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REGULARITY OF COBOUNDARIES FOR NONUNIFORMLY
EXPANDING MARKOV MAPS

SÉBASTIEN GOUËZEL

(Communicated by Michael Handel)

Abstract. We prove that solutions u of the equation f = u − u ◦ T are au-
tomatically Hölder continuous when f is Hölder continuous and T is nonuni-
formly expanding and Markov. This result applies in particular to Young
towers and to intermittent maps.

1. Results

Let (X, m) be a probability space and let T : X → X be an ergodic measure-
preserving transformation. Also let G be a locally compact abelian group, endowed
with an invariant metric that we denote by |x − y|. It is often important to know
whether a function f : X → G is a measurable coboundary, i.e., there exists a
measurable function u : X → G such that

(1) f = u − u ◦ T

almost everywhere. For G = R, this condition is indeed often the only obstruction
to have a nondegenerate central limit theorem for the Birkhoff sums of f (see e.g.
[Leo60], [GH88], [Liv96]). For G = S1, it is relevant to prove local limit theorems
(see [AD01] and [ADSZ04] when f is locally constant, in the Markov and non-
Markov case).

When T is uniformly hyperbolic and f is Hölder continuous, the Livšic regularity
theorem ([Liv72]) states that u must have a Hölder continuous version, for which (1)
holds everywhere. In particular, if there exists a point x such that Tn(x) = x and∑n−1

k=0 f(T kx) �= 0, then f is not a measurable coboundary. Hence, it is possible to
prove in practice that a function is not a coboundary (see also [PY99] and [NS03]).

In this note, we extend the aforementioned result of Livšic to nonuniformly
expanding Markov dynamical systems, without any additional assumption on the
functions f or u. The result will first be given in the abstract setting of Gibbs-
Markov maps (see [Aar97]). Applications to Young towers, intermittent maps in
dimension 1 and positive recurrent Markov shifts will also be described.

The proof is quite flexible since it is completely elementary and does not use
spectral theory. Hence, the same kind of arguments may be used in other settings.
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1.1. Results for Gibbs-Markov maps. In this paragraph, we will work in the
setting of Gibbs-Markov maps, defined in [Aar97, Section 4.7].

Let us recall briefly the definitions. Let (X, d,B, m) be a bounded metric space
endowed with its Borel σ-algebra and a probability measure. A nonsingular map
T : X → X is Gibbs-Markov if there exists a partition α of X (modulo 0) by sets
of positive measure, such that

(1) For all a ∈ α, T (a) is a union (modulo 0) of elements of α and T : a → T (a)
is invertible.

(2) There exists a finite subset {a1, . . . , an} of α with the following property: for
any a ∈ α, there exist i, j ∈ {1, . . . , n} such that a ⊂ T (ai) and aj ⊂ T (a)
(modulo 0).

(3) Expansion: there exists λ > 1 such that ∀a ∈ α, for almost all x, y ∈ a,
d(Tx, Ty) ≥ λd(x, y).

(4) Distortion: for a ∈ α, let g be the inverse of the jacobian of T on a, i.e.,
g(x) = dm|a

d(m◦T|a)(x) for x ∈ a. Then there exists C such that, for all a ∈ α,

for almost all x, y ∈ a,
∣∣∣1 − g(x)

g(y)

∣∣∣ ≤ Cd(Tx, Ty).

Property (2), also known as the BIP (big images and preimages) property, is
apparently stronger than the usual big image property infa∈α m(Ta) > 0. How-
ever, when (4) is satisfied and T is probability preserving, these two properties are
equivalent by [Sar03].

Usually, Gibbs-Markov maps are endowed with a distance given by d(x, y) =
τ s(x,y), where τ ∈ (0, 1) and s(x, y) is the separation time of x and y. Here we have
chosen to use a general distance, since it will be more convenient in the applications:
our main result will say that a function is Lipschitz continuous with respect to d,
which means that having more freedom to choose the distance will give more precise
results. In particular, when the Gibbs-Markov map is obtained by coding another
dynamical system, it is natural to use the distance induced by the original distance
(see Sections 1.2 and 1.3 for illustrations of this phenomenon).

For a0, . . . , an−1 ∈ α, let [a0, . . . , an−1] =
⋂n−1

0 T−i(ai). It is a cylinder of length
n. For f : X → G and Z ⊂ X, set

Df(Z) = inf{C > 0 : ∃Ω ⊂ Z with m(Z\Ω) = 0 such that

∀x, y ∈ Ω, |f(x) − f(y)| ≤ Cd(x, y)}.

The main result of this note is the following theorem:

Theorem 1.1. Let (X, T, m, α) be a probability-preserving Gibbs-Markov map. Let
f : X → G satisfy

∑
a∈α m(a)Df(a) < +∞. Let u : X → G be a measurable

function such that f = u − u ◦ T almost everywhere.
Then supa∗∈α∗ Du(a∗) < ∞, where α∗ is the partition generated by the images

of the elements of α. Moreover, the function u is essentially bounded.

Remarks.

(1) Since T is Markov, α∗ is coarser than α. In particular, supa∈α Du(a) < ∞,
i.e., u has a version which is uniformly Lipschitz on each element of the
partition α.

(2) The map T is also Gibbs-Markov for the distance d(x, y)γ when γ ∈ (0, 1].
Hence, Theorem 1.1 implies a similar statement for Hölder functions.
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(3) The proof will in fact show that there exists a constant C depending only on
T such that supa∗∈α∗ Du(a∗) ≤ C

∑
a∈α m(a)Df(a). In particular, when

f is constant on each element of α, we get Du(a∗) = 0, i.e., u is essentially
constant on the elements of α∗. When G = S1, we get a completely different
proof of [AD01, Theorem 3.1].

(4) The proof would be easier under the stronger assumption

sup
a∈α

Df(a) < ∞.

However, this assumption is too strong, since it is not compatible with the
induction process which will enable us to extend Theorem 1.1 to nonuni-
formly expanding settings.

In this paper, N = {n ∈ Z, n ≥ 0} and N
∗ = N\{0}.

1.2. Application to Young towers. Let (X, d, m) be a probability space en-
dowed with a bounded metric d. A map T : X → X is a Young tower ([You99]) if
there exist integers Rl ∈ N

∗ and a partition {∆k,l}l∈N,k∈{0,...,Rl−1} of X such that
(1) For all l and k < Rl − 1, T is a measurable isomorphism between ∆k,l and

∆k+1,l, preserving m.
(2) For all l, T is a measurable isomorphism between ∆Rl−1,l and ∆0 :=⋃

m ∆0,m.
(3) There exists λ > 1 such that, for all l, for all x, y ∈ ∆0,l, d(TRlx, TRly) ≥

λd(x, y).
(4) There exists C > 0 such that, for all l and k < Rl, for all x, y ∈ ∆k,l,

d(x, y) ≤ Cd(TRl−kx, TRl−ky).
(5) For x ∈ ∆Rl−1,l, let g(x) be the inverse of the distortion of T at x, i.e.,

g(x) =
dm|∆Rl−1,l

d
(
m◦T|∆Rl−1,l

) (x). There exists C > 0 such that, for all l, for all

x, y ∈ ∆Rl−1,l,
∣∣∣1 − g(x)

g(y)

∣∣∣ ≤ Cd(Tx, Ty).

The third and fifth conditions mean that the returns to the basis are expanding
and have a controlled distortion. Hence, Young towers are a good model for many
nonuniformly expanding maps: the map has good properties, but after some waiting
time, which can be arbitrarily long.

Theorem 1.2. Let (X, T, m, d) be a Young tower, and let f : X → G satisfy∑
m(∆k,l)Df(∆k,l) < ∞.

If u : X → G is such that f = u−u ◦T almost everywhere, then the function u has
a version which is Lipschitz on ∆0, i.e., there exists C > 0 such that, for almost
all x, y ∈ ∆0, |u(x) − u(y)| ≤ Cd(x, y).

This result applies in particular when the function f is Lipschitz.

Proof. By [You99], we can assume without loss of generality that m is invariant.
Let Y = ∆0 with the partition α = {∆0,l}, let ϕ : Y → N

∗ be the first return
time to Y (i.e., on ∆0,l, ϕ = Rl), and let TY = Tϕ be the map induced by T on Y .
Also define a distance d′ on ∆0,l ∈ α by d′(x, y) = d(TRlx, TRly). If x and y are
in two different elements of the partition α, also set d′(x, y) = λ supX×X d. Then
(Y, TY , m|Y /m(Y ), d′) is a Gibbs-Markov map for the partition α. Moreover, TY

preserves the measure m|Y /m(Y ), and the partition α∗ is the trivial partition.
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Let f : X → G satisfy
∑

m(∆k,l)Df(∆k,l) < ∞, and assume that f = u−u◦T .
Define a function fY on Y by fY (x) =

∑ϕ(x)−1
k=0 f(T kx). On ∆0,l,

|fY (x) − fY (y)| ≤
Rl−1∑
k=0

|f(T kx) − f(T ky)| ≤
Rl−1∑
k=0

d(T kx, T ky)Df(∆k,l)

≤ Cd(TRlx, TRly)
Rl−1∑
k=0

Df(∆k,l) = Cd′(x, y)
Rl−1∑
k=0

Df(∆k,l).

Hence,
∑

a∈α m(a)DfY (a) ≤ C
∑

m(∆k,l)Df(∆k,l) < ∞. Moreover, fY = u − u ◦
TY .

Theorem 1.1 applies and proves that u is almost everywhere Lipschitz on each
element of α∗, for the distance d′. In particular, on any element ∆0,l of α, we get
|u(x) − u(y)| ≤ Ed′(x, y).

Finally take x′, y′ ∈ ∆0. They have preimages x, y under TRl in ∆0,l. As
fY (x) = u(x) − u(x′) and fY (y) = u(y) − u(y′), we get

|u(x′) − u(y′)| ≤ |fY (x) − fY (y)| + |u(x) − u(y)| ≤ Cd′(x, y) + Ed′(x, y)

= C ′d(x′, y′). �

1.3. Applications to intermittent maps. For α ∈ (0, 1), let T be the map from
[0, 1] to itself given by

T (x) =
{

x(1 + 2αxα) if 0 ≤ x ≤ 1/2,
2x − 1 if 1/2 < x ≤ 1.

This map has been studied by [LSV99]. It is nonuniformly expanding since the
fixed point 0 satisfies T ′(0) = 1, and admits an absolutely continuous invariant
probability measure.

Proposition 1.3. Let f : [0, 1] → G be Hölder with exponent γ > 0 on the intervals
[0, 1/2] and (1/2, 1]. If u : [0, 1] → G is measurable and satisfies f = u − u ◦
T Lebesgue almost everywhere, then there exists a function ũ, equal to u almost
everywhere, Hölder with exponent γ, and such that f = ũ − ũ ◦ T everywhere.

Proof. Let Y = (1/2, 1], let ϕ be the first return time from Y to itself and let
TY : Y → Y be the induced map. Then TY is Gibbs-Markov for the partition
Bn = {y ∈ Y : ϕ(y) = n}, by [LSV99]. Hence, the arguments in the proof of
Theorem 1.2 apply and prove that u is a.e. Hölder on Y . As T : (1/2, 1] → (0, 1]
is Lipschitz and has Lipschitz inverse, the coboundary equation implies that u is
a.e. Hölder on (0, 1], i.e., there exists a set V of full measure and a constant C such
that, for all x, y ∈ V , |u(x) − u(y)| ≤ C|x − y|γ .

The function u is uniformly continuous on V , whence it can be extended to a
continuous—and even Hölder—function ũ on [0, 1]. On V ∩T−1(V ), which is dense,
we have f(x) = ũ(x) − ũ(Tx). Since both members of this equality are continuous
on the intervals [0, 1/2] and (1/2, 1], this equality in fact holds everywhere. �

In particular, if f is a measurable coboundary, it satisfies
∑n−1

0 f(T kx) =
ũ(Tnx) − ũ(x) = 0 at any point x such that Tn(x) = x.

Corollary 1.4. If f : [0, 1] → R is Hölder continuous on [0, 1/2] and (1/2, 1] and
satisfies f(0) �= 0, then f is not a measurable coboundary.



REGULARITY OF COBOUNDARIES 395

This solves a conjecture stated in [FHV03]: in this article, the authors need to
know that f = log |T ′| −

∫
log |T ′| is not a coboundary to get a nonzero variance

in the central limit theorem. As f is α-Hölder on [0, 1/2] and (1/2, 1], and f(0) =
−

∫
log |T ′| < 0, the corollary applies and proves that it is indeed never the case.

Using Theorem 1.1 with G = S1, in the same way we can get a stronger result:

Corollary 1.5. The function f(x) = log |T ′| −
∫

log |T ′| cannot be written as f =
u−u◦T +λq +µ almost everywhere, where u : [0, 1] → R is measurable, q : X → Z

and λ, µ ∈ R.

The proof is the same, using the behavior at the fixed points 0 and 1 to get a
contradiction. This is a strong aperiodicity result on the function f . By [Gou03,
Theorem 1.2], it implies that f satisfies a local limit theorem when α < 1/2.

1.4. Application to positive recurrent Markov shifts. Let T : X → X be a
positive recurrent Markov shift with Hölder potential, as defined in [Sar01], pre-
serving the probability measure m. The map T satisfies the same assumptions as
a Gibbs-Markov map, except the BIP property. We also assume that the distance
d is given by d(x, y) = τ s(x,y), where τ ∈ (0, 1) and s(x, y) is the separation time of
x and y. Such maps have in general more complicated combinatorics than Young
towers, but they enjoy uniform expansion (since d(Tx, Ty) = τ−1d(x, y) for all
x, y in the same element of α), while Young towers are expanding only after many
iterates.

Theorem 1.6. Let f : X → G satisfy
∑

a∈α m(a)Df(a) < ∞. Let u : X → G be
a measurable function such that f = u − u ◦ T almost everywhere. Then, for all
a ∈ α, Du(a) < ∞. Moreover, if T is transitive,

∑
a∈α m(a)Du(a) < ∞.

Proof. For a ∈ α, let Ta be the map induced by T on [a]. It is Gibbs-Markov.
Using Theorem 1.1, we show as in the proof of Theorem 1.2 that Du(a) < ∞. If T
is transitive, the proof of Lemma 2.3 applies and gives

∑
m(a)Du(a) < ∞. �

2. Proof of Theorem 1.1

A Gibbs-Markov map is transitive if, for all a, b ∈ α, there exists n such that
b ⊂ Tn(a) mod 0. When T preserves a probability measure, there exists a finite
decomposition α = α1∪. . .∪αn such that the image of an element of αi is contained
in Xi =

⋃
a∈αi

a, and such that T is a transitive Gibbs-Markov map on Xi ([Aar97]).
To prove the theorem, it is sufficient to prove it on each Xi. We can therefore assume
that T is transitive.

The main step of the proof is the following lemma:

Lemma 2.1. There exists α1 ∈ α such that Du(α1) < ∞.

Proof. Let Φ(x) = Df(a) when x ∈ a. This function is integrable by assumption.
In particular, there exists a set X1 of full measure such that the Birkhoff sums
SnΦ(x) =

∑n−1
k=0 Φ(T kx) satisfy SnΦ(x) = O(n) when x ∈ X1.

There exists X2 of full measure such that, if x ∈ X2, all its iterates satisfy:
for almost all y in the same element of partition a as Tnx, |f(y) − f(Tnx)| ≤
Df(a)d(y, Tnx).

The martingale convergence theorem implies that almost every point is a measur-
able continuity point of u: there exists X3 of full measure such that, if x ∈ X3 and
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a0, a1, . . . denotes the sequence of elements of α containing respectively x, Tx, . . .,
then, for all ε > 0,

m{y ∈ [a0, . . . , an−1] : |u(y) − u(x)| > ε}
m[a0, . . . , an−1]

→ 0.

As T is Gibbs-Markov, all its iterates have a bounded distortion ([Aar97, Propo-
sition 4.3.1]). Hence, there exists B > 0 such that, for any measurable set Z and
for any cylinder of length k,

(2) B−1 m(T (ak−1) ∩ Z)
m(Tak−1)

≤ m([a0, . . . , ak−1] ∩ T−kZ)
m[a0, . . . , ak−1]

≤ B
m(T (ak−1) ∩ Z)

m(Tak−1)
.

Since T has the big image property, this implies that there exists B′ > 0 such that

(3)
m([a0, . . . , ak−1] ∩ T−kZ)

m[a0, . . . , ak−1]
≤ B′m(Z).

Let λ > 1 be the expansion factor of T and let K > 0 be large enough so that

(4) K log λ > 3.

Let α1, . . . , αN be a finite number of elements of α such that m(X\
⋃

αi) ≤ ε0

where ε0 satisfies K log(1 − B′ε0) ≥ −1/2. Write

Zn = {x : ∀n3 ≤ k < n3 + K log n�, T k(x) ∈ α1 ∪ . . . ∪ αN}.
Finally let X4 be the set of points belonging to infinitely many Zn.

Lemma 2.2. The set X4 has nonzero measure.

Proof. Write A = α1 ∪ . . . ∪ αN . Let us first bound m(Zn) from below. For any
cylinder [a0, . . . , ak−1], we apply (3) to X\A, of measure at most ε0, and we get

m([a0, . . . , ak−1] ∩ T−kA) ≥ (1 − B′ε0)m[a0, . . . , ak−1].

Summing these inequalities for ak−1 = α1, . . . , αN yields

m([a0, . . . , ak−2] ∩ T−k+1A ∩ T−kA) ≥ (1 − B′ε0)m([a0, . . . , ak−2] ∩ T−k+1A).

This last term is larger than (1 − B′ε0)2m[a0, . . . , ak−2], again by (3). In this way
we get by induction

m
(
[a0, . . . , al] ∩ T−l−1A ∩ . . . ∩ T−kA

)
≥ (1 − B′ε0)k−lm[a0, . . . , al].

In particular, for l = −1 and k = K log n� − 1, we get using the invariance of m
that

m(Zn) ≥ (1 − B′ε0)K log n = nK log(1−B′ε0) ≥ 1√
n

.

Hence,
∑

m(Zn) = ∞. We will use a version of the Borel-Cantelli Lemma to
conclude. Since the sets Zn are not independent, we will use the following version
of this lemma, due to Lamperti ([Spi64, Proposition 6.26.3]):

If
∑

m(Zn) = ∞ and

lim inf
n→∞

∑n
j,k=1 m(Zj ∩ Zk)

(
∑n

k=1 m(Zk))2
< ∞,

then the set of points belonging to infinitely many Zn has nonzero measure.
To estimate m(Zj ∩ Zk), we will use the transfer operator T̂ , defined on L2

as the adjoint of the composition by T . It acts continuously on the space L of
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functions which are bounded and Lipschitz on any element of α. Moreover, by
[Aar97, Proposition 4.7.3], there exist M > 0 and η < 1 such that, for any h ∈ L,

(5)
∥∥T̂ ph

∥∥
L ≤ M(ηp ‖h‖L + ‖h‖1).

Let χ be the characteristic function of A, and let γn =
∏

0≤k<�K log n	 χ ◦ T k.

Hence, m(Zn) =
∫

γn ◦ Tn3
=

∫
γn, and m(Zn ∩ Zp) =

∫
γn ◦ Tn3 · γp ◦ T p3

. The
function χ belongs to L. For k > j,

(6) m(Zj∩Zk) =
∫

γj ◦T j3 ·γk◦T k3
=

∫
T̂ k3−j3

(γj)·γk ≤
∥∥∥T̂ k3−j3

(γj)
∥∥∥
L

m(Zk).

As T̂ acts continuously on L, the function

δj = T̂ �K log j	(γj) = T̂ (χT̂ (χ · · · T̂ (χ)) · · · )

satisfies ‖δj‖L ≤ (2M)K log j . The inequality (5) applied to p = k3 − j3 − K log j�
and h = δj yields∥∥T̂ k3−j3

γj

∥∥
L ≤ M

(
ηk3−j3−K log j ‖δj‖L + ‖δj‖1

)
≤ M

(
ηk3−j3−K log j(2M)K log j + m(Zj)

)(7)

since ‖δj‖1 =
∫

δj =
∫

γj , for all these functions are nonnegative. Hence, (6) and
(7) give

|m(Zj ∩ Zk)| ≤ Mηk3−j3
(2M/η)K log j + Mm(Zj)m(Zk).

Finally,∑
j<k≤n

m(Zj ∩ Zk) ≤ M
∑
j<k

m(Zj)m(Zk) + M

∞∑
j=1

η−j3
(2M/η)K log j

∞∑
k=j+1

ηk3

≤ M

⎛⎝∑
k≤n

m(Zk)

⎞⎠2

+ M
∞∑

j=1

η−j3
(2M/η)K log j

∞∑
l=(j+1)3

ηl.

The last sum is bounded by

M

∞∑
j=1

η−j3
(2M/η)K log j η(j+1)3

1 − η
< ∞,

which shows that the aforementioned Borel-Cantelli lemma applies. �

We can take x0 ∈ X1 ∩ X2 ∩ X3 ∩ X4 since this set has positive measure. Let
mk → ∞ be such that x0 ∈ Zmk

, and nk = m3
k + K log mk� − 1. Then Tnk(x0)

belongs to one of the sets α1, . . . , αN . In particular, one of these sets is used
infinitely many times, and taking a further subsequence we can for example assume
that Tnk(x0) ∈ α1 for all k. We will show that Du(α1) < ∞. Denote by a0, a1, . . .
the elements of α containing respectively x0, T (x0), . . .. Let [an] = [a0, . . . , an−1],
and let vn : Tan−1 → [an] be the inverse of Tn : [an] → Tan−1.

Let ε > 0. As x0 ∈ X3,

m{y ∈ [ank
] : |u(y) − u(x0)| > ε}

m[ank
]

→ 0.
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Taking a further subsequence of nk, we can assume that∑ m{y ∈ [ank
] : |u(y) − u(x0)| > ε}

m[ank
]

< ∞.

For all k ∈ N, the distortion control (2) implies that

m{y ∈ Tank−1 : |u(vnk
y) − u(x0)| > ε}

m[Tank−1]
�

m{y ∈ [ank
] : |u(y) − u(x0)| > ε}

m[ank
]

.

Hence,
∑

k m{y ∈ Tank−1 : |u(vnk
y) − u(x0)| > ε} < +∞. Therefore, Uε := {y ∈

X : ∃κ, ∀k ≥ κ, if y ∈ Tank−1, then |u(vnk
y) − u(x0)| ≤ ε} has full measure.

Let y1, y2 ∈ Uε ∩ α1. If k is large enough, the preimages y′
1 and y′

2 of y1 and y2

under Tnk in [ank
] satisfy |u(y′

i) − u(x0)| ≤ ε, whence |u(y′
1) − u(y′

2)| ≤ 2ε. Then

|u(y1) − u(y2)| = |u ◦ Tnk(y′
1) − u ◦ Tnk(y′

2)|

≤
nk−1∑
i=0

|f ◦ T i(y′
1) − f ◦ T i(y′

2)| + |u(y′
1) − u(y′

2)|.
(8)

Recall that nk = m3
k + K log mk� − 1, and that Φ is defined by Φ(x) = Df(a)

when x ∈ a. Then

m3
k−1∑

i=0

|f ◦ T i(y′
1) − f ◦ T i(y′

2)| ≤
m3

k−1∑
i=0

Φ(T i(x0))d(T iy′
1, T

iy′
2)

≤
m3

k−1∑
i=0

Φ(T i(x0))λi−nkd(Tnky′
1, T

nky′
2)

≤ λ−K log mk+2Sm3
k
Φ(x0)d(y1, y2).

(9)

Since x0 ∈ X1, there exists C such that SnΦ(x0) ≤ Cn for all n. As −K log λ < −3
by (4), we get that (9) tends to 0.

Finally, set D = sup Df(αj) for 1 ≤ j ≤ N . By definition of mk, we have
T i(x0) ∈

⋃
1≤j≤N αj for all m3

k ≤ i < nk, whence

nk−1∑
i=m3

k

|f ◦ T i(y′
1) − f ◦ T i(y′

2)| ≤
nk−1∑
i=m3

k

Dd(T iy′
1, T

iy′
2) ≤ D

nk−1∑
i=m3

k

λi−nkd(y1, y2)

≤ D

λ − 1
d(y1, y2).

Equation (8) then yields

|u(y1) − u(y2)| ≤ o(1) +
D

λ − 1
d(y1, y2) + 2ε.

Finally, on α1 ∩
⋂

ε>0 Uε, we have |u(y1) − u(y2)| ≤ D
λ−1d(y1, y2). �

Lemma 2.3. We have
∑

a∈α m(a)Du(a) < ∞.

Proof. Let us show that, for any a ∈ α, Du(a) < ∞. As T is transitive, there
exists n such that a ⊂ Tn(α1). Let [a0, . . . , an−1] be a cylinder included in α1 such
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that a ⊂ T (an−1). For y1, y2 ∈ a, let y′
1 and y′

2 be their preimages under Tn in
[a0, . . . , an−1]. Then

|u(y1) − u(y2)| ≤
n−1∑
i=0

|f(T iy′
1) − f(T iy′

2)| + |u(y′
1) − u(y′

2)|

≤
n−1∑
i=0

Df(ai)λi−nd(y1, y2) + λ−nDu(α1)d(y1, y2),

(10)

which proves that Du(a) < ∞.
Let β be a finite nonempty subset of α. For a ∈ α\β, let us show that

(11) m(a) =
∞∑

n=1

∑
a0∈β,a1,...,an−1∈α\β

m[a0, a1, . . . , an−1, a].

Let Y =
⋃

b∈β b. Write A0 = a, and An+1 = T−1(An)\Y and Bn+1 = T−1(An)∩Y .
We get

An =
⋃

a0,...,an−1∈α\β

[a0, . . . , an−1, a] and Bn =
⋃

a0∈β,a1,...,an−1∈α\β

[a0, . . . , an−1, a].

Thus, we want to show that m(a) =
∑

n m(Bn). The equality T−1(An) = An+1 ∪
Bn+1 implies m(An) = m(An+1)+m(Bn+1). By induction, we get m(a) = m(B1)+
. . . + m(Bn) + m(An). It remains to prove that m(An) → 0. Note that An ⊂
Cn = {x : ∀0 ≤ k ≤ n, T k(x) �∈ Y }. We will show that m(Cn) → 0 by proving
that C =

⋂
Cn has 0 measure. Since the measure is invariant and C ⊂ T−1(C),

C = T−1(C) mod 0, whence m(C) = 0 or 1 by ergodicity ([Aar97, Theorem 4.4.7]).
The set C does not intersect Y , which has nonzero measure, hence m(C) = 0. This
proves (11).

Let [a0, . . . , an−1, a] be a cylinder of nonzero measure. By (10),

Du(a) ≤
n−1∑
i=0

λi−nDf(ai) + λ−nDu(a0).

Hence, (11) yields

m(a)Du(a) ≤
∞∑

n=1

∑
a0∈β,a1,...,an−1∈α\β

m[a0, . . . , an−1, a]

(
n−1∑
i=0

λi−nDf(ai)

)
+ m(a) sup

b∈β
Du(b).

As
∑

m(a) supb∈β Du(b) < ∞, we will show that
∑

m(a)Du(a) < ∞ by showing
that

(12)
∞∑

n=1

∑
a0∈β,a1,...,an−1∈α\β

m[a0, . . . , an−1]

(
n−1∑
i=0

λi−nDf(ai)

)
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is finite. In this expression, for a′ ∈ α\β, the prefactor of a term λ−kDf(a′) is

∞∑
n=1

∑
a0∈β,a1,...,an−1∈α\β
an+1,...,an+k−1∈α\β

m[a0, . . . , an−1, a
′, an+1, . . . , an+k−1]

≤
∞∑

n=1

∑
a0∈β,a1,...,an−1∈α\β

m[a0, . . . , an−1, a
′].

By (11), this last term is equal to m(a′). In (12), the prefactor of a term λ−kDf(a′)
with a′ ∈ β is also at most m(a′). Hence,

(12) ≤
∑
a′∈α

∞∑
k=1

m(a′)λ−kDf(a′),

which is finite since
∑

m(a′)Df(a′) < ∞. �

Proof of Theorem 1.1. For almost all x,
∑

Ty=x g(y) = 1. Let us write T−1(x) =
{x0, x1, . . .}, and let ai be the element of α containing xi. By bounded distortion
and the big image property, there exists C > 0 such that, for all n, g(xn) ≤ Cm(an).
As

∑
g(xn) = 1, this implies C

∑
m(an) ≥ 1.

Let a∗ be an element of α∗. Let x, y ∈ a∗. By definition of α∗, their preimages
x0, x1, . . . and y0, y1, . . . belong to the same elements a0, a1, . . . of α. Since f =
u − u ◦ T , we have for any n

|u(x) − u(y)| ≤ |f(xn) − f(yn)| + |u(xn) − u(yn)| ≤ (Df(an) + Du(an))d(xn, yn)

≤ (Df(an) + Du(an))λ−1d(x, y).

Hence,

|u(x) − u(y)| ≤ C
∑

m(an)|u(x) − u(y)|

≤ C
∑

m(an)(Df(an) + Du(an))λ−1d(x, y).

Finally, Du(a∗) ≤ C
λ

∑
a∈α m(a)(Df(a) + Du(a)), which is finite by Lemma 2.3.

To prove that u is essentially bounded, we use the big preimage property. Let
a1, . . . , an ∈ α be such that every element of α is contained in the image of some
ai. Let a ∈ α, and let i be such that a ⊂ T (ai). For x ∈ a, let x′ be its preimage
in ai. Then we get

|u(x)| = |u(x′) − f(x′)| ≤
∥∥u|ai

∥∥
∞ +

∥∥f|ai

∥∥
∞ .

This last quantity is uniformly bounded. �
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