2 - ~, 3r/2]} with a partition of unity, as above. As the spectrum 

of U(e i~/2) = R(e i~) does not contain 1 by aperiodicity, the gluing will not give 

an eigenvalue equal to 1 if we choose 77 small enough and v close enough to p. 
| 

STEP 4: (R(z) - / } ( 1 ) ) / ( z  - 1) can be continuously extended to S 1 and its 

Fourier coefficients are summable. 

Proof: As/~(1) = R(1), 

- - n(z) - R ( 1 )  
- -  + 

z - 1  z - 1  z - 1  

The first term is C 1+~ outside of any neighborhood of 1, and zero on a neigh- 

borhood of 1. Thus, it is C 1+~, which shows that its Fourier coefficients are 

summable by Proposition 2.8. 

The coefficients of the second term (R(z) - R(1))/(z - 1) are summable by 

Step 2, which gives the conclusion. | 

STEP 5: Let /5(z) denote the spectral projection of/~(z) corresponding to its 

eigenvalue ~(z) close to 1. Then /5 (z )  is C 1+~, and its Fourier coefficients are 

summable. 



Vol. 139, 2004 SHARP POLYNOMIAL ESTIMATES 39 

Proo~ The projection/5(z) can be written, for 8 small enough (and independent 

of z if, in Step 3, c was taken small enough), 

lf,  P(z)  = ~ -11=6 ui_--~(z)dU. 

We already know t h a t / )  is C 1+~, which is also true of uI - / )  for every u, and 

of (uI - / ) ) - 1  (with a uniform bound on its C 1+~ norm) by Proposition 2.4. So, 

we can integrate to get a C 1+~ function. 

The summabili ty of the coefficients is then a corollary of Proposition 2.8. | 

STEP 6: The function (/5(z) - / 5 ( 1 ) ) / ( z  - 1) can be continuously extended to 

S 1 and its Fourier coefficients are summable. 

Proof: The expression of the spectral projection used in Step 5 gives 

- P ( 1 )  1 1 - R ( 1 )  1 

z - 1 - 2irr __-11=5 uI - -R(z)  z - 1 uI - / ) ( 1 )  du" 

Let us fix u such that  [ u -  1] = 5. We have seen in Step 5 that  the coefficients 

of 1/(uI  - R(z)) were summable. Moreover, Step 4 gives the summabili ty of the 

coefficients of (/)(z) - / ) ( 1 ) ) / ( z  - 1). As a consequence, the coefficients of the 

product 

1 /)(z) - / ) ( 1 )  
uI - Ft(z) z - 1 

are also summable. 

To obtain the summabili ty of the coefficients of (/5(z) - / 5 ( 1 ) ) / ( z  - 1), we just 

have to integrate with respect to u, since 

- - -  1 1 ~ - / ) ( 1 )  1_/)(1) ) du. cn(P(z)T~ P(1))=2i- -~  f lu- l l=~Cn(ul---R(z)  R ( ~  1 uI 

To conclude, we must get a uniform summable bound on the Fourier coefficients 

in the integral, i.e., we have to check that  all previous estimates are uniform in u, 

which does not present any difficulty: the norms of ( u I - / ) ( z ) )  -1, for l u -  11 = 

and z E S 1, are bounded by compactness, and so are the l+c t  norms ofuI -Ft ( z ) .  
Proposition 2.4 guarantees that  the 1 + c~ norms of (uI  - / ) ) - 1  are bounded 

by a constant independent of u. Proposition 2.8 gives that  cn((uI - / ) ) - i )  = 
O(1/n 1+~) uniformly in u, which enables us to conclude. | 
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S T E P  7: (~(Z) -- 1)/(Z -- 1) --+ # as z -+ 1 on S 1, where p ~ 0 satisfies 

P(1)R'(1)P(1) = #P(1) .  Hence, the function (z - 1)/(A(z) - 1) is well defined. 

Moreover, its Fourier coefficients are summable.  

Proo~ For every z E S 1 - {1}, we have 

1-A(z ) ,~ ,  , I - / ~ ( z )  

(1) 1 -  z 1 -  z _/~(1) 
1 - R ( ~ ) P ( z )  + ( I  - R ( 1 ) )  P ( ~  1 

) /5(1) 

- - Z  - - Z  

If we multiply on the left by /5 (z )  and let z go to 1, the right hand term tends to 

P(1)R'(1)P(1) (because the other  te rm tends to P(1)(I-R(1))P'(1) =- 0, and we 

can drop the tildes because R = / ~  in a neighborhood of 1). But  P(1)Rr(1)P(1) 
can be wri t ten #P(1) ,  with p ¢ 0 according to the hypotheses.  We get 

1 - A(z)/b(z ) _.~pP(1). 
1 - - z  z 

Apply a bounded linear functional p such tha t  ~p(/5(z)) ¢ 0 for every z (which is 

possible: take ~2(P(1)) ~ 0, and then ¢ small enough in the construct ion of /~) .  

We obtain the convergence of (1 - A(z))/(1 - z) to #. 

Then,  we show tha t  the Fourier coefficients of the continuous function 

(1 - A(z))/(1 - z) are summable.  In Equat ion (1), all terms on the right hand 

side have their coefficients summable,  according to the previous steps. This re- 

mains true when we apply ~, i.e., ~ ( / 5 ( z ) )  has summable coefficients. In 

the same way, /5(z) has summable coefficients, and ~2(/5(z)) too. But  this is 

a complex function, everywhere nonzero, so the Wiener lemma gives tha t  its 

inverse 1/~( /5(z))  has also summable coefficients. Multiplying, we obtain the 

summabil i ty  of the coefficients of (1 - A(z))/(1 - z). 

Using once more the Wiener lemma (since (1 - A(z))/(1 - z) is everywhere 

nonzero by construct ion of /~) ,  we get the conclusion. | 

STEP 8: (Z -- 1) ( /~(Z)  --  I ) - 1  can be continuously extended to 1, and its Fourier 

coefficients are summable.  

Proof'. Let ~)(z) denote the spectral  project ion I - / 5 ( z ) .  Then,  for every z 7~ 1, 

1 - - z  - 

(1 - z ) ( I  - R ( z ) ) - '  = 1 - ~ ( z )  P ( z )  + (1 - : ) ( I  - R ( z ) ) - 1 0 ( _ - )  

(2) 
1 - - z  - 

= 1 - ~ (~ )  P ( ~ )  + (1 - ~-)(r - R ( ~ ) ~ ) ( ~ ) ) - ' 0 ( z ) ;  
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I - -~ ( z )~ ) ( z )  is everywhere invertible o n  S 1 and is C lq-a (this is t rue for ~) 

because /5 is C 1+~ by Step 5 and 0 = I - / 5 ) .  Proposi t ion  2.4 gives tha t  its 

inverse is C 1+c~, hence its coefficients are summable ,  which remains  t rue  when it 

is mult ipl ied by (~(z) which is C 1+~. 

To conclude, we have to show tha t  ~ / 5 ( z )  has smnmable  Fourier coeffi- 

cients. We al ready know this for /5(z) (Step 5) and (1 - z) / (1  - A(z)) (Step 

7). As the produc t  of functions with summable  coefficients also has summable  

coefficients, this enables us to conclude. I 

STEP 9: (Z -- 1)(R(z)  - I )  -1 can be continuously extended on all ~ ,  and its 

Fourier coefficients (on S 1) are summable .  

P r o o ~  We have ah 'eady proved tha t  (z - 1)(/)(z) - I )  - t  can be continuously 

extended to 1 on S l . As R and /) coincide in a neighborhood of 1, it shows 

tha t  (z - 1)(R(z)  - i ) - 1  (:an be continuously extended to 1 on S 1. Since we 

are interested in an extension to the whole disc ~ ,  we must  check that. the pre- 

vious a rguments  work well on D, which does not present  any difficulty: drop- 

ping the tildes, Equat ion  (1) is valid for z in a neighborhood of 1 in ~ ,  whence 

(1 - £ (z ) ) / (1  - z) tends to p when z --+ 1 in D; using Equa t ion  (2), this gives the 

desired extension to 1. 

On S 1, 

( z -  1)(R(z)  - Z ) - '  = (z - 1)(/)(z) - I ) - ' .  ( R ( z )  - I ) ( R ( z )  - i ) - 1  

Step 8 shows tha t  (z - 1)(R(z) - i ) - 1  has its Fourier coefficients summable .  

Moreover,  ( / ) ( z ) -  I ) ( R ( z )  - I )  -1  is C 1+" outside of any neighborhood of 1, and 

equal to I on a neighborhood of 1. Hence, it is C 1+~ on S 1 and has its coefficients 

summable .  To conclude, we apply  Proposi t ion  2.7 which tells tha t  the produc t  

of functions with sumlnable  Fourier coefficients still has summable  coefficients. 

I 

STEP 10: E IIT.+~ - T.I] < +o~. 

Proof." Let A ( z )  = (1 - z ) ( I  - R ( z ) )  - 1 .  For Izl < 1, A ( z )  = E ( T n  - T,~_I)Z ~, 

so, when r < 1, 

1 i 2~ T~ - T ~ - I  - 2¢cr n A ( r e i ° ) e - i n ° d O .  

As A can be continuously extended on 113, we can let r tend to 1 and obtain  

T,~ - T , _ I  = c ~ ( A ) .  But  we have already proved in the previous s tep that. the 

coefficients of A were summable .  | 
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4. P r o o f  o f  t h e  m a i n  t h e o r e m  

Once we have obtained the first main lemma, the rest of the proof of Theorem 

1.1 is very similar to Sarig's arguments. We will reproduce here only the parts 

which need to be modified to fit the current context. 

To obtain the asymptotic expansion of T~, the main idea is to write 

1 I R(z )  
T ( z )  = ~ _  z S ( z )  -1,  where S(z )  - 

1 - z  ' 

to decompose S = SB + (S - SB) where SB(Z) is a well controlled polynomial 

and S - SB a small remainder, and to make a perturbative development of S-1 

using this decomposition. This amounts to writing 

_1 l_ .s2(sB sls2+ l_z[S2(S, sll2s_, (3) T(z )  - 1 z sB1 at- - - 

The term 1 -1 1_-27SB (z) will give the contribution ± P  in the expansion of Tn, while 
1 +e¢ the second one will give the term 7 ~A~=n+~ Pk and the third one will give the 

error term. 

Write SB as ( I  - R B ( z ) ) / ( 1  - z) where 

RB(Z) : ~ z n t ~ n  + ~ Rn ~ - ( z -  1 ) nRn.  
n=l n=N4-1 n=N4.-1 

This expression is such that RB(1) = R(1) and R~(1) = R'(1). For Equation (3) 

to be valid for z E D -  {1}, we have to check that SB is invertible, i.e., I - RB  is 

invertible. Following [Sar02, Proof of the Second Main Lemma], this is implied 

by the first main lemma proved in the previous section as soon as N is large 

enough. 

We recall without proof Sarig's second main lemma, which is a consequence of 

the first main lemma. 

LEMMA 4.1 (Second Main Lemma): In the set t ing of  Theorem 1.1, i f  P is the 

eigenprojection of R(1) at 1 and ~ is given by P R ' ( 1 ) P  = pP ,  then there exists 

RB: C --+ Hom(£, £) with the following properties: 

1. RB is holomorphi , R . (1 )  = R(1) and R (1) = R '0 ) .  
R(1)-RB 2. and R'(1)] are polr o,ni l  in z. 1-z 1-z 

3. I -- RB(Z)  has a bounded inverse in Hom(£, £) for every z E D - {1}. 

4. Vz E D, (/~_~R)-1 = ! p + ( l _ z ) ~ , , > > . o z n A ~  where HA**II = O(n ~) for # 
some O < n < 1. 

Equation (3) together with the following lemma (extending Sarig's Lemma 7 

to the case 1 </3 ~< 2 and sharpening it for/3 > 2) gives Theorem 1.1. 
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LEMMA 4.2: Under the assumptions of Theorem 1.1, if P is the eigenprojection 
of  R(1) a t  1 and p is given by PR'(1)P = #P, then 

1. ,_--~ s ~  1 = -fi En>~o zn(  p + an) w h e r e  II~nll = o(,~ ~) ~or some  0 < ,~ < 1. 
2. 1 --1 S:7_~SB (SB -- S ) S ~  ~ ~ z ~ = = 7 ~,~>.o (~k>,~ P ~ : + e ' )  where [le{~l[ O(1/n e) 

and P~ = Y~l>n PRtP. 
3. 1 - I  ~_~[sB ( s ~  - s ) ]~s  - '  : E,,,>~o z n E .  where 

{ O(1/n/3) if/3 > 2, 
II&ll  : O(logn/n 2) if / 3 :  2, 

O(1/n 2t3-2) i f 2  > / 3  > 1. 

To prove the es t imates  in Le lnma  4.2, we will need some results on the convo- 

lution of sequences. If  a,~ and bn a r e  sequences, put  cn = ~ k + l = n  akbl. We write 

c = a * b. For the next  lemma,  see [Rog73, Theorem 2]. 

LEMMA 4.3: If a,~ = O ( 1 / n  ~) and b,~ = O(1/n ~) for some a <<./3 C R, then 

(4) 
O(1/n a) if~3 > 1, 

(a*b),~ = O(logn/n ~) if~3 = 1. 
0(1 / ,~  ~+~-~) if~3 < 1. 

In particular, for a > 1 or fl > 1 (without assuming a ~ /3), (a*b)n = O(1/n ~) + 
o ( 1 / , ~ ) .  

Proof." We prove the result  for/3 < 1, the other  cases being t rea ted  in the same 
n 

way. If  c~ = Y~k=0 a~b,_k, we have 

Icnl <~ ( max  Ibn_~l) E lak] + ( m a x  lakl) E ]bn-k]. 
0~<k<~/2 n/2<~ k<~ n 

O<~ k <n/2  n/2<<k<~ n 

The sums can be es t imated  from above by O(1/n ~-1) and O(1/n ~-1) respec- 

tively, while the m a x i m a  are O ( 1 / n  ~) and O(1/n~). This gives the conclusion. 
| 

Let us s ta te  another  l e m m a  which will be useful later  in Section 5. The  proof  

is exact ly  the same, cut t ing the sum in the middle, and using ~0,<k<n/2 lakl = 

O((logn)U+l/n ~-1) (and the analogous estinlate for }--~0,<t,<n/2 ]bk]). 

LEMMA 4.4: If an = O((logn)U/n ~) and b,z = O((logn)V/n ~) for some ~ <~ 1, 
f~ ~ 1 and u,v >1 O, then (a*b)n = O((logn)~+~+l/n~+/3-1). 

In fact, the ( logn)  ~+*'+1 can be replaced by ( logn)  ~+v whenever a < 1 and 

/3 < 1, but  we will not need it. 
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We recall a notation used by Sarig: if cn is a real sequence and F(z)  = ~ FnZ" 

a formal series with coefficients in a Banaeh algebra, write F E ~(c , )  if IlFnll = 

O(cn). Abusing slightly notation, we write ~ (1 / n  ~) instead of ~ (1 / (n  + 1)~), 

discarding the problem for n = 0. 

To prove Lemma 4.2, we will first show that S(z) -1 E ~(1/nfi).  In his 

main theorem, Sarig obtains [fl] instead of 13 since he proves only that S -1 E 

~ ( l /n [g l ) ;  we can avoid this loss of information with the help of Lemma 4.5, 

which should replace the general result on Banach spaces Sarig uses and will give 

indeed S(z) -1 E ~(1/n~).  

LEMMA 4.5: Let A be a Banach algebra and suppose that F(z)  = ~ Fkz k where 

IIFkl[ ---- O(1/n  ~) for some /~ > 1. Suppose furthermore that for every z e D, 

I + F(z)  is invertible, and that (I + F(z))  -1 = ~ z k G k .  If~-~ I[Gk[I < co, then 

Ilakll = O ( 1 / n Z )  • 

Let us explain how to derive S(z) -1 E N(1/n z) from this lemma. Following 

Sarig, we use the identity S -1 = S ~ I ( I  + (S - SB)S~I) -1. In order to get the 

result for S -1, it is enough to prove that (I + (S - SB)S~l)  -1 c N(1/n z) since 

we already know that SB 1 C ~(nn) for some n < 1 (Lemma 4.1). Note that 

(I + (S - SB)SBa) -1 = S B S  - 1  = I + (SB - S ) S  -a has summable coefficients 

because this is the case for S -1 (Lemma 3.1) and for SB - S (because 

S B - S -  R ( 1 ) - R B  R ( 1 ) - R  
1 - z  1 - z  ' 

the first term being a polynomial and the second one in N(1/n~)). Moreover, 

Lemma 4.1 gives that I + (S - SB)SB 1 E N(1/n ~) (since S - SB C N(1/n ~) and 

S~ 1 C N(n~)). Consequently, Lemma 4.5 applied to F = (S - SB)SB 1 yields 

(I + (S - SB)S~t)  -1 E N(1/n;~), which gives the conclusion. 

Proof of Lemma 4.5: Set C n .~ Z i + k = n  ][a i l l l lak] l  • As ]lanII is summable, this 

is also the case for Cn. We will write f~ and gn respectively for IIFnll and Ila ll. 
Equating coefficients in [(I + F)-~] ' = - ( I  + F ) - I F ' ( I  + F)  -1 gives 

n 

ngn <. Z gi j f jgk = Z j f j c n - j  <<. ( sup j f j )  Z c k  < +oc. 
i + j + k = n  j=0 

Consequently, gn = O(1/n) .  Moreover, we have (ng~) <~ c*  ( j f j ) ,  with j f j  = 
O(1 / j~ - l ) .  

We show that g~ = O(1/n  1+~) for some 5 > 0. It is enough to prove this when 

1 < 3 < 2. As g~ = O(1/n) ,  c = 9 * 9  is such that Cn = O( logn/n)  according 
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to Lemma 4.3. Hence, cn = O(1/n  ~) for every V < 1. Lemma 4.3 again gives 

c*  ( j f j )  = O(1/n '+l~-l-1) ,  and g~ = O(1/n '+~- l ) .  As / ~ -  1 > 0 and 7 can 

be chosen arbitrarily close to 1, we can impose V + fl - 1 > 1, which gives the 

conclusion. 

Assume that gn = O(1/n  ~) for some 71 > 1. As c = g , g ,  we get Cn -- O(1/n~l), 

whence c* ( j f j )  = O(1/n  ~') + O(1/n  'e-~) once again by Lemma 4.3. As (ngn) < 

c* ( j f j ) ,  this implies 9n = 0 ( 1 / n ' + l )  + O(1/nZ) • 

We already know that g,~ = O(1/n  a+5) for some 5 > 0. Using the previous 

paragraph, we show by induction that, for any integer k such that 1 + ~ + k </3, 

we have g~ = O(1/nl+5+k+l)+O(1/nZ).  For the largest k such that l + 5 + k  </3, 

we obtain 9,~ = O(1/n~).  II 

From this point on, we can strictly follow Sarig's proof, replacing his estimates 

O(1/n  [3j) by O(1/n~).  This way, we can obtain Estimates (1) and (2) in Lemma 

4.2. However, the proof of Estimate (3) has to be adapted. 

Proof of Estimate (3) in Lemma 4.2: As in [Sar02, Step 4 of the proof of Theorem 

1] (in fact, due to a misprint, this step is called Step 3 in Sarig's article), write 

G(z) = S B l ( Z ) ( S s ( z ) - S ( z ) )  = ~ G k z  ~. As S B - S  6 ~ (1 / n  ~) and S~ 1 E ~(~'~) 

for some n < 1 (Lemma 4.1), we obtain that G 6 ~R(1/nZ). Moreover, ~ Gk = 0 

(because SB(1) = S(1)), hence ll~_~ G(z) = - ~ z n ~k>n  Gk and consequently 

1-~ 6 ~R(1/n z-*) (see [Sar02, Step 4 of the proof of Theorem 1] for more details). 

Setting E = 11~_G2S -1 = ~ z'*E,,, we want to estimate the coefficients E~ of 

E.  We have 

We know that a 6 ~(1/nZ-1) ,  G' 6 ~R(1/n z-a)  and (S-1) ' 6 ~R(1/n/~-1) (since 

S -1 6 ~R(1/n/3)). Lemma 4.3 on convolutions gives 

[ h G  2 E f ~(1/n/3-J) ifif fl > 22 

~ (1 /n  ~z-~) if/3 < 2 

and we have analogous estimates for the other terms in E ~. Integrating, we get 

the desired estimates for En. This concludes the proof of Lemma 4.2 and, with 

it, of Theorem 1.1. | 
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and 

SO 

( 1) 
~(/3) < 7 ( / 3 ) + e < s o n  -k n - l + n  

(11) g o ~ - sin((2r + 1)Tr.~:)l I < e- maxg / = ?~-399 j • 2Zrsoln k <_ 27rn -1. 

The Dirichlet kernel Dr and sin((2r + 1)Jr:r) are aligned in the sense that 

f l  sin((2r + 1)rrx) • D~ > clogn, 

and with (11), 

x(g o cp) • D~. > clogn 

and the probability is 

• . ( C~t - 3  ~C.K1 logT~.logn 
C n3 

\ if2 log n / 

C log n 
> c log n 

// 

e - C n a - C ( K 1 , K 2 ) l ° g  3 n ~ e - C ( K 1 , K ~ ) n a .  | 

This lemma is the "local" component of the proof of Theorem 2. The complement, 

the "global" component, is to show that for typical ~, many pairs i, j satisfying 

the above conditions exist. 

LEMMA 10: Let  0 < x <_ y < 1. The probabili ty that q~(2 -i) ~ [0, x], where i is 

tile smallest integer satisfying ,p(2 -~) C [0, y], is x /y .  

Proo f  Denote this event by Ax,y. Then 

~A;r,y = Z P((~(2-i) _<: :r)A (c2(2 -i+1) > y) 
i 

I' = ~ .  ~(~(2 -~) _< x I P(2-i+1) = t)d~,i(t) 

= ' ~(h~i(t) 

= . ~ ( ~ ( 2  ') <_ ~[ v(2 -~+1) =t)d.~(t)  

: 2'• E ] ~ ( ( ~ O ( 2 - - i )  ~ ?J) A ( ~ ( 2  - i + 1 )  > y) )  
Y I 

= ~ ' { 3 i :  (?(2 -~) _< y) A (?(2 -~+1) > ~)} = :r 
Y Y 

where the measure ui is the distribution of ~2(2-i+1). | 
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The induction hypothesis  gives 

G ( z ) H 1 G ( z )  . .. H, ._IG(Z) 
-~--~ <~ CF~x(n)[IHl[[ . . .  [IHr_tl[ for some constant  C. 

Then 

(6) r o ( z ) G ( z ) L ,  (z)...1 -Lr-I(z)G(z)Lr(Z)z <~ CF~,r * IlL0 II * . . . *  [IL~ II. 

Indeed, in Lo(z )G(z )L1  ( z ) . . .  L~-I  (z )G(z)L~.(z) / (1  - z), expanding the Li(z)s  in 

series of z gives terms of the form H o G ( z ) H 1 . . .  H~._IG(z)H~/(1 - z), to which 

the induct ion hypothesis can be applied. 

We prove Lemnm 5.1 by induction on p. The result is par t  of the hypotheses 

when p = t and easily follows from the proof of Est imate  (3) in Lemma 4.2 for 

p = 2 (the same argument  works when a term H1 is inserted). Assume p > 2. 

If ~ < (p - 1)(/3 - 1), the induction gives 

G ( z ) H 1 G ( z )  " . Hp_2G(z)  <~ C 
1 - z ~ I [ H ~ I I  . . .  Ilgp-21l. 

As G(z)  E N(1/nfi) ,  a multiplication on the right by Hp-a  and a convolution 

with G(z)  using Lemma 4.3 give the desired result. Thus, we can assume tha t  

/3/> (p - 1)(/3 - 1). As p /> 3, this implies in part icular  t ha t /3  ~< 2. 

Differentiating p - 1 times F ( z )  = - z )  gives, for 

some constants  Ci.i, ..... i,, , 

F ( , - 1 ) ( : )  : 
i+il-b-.--t-gp:p--1 

i 1 , . . . , i p ~ O  

a ( z )  (i') HI " " " H p - l a ( z )  (ip) 
Ci,i, ..... i, (1 - -  2 )  i + 1  

where G(z)  (k) denotes the flmction G(z)  differentiated k times. 

Let T(z )  = Ti& ..... ip (z) be a term of this sum. Since " P + }~j=l ij = p - 1, there 

are i + r factors G(z)  which are not really differentiated, i.e., for which i j  : O, 

for some 7" ~> 1. Giving a factor 1/(1 - z) to i of these factors, we write 

T(z )  = L o ( z ) G ( z ) L l  ( z ) . . .  G(z )L~(z )  
1 - z  

where the factors Li(z)  are products  of  factors of the form Hi,  or G (ij) with 

ij >~ 1, or G(z ) / (1  - z). Equat ion  (6) then gives 

]]T(z)ll ~< CF/3,r * IlL0]] * . . . *  ]]L,.]I 
(7) 

<<. CilH111... i}Hpl}" Ft3,r * lIG(i~)ll ..... I tG( ' . ) l i .  j i l l [  *i 
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where IIG(iJ)ll is wri t ten in the product  on the right only when ij > O. 
Let us distinguish 3 cases: 

1. I f  (p - 1)(/3 - 1) ~</3 < p(/3 - 1). 

For every term T(z) = Ti,ix ..... ip (z), in which i + r factors G(z) are not 

differentiated, we have r < p (otherwise, i + r ~ p would imply i -- 0, and 

nothing would be differentiated), whence r (3  - 1) ~</3, and we are in the 

second or third case of the induction. 

We are in fact in the second case only if r -- p - 1, which means tha t  i = 0 

and tha t  one ij is equal to p - 1, the other  ones being 0. In Equat ion  (7), 

/ log  n x 
FZ,p_,(n) = O~n(p_--iT~_l) ) = O(1/n 7) for some 7 > 1 

(since p(/3 - 1) > /3 implies (p - 1)(/3 - 1) > 1). When  convolving with 

IIG(z)(P-1)[I E N(1/n/~-p+l)  (where/3 - p +  1 ~< 1 since/3 ~< 2), Lemma 4.3 

gives an expression in ~(1/nZ-p+l).  
Consider now another term Ti& ..... i, with r < p - 1 .  As (p -1 ) ( / 3 -1 )  ~</3, we 

obtain ( p - 2 ) ( / 3 - 1 )  ~< 1, hence r ( /3-1)  ~< 1. As F~,r(n) = O(1/n r(¢-l)) and 

[[G(iJ)[I E ~ ( 1 / n  z - i j )  (with/3 - ij ~< 1 when ij > 0) and ~ E ~ ( 1 / n  ~-1) 

(wi th /3  - 1 ~< 1), Lemma 4.4 applied p - r times ensures tha t  the right 

hand  side of Equat ion (7) is in ~((logn)~/n '~) for some u >/0 and 

u =  E ( / 3 - i j ) + i ( / 3 - 1 ) + r ( / 3 - 1 ) - ( P - r ) = P ( / 3 - 1 ) - ( P - 1 ) "  
i j  >0 

Since p(/3 - 1) >/3 ,  we have in fact u > /3  - (p - 1), which gives an upper  

est imate in C/n  #-(p-1). 
Summing all terms, we obtain 

1 
HF(z)(P-1) u < C[[Hl[l " " t[Hp-l[l n#_p+ 1. 

Integrat ing then p - 1 times, we get the desired result. 

2. If /3 = p(/3 - 1). 

Here, we have/3 < 2, whence/3 - ij < 1 and/3  - 1 < 1, which implies tha t  

we will be able to use Lemma 4.3 instead of Lemma 4.4. 

We use the same reasoning as in case 1. In the case where r = p - l ,  we have 

Fzm_l (n  ) = O(1/n), which implies tha t  the right hand side of Equat ion  

(7) consists in ( l / n ) *  (1/nZ-P+l), which is in ~(( logn) /n  z-p+I) according 

to Lemma 4.3. 

When  r < p - 1, we use p - r - 1 times Lemma 4.3 to est imate 

Ila(~) II . . . . .  IIG(ip)ll * I l a ( z ) / ( 1  - z)ll *~, 
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. 

since all the exponents  are < 1, to obtain tha t  it is in ~R(1/n a) where 

= ( p -  r ) ( / 3 -  1) - p +  2. Convolving once more with F/~,,.(n) = 1 /n  " (z - l ) ,  

we get a te rm in N ( 1 / n ' )  where ~' = p ( / 3 -  1) - p + l  = / 3 - p +  1. Summing 

and integrating gives the result. 

If/3 > p(~ - 1). 

We do not need to distinguish the te rm where r = p -  1 any more: in all 

terms, all exponents  are < 1. A convolution gives terms in ~ ( V n  p(15-1)-p+I) 

which gives the result after integration. | 

LEMMA 5.2 (Control of the error term):  We have 

1 [ N(1 /n  ~) i f  N(/3 - 1) >/3,  
1 - , [S[~I(Ss - s ) ] N s - 1  E I N ( ( t o g n ) / n  e) i f  N(~3 - 1) = /3 ,  

- ~ ( 1 / n  N(~-t))  if  N ( ~ 3 -  1) </3.  

Proof: Set G(z) = S B I ( S B  -- S) .  Then the conditions of Lemma 5.1 are 

satisfied (this has been checked in the proof  of Est imate  (3) in Lemma 4.2). 

Consequently, the lemma with p = N and Ht  . . . . .  Hp_ 1 = 1 gives estimates 

on G ( z ) N / ( 1  - z). As we already know tha t  S(z)  - t  E ~ ( 1 / n  ~) with /3 > 1, 

another  convolution enables us to conclude. II 

To use this result, it remains only to s tudy the terms in the sum in Equat ion 

(5), i.e., the per turbat ive  terms for k = 0 , . . . ,  N -  1. The method  used in Sarig to 

est imate the first te rm still works: est imating S~ 1 by ± P  gives an exponential ly 
t t  

decreasing error, which does not mat ter .  Moreover, we can est imate SB - S 

by y~k°°=0(1 - z k) ~,~°°__k+ 1 Rk. A formal multiplication gives finally the desired 

terms. More precisely, the following lemma is valid. 

LEMMA 5.3 (Est imates  on the per turbat ive  terms): For any k E N*, writing 

P" = Y~l>~ P R I P ,  we have 

1 [s l(s B _ - 
1 z 

where E E ,~(1/n~). 

1 1 _1 (1 - zn)Pn + E ( z )  
pk+l 1 Z n=0 

Proof: We already know tha t  SB - S E N(1/n  ~) and SB 1 also. 

We write 

S B - S = [ R ' ( 1 )  R(I_)_-_ R] j R ( l )  - RB R'(1)] 
1 - z  J+L i - - ;  

= 1 - z n) + (1 - z ) B ( z )  
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where B(z) is a polynomial ,  according to L e m m a  4.1. Moreover,  the same l e m m a  

gives tha t  

SB 1 = iF q- (1 - z)A(z) 
# 

for some A(z) e ~ ( n ' )  with n < 1. 

We mult ip ly  these expressions to get 1 -1 ~_~[S B (SB -- S)]kSB 1 and we expand  

the product .  I f  we choose a t e rm  (1 - z)A(z) or (1 - z)B(z), we use it to simplify 

the 1_-~1z, and all the other  te rms are ~ (1 /nZ) ,  which gives after  convolution still 

a {R(1/n~). The  remaining t e rm  gives the expression s ta ted  in the lemma.  1 

Gather ing  the results of L e m m a  5.2 and L e m m a  5.3, together  with (5), we 

obta in  

THEOREM 5.4: Under the hypotheses of Theorem 1.1, we have, for any N C N, 

writing Pm= ~k>,~ PRkP, 

N - 1  1 1 (1 - zm)P,~ + E(z) _ 1 1 p +  E #k+l  - " (8) E Tnzn 1 ~  p 1 z 
k=l  m=0  

w h  e r e  

{ ~(1/.9) ifg(z - 1) > 9, 
E(z) E ~((logn)/n fl) if g ( f l -  1) = /3 ,  

~(1/n N(fl-1)) irN(/3 - 1) < ft. 

W h e n / 3  > 2, this theorem adds nothing to Theorem 1.1, since the t e rms  for 

2 ~< k ~< N - 1 are a l ready in O(1/n/~). However, when 3/2  < / 3  < 2, the result 

obta ined by taking N = 3 is more precise than  Theorem 1.1, since we get an error 

t e rm  in O(1/n ~) instead of 0(1/n2~-2). In fact, for any/3  > 1, it is possible to 

choose N such tha t  N ( / 3 - 1 )  > /3 ,  which implies tha t  the expansion of Tn with N 

te rms  gives an es t imate  with an error t e rm in O(1/n ~) (but taking N still larger 

is useless, since the new te rms  will be in O(1/nZ)). In part icular ,  if P f  = 0, we 

obta in  Tnf = O(1/n~), which is exact ly  Theorem 1.2. 

To obta in  a sharp asympto t i c  expansion for Tn, it remains  only to expand the 

middle te rms  in Equat ion  (8). We give, for example,  the theorem tha t  we obta in  

for N = 3: 

THEOREM 5.5: Under the hypotheses of Theorem 1.1, we have 

T =lp+ 1 +" I ( E  , 7 E P +7 E 
k = n + l  " k , l > n  k,l<~ n 

k+l>n 

Pk Pl ) + En 
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where E~ E Hom(£,  £)  satisfy 

I I G l l  = 

{ O(1/n ~) i f  fl > 3/2, 
O(( logn) /n  ~) if/3 = 3//2, 
O(1 /n  3(~-1)) i f3 /2  > fi > 1. 

We give for completeness the next term in the expansion: after tedious calcu- 

lations, we find that  it is (up to the factor 1/# 4) 

E - E - E - E - E  
k~l,?~2>?l O<k,l<~n 0<k,m~<n 0</,m~<~ O < k , l , m ~ n  

k T l > n  k + m > n  I T n ~ > n  k T l > n  
m > n  I>n k > n  k T m > n  

O<k, l ,m<~n 0<k,l,m~<n O<k,l ,rn<~n k+l<~n 
I + k > n  m + k > n  k + l > n  k + m < n  
I + m > n  m + l > n  k T m > n  l+m<~ n 

I+n~>n k + l + n ~ > n  

6. A p p l i c a t i o n  t o  M a r k o v  m a p s  

6.1 DEFINITION OF MARKOV MAPS. The definitions and results of this section 

are for the main part  contained in [Aar97]. 

A Markov map is a nonsingular transformation T of a Lebesgue space (X, B, m) 

together with a measurable partition (~ of X such that,  if a E ct, re(a) > O, Ta 
is a union (mod m) of elements of (~, and T: a --+ Ta is invertible. Moreover, 

it is assumed that, the completion of V o  T-ice with respect to m is B, i.e., the 

partition separates the points. 

For a0 , . . .  ,a,~-i E ce define a c y l i n d e r  by [ao . . . .  ,a,~-l] = Ni=on-1T_iai: two 

points in an identical cylinder of length n remain in the same elements of the 

parti t ion up to time n. These cylinders can be used to define do(x, y) = 0 t(~'~), 

where t (x ,y)  = sup{n I x ,y  E [a0 . . . . .  a , -1 ]  for some a 0 , . . . , a ~ - i  E a} is the 

time until which x and y remain in the same elements of the partition a,  and 

0 < 0 < 1 is some fixed number. 

A Markov map T is said to be i r r e d u c i b l e  if Va, b E a, 3n, m ( T - ' a  n b) > 0 
(i.e., b C T ~ a m o d m ) .  This means that  there is no 7 ~ a such that  the elements 

of 7 are stable by T. An irreducible Markov map T is a p e r i o d i c  if Va E ct, ~N E 

N, Vn >1 N, a C T'*a. Equivalently, there exists such an a, or there exists an a 

such that  gcd{n I a C T ' a }  = 1. An irreducible aperiodic Markov map is also 

said to be t o p o l o g i c a l l y  mix ing ,  i.e., Va, b E a, SN, Vn ) N, b C T'~a (this 

is a definition, and does not rely on a topology on the space, even though it 

corresponds to the usual notion of topological mixing when do is a metric). 
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The transfer operator T associated to T is defined by f (Tu)vdm = f u.voTdm. 
It can be written Tf(x )  = ~Ty=x g,~(Y)f(Y), where the weight gm is defined by 

dm 
g m -  dm o T 

(the measure m o T is given by m o T(E) = ~aea m(T(E N a))). Different 

regularity assumptions are possible on log gm, corresponding to different controls 

of the distortion. 

For any function ~ : X ~ C, the va r i a t i ons  of ~2 are defined by v~ (4) = 

sup{l)9(x ) -- ~(y)[[ x,y  e [a 0 . . . .  ,an_l] where a i e  a}. The function ~ is said 

to have summable variations if ~ ) 1  Vn(~) < +ec,  and to be HSlder continuous 

for the exponent 0 if 3C > 0,Vn /> 1, vn(~) ~< CO n (this is a definition, which 

corresponds to being Lipschitz with respect to the "metric" do on each element 

of the partition a). By a slight abuse of notation, we will say that a measurable 

function f has summable variations if there exists a version (mod 0) of f which 

has summable variations, and the notation f will denote this version. 

If log gm has summable variations, the distortion is bounded, meaning that 

there exists a constant C such that, for all x, y C [a0 . . . .  , an-l] ,  

g(~)(x) 1 <. C, 

where g(~) ,~-1 T i = [L=o gmo is the weight associated to T~. In particular, this 

implies that 

~ ( 7 ) ( x )  = c +, -~[ao . . . . .  a n - , ]  
re[Tan-l] 

(i.e. 1 m[a0 , . . . , a~ - l ]  ~< g}nn)(x ) < CiT~[ao,L::,an-1] 

When the "big image"  p r o p e r t y  inf~e~ m[Ta] > 0 is satisfied, we even obtain 

g(~) (x) = D+lm[ao,... ,  an_,]. 

PROPOSITION 6.1: Let (X, B, T, m, c~) be an irreducible Markov map with the big 
image property for which log g,~ is of summable variations. Then T is conservative 

and ergodie. 

Proof." This is a corollary of Theorem 4.6.3 in [Aar97] (where the hypotheses are 

in fact weaker, since this theorem requires only the "weak distortion property"),  

and was originally proved in [ADU93]. | 
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If  loggm is H51der continuous, the distort ion is be t te r  controlled, which gives 

s t ronger  results. In part icular ,  the t ransfer  opera to r  T act ing on the space of 

H51der continuous bounded  functions admi ts  a spectra l  gap ([Aar97, Thin.  4.7.7]). 

More precisely, let a '  denote  the smallest  par t i t ion  such that ,  Va • a ,  Ta is a ~- 

measurable;  the par t i t ion  o .~ is coarser than  a'. For a • a r and f : X --+ R, 

write D , f  = s u p { I f ( x  ) - f(y)l/do(.r, Y)l x, y • a} the best  Lipschitz constant  of 

f on a. Finally, let t; be the space of functions f :  X --+ C such tha t  Ilfllc = 

IIfI l~ + SUPae~' Daf  < +oc .  It  is the space of Lipschitz functions on X ,  but  the 

norm is not the usual Lipschitz norm. When  log g,~ is HSlder continuous (for 

some exponent  0) and T has the big image property,  Ruelle has proved tha t  the 

essential spectral  radius of 2? act ing on £ satisfies r~.~(T) ~< 0. 

6.2 INDUCED MARKOV MAPS. From this point  on, (X,/3,  m, T, or) will be a 

probabi l i ty  preserving Markov map.  

Let, 0 ¢ 7 c c~. If  Y = [-J~c-y a, the induced m a p  T.y: Y -+ Y is defined as the 

first re turn  m a p  from Y to Y, i.e., T~ = T ~ ,  where 

is the re turn  t ime to Y. If  x ¢ Y, we set ~ ( x )  = 0. By the Poincar4 recurrence 

theorem,  T~ and all its i terates  are defined for m-a lmos t  every point  of Y - -  

replacing Y by this smaller  set, we can assume tha t  T-~ is in fact defined on all 

Y. 

A measure  m~ is defined on Y by m~ = rely.  As m is invariant  by T, the 

measure  m~ is invariant by T~. 

Let 5 = { [ a , ~ l , . . - , { n - l , q ' ] l  a • 7,{1 . . . . .  {n - I  ¢ %[a,~1 . . . .  ,~n-1 ,7]  ~ 0}: 
this is a par t i t ion  of Y, for which Tz is a Markov map.  The  cylinders for this 

par t i t ion  will be denoted by [do . . . . .  d , - t ] ~  (with do . . . . .  d,~_~ E a). If  d = 

[a, {1 . . . .  , {n - l ,  "~] C ~, its image is Tvd = T{~- I  N Y  - -  hence, it is 7-measurable .  

In part icular ,  if ~ is finite, its elements have a measure  /> e > 0, which implies 

tha t  Vd E (~, m~(T.yd) ~ ~. Thus  T~ has the "big image" property.  

The  following s t ra ightforward l emma  establishes a link between the mixing 

proper t ies  of T and those of the induced t rans format ion  T~. 

LEMMA 6.2: I f  T is irreducible, then T~ is irreducible. 

We will be interested in induced maps  which have good dis tor t ion properties.  

More precisely, write 
dm~ 

gm~ -- dm~ o T~" 
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We assume that there exist constants C > 0 and 0 < 1 such that Vn ~> 1, 

vn(loggm,) ~< CO n (where Vn is the variation with respect to the induced map 

T~): we say that log g,~, is locally Hhlder continuous. In this case, the previous 

theorems on maps whose distortion has summable variations apply to T~. 

As above, let 5 ~ denote the smallest partition such that Vd E £ T~d is a union 

of atoms of 5 r. As every T~d is 7-measurable, this partition is coarser than 7- For 

x , y  C Y, let t.~(x,y) = sup{n I x , y  E [do,. . .  ,dn-1]~} and let/2 denote the space 

of functions f :  Y --+ C such that [If lit: := IIflloo + suPde5, Ddf < +oe, where 
Ddf is the least Lipschitz constant of f on d for the "distance" d(x, y) = 0 t,(~'y). 

We now state the main theorem of this section: 

THEOREM 6.3: Let ( X,  B, m, T, a) be a topologically mixing probability preserv- 

ing Markov map, and 0 7 ~ 7 C a. Assume that T. r has the big image property 

and that gm~ has a version such that log grn~ is locally O-H61der continuous for 

some 0 < 0 < 1. Assume moreover that m[~, > n] = O(1/n ~) for some fl > 1. 

Then 3C > 0 such that V f ,  g integrable and supported inside Y, 

Cor(f. g o T n ) -  ( ~ m[~.~ > k ] )  f y f . <~ CF/~(n)[,g[lcc,,f[,c 
k = n + l  

where F~(n) = 1/n ~ if /~ > 2, ( logn)/n 2 if~3 = 2 and 1/n 2~-2 i f2 >/3 > 1 (and 

£. denotes the space of O-H61der functions on Y).  

Moreover, if  f f = O, then Cor(f ,g  o T n) = O(1/nZ). 

6.3 PROOF OF THEOREM 6.3. The strategy is to apply the abstract Theorem 

1.1 to "first return transfer operators". In this section, (T, a) will be a Markov 

map and 3' a subset of a such that  the hypotheses of Theorem 6.3 are satisfied. 

The proof of Theorem 6.3 will be quite similar to Sarig's proof of his Theorem 

2 (in particular, the first three lemmas can essentially be found in [Sar02]), but 

there is a significant difference in the proof of the aperiodicity hypothesis (Lemma 

6.7), since the hypothesis to be checked is different. 

For _d = [do, • • • ,  d n - 1 ] . ~  7 ~ O, set Ma_f(x) = y,~,-(n)(do" • • dn-lX)f(do'"  "dn-lX) if 

this point is defined, 0 otherwise. 

LEMMA 6.4: There exists a constant B such that, V_d = [do . . . . .  dn-1]v, Vf E g, 

1 

Proo~ This lemma is classical and uses the distortion control to obtain explicit 

estimates. See, for example, [Sar02, Lemma 8] or [Aar97, Lemma 4.7.2]. II 
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Let L be the operator defined by Lf (x )  = ~-~Ty=x gm(Y)f(Y): it is a version 

of the transfer operator T, but it acts on actual functions and not on func- 

tions defined almost everywhere. In the same way, but for the induced map, set 

LTf(x)  = ETTy=x gm~ (Y)f(Y). Write also 

T . f  = 1 y L n ( f l y )  and Rnf  = 1ynn( f l {~=n}) .  

The operator Tn counts all returns from Y to Y at t ime n, while Rn takes only 

the first returns at t ime n into account. Note that,  by definition, p~ = 0 outside 

of Y, so Rn really counts returns to Y. For z E D, we set T(z) = I + ~ Tnz '~ 

and R(z) = y~ R~z ' .  

LEMMA 6.5: T,  and R ,  are bounded operators oi1 £, ]IT,]] = O(1), ]]R,~]] = 

=  nd, W D ,  = ( I  - 

Proof: We have Rn = E d = [ d o ] ~ , d o = [ a o  . . . . .  an-l,~'] Md_. Thus, Lemma 6.4 shows 

that  HRnH < B(1 + 0)~m[d_] = (1 + O)Brn[~ = n]. 

In the same way, Tn = ~ M d where the sum extends to all _d = [do, . . . ,  dk-1]-~ 

with di = [~i0 . . . .  , ~,~, ~/] and Y~(ni + 1) = n. Hence, IIT~II ~< B(1 + O)m[Y] (the 

sum is a sum of measures of disjointed sets included in Y, less than m[Y]). 

Finally, T,. counts all returns to Y while R~ counts only the first returns. 

Hence, Tn -- ~ h  +---+ik=n R~ "'" Rik, which gives the renewal equation. | 

LEMMA 6.6: The operator R(1): £ --+ £ has a simple isolated eigenvalue at 1, 

the spectral projection being given by P f = 1 ~[r] f r  f dm. 

Proof: As R(1) counts the first returns to Y, it is not hard to check that  

R(1) = L~ is the transfer operator associated to T~, i.e., R(1) = ~'-d=[do]~ M_a. 

In fact, R(1)" = ~'~d=[do ..... dn-1]-r Md, hence Lemma 6.4 shows that  

(9) IIR(1)~/IIc ~< BOnllfllr. + Bllflll .  

The injection £ --+ Ll(m) is compact by the Arzela Ascoli theorem. Hence, the 

Doeblin-Fortet inequality (9) gives, with the use of Hennion's theorem ([Hen93]), 

that  the essential spectral radius of R(1) acting on £ is ~< 0. Thus, if 1 is an 

eigenvalue of R(1), it is automatically isolated and of finite multiplicity. 

As T~ preserves the measure m~ (since T preserves m), L~I = 1 and PR(1)  = 

R(1)P  = P.  By Lemma 6.2 and Proposition 6.1, T~ is ergodic, whence there is 

no other eigenfimction for the eigenvalue 1. Finally, there is no nilpotent part  

for this eigenvalue either, since IIR(1)'~II remains bounded. | 
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LEMMA 6.7: Vz E D -  {1}, I - R(z)  is invertible on £.. 

Proof." Summing the estimates given by Lemma 6.4 for d of length n gives that 

(10) IIR(z)n fllL ~ Blzl'~(Onllfllc + Ilfll,)- 

As the injection L: --+ L l ( m )  is compact by the Arzela-Ascoli theorem, the the- 

orem of Hennion ([Hen93]) ensures that, Vz E D, the essential spectral radius of 

R(z)  acting on £ is ~< 0 < 1. To obtain the invertibility of I - R(z), it is thus 

enough to show that 1 is not an eigenvalue of R(z) .  The only problem is for 

Izl = 1 because otherwise, again by Equation (10), the spectral radius of R(z)  is 

~< ]z[ < 1 (since Ilfl[, ~< I l f l l c ) .  So, let z = e it be fixed, with 0 < t < 27r. 

Suppose that R ( z ) f  = f for some nonzero f E £. We will write, for u, v E 

L2(m~), (u,v) = f~vdm.~.  Define the operator W: L~(m.~) ~ L~(m.~) by 

W u  = e-i t~qu o T.~. As R(z )v  = R(1)(ei t~,v) ,  this operator W satisfies 

/ / / / (u ,R( z )v}  = ~ R ( z ) v  = = R ( 1 ) ( e i t ~ v )  = ~ o  T .~ei t~v  = W u . v  

= ( W u ,  v). 

We show that f is an eigenfunction of W for the eigenvalue 1: 

I l W f -  fll~ =llWfll~ - 2Re(Wf ,  f} + Ilfll~ = IlWfll~ - 2 R e ( f , R ( z ) f )  + Ilfll'~ 

=llWfll~ - 2Re(f ,  f ) +  Ilfll~ = IIWfll~ - Ilfll~. 

As T, preserves the measure m , ,  we have I IWf l l~  = f I f l  2 o T, = f I f l  2 = Ilfll~, 

which gives I I w f  - fll:: = 0. Hence, the function W f  - f is zero m~-ahnost 

everywhere. As f E £ and m~ is nonzero on every cylinder, the function f is 

continuous, thus W f  - f -- 0 everywhere. 

We have a function f such that e -its', f o T.~ = f .  Taking the modulus, the 

ergodicity of T~ gives that Ill is constant almost everywhere, hence everywhere 

by continuity. As f ~ 0, this constant is nonzero, and we get e -itv', = f / f  o T.> 

We can apply Theorem 3.1 in [AD01] and obtain that f is 5*-measurable, where 

5* is the smallest partition such that Vd E 5, T.yd is contained in an atom of 5*. 

As every T.~d is a union of sets of 7, this implies in particular that f is constant 

(almost everywhere, hence everywhere by continuity) on each set of 7. 

Let a E 7. On [a], f is equal to a constant c. As T is topologically mixing, 

there exists N such that,  Vn ~> N, [a] C T '~[a]. Let. n ~> N, and x E [a] be such 

that Tnx  E [a]. Let Tktx, Tk~x,...,Tkpx be the successive returns of x to Y, 
p--I 

with kp = n. Then Tnx  = TPx and n = ~k=o  P'r(T~x) • Thus, 

e-Un - . S , ~ - ~ , ( r ¢ ~ )  f ( x )  f (T~x)  f ( T p - l x )  f ( x )  c 
= e  = = . - ,  - - -  - - 1 .  

f(T.yx) f (T~x )  f (T~x )  f ( T n x )  c 



Vol. 139, 2004 SHARP POLYNOMIAL ESTIMATES 57 

This is true for any n /> N. Taking, for example, n = N and N + I  and 

quotienting, we obtain e i t  - - - -  1, which is a contradiction. | 

LEMMA 6.8: We have PR'(1)P = l_k_p re[Y] " 

Proo~ Using the explicit formula for the spectral projection P,  it is not difficult 

to check that 

PR~P - m [ ~  = n] p, 

and consequently PR~(1)P = ,~-~y1P by the Kac formula ([Aar97, Formula 1.5.5]). [ ]  
To apply this formula, we have to check that T is conservative and ergodic, 

knowing that this is the case for T~. This can be done, for example, using 

[Aar97, Proposition 1.5.2]. I 

Proof of Theorem 6.3: The temmas above show that  the hypotheses of Theorem 

1.1 are satisfied. Consequently, we get the existence of En E Hom(£,  £) with 

IiEniI = O(F~(n)) such that Vf E £, 

(f f ) l v T n f = l r  f d m +  E rn[~ >n] f d m + E n f  • 
k=n+ 1 

Multiplying by an arbitrary g C L~(X,  B, m) supported inside Y, we have by 

the definition of the transfer operator 

f f . g o T n d m = f f / g +  ~ m[~>k]fffa+fg'Enfdm. 
k=n+l 

The absolute value of the last term is bounded by Ilgll~llEnll£]lfllL, which gives 

the result. 

Finally, if f f -- 0, we use Theorem 1.2 and conclude in the same way, the 

estimates with Fz(n)  being replaced by estimates in O(1/nZ). II 

6.4 DECAY OF CORRELATIONS ON THE WHOLE SPACE. Theorem 6.3 gives a 

very sharp estimate on the decay of correlations when the functions f and g are 

supported in Y. It is also possible to estimate the speed of decay for a general g, 

not necessarily supported in Y, although the estimates will be less precise. This 

kind of result will be useful in the proof of the Central Limit Theorem. 
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THEOREM 6.9: Under the hypotheses of Theorem 6.3, assume that f is supported 

in Y and that g E L °° (m). Then there exists a constant C (independent of f or 

g) such that 
C 

Cor(f ,g  o T n) < n ~ - i  I[f][£][g[[~" 

To obtain this theorem, it is enough to prove that I I ~ n f  - f f[ l~ <~ c IlfliL. 

LEMMA 6.10: There exists C such that VA E B, IfA:F~fdm -- m ( A ) f  fl <. 

c IlfllL. n # - i  

Proof: In the course of this proof, we shall write L for the transfer operator act- 

ing on functions in £. Write also Kof  = l r f  and, Vk/> 1, K k f  = Lk( l{~>k}f):  

It'k counts the first returns to Y at time k, but for points not starting in Y 

(contrary to Rk). It is then easy to check that L~f  = ~ = 0  I (kTn-k f  for any f 
supported in Y (recall that, outside of Y, ~ = 0 by definition). 

Then, writing Tnf  = f f  + Cn with I[~ni]~ <~ ~-~-~ ]]f][~, 

n /AL'f =/IynATuf +k~=I/IALk(I{.,>')T.-'f) 
n 

=jiyo.T.f +~f l. 

=f ,(f l. oT'.l(..>.,) 
k=l 

(/ ) + 1yOAen + 1A o T k • l{~>k}en-k 

=I f f + ii. 

I can be expressed as m ( Y  A A) + ~ = 1  m(Y A T - k A  - U~=i T-JY) .  Thus, by 
Kac's Formula (see [Aar97, Lemma 1.5.4]), 

ec k 

1=re(A)- Z '"(rnr-~A- U r-°')" 
k = n + l  j ~ l  

As m(YNT-kA-U~.=t  T - J Y )  <~ m[c2~ > k] <~ C/k  ~ by hypothesis, a summation 

yields I = re(A) + O(1/n~-~). 

In the same way, I I  ~ IlCn[]~ + ~=1  m[cp~ ]> k]l]~n-k[Ioc: this is a con- 
volution between sequences respectively in O(1/n ~) and O(1/nZ-i ) ,  whence 
I I  = O(1/n 9-1) by Lemma 4.3. 1 
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Proof of Theorem 6.9: Lemma 6.10 yields that ,  VA E/~, 

Apply  this est imate to A = { T " f  - f f / >  0}, then to A = {2finf - f f < 0}, and 

sum to obtain tha t  

2C f T~f- f fdm<~n~_lllfllc. | 

6.5 CENTRAL LIMIT THEOREM. 

PROPOSITION 6.11: Under the hypotheses of Theorem 6.3, assume that f is 

supported in Y and that  f f = 0. Then there exists a constant C (independent 

o f f )  such that II~nfll~ ~< c n llfllc. 

Proof: This is an analogue of Theorem 6.9 in the case where f f = 0 (which 

implies tha t  there is a bet ter  bound  on [IT~fllc, according to Theorem 6.3). The 

same proof  works again, and is even easier because the term I in the proof of 

Lemma 6.10 disappears. | 

The following lemma will be useful in the Central  Limit Theorem to make 

precise the regularity of the cocycle in the case of zero variance. 

LEMMA 6.12: Let (X, 13, T,m,c~) be an irreducible probability preserving 

Markov map with the big image property and for which the distortion log gm 

is H61der for an exponent 0 < 1. Let £ denote the space o f  bounded f~mctions 

such that sup(~E ~, Daf  < +ec. I f  f E £ and g: X ~ R is measurable and satisfies 

l o t  = g o T - g ,  thet~ g E £.* 

Note tha t  g is not  assumed to be integrable, whence it is not  possible to apply 

2~ to g and to use spectral methods to prove this lemma. 

/3.--1 Proof" Denote by ~ ' ( z )  the element of the part i t ion Vi=0 T-ic~ containing x. 

A classical theorem on continuity points of measurable functions (true on [0, 1] 

with the Lebesgue measure, in which X can be canonically imbedded) implies 

tha t  

for ahnost  every x, Ve > 0, m{y E an(x)l If(y) - g ( x ) l  > ~} -+ 0 as n--+ oc. 

* We use the abuse of notation already mentioned in Section 6.1: this really means 
that there exists a version of g belonging to/2. 
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The points tha t  visit infinitely many times every element of the par t i t ion c~ 

form also a set of probabil i ty 1. We fix a point Xo satisfying these two properties. 

Fix ~ > 0. Let n k -+ oo be a sequence such tha t  T nk x0 visits infinitely often 

every element of c~ too, and 

?~{y e olnt:(Xo)l~l[ OLnklg(y)(xO)j-B(xO)I > C} "~ (20. 

For every k E N, the control on the distort ion implies tha t  

m { y  e X I 3y' e ~n~(Xo),Tn~y'  = y, Ig(Y') - g(x0)l > ~} 

m[T'kan~(xo)]  

e Jg(y') - g (xo) l  > c }  

( x 0 )  ] 

Thus, )"~km{y e X I 3y' e o~nk(xo),Tnky ' : Y, lg(Y')--g(XO)[ > e} < +oc. 

Consequently, AE :=  (y  E X I 3K,  Vk >1 K ,  i fy '  E ank(xo)  is such tha t  T~ky  ' = y, 

then Ig(Y') - g(xo)l ~ e)  is of full measure. 

Take Yl, Y2 E AE such tha t  Yl and y~ are in the same element of a ' ,  with 

d(y l ,y2)  = 0 ~ for some n />  0. Take k such tha t  Tnkxo is in the same element of 

a '  as Yl and Y2. If  k is large enough, by definition of A~, the preimages y~ of Yi 

in c~n~(xo) satisfy Ig(Y~)-  g(xo)l <~ e, hence [g(Y' l )-  g(Y'~)l ~ 2e. Then 

Ig(Yl) -- g(Y2)l : l g  0 T nk (y~) -- g o T nk (yl2) I 
nk 

< E I1 o Ti(y~) - f o Ti(yl2)] + ]g(yll) -- g(Y2)l 
i=l 

i= l  

Finally, for Yl, Y2 E A = ~ A~ of full measure, 

I l f l lL  ,,  . 

Hence, there exists a unique version of  the function g which is Lipschitz on every 

set of a ' ,  which we will still denote by g. 

To see tha t  g E/2,  it remains to prove tha t  g is bounded.  Let ~/> 0 be such tha t  

Va • c~, m[Ta] > 71. There exists al  . . . .  , a N  • ~ a finite number  of par t i t ion sets 

such tha t  ~~N=I m[a~] > 1 -- 7/. Thus, Va • ~, Ta contains one of the sets hi. On 

each of these sets, g is Lipschitz, hence bounded by a constant  C/. If  x • [a] has its 

image in hi, then ]g(x)l = I g o T ( x ) - f o T ( x ) ]  <~ Ci+l[fHo~ <~ maxi Ci--bl[fl[c~ "~: C. 
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Finally, for y E [a], 

IlfllL Ig(~)l < Ig(~) - ~(y)l + Ig(y)l <~ ~ + C. . 

THEOREM 6.13: Under the hypotheses of  Theorem 6.3, i f  f C £ is supported in 
v ' n - 1  

Y and f f = 0, then the sequence 4-~ Z-,k=O f o T k converges in distribution to a 

Gaussian random variable of zezv mean and finite variance a 2, with 

n = 0  

Moreover, a = 0 i f  and only i f  there exists a measurable function g such that  

f o T = g o T - g. Such a function g automatically satisfies 9W C £ and Vx C 

r ,  Vn < ~3(x),g(T'~x) = g(x). 

We will use an abstract  result due to Liverani [Liv96, Theorem 1.1] inspired 

by Kipnis Varadhan to obtain this Central Limit Theorem. We recall for the 

convenience of the reader the version of this theorem that  will be useful in our 

setting. 

THEOREM 6.14: Let ( X , B , T , m )  be a non-singular probability preserving 

dynamical system. Let also f C L°°(X) ,  f f = 0 be such that 

1. ~ ° ' ~ = o [ f f . f o T * ~ [ < o o .  

2. The series ~n~__o Tn f converges absolutely in L 1. 
1 n - 1  zk Then the sequence ~ ~ k = 0  f o converges in distribution to a Gaussian 

random variable of zero mean and finite variance ~2 with 

a2=-f f')dm + 2 ~0 f =  f "  f o T n d m .  

Moreover, a = 0 if and only i f  there exists a measurable function g such that 

f o T = g o T - 9  . 

Proof  of  Theorem 6.13: It  is enough to show that  the hypotheses of Theorem 

6.14 are satisfied. As we have formulated this theorem, the first hypothesis is in 

fact a consequence of the second one, since 

f f .  f o T n d m  = f ~nf .  f d m  <. Ilrnflllllfl]c~. 

Consequently, it remains only to check that  ~ IlTnflla < +oo. By Proposition 

6.11, Ilion fi l l  = O(1 /n  ~) with/3 > 1, thus the series is summable. 
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To obtain the regularity results on g when c~ = 0, we use the fact that f = 0 

outside of Y. As l o T  = g o T - g ,  this implies that g(x) = g o T ( x )  when 

T(x)  • Y.  In particular, Vx G Y, Vn < ~.~(x),g(x) = g(Tnx).  Using once more 

the cocyele relation gives that f o T.~(x) = g o T~(x) - g(x). Thus, Lemma 6.12 

applied to (Y, T~) shows that glY C £. | 

7. Applications to specific maps 

7.1 THE LIVERANI SAUSSOL VAIENTI MAP. The Liverani-Saussol-Vaienti 
map is the map T: [0, 1] ~ [0, 1] defined by 

T ( x ) =  { x ( l + 2 a x  a) i f 0 ~ x ~  1/2, 
2 x -  1 if 1/2 < x ~< 1. 

It is an analogue of the Pomeau-Manneville map x ~ {x+xl+~},  but the second 

branch of the map is affine, which simplifies to some extent the computations 

(our results also apply directly to the Pomeau-Manneville map). It is shown in 

[LSV99] that,  when 0 < c~ < 1, T admits an integrable invariant density h which 

is Lipschitz outside of any neighborhood of 0. 

COROLLARY 7.1: I f  a C (0,1), f is Lipschitz, g is bounded measurable, 

f f , f g ¢ 0 and f , 9 = 0 in a neighborhood of O, then 

1 / 1 \  - l " a  1 Cor(f, g o T  n) e.~ ~ h ~ ) o l  / ( ~  - 1)- - l~ ' / l - - i / °~ / f /g  

with respect to the invariant probability measure. 

Moreover, if  f f = 0 (and f ,  g are still zero in a neighborhood ofO, f Lipschitz), 

then Cor(f ,g  o T n) = O(1/nl /~) .  Consequently, f satisfies a Central Limit  

Theorem. 

Proo~ If x0 = 1/2 and Xi+l = z - l ( x i )  N [0, 1 /2] ,  the partition 

= {(xi+l, xil} u (1/2,11 

is a Markov partition for T, which makes it possible to apply the results of the 

previous section to this map. The distortion of the induced map on (1/2, 1] is 

locally HSlder continuous for the density h, whence Theorem 6.3 applies and gives 

a precise asymptotic on the speed of decay of correlations for functions supported 

in (1/2, 1], which can be calculated precisely (see [Sat02]). 
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As the distortion from (xi+l,x~] to (x~,x~_~] is bounded, it is not hard to 

check that the induced map on "y = {(Xi+l,Xi]li < N} U {(1/2, 1]} has still a 

Hhlder continuous distortion for any N. Thus, Theorem 6.3 gives also estimates 

on the decay of correlations of functions supported in (XN, 1]. More precisely, for 

functions f C/2 and g E L °° supported in (xg, 1], 

)//  (11) C°r ( f ' g ° rn )  ~ E m[~.~ > k] f g. 
\ k = n + l  

For functions supported in (1/2, 1], Sarig has shown, estimating m[~(~/2,1]] > n, 

that 

(12) Cor(f,  g o T')  ,'~ ~h(~)al 1 -1/~ (~1 _ 1)- ln ,_l /~  / f  / g. 

The estimate (11) can be applied in particular to functions supported in (1/2, 1], 
oo m ~ k] ~'~ 1 1 ~ - 1 ~ a t  1 -- 1 ) - l n l - V a .  which gives, using (12), that ~k=n+l  [~c~ > ~h(~)~ ~ 

This proves the corollary. | 

7.2 LS Y O U N G  TOWERS. A LS Y o u n g  t o w e r  is a non-singular conservative 

transformation (A, B, m, F)  with a generating partition 

{At,i[ i E N,l = 0 . . . . .  Ri - 1} 

with 

1. 

the following properties: 

gl, i the measure of Al,i is positive and finite. Moreover, if At = (.J At,i, 

m(Ao)  < oo. 

2. If 1 + 1 < Ri, F: Al,i --+ Al+l,i is a measurable bijection and F, mlz~z. ~ = 
~]'/[ A/st_ 1, i • 

3. If 1 + 1 = Ri, F: Al,i ~ Ao is a measurable bijection. 

4. Let R: Ao ~ N be the function RiAo, ~ = Ri, and set 

dmlAo 

g -- din1± o o F R' 

g has a version for which 3C > 0, 0 E (0, 1) such that  Vi and Vx, y E A0,i, 

g(x) _ 1 <~ C O  s ( F • x ' F • ! l )  
g(y) 

where s(x, y) = rain{n] (FR)nx, (FR)ny lie in different A0,j}. 

The fourth condition corresponds exactly to saying that  the induced map on 

the base Ao of the tower has a distortion which is locally H61der continuous. 
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Henceforth, we assume for simplicity that f Rdm < +oo and that m is an 

F-invariant probability, which is possible because m has an integrable invariant 

density h such that co 1 ~< h 4 Co (see [You99, Theorem 1]). 

Set C0(A) = { f :  A --+ C I 3CVx, y C A, If(x) - f(Y)l <~ C08(x'Y)}: this is the 

space of locally Hhlder continuous functions (s has been extended to all pairs 

x, y C A by setting s(x, y) = 0 if x, y are not in the same At,i and, for x, y E At,i, 

s(x, y) = s(x', y') where x', y' are the corresponding points in A0,i). 

COROLLARY 7.2: Let ( A , B , m , F )  be a probability preserving LS Young 
tower with gcd{ni} = 1 and m[n > n] = O(1/n ~) where/3 > 1. I f  f e C0(A), 

g E L ~ are supported inside U N-1 A t for some N ,  then Cor( f ,g  o F n) -- 

Moreover, if f f  = O, then Cor(f ,g  o F n) = O(1/nZ). Thus, f satisfies a 
Central Limit Theorem. 

Prool~ For the partition {At,i}, F does not have the big image property. 

However, it is still a Markov map for the partition {Al} composed of the points 

at different heights. If "~ = {Al]l < N} for some N, then 7 is finite, whence the 

induced map Tv has the big image property. 

For the induced map, the partition 5 is constructed as follows: at each height 

0 < l < N - 1, cut At in two pieces Az A F -1Ao  and At - F -1Ao  . Ao remains 

intact, and AN-1 is cut into all the small pieces A N _ l ,  i. With this explicit 

partition, it is not hard to check that the induced map has oUN-locally H61der 

continuous distortion. 

Thus, Theorem 6.3 applies and gives an estimate 

(13) Cor( f ,g  o F n) = E m [ ~  > k] f f[g+ O(Fz(n)). 
k > n  

J J 

To finish the proof of the theorem, we have to show that ~-~k>n m [ ~  > k] = 

~-~-k>~ m[R > k] + O(F~(n)). If f and g are supported in A0 and of nonzero 

integral, Estimate (13) applies. Moreover, the estimate for N = 1 applies also. 

Equating these two estimates of Cor(f,  g o Fn), we get the result. | 

[Aar97] 
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