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Abstract. A result for subadditive ergodic cocycles is proved that provides more delicate infor-
mation than Kingman’s subadditive ergodic theorem. As an application we deduce a multiplicative
ergodic theorem generalizing an earlier result of Karlsson–Ledrappier, showing that the growth of a
random product of semicontractions is always directed by some horofunction. We discuss applica-
tions of this result to ergodic cocycles of bounded linear operators, holomorphic maps and topical
operators, as well as a random mean ergodic theorem.
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tional

1. Introduction

Products of random operations arise naturally in a variety of contexts from pure mathe-
matics to more applied sciences. Typically the operations, or the maps, do not commute,
but one would nevertheless hope to have asymptotic regularity of various associated quan-
tities. In the commutative case one has the standard ergodic theorem or what in probability
is called the law of large numbers. A very important and genuinely noncommutative case
is that of products of random matrices. These are governed by the multiplicative ergodic
theorem of Oseledets [O68], which in particular is a fundamental theorem in differen-
tiable dynamics. Another area of application is the subject of random walks on groups.

It is a remarkable fact that, in many such situations, one can introduce a metric which
is invariant or nonexpanded by the transformations under consideration. This gives a way
to quantify the behaviour of random products of maps, such as linear operators, holomor-
phic maps, symplectomorphisms, or homogeneous-monotone maps. Due to the nonex-
pansion of the metric and the triangle inequality, numerical quantities associated to the
random products then satisfy a form of subadditivity.

Kingman proved in [Ki68] the subadditive ergodic theorem, which is a generaliza-
tion of Birkhoff’s ergodic theorem to subadditive cocycles. This extension is very useful,
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with many applications. In the particular case of random products of group elements,
Kingman’s theorem asserts that there is a well-defined growth rate, or in a different ter-
minology, a certain speed with which these products tend to infinity.

Our goal is to understand to what extent random products tend to infinity following a
specific direction, using the notion of horofunction. Horofunctions made one of their first
explicit appearances in the 1926 Wolff–Denjoy theorem which describes the dynamics
of holomorphic self-maps of the unit disk. As was noted already in their papers, and
extended and commented on by several people since then, the mechanism behind this
result is the Schwarz lemma which implies that holomorphic maps do not increase the
Poincaré distance between points, and the fact that the Poincaré metric coincides with the
hyperbolic metric (see e.g. [K01, KeL07, AR14]).

Our strategy is to show first a substantial refinement of Kingman’s theorem. Then,
we apply it to prove a very general multiplicative ergodic theorem, extending one aspect
of the Wolff–Denjoy theorem to a vastly more general setting: the asymptotic behaviour
of random products of 1-Lipschitz maps of any metric space in terms of horofunctions.
This generalizes and re-proves the main theorem in [KL06], which in turn extends several
known results, such as the one of Oseledets mentioned above, and which has found unex-
pected applications. Our theorem has a weak-type formulation involving linear or metric
functionals (a generalization of horofunctions to a nonproper setting). Hence, it can hold
in a very general setting, as opposed to results yielding a stronger convergence, which are
known to fail if the geometric properties of the space are not good enough (see [KN81]).
Moreover, under suitable assumptions on the space, our a priori weaker statement can
automatically be promoted to the stronger one.

As for further new applications, our theory leads to an ergodic theorem for cocycles of
bounded linear operators. Ruelle [R82] proved the first such theorem in infinitely many di-
mensions assuming compactness of the operators. It was generalized by Mañé, Thieullen
and others; see the recent monograph [LL10] for more details. The interest in such state-
ments about semiflows on Hilbert spaces can be seen in works of Ruelle and more recently
of Lian and Young in the study of certain stochastic differential equations, or partial differ-
ential equations with application to hydrodynamic turbulence, such as the Navier–Stokes
equation [R82, R84, ER85, LY12]. There are also other potential contexts of application
(for example see a remark in [F02, p. 10]), and in another direction Bolthausen pointed
out to us that it could be of use in the study of random walks in random environments in
one dimension with infinite support.

Our subadditive theorem is stated in §1.1 and proved in Section 2. The ergodic theo-
rem for random products is then stated in §1.2 and proved in Section 3. Finally, §1.3 and
the remaining sections of this article are devoted to a brief discussion of some applica-
tions.

1.1. Existence of good times for subadditive cocycles

Let (�,µ) be a measure space with µ(�) = 1 and let T : �→ � be an ergodic, measure
preserving map. A measurable function a : N×�→ R which satisfies

a(n+m,ω) ≤ a(n, ω)+ a(m, T nω)
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for all integers n,m > 0 and a.e. ω ∈ � is called a subadditive cocycle. For convenience
we also set a(0, ω) ≡ 0. One says that a is integrable if a(1, ω) is integrable, and one
defines the asymptotic average

A = inf
n

1
n

∫
�

a(n, ω) dµ(ω) ∈ [−∞,+∞).

Kingman’s theorem asserts that, almost surely,

a(n, ω)/n→ A.

Moreover, if A > −∞, the convergence also holds in L1(µ).
In Section 2 we prove the following subadditive ergodic statement (cf. [K02, Prob-

lem 3.3]):

Theorem 1.1. Let a(n, ω) be an integrable and subadditive cocycle relative to the er-
godic system (�,µ, T ) as above, with finite asymptotic average A. Then for almost ev-
ery ω there are integers ni := ni(ω) → ∞ and positive real numbers δ` := δ`(ω) → 0
such that for every i and every ` ≤ ni ,

−`δ`(ω) ≤ a(ni, ω)− a(ni − `, T
`ω)− A` ≤ `δ`(ω). (1.1)

This statement significantly refines [KM99, Proposition 4.2]. It is not a consequence of
Kingman’s theorem: by subadditivity, we have

a(ni, ω)− a(ni − `, T
`ω) ≤ a(`, ω) ∼ A`,

so the upper bound in (1.1) readily follows from Kingman’s theorem. On the other hand,
the lower bound, which asserts that the cocycle is close to being additive at all times `
between 0 and ni , is much more delicate.

This lower bound is reminiscent of Pliss’ lemma, a combinatorial lemma which
proved very useful in hyperbolic dynamics (see for instance [ABV00]). For any additive
sequence tending linearly to infinity, this lemma entails the existence of “good” times ni
for which the behaviour of the sequence between ni − ` and ni is well controlled for all
` ≤ ni . Our statement is both weaker (since there is an additional error `δ`) and stronger
since it applies in random subadditive situations and gets the right asymptotics A`.

We will apply Theorem 1.1 to the context of multiplicative ergodic theorems below,
but it could also be of interest for different questions, for example the recent paper [GG17]
used [KM99, Prop. 4.2] to re-prove and extend Livšic’s theorem of [Ka11].

Remark 1.2. Define the upper asymptotic density of a subset U of the natural numbers
as

Dens(U) = lim sup
N→∞

|U ∩ [0, N − 1]|/N.

The proof of Theorem 1.1 gives in fact more information: on a set of large measure one
can take δ` to be independent of ω and one can have many good times ni . More precisely,
fix ρ > 0; then there exist a sequence δ` → 0 and a subset O ⊂ � of measure at least
1− ρ such that, for every ω ∈ O, the subset A(ω) ⊂ N of good times (made up of those
n for which (1.1) holds for all ` ≤ n) has upper asymptotic density at least 1− ρ.
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Remark 1.3. As a test case for the usability of proof assistants for current mathematical
research, Theorem 1.1 and its proof given below have been completely formalized and
checked in the proof assistant Isabelle/HOL (see [Go15, file Gouezel_Karlsson.thy]).
In particular, the correctness of this theorem is certified.

1.2. Random products and metric functionals

Horocycles, horodisks etc. are concepts originally coming from two-dimensional hyper-
bolic geometry and complex analysis. A general definition of the corresponding horo-
functions (now also called Busemann functions) in terms of geodesic rays γ (t) was given
by Busemann:

bγ (·) = lim
t→∞

(
d(·, γ (t))− d(γ (0), γ (t))

)
.

As emphasized by Gromov [Gr81], this definition leads to a natural bordification of met-
ric spaces, by mapping the space into its set of continuous functions equipped with the
topology of uniform convergence on bounded sets. We consider instead pointwise con-
vergence, following for example [GV12]. Let (X, d) be a metric space, fix x0 ∈ X, and
define the continuous injection

8 : X ↪→ RX, x 7→ hx(·) := d(·, x)− d(x0, x).

The functions hx are all 1-Lipschitz maps and vanish at x0. As indicated, we endow the
space RX of real valued functions on X with the product topology, i.e., the topology of
pointwise convergence. The image 8(X) can be identified with a subset of a product
of compact intervals, which is compact by Tikhonov’s theorem. The closure of the im-
age 8(X) will therefore be compact. By definition we call the elements in this compact
set metric functionals. Thus, to every point x there is a unique associated metric func-
tional hx , and then there may be further functionals obtained as limit points:

X̂ := 8(X) \8(X).

We now try to fix the terminology and relate our notions to standard ones. We call
limits, as x → ∞, of hx in the topology of uniform convergence on bounded sets ho-
rofunctions. If X is proper and geodesic, then X̂ is precisely the set of horofunctions. If
the metric space is particularly nice, for instance CAT(0), then horofunctions and Buse-
mann functions coincide (see [BH99]). For nonproper metric spaces a Busemann function
might not be a horofunction since the convergence might not be uniform on bounded sets,
and conversely a horofunction might not be a Busemann function since it might be ob-
tained as a limit which does not correspond to any geodesic ray. Our terminology is in
part inspired by the simple fact that for an infinite-dimensional Hilbert space H , the set
Ĥ contains the closed unit ball of continuous linear functionals. The definition of metric
functionals is also somewhat parallel to the one of linear functionals: metric functionals
are maps X → R that vanish at the origin x0 and respect the metric structure of the
spaces.
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A map f : X→ X is called nonexpansive, or semicontractive, if

d(f (x), f (y)) ≤ d(x, y)

for all x, y ∈ X. The set of all semicontractive maps on X is denoted by SC(X).
As in the previous subsection, let (�,µ) be a measure space with µ(�) = 1 and let

T : �→ � be an ergodic measure preserving map. Given a map ϕ : �→ SC(X), one
forms the associated ergodic cocycle given by the composition of maps

u(n, ω) = ϕ(ω)ϕ(T ω) · · ·ϕ(T n−1ω). (1.2)

Note the order in which the maps are composed. We require a weak measurability prop-
erty: for all x ∈ X and all n ∈ N, the map ω 7→ u(n, ω)x from � to X should be
measurable. For instance, this is the case if ϕ : �→ SC(X) is measurable where SC(X)
is endowed with the compact-open topology (i.e., the topology of uniform convergence
on compact subsets of X) and X is locally compact (this last assumption ensures that the
composition map SC(X)× SC(X)→ SC(X) is continuous, so that u(n, ·) : �→ SC(X)
is also measurable). This is also the case when X is a Banach space and ϕ is measur-
able from � to the space of bounded linear operators on X with the topology of norm
convergence.

We say that the above cocycle u(n, ω) is integrable if∫
�

d(x, ϕ(ω)x) dµ <∞,

a condition which is independent of x ∈ X. In this case, the subadditive cocycle a(n, ω) =
d(x, u(n, ω)x) is also integrable. Hence, by Kingman’s theorem, d(x, u(n, ω)x)/n con-
verges almost surely to a limit A ≥ 0 (which does not depend on the choice of the
basepoint x).

In Section 3, the above subadditive ergodic statement is used to establish the following
multiplicative ergodic theorem:

Theorem 1.4. Let u(n, ω) be an integrable ergodic cocycle of semicontractions of a met-
ric space (X, d). Then for a.e. ω there exists a metric functional hω of X such that for
all x,

lim
n→∞
−

1
n
hω(u(n, ω)x) = lim

n→∞

1
n
d(x, u(n, ω)x).

Moreover, if X is separable and � is a standard probability space, one can choose the
map ω 7→ hω to be Borel measurable.

The main theorem of [KL06] is the same statement, but with the additional assumption
that the cocycle u takes its values in the group of isometries of X, instead of semicon-
tractions (moreover it was formulated only for proper spaces). This additional assumption
makes it possible to use the action of the cocycle on the space of metric functionals, and
use an additive cocycle there. This proof cannot work for semicontractions. The present
proof will instead use Theorem 1.1 and is thus quite different.

Theorem 1.4 was conjectured in [K04] for proper metric spaces. With the use of the
Hahn–Banach theorem (see Section 3), this specializes to the following statement in the
case of Banach spaces.
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Corollary 1.5. Let u(n, ω) be an integrable ergodic cocycle of semicontractions of a
subset D of a Banach space X. Then for a.e. ω there is a linear functional f ω of norm 1
such that for any x ∈ D,

lim
n→∞

1
n
f ω(u(n, ω)x) = lim

n→∞

1
n
‖u(n, ω)x‖.

This generalizes the main theorem in Kohlberg–Neyman [KN81], dealing with u(n, ω)
= An and D convex (the latter condition was removed in [PR83]). For the random set-
ting previous results can be found in [K04]. When X is strictly convex and reflexive,
the conclusion implies weak convergence of u(n, ω)x/n. When the norm of the dual of
X is Fréchet differentiable, the conclusion implies norm convergence of u(n, ω)x/n. In
general however the above statement is optimal in view of a counterexample in [KN81].

1.3. Applications

In this subsection, we briefly describe different settings where our results apply. More
involved applications are described in Sections 4–6.

Applied mathematics provides a wealth of examples of nonexpansive mappings of Ba-
nach spaces, especially `∞, for example in dynamical programming and topical matrix
multiplication (homogeneous, order preserving), generalizing matrices in the max-plus or
min-plus (tropical) semiring. In finite dimensions the existence of Lyapunov exponents
has been studied, in particular what could then be called a tropical Oseledets multiplica-
tive ergodic theorem has been established. We refer to [CT80, Co88, Ma97, Gu03] and
references therein. Our Corollary 1.5 implies some known and some new statements in
this setting.

More precisely, let S be a set and consider the Banach space B(S) of bounded, real-
valued functions f : S → R with the sup-norm. Consider a map A : B(S)→ B(S) (not
necessarily linear) with the following properties:

• (monotonicity) if f (x) ≤ g(x) for all x, then (Af )(x) ≤ (Ag)(x) for all x,
• (semihomogeneity) for any positive constant a,

A(f (·)+ a)(x) ≤ Af (x)+ a.

Blackwell [Bl65] observed that such maps A are semicontractive. He had a constant
0 < β < 1 in the second condition in front of a on the right hand side. This constant
corresponds to discounting in financial settings, mathematically giving a strict contrac-
tion, or a β-Lipschitz map. When S = {1, . . . , d}, these operators, which can now be
viewed as functions A : Rd → Rd , and with equality in the second condition, are some-
times called topical functions (see [Gu03]).

A multiplicative variant of this type of maps are self-mappings A : C → C of cones
with A(ax) = aA(x) and with x ≤ y ⇒ Ax ≤ Ay in the cone partial order. Such maps
are semicontractive in Hilbert’s metric and its variants.

Our theorems apply to random products of such mappings, and information about
metric functionals can be found in [Wa08].
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Consider now the random ergodic set-up, first considered in particular by von Neu-
mann–Ulam (see [Ka52]). Let Lω be a collection of measure preserving transformations
of a probability space (Y, ν), indexed by ω ∈ �. Let T : �→ � be an ergodic measure
preserving map. Given v : Y → R and y ∈ Y , ω ∈ �, we consider the average

1
n

n−1∑
k=0

v(LT k−1ωLT k−2ω · · ·Lωy).

Introduce an isometry ϕ(ω) of X = L2(Y, ν) by (ϕ(ω)w)(y) = v(y) + w(Lωy) =

v + Uωw, where Uωw := w(Lωy). Let u(n, ω) denote the corresponding multiplicative
cocycle. Then the above average equals (u(n, ω)0)(y)/n. Hence, the following corollary
(which follows readily from Corollary 1.5) is a generalization of the (random) mean er-
godic theorem. In this statement, a map is strongly measurable if it is the pointwise strong
limit of a sequence of finitely-valued maps (see [BS57]).

Corollary 1.6. LetX be a Banach space and let U be a strongly measurable map from�
to linear operators on X. Suppose that ‖Uω‖ ≤ 1 for every ω ∈ �. Then for every v ∈ X
and a.e. ω there is a linear functional Fω on X with ‖Fω‖ = 1 such that

lim
n→∞

1
n
Fω

(n−1∑
k=0

UωUT ω · · ·UT k−1ωv
)
= lim
n→∞

1
n

∥∥∥n−1∑
k=0

UωUT ω · · ·UT k−1ωv

∥∥∥.
Again we remark that when X is strictly convex and reflexive, the conclusion implies
weak convergence of the ergodic average in question and when the norm of the dual
of X is Fréchet differentiable, the conclusion implies norm convergence. It is however
known, and due to Yosida [Ka52], that in this situation, if there is a weakly convergent
subsequence then strong convergence of the whole sequence follows. So X being strictly
convex and reflexive would suffice. One of the most general results of this type, with
norm convergence, was obtained by Beck–Schwartz [BS57] for reflexive spaces. (There
are many papers considering norm convergence of similar or more general averages.)
Note here that it is well-known that the Carleman–von Neumann mean ergodic theorem
(i.e. with norm convergence) does not hold in general for Banach spaces. Our statement
does hold, and implies as said norm convergence under the conditions mentioned.

As another application, in Section 4 we show:

Theorem 1.7. Let v(n, ω) = A(T n−1ω)A(T n−2ω) · · ·A(ω) be an integrable ergodic co-
cycle of bounded invertible linear operators of a Hilbert space. Consider the positive part
[v(n, ω)] := (v(n, ω)∗v(n, ω))1/2. Then for a.e. ω there is a norm 1 linear functional Fω
on the space of bounded linear operators such that

lim
n→∞

1
n
Fω(log [v(n, ω)]) = lim

n→∞

1
n
‖log [v(n, ω)]‖.

(The logarithm is as usual the inverse of the exponential map and is well-defined on
positive elements.) This general statement can under further assumptions be shown to
yield some known theorems. The same remarks as after Corollary 1.5 apply. For example
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if the dimension of the Hilbert space is finite, then Sym, the vector spaces of bounded
operators B such that B∗ = B, can be given a Hilbert space structure and it follows that

1
n

log [v(n, ω)]

converges. This is known to be equivalent to Oseledets’ multiplicative ergodic theorem, as
for example explained in [R82]. In the infinite-dimensional case and restricting to identity
plus Hilbert–Schmidt operators, one gets uniform convergence, as observed in [KM99],
stronger than that in [R82] for compact operators. Note that in general the conclusion of
the standard multiplicative ergodic theorem is too strong: ifA is a bounded linear operator
on a Hilbert space and v is a nonzero vector, it is not true in general that

1
n

log ‖Anv‖

converges as n → ∞. This is well-known and simple: see for example the introduction
to [Sc06] where an example appears. In this context we also refer to [LL10, GQ15].

In Section 5 we exemplify a consequence of Theorem 1.4 in the complex-analytic
setting, and yet another application in Section 6. A further possibility would be to consider
random products of diffeomorphisms of a compact manifold, and exploit the induced
isometric action on the space of Riemannian metrics [Eb68]. This space has been studied
somewhat, it is known to be CAT(0) but not complete (compare this with the discussion
on the Weil–Petersson metric in [KL06]). For two or more generic diffeomorphisms there
is no joint invariant measure on the manifold, but our Theorem 1.4 applies (compare
with [LQ95]).

2. Subadditive ergodic cocycles

In this section, we prove Theorem 1.1. First note that we can assume that the space (�,µ)
is a standard Lebesgue space. Indeed, since the statement of Theorem 1.1 only deals with
the distribution of the countable family of real-valued functions (a(n, T kω))n,k∈N2 , it
suffices to work on the space RN2

with the Borel probability measure encoding the joint
distribution of all these functions and the shift map. This space is a standard Lebesgue
space. Then, passing to the natural extension if necessary, one can assume without loss
of generality that T is invertible. (Natural extensions exist in general only for transforma-
tions of a standard Lebesgue space, which is why the first reduction was needed.)

One of the inequalities in (1.1) is known. Indeed, by definition a(n, ω) ≤

a(n − `, T `ω) + a(`, ω) and by Kingman’s theorem a(`, ω) = A` + o(`). This means
that

a(n, ω) ≤ a(n− `, T `ω)+ A`+ `δ`

where δ`→ 0.
The other inequality is much more subtle. It says intuitively that at certain times the

cocycle is nearly additive. Note that Theorem 1.1 for additive cocycles is equivalent to
Birkhoff’s ergodic theorem.
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We begin by defining
b(n, ω) = a(n, T −nω).

This is again a subadditive cocycle but for the transformation τ := T −1 and with the same
asymptotic average as a. The interest in b comes from the fact that

a(n, ω)− a(n− `, T `ω) = b(n, ω′)− b(n− `, ω′),

where ω′ = T nω. Note that, on the right-hand side, the point ω′ is the same in both terms.
We start by showing that b(n, ω)− b(n− `, ω) behaves well for the majority of times n
and for ` ≤ n large enough, by a combinatorial argument related to several proofs of
Kingman’s theorem (for example as in Steele [S89]). This is the key point of the proof,
given in Lemma 2.2. In contrast to [KM99], we will control the majority of times and not
just a small set of times. This is central to keep good control once one changes variables
back from b to a.

We begin by proving the following lemma as a warm-up. These arguments will be
used again in a more elaborate form in the proof of Lemma 2.2.

Lemma 2.1. Let b be an integrable ergodic subadditive cocycle with finite asymptotic
average A. Let δ > 0. Then there exists c > 0 such that for almost every ω,

Dens {n ∈ N : ∃` ∈ [1, n], b(n, ω)− b(n− `, ω) ≤ (A− c)`} ≤ δ.

Proof. By replacing if necessary b(n, ω) by b(n, ω)−An, one may without loss of gener-
ality assume thatA = 0. We denote by τ : �→ � the underlying ergodic transformation.
We fix ω ∈ � and let V = {n ∈ N : ∃` ∈ [1, n], b(n, ω)− b(n− `, ω) ≤ −c`}. When c
is large enough we would like to conclude that the density of V is small.

Fix N > 0. We will partition [0, N] using the following algorithm. First let n0 = N .
Assuming ni is defined, we proceed as follows. If ni /∈ V , then take ni+1 = ni − 1. If
ni ∈ V , then let `i ∈ [1, ni] be as in the definition of V , and let ni+1 = ni − `i . We stop
when ni = 0.

We have decomposed the interval [0, N) into a union of intervals [ni − 1, ni) (with
ni /∈ V ), and [ni − `i, ni) (with ni ∈ V ). Using the subadditivity along the intervals of
the first type one gets

b(N,ω) =
∑
ni

(b(ni, ω)−b(ni+1, ω)) ≤
∑
ni /∈V

b(1, τni+1ω)+
∑
ni∈V

(b(ni, ω)−b(ni+1, ω)).

Almost surely, b(N, ·) = o(N) as N → ∞. In particular, from a certain point onward,
one has b(N,ω) ≥ −N assuming ω belongs to this set of full measure. In the expression
on the right, we majorize the sum over ni /∈ V by

∑N−1
j=0 b

+(1, τ jω) (where b+ =
max(0, b)), which in view of Birkhoff’s ergodic theorem itself is bounded by MN if N
is sufficiently large, where we have set M = 1+

∫
b+(1, ω) dµ(ω). Using the definition

of V , we obtain
−N ≤ MN − c

∑
ni∈V

(ni − ni+1).
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Since V ∩ [0, N − 1] is included in the union of the intervals (ni+1, ni] for ni ∈ V ,
its cardinality |V ∩ [0, N − 1]| is bounded by

∑
(ni − ni+1). Therefore, the previous

inequality gives
|V ∩ [0, N − 1]| ≤ (M + 1)N/c.

This finishes the proof, by taking c sufficiently large so that (M + 1)/c ≤ δ. ut

In the following lemma, we replace c (large) of Lemma 2.1 by a parameter ε which is
arbitrarily small. The price to pay in order to preserve a valid statement is to restrict it to
sufficiently large `. This lemma plays a crucial role in the proof of Theorem 1.1.

Lemma 2.2. Let b be an integrable ergodic subadditive cocycle with finite asymptotic
average A. Let ε > 0 and δ > 0. Then there exists k ≥ 1 such that for almost every ω,

Dens{n ∈ N : ∃` ∈ [k, n], b(n, ω)− b(n− `, ω) ≤ (A− ε)`} ≤ δ.
Proof. Without loss of generality we may assume that A = 0. We denote by τ the under-
lying ergodic transformation. Going to the natural extension if necessary, we can assume
that τ is invertible.

The idea of the proof is that the argument we used to prove Lemma 2.1 should work
in our situation if

∫
b+(1, ω) dµ(ω) is small enough. This is not the case in general, but

this is asymptotically true for the iterates of the cocycle, by Kingman’s theorem: if s is
large enough, then

∫
b+(s, ω) dµ(ω)/s is very small. We will fix such an s, discretize

time to work in sN, and follow the proof of Lemma 2.1 in this set. Additional errors show
up in the approximation process, but they are negligible if k in the statement of the lemma
is large enough. If one is to do this precisely, there is a problem that τ s is in general not
necessarily ergodic. This issue is resolved by working with times in the set sN + t for
fixed t ∈ [0, s − 1].

Let us start the rigorous argument. Fix ρ > 0, which corresponds to the precision
we want to achieve (this value will be chosen at the end of the proof). Since b(s, ω)/s
tends to 0 almost everywhere and in L1 when s tends to infinity by Kingman’s theorem,
the same holds for b+. One can thus take s ∈ N such that

∫
b+(s, ω) dµ(ω) < ρs. We

also fix t ∈ [0, s − 1]. Let K = sN + t be the set of reference times we will use in the
following. Once all these data are fixed, we take a large enough k.

We fix ω ∈ �. The set of bad times, whose density we want to majorize, can be
decomposed as U ∪ V , where

U = {n ∈ N ∩ (s,∞) : ∃` ∈ (n− s, n], b(n, ω)− b(n− `, ω) ≤ −ε`},
V = {n ∈ N : ∃` ∈ [k, n− s], b(n, ω)− b(n− `, ω) ≤ −ε`}.

If n ∈ U , then there exists i ∈ [0, s) such that b(n, ω) ≤ b(i, ω)−ε(n−i). We deduce that
U is almost surely finite, since whenever U is infinite, we have lim inf b(n, ω)/n ≤ −ε
in view of the previous inequality, but we know that b(n, ·)/n→ 0 almost everywhere. It
suffices therefore to estimate the density of V .

Consider n ∈ V and ` ∈ [k, n − s] such that b(n, ω) − b(n − `, ω) ≤ −ε`. We
will approximate such an n by a time in K . Let ñ be the successor of n in K , that is, the
smallest time in K with ñ ≥ n. We write ñ = n+ i with i < s. Thus,

b(ñ, ω) = b(n+ i, ω) ≤ b(n, ω)+ b(i, τnω) ≤ b(n, ω)+ F(τ ñω),
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where we set F(η) =
∑s
j=−s b

+(1, τ jη), which is integrable and positive. Similarly, as
n−` ≥ s by assumption, n−` admits a predecessor ñ− ˜̀ inK . One has n−` = ñ− ˜̀+j
for some j < s, and

b(n− `, ω) = b(ñ− ˜̀+ j, ω) ≤ b(ñ− ˜̀, ω)+ b(j, τ ñ−
˜̀
ω) ≤ b(ñ− ˜̀, ω)+F(τ ñ−

˜̀
ω).

We finally obtain

b(ñ, ω)− b(ñ− ˜̀, ω) ≤ b(n, ω)+F(τ ñω)− b(n− `, ω)+F(τ ñ−
˜̀
ω)

≤ −ε`+F(τ ñω)+F(τ ñ−
˜̀
ω) ≤ −ε ˜̀/2+F(τ ñω)+F(τ ñ− ˜̀ω),

where the last inequality comes from the fact that ˜̀ ≤ `+ 2s is bounded by 2` whenever
k is sufficiently large. Note also that ˜̀ ≥ ` ≥ k.

Denote

W = {ñ ∈ K : ∃ ˜̀ ∈ sN∩[k, ñ], b(ñ, ω)−b(ñ− ˜̀, ω) ≤ −ε ˜̀/2+F(τ ñω)+F(τ ñ− ˜̀ω)}.

We have shown that
V ⊂ W + [−s + 1, 0]. (2.1)

Therefore, to estimate the density of V , it suffices to estimate the density of W . Let N be
an integer, let Ñ = ps + t be its successor in K (it satisfies Ñ ≤ 2N if N is sufficiently
large). We decompose K ∩ [0, Ñ ] as in Lemma 2.1. We start with ñ0 = Ñ . If we have
defined ñi , we define its predecessor as follows. If ñi /∈ W , we take ñi+1 = ñi − s. If
ñi ∈ W , then let ˜̀i ∈ sN ∩ [k, ñi] as in the definition of W , and set ñi+1 = ñi − ˜̀i . We
stop when ñi = t .

We have thus decomposed [0, Ñ) as a union of intervals of the form [ñi − s, ñi) (with
ñi /∈ W ), and [ñi− ˜̀i, ñi) (with ñi ∈ W ) and [0, t). All the times ñi belong toK = sN+t
by construction.

Using the subadditivity along the intervals of the first and the third types, we get

b(Ñ, ω) ≤ b(t, ω)+
∑
ñi /∈W

b(s, τ ñi+1ω)+
∑
ñi∈W

(b(ñi, ω)− b(ñi+1, ω)).

Almost surely, b(Ñ, ·) = o(Ñ) when Ñ tends to infinity. Hence, after a certain stage,
we have b(Ñ, ω) ≥ −ρÑ . In the terms on the right hand side above, we majorize the
sum over ñi /∈ W by

∑p−1
j=0 b

+(s, τ js+tω). The trivial term b(t, ω) is estimated by F(ω).
Using the definition of W , we obtain

−ρÑ ≤ F(ω)+

p−1∑
j=0

b+(s, τ js+tω)+
∑
ñi∈W

(−ε(ñi − ñi+1)/2+ F(τ ñiω)+ F(τ ñi+1ω)).

The set W is included in the union of the intervals (ñi+1, ñi] with ñi ∈ W , by construc-
tion. We claim that the same holds for V . Indeed, in view of (2.1), an integer n ∈ V can
be written as ñ− j with j < s and ñ ∈ W . Consider the interval (ñi+1, ñi] containing ñ.
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As ñi+1 and ñ are both ≡ t [s], one has ñ ≥ ñi+1 + s, and therefore n > ñi+1 so that
n ∈ (ñi+1, ñi], proving the claim. We obtain |V ∩ [0, N − 1]| ≤

∑
(ñi − ñi+1). Hence,

the previous displayed inequality gives

ε|V ∩ [0, N − 1]|/2 ≤ ρÑ +F(ω)+
p−1∑
j=0

b+(s, τ js+tω)+
∑
ñi∈W

(F (τ ñiω)+F(τ ñi+1ω)).

The function F is integrable, so there existsM ∈ R such that the functionG = F · 1F≥M
satisfies

∫
G < sρ. We majorize F by M +G. In the last displayed inequality, the ñis in

W are separated by at least k because ˜̀i ≥ k by definition. Therefore, the number of such
ñi is at most Ñ/k. We get∑

ñi∈W

(F (τ ñiω)+ F(τ ñi+1ω)) ≤ 2(Ñ/k)M +
∑
ñi∈W

(G(τ ñiω)+G(τ ñi+1ω))

≤ ρÑ + 2
p∑
j=0

G(τ js+tω)

whenever k is sufficiently large.
Finally, if k is sufficiently large, one has (using Ñ ≤ 2N )

ε|V ∩ [0, N − 1]|/2 ≤ F(ω)+ 4ρN +
p∑
j=0

H(τ js+tω),

where H(η) = b+(s, η) + 2G(η) has integral < 3sρ. Summing over t ∈ [0, s − 1], we
obtain

sε|V ∩ [0, N − 1]|/2 ≤ sF (ω)+ 4sρN +
N+s−1∑
i=0

H(τ iω).

For almost every ω, Birkhoff’s theorem applied to the functionH gives
∑N+s−1
i=0 H(τ iω)

≤ 3sρN for N sufficiently large. Thus

sε|V ∩ [0, N − 1]|/2 ≤ sF (ω)+ 7sρN.

This shows that the density of V is bounded by 14ρ/ε. This concludes the proof if we
choose ρ = εδ/14 at the beginning of the argument. ut

We combine the preceding two lemmas in order to gain improved control over time, as
follows.

Lemma 2.3. Let b be an integrable ergodic subadditive cocycle with finite asymptotic
average A. Let ε > 0. There exist a sequence δ` → 0, a subset O of measure at least
1−ε, and for ω ∈ O there is a sequence U(ω) of bad times with |U(ω)∩[0, n−1]| ≤ εn
for every n, with the following property. For every ω ∈ O, for all n not in U(ω), and for
every ` ∈ [1, n],

b(n, ω)− b(n− `, ω) > (A− δ`)`. (2.2)
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Proof. For every i > 1, set ci = 2−i . In view of Lemma 2.2, there exists ki such that, for
almost every ω, the set

Ui(ω) = {n ∈ N : ∃` ∈ [ki, n], b(n, ω)− b(n− `, ω) ≤ (A− ci)`}

satisfies Dens(Ui(ω)) < ε2−i . For n large, say n ≥ ni(ω), we obtain |Ui(ω)∩[0, n−1]| ≤
ε2−in. Since the function ni(ω) is almost everywhere finite, we may find a subset Oi of
measure close to 1, say µ(Oi) > 1 − ε2−i , on which ni(ω) ≤ ni for some integer ni
(which one may choose to be > ni−1 (here n1 is to be defined below independently)
and ≥ ki).

We treat the case i = 1 separately and in a more crude manner, applying Lemma 2.1:
there is a constant c1 such that, for almost every ω,

Dens {n ∈ N : ∃` ∈ [1, n], b(n, ω)− b(n− `, ω) ≤ (A− c1)`} < ε/2.

We set k1 = 1. As above, we hence define U1(ω), n1(ω), and O1.
We set Ō =

⋂
i≥1Oi , the good set on which things are well controlled. It satisfies

µ(Ō) > 1− ε. For ω ∈ Ō we define a set U(ω) of bad times by

U(ω) =
⋃
i≥1

Ui(ω) ∩ [ni,+∞).

We begin by showing that the bad set U(ω) satisfies |U(ω) ∩ [0, n − 1]| ≤ εn for
every n. Let n ∈ N. Let i be such that ni ≤ n < ni+1 (there is nothing to do if n < n1
since U(ω) ⊂ [n1,+∞)). Hence

|U(ω) ∩ [0, n− 1]| =
∣∣∣⋃
j≤i

Uj (ω) ∩ [nj ,+∞) ∩ [0, n− 1]
∣∣∣ ≤ ∣∣∣⋃

j≤i

Uj (ω) ∩ [0, n− 1]
∣∣∣

≤

∑
j≤i

|Uj (ω) ∩ [0, n− 1]|.

Since n ≥ nj for every j ≤ i, the cardinality of Uj (ω) ∩ [0, n− 1] is bounded by ε2−jn.
Therefore the sum is not greater than εn, as desired.

Set Ii = [ni, ni+1) for i > 1, and I1 = [1, n2). We define a sequence δ̄` = ci for
` ∈ Ii . This sequence tends to 0. We claim that it satisfies (2.2) for every n ≥ n1 which
is not in U(ω). Indeed, fix ` ∈ [1, n], it belongs to an interval Ii . We claim that n ≥ ni :
This holds by assumption if i = 1, and if i > 1 we have ni = inf Ii ≤ ` ≤ n. As n ≥ ni
and n /∈ U(ω), we have n /∈ Ui(ω). Moreover, ` ≥ ki : Indeed, if i > 1, this follows from
the inequalities ` ≥ ni and ni ≥ ki , while if i = 1 this comes simply from the fact that
k1 = 1. Thus, the definition of Ui(ω) ensures that b(n, ω) − b(n − `, ω) > (A − ci)`,
which gives the result since δ̄` = ci .

This almost finishes the proof; it just remains to treat the case n < n1 and ` ∈ [1, n].
These are only a finite number of conditions. All the functions we have considered are
measurable, so they are almost everywhere finite. There is therefore a subset O of Ō,
again with µ(O) > 1− ε, and a constant d such that for every ω ∈ O, and every n < n1
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and ` ∈ [1, n], we have b(n, ω)− b(n− `, ω) ≥ (A− d)`. Set finally δ` = δ̄` for ` ≥ n1
and δ` = max(d, δ̄`) for ` < n1. This function works. ut

We now deduce the theorem from these lemmas.

Proof of Theorem 1.1. By subtracting A` from a(`, ω), we may assume that the asymp-
totic average A vanishes. First, we prove the easy upper bound. By subadditivity,

a(n, ω)− a(n− `, T `ω) ≤ a(`, ω),

which is almost surely o(`) by Kingman’s theorem. This proves the upper bound in The-
orem 1.1. The stronger statement in Remark 1.2 follows from the fact that the almost sure
convergence a(`, ω)/`→ 0 is uniform on sets of arbitrarily large measure.

We turn to the harder lower bound. Let b(n, ω) = a(n, T −nω). This is a subadditive
cocycle for the ergodic transformation T −1. We may therefore apply Lemma 2.3 to it. Let
ε > 0 and ρ > 0. The lemma gives us a set O of good points with measure at least 1− ε,
a sequence δ`→ 0 and, for ω ∈ O, a set U(ω) of bad times with |U(ω)∩[0, n−1]| ≤ εn
for every n.

Let On = {ω ∈ O : n /∈ U(ω)} and Pn = T −nOn. For ω ∈ Pn and ` ∈ [1, n], one
has

a(n, ω)− a(n− `, T `ω) = b(n, T nω)− b(n− `, T nω) ≥ −δ``.

Hence, if a point is contained in an infinite number of the sets Pn, it satisfies the conclusion
of the theorem. If the times where it belongs to Pn have an asymptotic density of at least
1 − ρ, it even satisfies the stronger conclusion in Remark 1.2. We have to show that this
condition has large measure.

For ω ∈ �, we define A(ω) = {n : ω ∈ Pn}, its set of good times. We would like to
see that A(ω) has an upper asymptotic density larger than 1− ρ for ω in a subset of large
measure. Let fN (ω) = |A(ω)∩ [0, N − 1]|. The bad points are those for which fN (ω) ≤
(1 − ρ)N for all N sufficiently large. Denote Vi = {ω : ∀N ≥ i, fN (ω) ≤ (1 − ρ)N},
and V =

⋃
Vi the set of bad points.

We have∫
fN =

N−1∑
n=0

µ(Pn) =

N−1∑
n=0

µ(On) =

∫
1O(ω)|[0, N − 1] \ U(ω)| dµ(ω)

≥

∫
1O(ω)(1− ε)N dµ(ω) ≥ (1− ε)2N.

Since fN ≤ N , for N > i we obtain

(1− ε)2N ≤
∫
fN ≤ (1− ρ)Nµ(Vi)+N(1− µ(Vi)) = N − ρNµ(Vi).

Thus µ(Vi) ≤ (1− (1− ε)2)/ρ. We deduce that µ(V ) ≤ (1− (1− ε)2)/ρ < ρ provided
we have chosen ε small enough with respect to ρ. This proves that the lower bound of
Theorem 1.1 (and even the stronger conclusion in Remark 1.2) is satisfied on a set of
measure greater than 1− ρ. Since ρ is arbitrary, the proof is complete. ut
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Here is a small example showing that, even in deterministic situations, one cannot im-
prove the lower bound in Theorem 1.1 to a bound of the form an − an−` ≥ A` − δ`
(where δ` is any sequence tending to 0) while keeping a lot of good times. Indeed, con-
sider a sequence an which is either 1 or 2 for every n. This is always a subadditive se-
quence. Assume also that the value 2 is taken infinitely many times. Then the times for
which an − an−` ≥ −δ` for all ` ≤ n are, up to finitely many exceptions, only the times
when an = 2. Hence, they can be arbitrarily sparse.

3. Application to multiplicative ergodic theorems

Proof of Theorem 1.4. Let

a(n, ω) = d(u(n, ω)x0, x0),

where x0 is the basepoint that is used in the definition of metric functionals. Since the
maps are semicontractive and thanks to the triangle inequality one verifies easily that this
is a subadditive ergodic cocycle with asymptotic average A ≥ 0. In view of Theorem 1.1
we have therefore for almost every ω a sequence ni → ∞ and a sequence δ` → 0 such
that for every i and every ` ≤ ni ,

d(u(ni, ω)x0, x0)− d(u(ni − `, T
`ω)x0, x0) ≥ (A− δ`)`.

If we write xn = u(n, ω)x0 and denote by hn the horofunction associated to xn, this
means that

hni (x`) = d(xni , x`)− d(xni , x0) = d(u(ni, ω)x0, u(`, ω)x0)− d(u(ni, ω)x0, x0)

≤ d(u(ni − `, T
`ω)x0, x0)− d(u(ni, ω)x0, x0) ≤ −(A− δ`)`.

This inequality passes to limits as ni →∞.
If X is separable, one may extract a subsequence (n′i) of (ni) such that hn′i (y) con-

verges for all y belonging to a countable dense set of X. Since all these functions are
1-Lipschitz, convergence at every point of X follows. The limit h of hn′i satisfies for all `
the inequality

h(x`) ≤ −(A− δ`)`. (3.1)

In the general case, 8(X) is still compact, but it does not have to be sequentially
compact, so we should argue differently. The sets

Yi = {h ∈ 8(X) : ∀` ≤ ni, h(x`) ≤ −(A− δ`)`}

are nonempty (they contain hni ) and form a decreasing sequence. By compactness,
⋂
i Yi

is also nonempty. Any element h of this intersection satisfies (3.1).
The bound |h(x`)| ≤ d(x`, x0) ≤ A` + o(`) follows from the 1-Lipschitz property

of h and Kingman’s theorem. Therefore

lim
n→∞
−

1
n
h(u(n, ω)x0) = A
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as required. Again note that since the u(n, ω)s are semicontractive, the orbit of x0 and
the orbit of any other point x stay within bounded distance, therefore the same statement
holds with x replacing x0.

Finally, let us show that ω 7→ hω can be chosen to be Borel measurable if � is
standard and X is separable. In this case, the topology on 8(X) is generated by simple
convergence along a dense sequence in X. Hence, 8(X) is metrizable, and it becomes a
compact metric space (see [GV12]). Since � is standard, we may identify it with [0, 1].

By Remark 1.2, there exists a decomposition of � as the union of a set 3∞ of mea-
sure 0 and an increasing sequence of sets�i on which one can use the same sequence δi,`.
By Luzin’s theorem, we may also ensure that all the maps ω 7→ u(n, ω)x0 are continuous
on �i . Let 31 = �1 and 3i = �i \�i−1 for 1 < i <∞. It suffices to find a Borel map
ω 7→ hω on each 3i . Define

A(ω) := {h ∈ 8(X) : ∀` ∈ N, h(x`(ω)) ≤ −(A− δi,`)`}.

This is a nonempty compact subset of 8(X), depending upper semicontinuously on
ω ∈ 3i , by the continuity of ω 7→ u(n, ω)x0 and every h. We are looking for a mea-
surable map ω ∈ 3i 7→ hω ∈ A(ω), the only difficulty being measurability. Its existence
follows for instance from [W77, Theorem 4.1]. ut

One can deduce Corollary 1.5 from Theorem 1.4 together with the following lemma
(where x0 = 0).

Lemma 3.1. In a Banach space, for every metric functional h there is a linear func-
tional f of norm at most 1 such that f ≤ h.

Proof. Let h be a metric functional on a Banach space X. We claim that, for any finite
set F in X and any ε > 0, there is a linear functional f on X with norm at most 1 such
that f (x) ≤ h(x)+ ε for all x ∈ F . Then it follows by weak∗ compactness (the Banach–
Alaoglu theorem) that there exists a linear functional f with norm at most 1 such that
f (x) ≤ h(x) for all x ∈ X. Indeed, the intersection

⋂
F,ε{f : ‖f ‖ ≤ 1 and f (x) ≤

h(x)+ ε for all x ∈ F } is nonempty as every finite intersection of such (compact) sets is
nonempty.

Now we prove the claim. The open set

{h̃ ∈ 8(X) : ∀x ∈ F, h̃(x) < h(x)+ ε}

is nonempty (it contains h). Hence, as 8(X) is the closure of X, this set contains a func-
tion hy = 8(y), y ∈ X. Since the basepoint x0 used to define metric functionals is 0 in
this vector space context, we have, for all x ∈ F ,

‖y − x‖ − ‖y‖ = hy(x) < h(x)+ ε.

By the Hahn–Banach theorem, there exists a linear functional f of norm 1 with f (y) =
−‖y‖. Then, for all x ∈ F ,

f (x) = f (x − y)+ f (y) ≤ ‖x − y‖ − ‖y‖ ≤ h(x)+ ε,

as desired. ut
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Now, indeed, given hω from Theorem 1.4, take f ω− guaranteed by the lemma, and let
f ω := −f ω− ≥ −h

ω. Clearly, on the one hand we have

1
n
f ω(u(n, ω)x) ≤

1
n
‖u(n, ω)x‖,

and on the other hand
1
n
f ω(u(n, ω)x) ≥ −

1
n
hω(u(n, ω)x)→ lim

n→∞

1
n
d(x, u(n, ω)x).

Therefore, since

lim
n→∞

1
n
d(x, u(n, ω)x) = lim

n→∞

1
n
d(0, u(n, ω)x) = lim

n→∞

1
n
‖u(n, ω)x)‖,

Corollary 1.5 follows.
Alternatively, we give a direct proof of Corollary 1.5 within the vector space setting

without referring to metric functionals:

Proof of Corollary 1.5 directly from Theorem 1.1. Let

a(n, ω) = ‖u(n, ω)0‖,

which is a subadditive ergodic cocycle with asymptotic average A ≥ 0. If A = 0 then the
conclusion is trivial, so we assume that A > 0. In view of Theorem 1.1 we have therefore
for almost every ω a sequence ni →∞ and a sequence δ` → 0 such that for every i and
every ` ≤ ni ,

‖u(ni, ω)0‖ − ‖u(ni − `, T `ω)0‖ ≥ (A− δ`)`.

We denote xn = u(n, ω)0. By the Hahn–Banach theorem we can find for any n a linear
functional fn of norm 1 such that fn(xn) = ‖xn‖. Now, for any ` ≤ ni ,

fni (x`) = fni (xni + x` − xni ) = ‖u(ni, ω)0‖ − fni (xni − x`)
≥ ‖u(ni, ω)0‖ − ‖u(ni, ω)0− u(`, ω)0‖

≥ ‖u(ni, ω)0‖ − ‖u(ni − `, T `ω)0− 0‖ ≥ (A− δ`)`.

By weak∗ compactness, there exists a linear functional f = f ω of norm at most 1 satis-
fying f (x`) ≥ (A− δ`)` for all ` ≥ 0. It follows that

lim
`→∞

1
`
f (x`) = A

a.e. as required. In the case A > 0, the norm of f is clearly necessarily 1. ut

This has in turn another consequence, Corollary 1.6, as is explained in the introduction.

4. Cocycles of bounded linear operators

Invertible d × d real matrices act on the symmetric space Posd = GLd(R)/Od(R) by
isometries. How Theorem 1.4 in this special case implies the Oseledets theorem is ex-
plained for example in [KM99, K04]. Similarly, bounded linear invertible operators of a
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Hilbert spaceH act by isometries on the space Pos(H) of positive elements of the algebra
B(H) of all bounded linear operators H → H . The space Pos(H) is a cone in the vector
space Sym(H) = {a ∈ B(H) : a∗ = a}. The action is given by

g : p 7→ gpg∗.

The metric is given by a Finsler norm at each p ∈ Pos(H),

‖a‖p := ‖p
−1/2ap−1/2

‖

for a ∈ Sym(H) (see [CPR94] for details).
Thus for integrable ergodic cocycles of bounded linear operators we may again apply

Theorem 1.4. In contrast to the finite-dimensional case, the metric of Pos is less nice
and the space is not locally compact. Therefore the metric functionals are less studied at
present time. An alternative approach is provided thanks to Segal’s inequality

‖eu+v‖ ≤ ‖eu/2eveu/2‖.

This implies a weak notion of nonpositive curvature (see [CPR94] and references therein):
the diffeomorphism exp : Sym → Pos semiexpands distances. This means that the in-
verse, the logarithm, is semicontractive.

So let v(n, ω) = ϕ(T n−1ω)ϕ(T n−2ω) · · ·ϕ(ω) be an integrable ergodic cocycle of
bounded invertible linear operators of H . Note that we here take the opposite order com-
pared to (1.2). Hence if we denote by pn the positive part of v(n, ω), that is,

pn(ω) = (v(n, ω)
∗v(n, ω))1/2,

then a(n, ω) := ‖logpn(ω)‖ is a subadditive cocycle, where the norm is the operator
norm. Indeed, notice that the pn is the orbit of the matrices v(n, ω)∗ acting by isometry
on Pos, now in the right order for the metric statements. The distance from the identity to
the nth point of the random orbit in Pos gives a subadditive cocycle. Since the logarithm
preserves the distance from Id to p, and contracts distances between p and q not the iden-
tity, the inequalities between distances go in the right direction so that the subadditivity
of the distances between points is preserved. This is explained in [K02]. Therefore the
proof of Corollary 1.5 as given in Section 3 goes through. We conclude that for a.e. ω
there is a linear functional Fω on Sym (or on the full space of bounded linear operators,
by Hahn–Banach) of norm 1 such that

lim
n→∞

1
n
Fω(logpn(ω)) = lim

n→∞

1
n
‖logpn(ω)‖,

which is Theorem 1.7.
For comparison, the classical formulation of the multiplicative ergodic theorem is

equivalent to the statement that pn(ω)1/n, or 1
n

logpn(ω), converges in norm as n→∞.
In general Sym is not uniformly convex, so our weaker convergence seems nearly best
possible (in view of the counterexample in [KN81] mentioned above). Under stronger
assumptions, one can probably promote it to a stronger statement. When Sym is a Hilbert
space, for example in the setting of Hilbert–Schmidt operators, the linear functionals are
given by M 7→ Tr(AM). This implies the Oseledets theorem (it is actually stronger,
a more uniform convergence) as Ruelle explains for compact operators (see [KM99]).
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As was remarked in the introduction, it is well-known that in general, even for powers
of just one operator, one cannot hope for Oseledets-type Lyapunov regularity.

5. Cocycles of holomorphic maps

Pseudo-metrics are frequently employed in the theory of several complex variables.
(Pseudo refers to the fact that for these distances the axiom about d(x, y) = 0 may fail.)
This is partly so because of the Schwarz lemma but also thanks to their connection to
diophantine problems (Lang’s Conjecture [La74]). Given a complex analytic space Z,
we denote by dZ the associated Kobayashi pseudo-distance. Every holomorphic map
f : Z→ W between complex spaces is 1-Lipschitz with respect to these pseudo-metrics:

dW (f (z1), f (z2)) ≤ dZ(z1, z2)

for all z1, z2 ∈ Z. For instance, the pseudo-metric on C is identically 0 for all pairs
of points. One says that a space Z is Kobayashi-hyperbolic if dZ is a true metric. For
example, hyperbolic Riemann surfaces are always hyperbolic in this sense too, in fact
the metric dZ coincides with the hyperbolic metric coming from the Poincaré metric on
the universal covering space. (These facts already explain the theorems of Liouville and
Picard on entire functions.)

Many papers have been devoted to the topic of extending the Wolff–Denjoy theorem,
and there are also papers about composing random maps, in both orders, generalizing
continued fraction expansion (see [KeL07] and references therein).

Even for a pseudo-metric one defines metric functionals and horofunctions as before.
So our multiplicative ergodic theorem in principle applies, and gives an extension of the
Wolff–Denjoy theorem to a vastly more general situation:

Theorem 5.1. Let u(n, ω) be an integrable ergodic cocycle of holomorphic self-maps of
a complex space Z. Then for a.e. x there is a metric functional hω for the pseudo-metric
space (Z, dZ) such that

lim
n→∞
−

1
n
hω(u(n, ω)z) = A := lim

n→∞

1
n
dZ(u(n, ω)z, z).

It remains to understand horofunctions. Under certain convexity and smoothness assump-
tions, these metrics are Gromov hyperbolic or something slightly weaker, and our result
then implies that the orbit converges to a boundary point provided A > 0. For the state-
of-the-art of the metric geometry of the Kobayashi metric, we refer to [K05, AR14, Z17]
and references therein. Here is a corollary:

Corollary 5.2. Let u(n, ω) be an integrable ergodic cocycle of holomorphic maps of D,
whereD is a bounded domain in Cd which is either strictly convex, strictly pseudo-convex
with C2-smooth boundary, or pseudo-convex with analytic boundary. Unless for a.e. ω,

1
n
dD(u(n, ω)z, z)→ 0 as n→∞,

a.e. orbit u(n, ω)z converges to some boundary point ξω ∈ ∂D. The boundary point may
depend on ω but is independent of z ∈ D.
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Proof. It is known that under these assumptions onD the metric space (D, d) is a proper
metric space, where d = dD is the Kobayashi metric. Assuming A > 0, the orbit accu-
mulates on ∂D and our Theorem 1.4 provides for a.e. ω a horofunction h such that

h(u(n, ω)z)→−∞

as n → ∞, for any z ∈ D. We may assume that a sequence xn defining h (say with
basepoint x) converges to some point ξ in ∂D.

If D is strictly convex, it is shown in [AR14] that Abate’s big horospheres

Fx(ξ, R) =
{
z ∈ D : lim inf

w→ξ
(d(z,w)− d(x,w)) < 1

2 logR
}

can only meet the boundary in one point. It is clear that {z : h(z) < 0} is contained in
Fx(ξ, 0). Thus we must have u(n, ω)z→ ξ as n→∞.

In the remaining two cases it is known from [K05] and references therein that for any
sequence zn converging to a different boundary point, there is a constant R > 0 such that
for all n,m,

R > (zm, xn) :=
1
2 (d(x, zm)+ d(x, xn)− d(zm, xn)).

Therefore it would be impossible that h(zm) < 0 since d(x, zm)→∞. Hence again the
conclusion that u(n, ω)z→ ξ . ut

6. Behaviour of extremal length under holomorphic self-maps of Teichmüller space

In his celebrated 1976 preprint (see [T88, Theorem 5]), Thurston announced that isotopy
classes of surface diffeomorphisms admit some kind of Lyapunov exponents. Let S be a
closed surface of genus g ≥ 2. For any isotopy class α of simple closed curves on S, and
ρ a Riemannian metric, the length Lρ(α) is the shortest length of a curve in the isotopy
class α for the metric ρ. Given a diffeomorphism f of S, there are a finite number of
exponents λi such that

Lρ(f
nα)1/n→ λi

as n→∞ for some i depending on α. In the generic case there is only one exponent. This
is proved by passing to the Teichmüller space Tg whose points are equivalence classes of
metrics, and instead considering the action of f there. Indeed,

Lρ(f
nα) = Lf−nρ(α).

This was partly generalized to cocycles in [K14]. We also refer to [H16] for a re-
finement in the i.i.d. case. In several instances, again mainly due to Thurston, certain
holomorphic self-maps of the Teichmüller space arise. Unless they are biholomorphic
they do not give rise to an isotopy class of diffeomorphisms of the underlying surface. It
is therefore natural to consider how lengths behave under the metric u(n, ω) with this or-
der of composition. In the case of holomorphic maps it is more natural to consider length
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from complex analysis, namely the extremal length of Beurling–Ahlfors:

Extx(α) = sup
ρ∈[x]

Lρ(α)
2

Area(ρ)
,

where the supremum is taken over all metrics in the conformal class of x.
The link between the Teichmüller metric dT and extremal length comes via Kerck-

hoff’s formula:

dT (x, y) = sup
α

1
2

log
Extx(α)
Exty(α)

.

Applying our main theorem to the Teichmüller distance, using the identification of
horofunctions in this metric due to Liu and Su, and following the arguments in [K14], we
get:

Theorem 6.1. Let u(n, ω) be an integrable cocycle of holomorphic self-maps of the
genus g Teichmüller space Tg . Denote by dT the Teichmüller distance. Then for a.e. ω
there is a simple closed curve α = αω such that

lim
n→∞

1
n

log Extu(n,ω)ρ(α) = 2 lim
n→∞

1
n
dT (u(n, ω)ρ, ρ).
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