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Abstract

The range process Rn of a random walk is the collection of sites visited by the random
walk up to time n. In this paper we deal with the question of whether the range process
of a random walk or the range process of a cocycle over an ergodic transformation is
almost surely a Følner sequence and show the following results: (a) The size of the
inner boundary |∂Rn| of the range of recurrent aperiodic random walks on Z2 with
finite variance and aperiodic random walks in Z in the standard domain of attraction
of the Cauchy distribution, divided by n/ log2(n), converges to a constant almost surely.
(b) We establish a formula for the Følner asymptotic of transient cocycles over an
ergodic probability preserving transformation and use it to show that for admissible
transient random walks on finitely generated groups, the range is never a Følner
sequence unless the walk is a skip-free random walk on Z. (c) For strongly aperiodic
random walks in the domain of attraction of symmetric α-stable distributions with
1 < α ≤ 2, we prove a sharp polynomial upper bound for the decay at infinity of
|∂Rn|/|Rn|. This last result shows that the range process of these random walks is
almost surely a Følner sequence.
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1 Introduction and main results

Let G be a countable group with identity element idG, ξ1, ξ2, . . . , be i.i.d. G-valued
random variables and define the random walk (Sn)n, where S0 := idG and Sn = ξ1 · ξ2 ·
. . . · ξn for n ≥ 1. The range of the random walk, denoted

Rn := {S1, . . . , Sn},
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The boundary of the range of a random walk and the Følner property

is the random subset of G which consists of the sites visited by the random walk up
to time n. The case where G = Zd will serve as a motivating and recurring example
in this paper; as this group is Abelian we will denote the random walk in this case by
Sn =

∑n
i=1 ξi.

The range is a natural object to study and understanding its size and shape is of great
interest for a variety of models in probability theory such as random walk in random
scenery; see for example [1, 16] where the size of the range is shown to determine the
leading term of the asymptotic growth rate of the information arising from the scenery.
The size of the range and its fluctuations have been extensively treated in the literature
starting with the seminal paper [17] where the authors obtained strong laws in the case
of the simple random walk on Z2, see also [18] and [19]. A central limit theorem for the
range was obtained in [24], whereas the case of random walks with stable increments
was treated in [28].

More recently, the focus has shifted towards more involved objects, still related
to the range. For example [7] studies the entropy of the range, [5, 4] its capacity,
[37] the largest gap problem in the range [37]; finally [3] and [30] study the boundary
of the range, henceforth denoted by ∂Rn, that is the sites in the range with at least
one neighbour not visited by the random walk. Apart from its intrinsic interest, the
motivation for studying the range and its relatives often stems from their relevance in
more intricate models; the capacity of the range is of interest in random interlacements
(see [35]), whereas the range itself is relevant in the study of random walks in random
scenery.

The main focus of this paper is on asymptotic size of the boundary of the range and
its relation to the Følner property of the range. We first present our results in the case
of recurrent walks.

1.1 Recurrent walks in Z and Z2

The first and last authors first studied the Følner property of the range in [16], where
in the case of the simple random walk on Z2, it was shown that the range is almost surely
a Følner sequence, that is almost surely

lim
n→∞

|Rn4 (Rn + x)|
|Rn|

= 0, for all x ∈ Zd, (1.1)

where for two subsets A,B ⊂ Zd, we write A4B for the symmetric difference A4B :=

(A ∪B) \ (A ∩B).
One can easily see that the Følner property captures the asymptotic relation between

the size of the range |Rn| and that of its boundary |∂Rn| defined by

∂Rn :=
{
x ∈ Rn : ∃y ∈ Zd \Rn, |x− y| = 1

}
. (1.2)

Indeed let Sd denote the usual generators of Zd, that is Sd := {±ei : 1 ≤ i ≤ d}, where ei
are the standard unit basis vectors. For v ∈ Zd, we also define the v-boundary of the
range as

∂vRn := Rn \
(
Rn + v

)
.

Using the above notation, the boundary ∂Rn can also be written in the form

∂Rn =
⋃
v∈Sd

Rn \ (Rn + v) =
⋃
v∈Sd

∂vRn.

From the above it is clear that for any v ∈ Sd

|∂vRn| ≤ |∂Rn| ≤
∑
v∈Sd

|∂vRn|. (1.3)
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The boundary of the range of a random walk and the Følner property

Notice that a similar relation also holds for any countable, finitely generated group G,
with Sd replaced by the generators of G.

In addition, for any a, b ∈ Zd it can be easily shown that

|∂aRn\∂bRn| ≤ |∂a−bRn|, |∂a+bRn| ≤ |∂bRn|+ |∂aRn|.

In particular (for countable finitely generated groups) the Følner property is equivalent
to |∂Rn|/|Rn| → 0 as n → ∞. The Følner property is important in ergodic theory and
information theory as it implies for example that the partial sums of any G-indexed
random field along (Fn) satisfies the mean ergodic theorem [13] and the Shannon-
McMillan-Breiman Theorem [27, 29].

A rate, at least in expectation, is given by [7], who proved for the simple random walk
on Z2, that E |∂Rn| ∼ Cn/ log2(n), whereas [30] proved that

π2

2
≤ lim
n→∞

(log n)2

n
E |∂Rn| ≤ 2π2.

We strengthen the results mentioned above by obtaining a strong law of large
numbers for the boundary |∂Rn| of a recurrent random walk in Z2, with finite second
moments, or of a random walk in Z in the domain of attraction of the symmetric
Cauchy law. Before introducing our first main result we give a precise statement of our
assumptions.

Let ξ, ξ1, ξ2, · · · be i.i.d. Zd-valued random variables satisfying one of the following:

(A1) d = 2 and there exists a nonsingular covariance matrix Σ ∈M2×2 (R) such that for all
t ∈ [−π, π]2,

φ(t) = E (exp(i 〈t, ξ〉)) = 1− 〈Σt, t〉+ o
(
|t|2
)

;

(A2) d = 1 and there exists γ > 0 such that for t ∈ [−π, π],

φ(t) = E (exp(itξ)) = 1− γ|t|+ o(|t|).

It is worth mentioning under (A1) the random variables ξi ∈ Z2 have zero mean and
finite second moments and therefore Sn/

√
n converges to a Gaussian random vector in

R2. For example Simple Random Walk in Z2 satisfies (A1). On the other hand, random
walk satisfying assumption (A2) are in the domain of attraction of the symmetric Cauchy
distribution, that is if Sn := X1 + · · · + Xn, then Sn/n → Z, where Z is a real random
variable with characteristic function E exp(itZ) = exp(−|t|)

We will always assume that the random walk is aperiodic, namely that there is
no proper subgroup of Zd containing the support of ξ1. By [34, Theorem 7.1] this is
equivalent to requiring that φ(t) = 1 for t ∈ [−π, π]d if and only if t = 0. Notice that when
ξi ∈ Z2 has finite second moments, aperiodicity implies that the covariance matrix Σ in
(A2) is non-singular.

Our first main result is the following.

Theorem 1.1. Let ξ1, ξ2, ..., ξn, .. be i.i.d. Zd-valued aperiodic random variables satisfying
Assumption (A1) or Assumption (A2). Then for every nonzero v ∈ Zd, there exist
constants Cv, C > 0 such that almost surely,

lim
n→∞

log2(n)

n
|∂vRn| = Cv, lim

n→∞

log2(n)

n
|∂Rn| = C.

In addition E(|∂vRn|) ∼ Cvn
log2(n)

and E(|∂Rn|) ∼ Cn
log2(n)

as n→∞.
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In the cases covered by Theorem 1.1 the random walks are recurrent, since Re
∫

[1−
φ(t)]−1dt = +∞, see [34, II.8.P1]. By [17, 24] and [28] we almost surely have |Rn| ∼
dn/ log(n) for some d > 0; thus for all nonzero v ∈ Z2 (or Z in the Cauchy case), there
exists a C > 0 such that almost surely for n large enough,

C−1

(
1

log(n)

)
≤ |Rn4 (Rn + v)|

|Rn|
≤ C

(
1

log(n)

)
,

providing a sharp quantitative version of the Følner property for these random walks.
We complete our study of recurrent random walks, by considering Z-valued random

walks in the domain of attraction of the symmetric, α-stable distribution with 1 < α ≤ 2.
In these cases Le Gall and Rosen showed the range when scaled appropriately converges
in distribution to a nontrivial random variable, namely the Lebesgue measure of the
set Wα ([0, 1]) := {Wα(t) : 0 ≤ t ≤ 1}, where Wα is the symmetric, α-stable Lévy process
[28].

Theorem 1.2. Let Sn be a recurrent, aperiodic random walk on Z in the domain of
attraction of a nondegenerate, symmetric, α-stable distribution with 1 < α ≤ 2. Then for
all ε > 0, almost surely

|∂Rn|
|Rn|

= o
(
n

1
α−1+ε

)
.

For α = 2 the quantitative upper bound of Theorem 1.2 is optimal in the polynomial
term as can be deduced from the case of the simple random walk on Z, see Remark
4.3. Theorem 1.2 shows that for this class of random walks, the range process is almost
surely a Følner sequence. This in turn can be used, for example, to greatly simplify the
calculation of the upper bound of the relative complexity of the scenery in [1], which is
quite technical and is based on dyadic partitions, as Kieffer’s Shannon-McMillan-Breiman
formula directly applies to the sequence of sets (Rn)n.

1.2 Transient walks

Kaimanovich in a private communication asked which groups admit random walks
whose range satisfies the almost sure Følner property. Most groups only carry transient
random walks. Indeed, the only finitely generated groups on which there are recurrent
random walks are the groups which are virtually cyclic or virtually Z2, see [38, Theorem
3.24] meaning that there exists H a finite index subgroup of G which is isomorphic to {0},
Z or Z2. As for transient random walks the range grows linearly, Kaimanovich’s question
is naturally linked to the asymptotic size of the boundary of the range of transient
random walks; see the discussion in Section 1.1.

Kesten, Spitzer and Whitman’s showed that for all random walks,

|Rn|
n
→ P (Sn 6= 0, for all n ≥ 1) ,

almost surely, where clearly the limit is positive for transient random walks, see [34, p.
38]. In the case of transient random walks on Zd with d ≥ 1, Okada showed in [30] that
if X1, X2, · · · , is a sequence of i.i.d. random variables in Zd, then almost surely

lim
n→∞

|∂Rn|
n

= P
({
∀k ∈ N, Sk 6= 0

}
∩
{
∃y ∈ {±ei; 1 ≤ i ≤ d} ,∀k ∈ Z, Sk 6= y

})
,

where {S−n;n ≥ 0} is an independent copy of {−Sn;n ≥ 0}.
We take a more general viewpoint and consider random walks on groups. Let G be a

discrete group, {Sn : n ≥ 0} be a G-valued random walk and Rn := {S1, . . . , Sn}. We first
show that

lim
n→∞

|Rn4 (Rng)|
|Rn|

= c(g), a.s. for all g ∈ G, (1.4)
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where c(g) is given explicitly in terms of return probabilities and is thus closely related
with the Green function G(g) =

∑∞
n=0P (Sn = g). In particular, Proposition 5.4 shows

that if the Green function of a random walk vanishes at infinity then its range is almost
surely not a Følner sequence.

Let us say that a random walk is admissible if the walk starting from the origin can
reach any point with positive probability. A function f : G→ R satisfies limg→∞ f(g) = 0

if for all ε > 0, we have |f(g)| < ε for all but finitely many elements of G. We then
establish the following.

Theorem 1.3. Let p be an admissible probability measure on a finitely generated group
G. Assume that p defines a transient random walk, and that G is not virtually cyclic. Then
the Green function G(g) tends to 0 when g tends to infinity.

The condition that G is not virtually cyclic is necessary for the theorem: in Z, the
Green function of a non-centered random walk with finite first moment does not tend to
0 at infinity, by the renewal theorem (and this statement can be extended to virtually
cyclic groups).

It is worth noting that stronger, quantitative results, are available if one restricts the
class of groups under consideration, see [38]. For instance, when G is non-amenable
the probabilities pn(idG, x) vanish exponentially fast, uniformly in x, from which the
result follows readily. On amenable groups, for symmetric walks with finite support or
more generally a second moment, one can sometimes use isoperimetric techniques to
obtain much stronger results, specifying the rate of decay of pn(idG, x) and of the Green
function at infinity. However, in general, there is no hope to get a quantitative version
of Theorem 1.3 as we have made no moment assumption; it suffices to consider p such
that ξ1 is at distance 22n of idG with probability 1/n2 – then the Green function decays
at most like 1/ log log d(idG, x). Moreover, surprisingly few tools apply in all classes of
groups, regardless of their geometry.

After completing our proof, we learned that part of the statement of Theorem 1.3,
namely if G is not virtually Z2, can also be deduced from results of Coulhon on isoperimet-
ric inequalities (see [9, Proposition 3.1]). We nevertheless decided to keep our argument
for this case also since it is shorter and more elementary.

There is a simple class of transient random walks for which Rn is a Følner sequence.
Let X1, X2, . . . be a Z valued i.i.d sequence with finite first moment, positive expectation,
and

P (X1 > 1) = 0.

Let Sn =
∑n
k=1Xk. Then for almost all ω ∈ Ω, {Rn}∞n=1 is an eventually monotone

sequence of growing intervals with |Rn| → ∞ as n → ∞. Consequently the range
process is almost surely a Følner sequence, and |∂Rn| remains almost surely bounded.
A similar statement holds for walks with Sn → −∞ as n→∞ and P (X1 < −1) = 0. We
say that these walks are the skip-free walks on Z.

With Theorem 1.3 at hand together with a specific study of virtually cyclic groups,
we show the following.

Theorem 1.4. Let Sn be a transient admissible random walk on a finitely generated
group G. If it is not a skip-free random walk on Z, then almost surely {Rn}∞n=1 is not a
Følner sequence.

In particular, for all d ≥ 3, the range of all random walks on Zd is almost surely not
a Følner sequence. This answers the question of Kaimanovich in full generality for all
transient random walks on finitely generated groups. We obtain in particular that for
transient random walks, either |∂Rn| is eventually bounded, or it grows linearly, with no
intermediate behavior.
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The remainder of the paper is structured as follows. In Section 2 we introduce the
necessary notation, collect some preliminary results and set the setting for proving the
main results. Also in Section 2 we extend the results of [30] to transient co-cycles in
discrete groups. The added generality of considering co-cycles is not strictly necessary,
but it comes at no additional technical complexity and we think is of independent interest.
The proofs of the main results, along with the relevant definitions and more precise
statements, are given in Sections 3, 4 and 5 respectively. The Appendix contains some
auxiliary results.

1.2.1 Notation

Given two sequences (an)n and (bn)n of positive numbers we will write an ∼ bn if
limn→∞

an
bn

= 1 and an . bn if there exists C > 0 such that for all n ∈ N, an ≤ Cbn. For
x ∈ R, bxc ∈ Z denotes the lower floor function of x.

2 Preliminary results

As mentioned in the introduction we will present the results of this Section in the
context of group-valued co-cycles. The abstraction to co-cycles is not strictly necessary
for the rest of the paper but it does not add to the complexity of the paper and we think
is of independent interest.

Let T be an invertible bi-measurable, ergodic, measure preserving transformation
of a probability space (Ω,B,P), meaning that P ◦ T−1 = P. In this case we will refer to
(Ω,B,P, T ) as a probability preserving transformation. The transformation is ergodic if
for all A ∈ B, T−1A = A implies that P(A) = 0 or P(Ω \ A) = 0. In this section we will
make use of the pointwise ergodic theorem: if a measurable f : Ω→ R is P integrable
and T is ergodic, then for P almost every ω ∈ Ω,

lim
n→∞

∑n
k=0 f ◦ T k(ω)

n
= lim
n→∞

∑n
k=1 f ◦ T−k(ω)

n
= EP(f).

Let (G,×) be a countable discrete group and denote by idG and mG the identity
element and the Haar measure of G respectively. A G-valued cocycle is a function
F : Z× Ω→ G which satisfies the cocycle identity: for all m,n ∈ Z and ω ∈ Ω,

F (n+m,ω) = F (m,ω)× F (n, Tmω).

Any measurable function f : Ω→ G determines a G-valued cocycle F via

Ff (n, ω) =


f(ω)× f ◦ T (ω)× · · · × f ◦ Tn−1(ω) n ∈ N
idG n = 0(
f ◦ T−1(ω)

)−1 × · · · × (f ◦ T−n(ω))
−1

n ∈ Z−.

In fact the above representation is general; any G-valued cocycle F is of the form Ff
for f defined by f(ω) = F (1, ω). These cocycles appear in the projection to the second
coordinate of the skew product map Tf : Ω×G→ Ω×G defined by Tf (ω, g) = (Tω, gf(ω)).
Note that Tf preserves the σ-finite measure P×mG. A cocycle F is recurrent if almost
surely N(ω) := # {n ∈ N : F (n, ω) = idG} =∞ and transient if N(ω) <∞ almost surely.
We would like to point out that there is no general necessary and sufficient criteria
for recurrence of cocycles and that it follows from Herman’s (unpublished notes) and
[20, 2] that all amenable groups admit a recurrent cocycle. As the class of amenable
groups includes all Abelian groups as well as some groups of exponential growth the
latter class is much more diverse than the class of groups of polynomial growth at most
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2. We conclude that there are many groups which admit a recurrent cocycle and all
their random walks are transient. The papers [6, 31, 32, 14] provide some sufficient or
necessary criteria for recurrence of cocycles.

Let
Rn(ω) := {F (k, ω); 1 ≤ k ≤ n}

be the range, or trace, of the co-cycle up to time n. When no confusion is possible we
will write Rn for Rn(ω). For a finite subset A ⊂ G, we write |A| for its cardinality.

The next proposition was proved in Spitzer [34, pp. 38-40] 1 2 for random walks
in Zd and the proof of Proposition 2.1 below follows its lines. The case of Random
walks on Zd can be recovered by taking Ω = (Zd)Z, P is a product measure (distribution
of an i.i.d. sequence), T is the Bernoulli shift (ergodic) and f(ω) = ω0, where ω =

(· · · , ω−1, ω0, ω1, · · · ).
Proposition 2.1 (pp. 38-40 [34]). Let (Ω,B,P, T ) be an ergodic, probability-preserving
transformation, G a countable group and F : Z × Ω → G a cocycle. Then for P-almost
every ω,

lim
n→∞

|Rn(ω)|
n

= P (ω ∈ Ω; ∀n ∈ N, F (n, ω) 6= idG) .

Proof. Define
An = {ω′ ∈ Ω : ∀k ∈ [1, n] ∩N, F (k, ω′) 6= idG}

and A = A∞. Counting each z ∈ Rn according to the last time it has been visited in
[1, n] ∩N, it follows that

|Rn(ω)| =
n∑
k=1

1[∀k<j≤n,F (j,ω)6=F (k,ω)] =

n∑
k=1

1[∀0<j≤n−k,F (j,Tkω)6=idG]

and for all n ∈ N and N < n

n∑
k=1

1A ◦ T k ≤ |Rn| =
n∑
k=1

1An−k ◦ T k ≤ N +

n−N∑
k=1

1AN ◦ T k.

By the pointwise ergodic theorem, dividing all sides of the inequality by n, one has that
for all N ∈ N, for almost every ω ∈ Ω,

P(A) ≤ lim
n→∞

|Rn(ω)|
n

≤ lim
n→∞

|Rn(ω)|
n

≤ P (AN ) .

Noting that AN ↓ A as N →∞ and thus P (AN ) −−−−→
N→∞

P(A) the conclusion follows.

The following corollary is almost immediate.

Corollary 2.2. Let (Ω,B,P, T ) be an ergodic probability preserving transformation, G a
countable group and F : Z× Ω→ G a cocycle. If F is recurrent then |Rn| = o(n) almost
surely. In the transient case there exists c > 0 such that |Rn| ∼ cn almost surely.

Proof. It remains to show that if F is transient then

c := P (ω ∈ Ω : ∀n ∈ N, F (n, ω) 6= idG) > 0.

To see this let l : Ω 7→ N ∪ 0 be defined as

l(ω) := sup {n ∈ N ∪ {0} : F (n, ω) = idG} .
1Although it is stated for Zd, it holds for general countable groups as pointed out by Flatto [19].
2Spitzer attributes the proof to an unpublished manuscript with Kesten and Whitman.
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We need to show that P(l = 0) > 0. Letting BN = {ω ∈ Ω; l = N}, the transience of F
implies that there exists N ∈ N ∪ {0} such that P (BN ) > 0. For all ω ∈ BN and j ∈ N,

idG 6= F (N + j, ω) = F (N,ω)× F
(
j, TNω

)
= F

(
j, TNω

)
.

The latter implies that TNBN ⊂ {ω ∈ Ω : l = 0} and since T preserves P we have P(l =

0) > 0.

2.1 The asymptotic size of the boundary of transient cocycles

[7] and [30] studied the asymptotic size of the boundary of a random walk in Zd. In
the case of transient random walks on Zd, Okada obtained a strong law of the boundary
of the range [30]. The following is a similar result for transient cocycles on arbitrary
countable groups. The proof follows closely that of [30, Theorem 2.1]. Note that the
proof [30, Theorem 2.1] contains a small issue since the shift operator as defined in
the beginning of [30, Section 3.1] is measure-preserving with respect to an infinite
measure. This however can be easily fixed by using instead the setup mentioned just
before Proposition 2.1.

Proposition 2.3. Let (Ω,B,P, T ) be an ergodic probability preserving transformation,
G a countable group and F : Z× Ω→ G a cocyle. Then for all g ∈ G, for P-almost every
ω ∈ Ω,

lim
n→∞

|Rn(ω) \ (Rn(ω)g)|
n

= P
(
ω ∈ Ω; ∀n ∈ N, F (n, ω) 6= idG,∀n ∈ Z, F (n, ω) 6= g−1

)
.

Proof. Let g ∈ G and ω ∈ Ω. By definition, z ∈ Rn(ω) \ (Rn(ω)g) if and only if there exists
1 ≤ k ≤ n such that for all 1 ≤ j ≤ n,

F (j, ω)g 6= z = F (k, ω).

By considering the maximal k ≤ n for which F (k, ω) = z, we get |Rn(ω) \ (Rn(ω)g)| =∑n
k=1 1Bn(k) where

Bn(k) =
{
ω ∈ Ω;∀j ∈ [1, n] ∩N, F (j, ω) 6= F (k, ω)g−1, ∀k < j ≤ n, F (j, ω) 6= F (k, ω)

}
.

As for all k, j ∈ Z, F (k, ω)−1F (j, ω) = F (j − k, T kω), for all k ∈ {1, . . . , n} the set Bn(k) is
equal to

T−k
{
ω ∈ Ω : ∀j ∈ [−k, n− k] ∩Z, F (j, ω) 6= g−1,∀j ∈ [1, n− k] ∩N, F (j, ω) 6= idG

}
.

This implies that for all N < n/2,

n∑
k=1

1C ◦ T k ≤ |Rn \ (Rng)| ≤ 2N +

n−N∑
k=N+1

1CN ◦ T k,

where

CN :=
{
ω ∈ Ω; ∀j ∈ [−N,N ] ∩Z, F (j, ω) 6= g−1, ∀j ∈ [1, N ] ∩N, F (j, ω) 6= idG

}
and C = C∞ = ∩NCN . The conclusion follows from the ergodic theorem as in the proof
of Proposition 2.1.

The next Corollary follows easily from a combination of Propositions 2.1, 2.3 and
Corollary 2.2.

Corollary 2.4. Let (Ω,B,P, T ) be an ergodic probability-preserving transformation, G a
countable group and F : Z× Ω→ G a cocycle. If F is transient then for all g ∈ G,

|Rn \ (Rng)|
|Rn|

a.s.−−−−→
n→∞

P
(
∀k ∈ Z, F (k, ·) 6= g−1

∣∣ ∀k ∈ N, F (k, ·) 6= idG

)
.
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2.2 The Følner property

A sequence {Kn}n∈N of subsets of G is a right Følner sequence in G if for all n ∈ N,
Kn is a nonempty finite set and for all g ∈ G,

|Kn4 (Kng)|
|Kn|

−−−−→
n→∞

0.

The existence of Følner sequences is equivalent to amenability of the group (existence of a
right invariant mean on G). In [16], it was shown that the range of the symmetric random
walk in Z2 is almost surely a Følner sequence. Kaimanovich, in a private communication,
asked which random walks on general countable groups have almost surely Følner
ranges and Dolgopyat suggested to generalise this question to which cocycles have
almost surely Følner ranges. The following is a partial advance on Dolgopyat’s question
for transient co-cycles as it establishes a relatively simple criterion for checking the
Følner property. This criterion will be used afterwards to give a complete answer to
Kaimanovich’s question.

Proposition 2.5. Let (Ω,B,P, T ) be an ergodic probability preserving transformation,
G a countable group and F : Z × Ω → G a cocycle. If F is transient then for all g ∈ G,
almost surely,

lim
n→∞

|Rn4Rng|
|Rn|

= Φ(g) + Φ
(
g−1

)
,

where Φ(g) := P (∀n ∈ Z, F (n, ·) 6= g| ∀k ∈ N, F (k, ·) 6= idG).

Proof. It is easy to see, by multiplying by g−1, that for all n ∈ N,

|Rng \Rn| =
∣∣Rn \ (Rng−1

)∣∣ .
Since (Rn4 (Rng)) = (Rn \ (Rng)) ] ((Rng) \Rn), the result follows from Corollary
2.4.

3 Proof of Theorem 1.1

In [7] it was shown that in the case of the symmetric random walk on Z2, E |∂Rn|
is proportional to the entropy of the range (at time n) and it is of order constant times
n/ log2(n). [30] has shown that 2−1π2 ≤ C ≤ 2π2. The previous Theorem is a law of large
numbers type result for a more general class of random walks which includes random
walks in the normal domain of attraction of a symmetric Cauchy distribution. It also
gives a more precise estimate on the almost sure Følner property of the range of such
random walks; see [16] for some consequences of the Følner property of the range in
the model of random walks in random sceneries. The proof goes by first establishing an
upper bound for the variance of |∂Rn| which gives convergence in probability. After that
we use a method from [19] which improves the asymptotics of the rate of convergence
in probability, thus enabling us to use the Borel-Cantelli lemma for showing convergence
almost surely.

Recall that for v ∈ Zd, the v-boundary of the range is defined as ∂vRn = Rn \
(
Rn+v

)
,

whereas for V ⊂ Zd, we write ∂VRn := ∩v∈V ∂vRn. For d = 1, 2, write Sd := {±ei : 1 ≤
i ≤ d}, where ei are the usual generators of Zd. The boundary ∂Rn can also be written
in the form

∂Rn =
⋃
v∈Sd

Rn \ (Rn + v) =
⋃
v∈Sd

∂vRn. (3.1)

To prove the statement in Theorem 1.1 for ∂Rn, we need first the statement for
∂vRn and in fact a more general statement for ∂VRn, where V ⊂ Zd. The proof of the
statement for ∂Rn will then follow from the inclusion-exclusion principle.
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3.1 Auxiliary results

We now state and prove a number of auxiliary results that will be used in the proof of
Theorem 1.1, that we could not find in the literature.

Proposition 3.1. Under the assumptions of Theorem 1.1, for all j ∈ Zd \ {0} there exist
cj , dj > 0 such that

P (∀1 ≤ k ≤ n, Sk /∈ {0, j}) ∼
cj

log(n)
as n→∞.

and

P (∀1 ≤ k ≤ n, Sk 6= j) ∼ dj
log(n)

as n→∞.

Remark 3.2. Proposition 3.1 in the case of symmetric random walks on Z2 with finite
variance was (essentially) treated in [30].

Proof. The proof is a simple application of [26, Theorem 4a]. This theorem states that
for any aperiodic random walk in Zd, W ⊂ Zd a finite subset, and any x ∈ Zd we have

lim
n→∞

Px (Sk /∈W,k = 1, . . . , n)

P0 (Sk 6= 0, k = 1, . . . , n)
= g̃W (x), (3.2)

where in the cases of interest to us, by [26, Eq.(1.16)], for x, y ∈ Zd

g̃W (x, y) := 1[x=y] +

∞∑
n=1

Px (Sn = y, Sk /∈W, 1 ≤ k ≤ n− 1) ,

g̃W (x) = lim
|y|→∞

g̃W (x, y). (3.3)

Under assumptions (A1) or (A2), it follows from the local limit theorem that

n∑
j=0

P(Sj = 0) ∼ c log n. (3.4)

Using this asymptotics, a standard argument, see for example [17] and [23, Lemma 2.3],
shows that there exists a constant γd > 0, depending on the random walk, such that

P0 {Sk 6= 0, k = 1, . . . , n} ∼ γd
log n

. (3.5)

When W = {0, j}, from [26, Eq.(5.17) and (5.18)] we have that

g̃{0,j}(j) =
a(j)

a(j) + a(−j)
, g̃{0,j}(0) =

a(−j)
a(j) + a(−j)

,

where

a(j) =

∞∑
n=0

[
P0(Sn = 0)− Pj(Sn = 0)

]
=

1

(2π)d

∫
[−π,π]d

1− exp(ijt)

1− φ(t)
dt.

Under our assumptions, we have a(x) > 0 for all x 6= 0, by [34, Proposition 11.7] for
d = 2 and [34, Proposition 30.2] for d = 1, whence cj , dj > 0. The result follows from this
and (3.2).

Lemma 3.3. Under the assumptions of Theorem 1.1, for any nonempty finite subset
O ⊂ Zd and any x, y ∈ Zd, there exists C = C(O, x, y) such that for all n ∈ N,

Px [Sn = y, Sj /∈ O, 1 ≤ j ≤ n− 1] ≤ C

n log2(n)
.
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Proof. Let
QnO(x, y) := Px [Sn = y, Sj /∈ O, 1 ≤ j ≤ n− 1] .

Assume first that (A1) holds, i.e., d = 1, and that the walk is strongly aperiodic, which
is equivalent to |φ(t)| < 1 for all t ∈ (−π, π)d \ {0}. For aperiodic random walks, this
amounts to the condition that the greatest common divisor of return times to the origin
is 1. For instance, the simple random walk is aperiodic, but not strongly aperiodic.

By strong aperiodicity of the walk condition (6.6) in [25] is satisfied. By [25, Theo-
rems 8 and 9] we have

lim
n→∞

QnO(x, y)

πγ
n log(n)2 = 1,

which implies the result.
Under (A2), still with strong aperiodicity, the estimate∑

u,v∈O
QnO(u, v) ∼ 2πdet(Σ)1/2

n log(n)2
,

follows from [25, Theorem 9] and [24, Theorem 4.1]. Then

QnO(x, y) ∼ 2πdet(Σ)1/2

n log(n)2
g̃O(x)g̃−O(−y),

follows from the above and [25, Theorem 6a]. Indeed, although [25, Theorem 9] is stated
only for one-dimensional walks in the domain of attraction of a symmetric stable law, as
explained in the proof the result remains true for any recurrent random walk satisfying
[25, Equation (11.1)]. This has been established under (A2) for strongly aperiodic random
walks in [24, Theorem 4.1].

Under (A1) or (A2), but with strong aperiodicity, we have proved the result of the
lemma. We claim that it still holds if one weakens strong aperiodicity to aperiodicity,
but a little extra work is needed. Let {S̃j}j≥0 be a lazy version {Sj}j≥0. In particular,
if Sj = ξ1 + · · · + ξj , we let S̃j = ξ̃1 + · · · + ξ̃j , where ξ̃j = Bjξj where (Bj)

∞
j=1 are i.i.d.

random variables, independent of the random walk, with P{Bj = 1} = ρ ∈ (0, 1) and
P{Bj = 0} = 1− ρ. It can be easily checked that {S̃j}j≥0 is then strongly aperiodic and
therefore that there exists C > 0 such that for all n ∈ N,

Q̃nO(x, y) := Px
[
S̃n = y, S̃j /∈ O, 1 ≤ j ≤ n− 1

]
≤ C

n log(n)2
. (3.6)

In addition let
T0 := 0, Tn := inf{n > Tn−1 : ξ̃n 6= 0}, n ≥ 1.

It is then clear that for all j ≥ 1, Tj − Tj−1 are i.i.d. geometrically distributed on the
positive integers. With this notation, we can embed a path of {Sj}j≥0 into a path of
{S̃j}j≥0 by letting Sj = S̃Tj for j ≥ 0. Up to a time-change, the paths of {Sj} and {S̃j}
coincide and thus

QnO(x, y) = Px [Sn = y, Sj /∈ O, 1 ≤ j ≤ n− 1]

= Px
[
S̃Tn = y, Sj /∈ O, 1 ≤ j ≤ Tn − 1

]
=

∞∑
k=n

Px
[
S̃k = y, Sj /∈ O, 1 ≤ j ≤ k − 1

]
P(Tn = k)

≤(3.6) C

∞∑
k=n

P(Tn = k)

k log(k)2
≤ C

n log(n)2

∞∑
k=n

P(Tn = k) ≤ C

n log(n)2
.
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As Zd is an Abelian group, in this case we consider instead a bi-infinite i.i.d. sequence
{Xi}i∈Z and write for n ∈ N,

S(−)
n = −

−1∑
k=−n

Xk.

In what follows we will make use of the fact that for k < n and v ∈ Zd, for all ω ∈ Ω,

Sk(ω) = Sn(ω) + v iff S
(−)
n−k (Tn(ω)) = v iff Sn−k

(
T k(ω)

)
= −v.

Proposition 3.4. Under the assumptions of Theorem 1.1, there exists a constant C > 0

such that

E (|∂Rn|) ∼
Cn

log2(n)
, as n→∞. (3.7)

In addition, there exists M > 0 such that

Var (|∂Rn|) .
Mn2 log log(n)

log5(n)
as n→∞. (3.8)

Proof. It follows easily from the equality ∂Rn =
⋃
v∈Sd ∂vRn in (3.1) that for any v ∈ Sd

we have

|∂vRn| ≤ |∂Rn| ≤
∑
v∈Sd

|∂vRn|. (3.9)

Using the inclusion-exclusion principle and enumerating the elements of Sd as v1, . . . , v2d

we have

|∂Rn| =
∑
V⊂Sd

(−1)|V |+1 |∂VRn| , (3.10)

recalling that for a collection, V := {v1, . . . , vl} say, of distinct vectors in Zd, we have
that

∂VRn :=
⋂
v∈V

∂vRn = Rn ∩
⋂
v∈V

(Rn + v)
c

whence we can write as in the proof of Proposition 2.3

|∂VRn| =
n∑
k=1

1Ak,V (k)(ω)1Bk,V (n−k)(ω) (3.11)

where

A0,V (L) =
{
ω ∈ Ω : ∀0 < l < L, S

(−)
l /∈ V

}
, Ak,V (L) = T−kA0,V (L),

and

B0,V (L) = {ω ∈ Ω : ∀0 < l < L, Sl /∈ V ∪ {0}} , Bk,V (L) = T−kB0,V (L).

To see why notice that

Ak,V (k) ∩Bk,V (n− k) = {ω ∈ Ω : ∀l ∈ [1, n], Sk /∈ Sl + V, ∀m ∈ [k + 1, n], Sm 6= Sk} .

Let us first consider the case V = {v}. Then one has

|∂vRn| (ω) =

n∑
k=1

1Ak(k)(ω)1Bk(n−k)(ω),
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where Ak(k) := Ak,{v}(k), Bk(n − k) := Bk,{v}(n − k). By the Markov property for the
random walk, for all 1 ≤ k ≤ n, Ak(k) and Bk(n− k) are independent, thus

E (|∂vRn|) =

n∑
k=1

P (Ak(k))P (Bk(n− k))

=

n∑
k=1

P
(
∀1 ≤ l ≤ k, S(−)

l 6= v
)
P
(
∀1 ≤ l ≤ n− k, Sl /∈ {0, v}

)
=

n−2∑
k=2

cvdv
log(k) log(n− k)

(1 + o(1)),

as n→∞, where cv, dv > 0 by Proposition 3.1. An easy calculation, using the fact that
log is slowly varying, shows that

n−2∑
k=2

1

log(k) log(n− k)
=

n−bn/ log2 nc∑
k=bn/ log2 nc

1

log(k) log(n− k)
+O

(
n

(log n)3

)

=
n

log(n)2
(1 + o(1)) +O

(
n

(log n)3

)
,

where we write bxc for the integer part of x.
Assume now |V | > 1. For any finite set W , the proof of Proposition 3.1 and in

particular (3.2) imply that, as n→∞

P (∀1 ≤ k ≤ n, Sk /∈W ) =
g̃W (0)γd
log(n)

+ o
(
log(n)−1

)
as n→∞, (3.12)

with γd and g̃W (0) as defined in (3.5) and (3.3) respectively. Therefore similar arguments
show that for any V ⊂ Sd we have that

E |∂VRn| ∼ γ2
d g̃V (0)g̃V ∪{0}(0)

n

log2(n)
, (3.13)

and when g̃V (0)g̃V ∪{0}(0) = 0,

E |∂VRn| = o

(
n

log2(n)

)
.

Going back to ∂Rn, we thus have that

lim
n→∞

log(n)2

n
E |∂Rn| =

∑
V⊆Sd

(−1)|V |+1γ2
d g̃V (0)g̃V ∪{0}(0) ≥ max

v∈V
c{v}d{v} > 0 (3.14)

where the last two inequalities follow from (3.9) and Proposition 3.1. This proves (3.7).
Note that this equation gives a semi-explicit formula for the constant in the asymptotics
of E |∂Rn| in (3.7). We do not know any simpler formula for this constant ([7] only
provides upper and lower bounds, but no exact formula).

Variance. For the second part, from (3.10) we have that

Var (|∂Rn|) = Var

 ∑
V⊆Sd

|∂VRn|

 ≤ C ∑
V⊆Sd

Var [|∂VRn|] .

Similarly to the proof of (3.7), we first work out in detail the case V = {v}, for v ∈ Sd
arbitrary. First notice that

E
(
|∂vRn|2

)
= E

n∑
k=1

(
1Ak(k)1Bk(n−k)

)
+ 2

∑
1≤k<m≤n

E
(
1Ak(k)1Bk(n−k)1Am(m)1Bm(n−m)

)
.

EJP 26 (2021), paper 110.
Page 13/39

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP667
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The boundary of the range of a random walk and the Følner property

The first term is equal to E (|∂vRn|). For the second term, notice that for 1 ≤ k < m ≤ n,

1Bk(n−k)1Am(m) ≤ 1Bk(b(m−k)/2c)1Am(b(m−k)/2c), (3.15)

since for any k,m, Bk(·), Am(·) are decreasing sequences of sets. To keep notation
concise, for any integers l, k we will denote P(Ak(l)) by ψ(l) and P(Bk(l)) by θ(l), where
we can drop the dependence on k since P ◦ T−1 = P. Since for 1 ≤ k ≤ m ≤ n the events

Ak(k), Bk (b(m− k)/2c) , Am (b(m− k)/2c) , Bm(n−m),

are independent, we have

E
(
1Ak(k)1Bk(n−k)1Am(m)1Bm(n−m)

)
≤ ψ(k)θ

(⌊
m− k

2

⌋)
ψ

(⌊
m− k

2

⌋)
θ(n−m).

This shows that for k < m,

ι(k,m) := E
(
1Ak(k)1Bk(n−k)1Am(m)1Bm(n−m)

)
−E

(
1Ak(k)1Bk(n−k)

)
E
(
1Am(m)1Bm(n−m)

)
is bounded from above by

ψ(k)θ(n−m)

{
ψ

(⌊
m− k

2

⌋)[
θ

(⌊
m− k

2

⌋)
− θ(n− k)

]

+ θ(n− k)

[
ψ

(⌊
m− k

2

⌋)
− ψ(m)

]}
Denote by

D(n) :=

{
(k,m) ∈ [1, n]2 : k, n−m >

√
n and m− k ≥ n

log5(n)

}
.

Since for n large enough

log(n)− 5 log log(n)− log(2) ≥ log(n)

2
,

it follows that for all (k,m) ∈ D(n),

ψ

(⌊
m− k

2

⌋)
∼ cv

log((m− k)/2)
≤ cv

log(n)− 5 log log(n)− log(2)
≤ 2cv

log(n)
, (3.16)

and

θ

(⌊
m− k

2

⌋)
∼ dv

log((m− k)/2)
≤ 2dv

log(n)
. (3.17)

with cv, dv as in Proposition 3.1. Similarly, for all (k,m) ∈ D(n) and n large enough we
have that

θ

(⌊
m− k

2

⌋)
− θ(n− k) =

n−k−1∑
j=bm−k2 c

(θ(j)− θ(j + 1))

=

n−k−1∑
j=bm−k2 c

P0 [Sj+1 ∈ {0, v}, Sl /∈ {0, v},∀1 ≤ l ≤ j]

=

n−k−1∑
j=bm−k2 c

 ∑
w∈{0,v}

P0 [Sj+1 = w, Sl /∈ {0, v}, 1 ≤ l ≤ j]

 .
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By Lemma 3.3, the term in the sum is bounded by C/(j log2(j)). Thus, since (m− k)/2→
∞ when n→∞,

θ

(⌊
m− k

2

⌋)
− θ(n− k) ≤ C

n−k−1∑
j=bm−k2 c

1

j log(j)2

.
∫ n−k

s=bm−k2 c

ds

s log(s)2

.

[
1

log((m− k)/2)
− 1

log(n− k)

]
≤
[

1

log n− 5 log log n− log 2
− 1

log n

]
≤ C log log(n)

log2(n)
, (3.18)

and similarly

ψ

(⌊
m− k

2

⌋)
− ψ(m) .

C log log(n)

log2(n)
. (3.19)

since for (k,m) ∈ D(n), it holds that n/log5(n) ≤ m ≤ n.
Combining (3.16), (3.17), (3.18) and (3.19), we obtain a global constant M > 0 such

that for large n, for all (k,m) ∈ D(n)

ι(k,m) .
M log log(n)

log3(n)

1

log(n−m)

1

log(k)
≤ 4M log log(n)

log5(n)
. (3.20)

Since ι(k,m) ≤ 1 for all k,m, we have∑
1≤k<m≤n

ι(k,m) ≤ #
{

(k, l) ∈ [1, n]2 \D(n) : k < l
}

+
∑

(k,m)∈D(n)

ι(k,m)

≤
(

2n3/2 +
n2

log5(n)

)
+
Mn2 log log(n)

log5(n)
.

This together with (3.7) implies for any v ∈ Sd

Var (|∂vRn|) .
Mn2 log log(n)

log5(n)
as n→∞.

Notice that for general V , we can essentially repeat the same proof using (3.11) and
ψV (l) := P(Ak,V (l)), θV (l) := P(Bk,V (l)) in place of ψ(l), θ(l). In particular notice that
ψV (n), θV (n) ≤ C/ log(n) follows from (3.16), (3.17) along with (3.12), whereas the
bounds (3.18) and (3.19) also follow from Lemma 3.3 which holds for general V . This
completes the proof.

Corollary 3.5. Under the assumptions of Theorem 1.1, there exists a constant C > 0

such that

lim
n→∞

|∂Rn|(
n/ log2(n)

) = C, in probability.

Proof. It follows from Proposition 3.4 that there exists M > 0 such that,

Var(|∂Rn|) ≤M
E (∂Rn)

2
log log(n)

log(n)
.
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By Markov’s inequality,

P
(∣∣∣|∂Rn| − E (|∂Rn|)

∣∣∣ > εE (|∂Rn|)
)
≤ M log log(n)

ε2 log(n)
−−−−→
n→∞

0, (3.21)

whence |∂Rn|/E |∂Rn| → 1 in probability. In particular, from (3.7), there exists C > 0

such that log2(n)|E(|∂Rn|)/n→ C, and thus by elementary arguments

log2(n)

n
|∂Rn| −−−−→

n→∞
C in probability. (3.22)

In order to prove Theorem 1.1 we would like to improve the convergence in probability
result to almost sure convergence. The gap of order log log(n)/ log(n) in the decay
of these probabilities is enough to guarantee almost sure convergence of |∂RNk | for
Nk = exp (na) with a > 1. By a different method looking at

Zn =
|∂Rn|

E (|∂Rn|)
− 1,

one can show almost sure convergence of ZNk to 0 where Nk is of the form [exp(na)]

with a > 1/2. This is since for a > 1/2,
∑∞
k=1E

(
|ZNk |

2
)
<∞.

Unfortunately as |∂Rn| is not necessarily monotone, this subsequence is too thin in
order to interpolate the almost sure convergence from the subsequence to almost sure
convergence along the whole sequence. To that end we use a method from [19].

Definition 3.6. (i) Given δ > 0, the sequence of random variables {Xn;n ≥ 0} satisfies
property A(δ) if for all ε0 > 0 there exists C = C(ε0, δ) > 0 such that for all n ≥ 2 and
ε ≥ ε0,

P (Xn > (1 + ε)E (Xn)) ≤ C

ε2 logδ(n)
.

(ii) The sequence of random variables {Xn;n ≥ 0} satisfies property D(δ) if for all ε > 0,

P (Xn < (1− ε)E (Xn)) = O

(
1

logδ(n)

)
Theorem A. [Theorem 4.2 in [19]] Let V ⊂ Sd. For all δ > 0, if |∂VRn| satisfies property
A(δ) then it satisfies property A(4δ/3).

Theorem B. [Bound (1.9) in [19]] Under the assumptions of Theorem 1.1, for all V ⊂ Zd,
|∂VRn| satisfies property D(δ) for all δ > 0.

Remark 3.7. It is worth saying a few words about the fascinating method by Flatto [19]
that produces Theorems A, B. Our intuition of why it works is the following. First notice
that if we decompose the random walk path into blocks, the range/boundary of the full
path can then be compared with the union of the corresponding objects of the blocks
after correcting for pair-wise interactions. The first key ingredient is the fact that these
interactions are weak, therefore the enhanced bounds guaranteed by Flatto’s method
can be seen as a form of concentration. The second key ingredient is slow variation of
the original bound which allows one to control the effect of the interactions between the
blocks and makes this approach possible.

It follows from (3.21) that for all δ ∈ (0, 1), the sequence |∂Rn| satisfies properties
A(δ) and D.

Corollary 3.8. Let V ⊂ Sd. For all δ > 0, the sequence |∂VRn| satisfies properties A(δ)

and D(δ). Consequently, taking δ = 5, for all ε > 0 there exists C = C(ε) such that for all
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n ≥ 2,

P
(∣∣∣|∂VRn| − E (|∂VRn|)

∣∣∣ > εE (|∂VRn|)
)
≤ C

ε2 log5(n)
. (3.23)

The proof of Theorems A and B is similar to the proof of [19, Thm. 4.2], hence
it is postponed to the appendix. We note that the proof of Theorem B is easier for
each individual term |∂VRn| separately then for |∂Rn| which is a weighted sum of
{|∂VRn| : V ⊂ Sd}.

Proof of Thm. 1.1. Notice that if we manage prove that log2(n)|∂Rn|/n → C almost
surely, then the fact that C > 0 follows from Corollary 3.5. In addition, similarly to the
proof of Corollary 3.5 it suffices to prove that for any V ⊂ Sd we have

log2(n)

n
|∂VRn|

a.s.−−−−→
n→∞

CV .

By (3.13) it further suffices to show that

Zn :=

∣∣∣∣ |∂VRn|E (|∂VRn|)
− 1

∣∣∣∣ a.s.−−−−→
n→∞

0.

Let ε > 0 and write Nk :=
⌊
exp

(
4
√
k
)⌋

. By Corollary 3.8 there exists C > 0 such that for

all n ≥ 2,

P (ZNk > ε) ≤ C

ε2 log5(Nk)
≤ C

k5/4
.

It follows from the Borel-Cantelli lemma that for almost every w ∈ Ω,

lim sup
k→∞

ZNk ≤ ε.

As Zn ≥ 0 and ε is arbitrary it follows that for almost every w ∈ Ω,

lim
n→∞

ZNk = 0.

Now for a general n ∈ N there exists a unique m = m(n) ∈ N such that Nm ≤ n <

Nm+1. Since ex − 1 ≤ 2x for all 0 ≤ x ≤ 1 and for all m large 4
√
m+ 1− 4

√
m ≤ 1/3m−3/4,

it follows that for all large m,

Nm+1 −Nm ≤ exp( 4
√
m+ 1)− exp( 4

√
m+ 1) + 2

= exp
(

4
√
m
) [

exp
(

4
√
m+ 1− 4

√
m
)
− 1
]

+ 2 ≤ m−3/4Nm. (3.24)

In particular, Nm+1/Nm → 1. By (3.13), E(|∂VRn|) ∼ Cn/(log2(n)) is regularly
varying. Therefore, since Nm ≤ n ≤ Nm+1,

E(|∂VRn|)/E(|∂VRNm |)→ 1. (3.25)

From the trivial bound

|∂VRn| − 2dm ≤ |∂VR(n+m)| ≤ |∂VRn|+ 2dm

for all m large enough and Nm ≤ n ≤ Nm+1, we have using (3.24)∣∣|∂VRn| − |∂VRNm |∣∣
E(|∂VRNm |)

≤ 2d(Nm+1 −Nm)

E(|∂VRNm |)
≤ 2dm−3/4Nm

CNm/ log2(Nm)
.
m1/2

m3/4
→ 0.
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Since |∂VRNm |/E(|∂VRNm |) tends almost surely to 1, we obtain that |∂VRn|/E(|∂VRNm |)
also tends to 1. Together with (3.25), this gives |∂VRn|/E(|∂VRn|)→ 1 almost surely as
required. It then follows from (3.13) that for all V ⊂ Sd, there exists CV ≥ 0 such that
almost surely,

lim
n→∞

(
log2(n)

n
|∂VRn|

)
= CV ,

and consequently,

log2(n)

n
|∂Rn| =

∑
V⊂Sd

log2(n)

n
|∂VRn| −−−−→

n→∞
C =

∑
V⊂Sd

CV > 0,

almost surely as required.

4 Proof of Theorem 1.2

Let {Xn}∞n=−∞ be as sequence of i.i.d., centered, Z-valued random variables, and
define the two-sided random walk {Sn}n∈Z as follows, S0 = 0, and for n ≥ 1 let Sn =

X1 + · · · + Xn and S
(−)
n = −X−1 − · · · −X−n. We assume that {Sn}n is aperiodic in

the sense of Section 3 and that the random variables {Xi}i belong to the domain of
attraction of a non-degenerate, symmetric, α-stable distribution with 1 < α ≤ 2. This
implies that the Xi are centered, and there exists a positive, slowly varying (at ∞)
function L : R+ → R+ such that,

Yn :=
Sn

n
1
αL(n)

d−−−−→
n→∞

Zα,

where Zα is a real random variable with characteristic function E(eitZα) = e−|t|
α

. By
Lévy’s continuity theorem, writing φ(t) := E(eitX1), we see that for all t > 0,

E
(
eitYn

)
= φ

(
t

n
1
αL(n)

)n
−−−−→
n→∞

e−|t|
α

.

From this and a Tauberian theorem it follows that, see e.g. [22, Theorem 2.6.5],

φ(t) = 1− |t|αL(1/|t|) [1 + o (1)] , t→ 0. (4.1)

If A ⊂ Z is a finite subset we define

rn(x,A) := Px (Sk /∈ A, 1 ≤ k ≤ n) ,

and write rn := rn(0, {0}).
We will need the following result.

Lemma 4.1. Let {Xi}i∈Z be i.i.d. Z-valued random variables with characteristic function
φ satisfying (4.1) for a positive slowly varying function L and α ∈ (1, 2). Assume in
addition that the corresponding random walk is aperiodic. Then rn is regularly varying
of index 1/α − 1 as n → ∞; that is there exists another positive slowly varying (at ∞)
function M such that, for any x ∈ Z and any finite nonempty A ⊆ Z,

lim
n→∞

n1−1/αM(n)rn(x,A) = C(x,A), (4.2)

for some constant C(x,A) ≥ 0.
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Proof. When lims→∞ L(s), where L is the first slowly varying function in the statement,
exists this result is [25, Theorem 8]. So we will consider the case where L(·) does not
have a limit at infinity. Similarly to the proof of [25, Theorem 8] we define for λ ∈ [0, 1)

U(λ) :=

∞∑
n=0

λnP(Sn = 0) =
1

2π

∫ π

−π

dt

1− λφ(t)
,

R(λ) :=

∞∑
n=0

λnrn = (1− λ)−1U(λ)−1.

First we will study the asymptotic behaviour of U(λ) as λ→ 1.
Notice that since |t|αL(1/t) is regularly varying at the origin, by [8, Theorem 1.5.3]

there exists a monotone, α-regularly varying function g(t), such that g(t) ∼ C|t|αL(1/t)

as t → 0, for some C > 0. Therefore φ(t) = 1 − g(t) [1 + o (1)], as t → 0. Next, we use
aperiodicity to concentrate on the behaviour around the origin. In particular for any
ε > 0, there exists a constant C(ε) > 0 such that |φ(t)| < 1 − C(ε) for all ε ≤ |t| ≤ π.
The main contribution to the asymptotic behavior of U(λ) as λ→ 1 will come from the
integral over |t| < ε.

We claim that the function

Ũε(δ) :=

∫ ε

0

dt

δ + g(t)

is regularly varying of index 1/α− 1 when δ → 0+ and that its asymptotic behaviour at
0+ does not depend on ε. Let us prove this claim.

Since g is α-regularly varying and monotone, its generalised inverse f(u) := g−1(u)

will be monotone and regularly varying of index 1/α, [8, see Theorem 1.5.12]. Letting
t = g−1(z) we have

Ũε(δ) =

∫ g(ε)

z=0

dg−1(z)

δ + z
=

∫ ∞
z=0

dg−1
ε (z)

δ + z
,

interpreting the integral in the Stieltjes sense, and letting g−1
ε (s) := g−1(s) for s < g(ε)

and g−1
ε (s) := g−1(g(ε)) for s ≥ g(ε). With this definition it is clear that g−1

ε is also
monotone and that g−1

ε (s) ∼ g−1(s) as s→ 0+. In particular its behaviour near the origin
is independent of ε which shows that limδ→0+ Ũε(δ)/Ũε′(δ) = 1 for all ε, ε′ > 0.

The rest is fairly similar to the proof of [8, Theorem 1.7.4]. First notice that

Ũε(δ) =

∫ ∞
z=0

dg−1
ε (z)

δ + z

=

∫ ∞
z=0

∫ ∞
u=0

e−(δ+z)udg−1
ε (z)du

=

∫ ∞
u=0

e−δu
∫ ∞
z=0

e−zudg−1
ε (z)du

=

∫ ∞
u=0

e−δuVε(u)du,

where

Vε(u) :=

∫ ∞
z=0

e−zudg−1
ε (z).

By [8, Theorem 1.7.1’], since g−1
ε (z) is regularly varying of index 1/α at the origin, we

have that Vε(u) is regularly varying of index −1/α as u→∞. In turn this implies that

Wε(u) :=

∫ u

0

Vε(s)ds,
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is regularly varying of index 1− 1/α as u→∞ and since

Ũε(δ) =

∫ ∞
u=0

e−δuVε(u)du =

∫ ∞
u=0

e−δuWε(du),

by Karamata’s Tauberian theorem [8, 1.7.1] we have that Ũε(δ) is regularly varying of
index 1/α − 1 as δ → 0 with asymptotic behaviour at 0+ independent of ε. That is we
have shown that there exists a (1/α− 1)-regularly varying function Ũ such that for all
ε > 0 we have limδ→0 Ũε(δ)/Ũ(δ) = 1.

Having proved the claim, let us now prove the main result. We write

U(λ) =
Ũε(1− λ)

π
+

1

2π

(∫ ε

0

dt

1− λφ(t)
− Ũε(1− λ)

)
+

1

2π

(∫ 0

−ε

dt

1− λφ(t)
− Ũε(1− λ)

)
+

1

2π

∫
π>|t|>ε

dt

1− λφ(t)

=: J1(ε, λ) + J2(ε, λ) + J3(ε, λ) + J4(ε, λ).

We claim that the term J1(ε, λ) on the right dominates the other ones when λ tends to 1.
First, it dominates the last one as Ũε(1− λ) tends to infinity while the last term remains
bounded. The other two terms are similar, so let us handle the first one. We write the
difference as

J2(ε, λ) =

∫ ε

0

dt

1− λφ(t)
− Ũε(1− λ) =

∫ ε

0

(
1

1− λφ(t)
− 1

1− λ+ g(t)

)
dt

=

∫ ε

0

g(t)− λ(1− φ(t))

(1− λφ(t))(1− λ+ g(t))
dt.

By choice of g we can write g(t) = [1− φ(t)][1 + o(1)] as t→ 0+ and thus

g(t)− λ(1− φ(t)) = [1− φ(t)](1− λ+ o(1)).

In particular for 0 < t < ε we can write

|g(t)− λ(1− φ(t))| ≤ |1− φ(t)|(1− λ+ η(ε)),

for some positive function η(·) such that η(ε)→ 0 as ε→ 0+. Therefore

|J2(ε, λ)| ≤
∫ ε

0

[1− λ+ η(ε)]|1− φ(t)|
|1− λφ(t)| |1− λ+ g(t)|

dt

≤ [1− λ+ η(ε)]

∫ ε

0

dt

|1− λ+ g(t)|
= [1− λ+ η(ε)]Ũε(1− λ).

We can similarly bound the other term

J3(ε, λ) ≤ [1− λ+ η(ε)]Ũε(1− λ).

Therefore we have for i = 2, 3 that

lim sup
λ→1

2|Ji(ε, λ)|
|J1(ε, λ)|

≤ η(ε),

and since we have shown above that limδ→0 Ũε(δ)/Ũ(δ) = 1 we also have that

lim sup
λ→1

|Ji(ε, λ)|
Ũ(1− λ)

≤ η(ε),
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Overall what we have just shown is that for some (1/α− 1) regularly varying function Ũ
we have

lim sup
λ→1

∣∣∣U(λ)− 1
π Ũ(1− λ)

∣∣∣
Ũ(1− λ)

= lim sup
λ→1

∣∣∣∣ U(λ)

Ũ(1− λ)
− 1

π

∣∣∣∣ ≤ η(ε).

Since ε > 0 is arbitrary and η(ε)→ 0 with ε→ 0 this proves that

lim
λ→1

U(λ)

Ũ(1− λ)
=

1

π
,

whence it follows that U(λ) is regularly varying of index 1/α − 1. Thus R(λ) ∼ C(1 −
λ)−1/αM(1/(1− λ)), and since rn is monotone it follows that rn ∼ cn1/α−1M(n) for some
constants c, C > 0 and a positive, regularly varying function M , by [8, Corollary 1.7.3].
Having established this, (4.2) follows from [26, Theorem 4a].

Remark 4.2. The following alternative approach using a local limit theorem is possible.
Firstly, by [21],

|P (Sn = m)− P (Sn = 0)| = O

(
1

a2
n

)
, as n→∞ (4.3)

where m ∈ Z and an is a 1/α regularly varying sequence. Then a similar argument as in
[17] shows that

rn(m) := P (Sk 6= m for all 1 ≤ k < n) ∼ rn(0) as n→∞. (4.4)

Remark 4.3. This theorem, in the case of i.i.d. random variables with E (X1) = 0 and
E
(
X2

1

)
= D <∞ gives the rate o(np) for every p < 1

2 . We claim that this is the optimal
rate in the polynomial exponent. Indeed, for the simple random walk on Z, Rn is an
interval and thus |∂Rn| = 2. By Theorem 3 in [11],

lim sup
n→∞

√
n |∂Rn|
|Rn|

= lim sup
n→∞

2
√
n

|Rn|
=∞.

Before proceeding with the proof of Theorem 1.2, we need a number of auxiliary
results.

Proposition 4.4. Let Sn be an aperiodic random walk on Z in the domain of attraction
of a nondegenerate, symmetric, α-stable distribution with 1 < α ≤ 2, then for any ε > 0,
k ∈ N and x ∈ Z \ {0} there exists M > 0 such that

E
(
|Rn \ (Rn − x))|k

)
≤Mnk(

2
α−1+ε).

Proof. Let ε > 0 and j ∈ Z\{0}. In the course of the proof C will denote a global positive
constant whose value can change (increase) from line to line. We have the bound

|Rn \ (Rn − x)| ≤
n∑
j=1

1An(j) ◦ T j

where

An(m) = {w ∈ Ω : Sj 6= x, ∀j ∈ [−m,n−m]} = D−x (m) ∩D+
x (n−m),

where for y ∈ Z and n ≥ 0 we define

D−y (n) := {ω ∈ Ω : S
(−)
j 6= y, j ∈ [1, n]}, D+

y (n) := {ω ∈ Ω : Sj 6= y, j ∈ [1, n]}.
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Note that D−x and D+
x are independent, thus

P (An(m)) = P
(
D−x (m)

)
P
(
D+
x (n−m)

)
.

As Zα is symmetric, X1 is in the domain of attraction of Zα if and only if −X1 is in
the domain of attraction of Zα. This together with Lemma 4.1 implies that there exist
positive, slowly varying functions L+, L− and constants possibly depending on x such
that

P
(
D±x (n)

)
≤ C(x)L±(n)

n1−1/α
,

for n ≥ 1.
We will now show that for all k ∈ N there exists C > 0 such that,

E
(
|Rn \ (Rn − x))|k

)
≤ C

[
nk(

2
α−1+ε) + 5k2E

(
|Rn \ (Rn − x)|k−1

)]
.

The latter inequality proves the proposition by a simple induction argument. Writing

∆k(n) :=
{

(m1,m2, ..,mk) ∈ {1, . . . , n}k : ∀1 < l ≤ k, ml −ml−1 ≥ 3
}
,

and

Λk(n) :=
{

(m1,m2, ..,mk) ∈ {1, . . . , n}k : ∃1 < l < l′ ≤ k, |ml −ml′ | ≤ 2
}
,

Then

|Rn \ (Rn − x))|k ≤ k!
∑

(m1,...,mk)∈∆k(n)

k∏
l=1

1An(ml) ◦ T
ml + k!

∑
Λk(n)

k∏
l=1

1An(ml) ◦ T
ml

For every (m1, ...,mk) ∈ Λk(n) there exists a minimal 1 ≤ l < k such that there exists a
minimal l′ > l with |ml −ml′ | ≤ 2. Since for all 1 ≤ l < k

k∏
l=1

1An(ml) ◦ T
ml ≤

∏
l∈{1,..k}\{l}

1An(ml) ◦ T
ml ,

and, {
(mj)j∈{1,...,k}\{l} : (mj)

k
j=1 ∈ Λk(N)

}
⊂ {1, . . . , n}k−1,

and there are 5 possible values for ml given ml′ ∈ {1, . . . , n}, we can see that

E

∑
Λk(n)

k∏
l=1

1An(ml) ◦ T
ml

 ≤ 5

(
k

2

)
E

 n∑
m1,...,mk−1=1

k−1∏
l=1

1An(ml) ◦ T
ml


= 5

(
k

2

)
E
(
|Rn \ (Rn − x))|k−1

)
.

It remains to bound the other term. For (m1, ...,mk) ∈ ∆k(n), letting q1 = m1, qk+1 =

n−mk and for 2 ≤ j ≤ k, qj = b(mj −mj−1)/2c, where bxc denotes the integer part of x,
we deduce the inequality

k∏
l=1

1An(ml) ◦ T
ml ≤ 1D−x (m1) ◦ T

m1

(
k∏
l=2

[
1D+

x (ql)
◦ Tml−11D−x (ql)

◦ Tml
])
1D+

x (qk+1) ◦ T
mk

by replacing the restriction that Sj + x 6= Sml for j ∈ [1, n] by the weaker one that
Sj + x 6= Sml for j ∈ [ml−1 + ql,ml + ql+1]; see Figure 1 where the random walk started
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Figure 1:

at the marked point is constrained to not visit x for the time indicated by the arrows.
The bound above is essentially a product of events that depend on non-overlapping
sequences of the random variables {Xj}j∈Z and therefore by independence we have that

E

(
k∏
l=1

1An(ml) ◦ T
ml

)
≤ P

{
D−x (q1)

} k∏
l=2

[
P
{
D+
x (ql)

}
P
{
D−x (ql)

}]
P
{
D+
x (qk+1)

}
≤ C(x)

k+1∏
l=2

L−(ql−1)

(ql−1)1−1/α

L+(ql)

(ql)1−1/α
,

where we write C(x) for a generic positive constant depending on x. In particular since
L±(·) are slowly varying, for any ε > 0 we can find a positive constant C > 0 such that
L±(n) ≤ Cnε and thus

E

(
k∏
l=1

1An(ml) ◦ T
ml

)
≤ C(x)

k+1∏
l=2

C

(ql−1ql)1−1/α−ε

= C(x) [q1qk+1]
1/α−1+ε

k∏
l=2

(ql)
2/α−2+2ε.

Therefore,

E

 ∑
∆k(n)

k∏
l=1

1An(ml) ◦ T
ml

 ≤ C(x)
∑

q1,...,qk+1

[q1qk+1]
1
α−1+ε

k∏
l=2

q
2
α−2+2ε

l .

The sum is restricted to the values of qi that can be produced by the above process. They
satisfy q1 + 2q2 + · · ·+ 2qk + qk+1 ≤ n and q1 + 2q2 + · · ·+ 2qk + qk+1 ≥ n− k, because of
the integer parts in the definition of qj . We have that∑

n−k≤q1+...+qk+1≤n

[q1qk+1]
1
α−1+ε

k∏
l=2

q
2
α−2+2ε

l

=

k∑
l=1

∑
q1+...+qk+1=n−l

[q1qk+1]
1
α−1+ε

k∏
l=2

q
2
α−2+2ε

l

≤ k
∑

q1+...+qk+1=n

[q1qk+1]
1
α−1+ε

k∏
l=2

q
2
α−2+2ε

l ≤ Cknρ

by Lemma 4.5 below, since 1/α− 1 + ε > −1, 2/α− 2 + 2ε > −1 for small enough ε, where

ρ = k + 2 ·
(

1

α
− 1 + ε

)
+ (k − 1) ·

(
2

α
− 2 + 2ε

)
= k ·

(
2

α
− 1 + 2ε

)
.
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The result follows with ε′ = 2ε.

Lemma 4.5. Let k ∈ Z, k > 1, and suppose that α1, . . . , αk > −1. Then

∑
q1+···+qk=n
q1,...,qk≥0

k∏
l=1

qαll ≤ Cn
(k−1)+

∑k
l=1 αl .

Proof of Lemma 4.5. We will proceed by induction on k. Let k = 2 and notice that∑
q1+q2=n

qα1
1 qα2

2 =

n∑
k=1

kα1(n− k)α2

= n1+α1+α2

n∑
k=1

(
k

n

)α1
(

1− k

n

)α2 1

n

≤ Cn1+α1+α2

∫ 1

x=0

xα1(1− x)α2dx ≤ Cβ(α1, α2)n1+α1+α2 ,

where β (α1, α2) is the value of the β-function at (α1, α2).
Suppose now that the result holds for all integers ≤ k and notice that

∑
q1+···+qk+1=n

k+1∏
l=1

qαll =

n∑
m=1

mαk+1

∑
q1+···+qk=n−m

k+1∏
l=1

qαll

≤ C
n∑

m=1

mαk+1(n−m)k−1+α1+···+αk ≤ Cnk+α1+···+αk+αk+1 ,

where the last two inequalities follow from the inductive hypothesis for j = k and j = 2

respectively.

Proposition 4.6. Let Sn be an aperiodic random walk on Z in the domain of attraction
of a nondegenerate, symmetric, α-stable distribution with 1 < α ≤ 2. Then for all ε > 0,
almost surely

lim
n→∞

|Rn|
n

1
α−ε

=∞.

Proof. Let ε > 0. Le Gall and Rosen have shown in [28] that there exists a 1/α-regularly
varying sequence an such that

|Rn|
an

dist.−−−−→
n→∞

LebR (Wα[0, 1]) , (4.5)

where Wα[0, 1] is the range of the symmetric α-stable Lévy motion up to time 1. It is well
known, see for example [10], that the occupation measure of a one-dimensional α-stable
process defined by

µ(A) :=

∫ 1

0

1A ◦Wα(s)ds,

is almost surely absolutely continuous with respect to Lebesgue measure3 for α > 1. As
µ(Wα[0, 1]) = 1 this implies that

P
{

LebR (Wα[0, 1]) > 0
}

= 1. (4.6)

Since an is 1/α-regularly varying, setting tn := bnκc, where κ > 0, we have that atn is
κ/α-regularly varying. Let κ = 1− αε/2, so that κ/α > 1/α− ε. Then for n large enough

3Equivalently, almost surely possesses a continuous local time x 7→ Lα(1, x)
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we have atn > n1/α−ε. Decompose the interval [0, n] ∩Z into sub-intervals [jtn, (j + 1)tn],
j = 0, 1, .., bn/tnc of length tn, plus perhaps a remainder interval which will be ignored.
Writing R(n,m) = {Sn+1, .., Sm}, for δ > 0 and all n large enough we have that

|Rn| ≥ max
j∈{1,..,b ntn c}

|R (jtn, (j + 1)tn)| ,

and therefore

P
(
|Rn| < δn

1
α−ε

)
≤ P

(
max

j∈{1,..,b ntn c}
|R (jtn, (j + 1)tn)| < δatn

)
≤ P (|Rtn | < δatn)b

n
tn
c .

By (4.6) we can choose δ > 0 small enough so that P (LebR (Wα[0, 1]) < δ) < 1 and by
(4.5) we can choose N0 large enough so that for all n ≥ N0 we have

P (|Rtn | < δatn) ≤ ρ < 1.

Therefore for all n > N0, from the definition of tn and the above it follows that

P
(
|Rn| < δn

1
α−ε

)
≤ ρb

n
tn
c.

Since n/tn ∼ nκ
′

where κ′ = εα/2, we have that∑
n≥1

P
(
|Rn| < δn

1
α−ε

)
≤
∑
n≥1

ρb
n
tn
c <∞,

and thus from the Borel-Cantelli Lemma we have that almost surely

lim
n→∞

|Rn|
n

1
α−ε
≥ δ.

As ε > 0 is arbitrary the conclusion follows.

Finally, we are now able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix δ > 0. By Proposition 4.6, it remains to show that

lim
n→∞

|∂Rn|
n

2
α−1+δ

= 0. (4.7)

First note that

|∂Rn| ≤ |Rn \ (Rn − 1)|+ |Rn \ (Rn + 1)| = Vn(1) + Vn(2).

Let i ∈ {1, 2}. By Proposition 4.4 for any ε > 0 and k ∈ N there exists M > 0 such that
for all n ∈ N and i ∈ {1, 2},

E

((
Vn(i)

n
2
α−1+δ

)k)
≤Mnk(ε−δ).

Therefore, choosing ε < δ, there exist k ∈ N and M > 0 such that for all n ∈ N and
i ∈ {1, 2},

E

((
Vn(i)

n
2
α−1+δ

)k)
≤Mn−2.
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A standard use of Markov’s inequality and the Borel Cantelli Lemma shows that for any
δ > 0 almost surely

lim
n→∞

Vn(1)

n
2
α−1+δ

= lim
n→∞

Vn(2)

n
2
α−1+δ

= 0. (4.8)

Therefore we have that almost surely for all δ > 0 small enough

lim
n→∞

|∂Rn|
|Rn|n

1
α−1+δ

= lim
n→∞

|∂Rn| /n
2
α−1+δ/2

|Rn| /n
1
α−δ/2

= 0,

which proves the theorem.

5 Proof of Theorem 1.4

5.1 Følner property and transient random walks

We now turn to an application of Proposition 2.5 in the context of random walks in
groups.

Let G be a countable group. Given p a probability measure on G and ξ1, ξ2, ... an i.i.d.
sequence with marginals distributed as p, let Sn = ξ1 · ξ2 · . . . · ξn be the corresponding
random walk and Rn := {S1, ..., Sn} be its range process. Let us say that a random walk
driven by a measure p on the group G is admissible (or irreducible) if the walk starting
from the identity can reach any point in the group, i.e. the semigroup generated by the
support of p is the whole group. This is a natural irreducibility assumption.

We define the Green function, G : G 7→ [0,∞], of a transient random walk on G, by

G(g) := E (L(g)) =

∞∑
n=0

P (Sn = g) , (5.1)

where L(g) := |{n ∈ N ∪ {0}, Sn = g} | : Ω→ N ∪ {0}. For g ∈ G define

q(g) := P (∀n ∈ N, Sn 6= g) ,

and write q := q (idG).
The next Lemma is well known and we only include its proof for completeness.

Lemma 5.1. If Sn is a G-valued transient random walk then for all g ∈ G,

G(g) =
1− q(g)

q
.

Proof. Let g ∈ G. By the Markov property for the random walk,

P(L(g) = 0) = q(g)

P(L(g) = j) = (1− q(g))(1− q)j−1q, j ≥ 1.

and thus

E(L(g)) = q(g) · 0 + (1− q(g))

∞∑
j=1

j(1− q)j−1q

= (1− q(g))EL(0) =
1− q(g)

q
.

The ergodic theoretic model of the random walk is the following skew product
transformation. Let Ω := GZ, P = p⊗G the product measure on Ω with marginals
distributed as p and T : Ω → Ω the full shift defined by (Tω)n = ωn+1. The dynamical
system,

(
GZ,B, p⊗G, T

)
is a stationary Bernoulli shift, hence ergodic, see for example
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[15, p. 180]. Writing mG for the Haar measure of G, and f : Ω → G, f(ω) := ω(0), the
skew product transformation Tf : Ω× G→ Ω× G satisfies

πG(Tnf )
d
= Sn,

here πG(ω, h) = h is the projection to the G coordinate. The advantage of working with
the skew product is that the cocycle identity indicates what is the relevant random walk
in inverse time. In this case, write for n ∈ Z,

S(−)
n = S(−)

n (ω) := F (−n, ω) = ω(−1)−1ω(−2)−1 · · ·ω(−n)−1. (5.2)

Corollary 2.4 gives the following extension of Okada’s result.

Corollary 5.2. Let G be a discrete countable group and p a probability measure on G
and ξ1, ξ2, ... an i.i.d. sequence with marginal p. Then for any g 6= idG, almost everywhere

lim
n→∞

|Rn4 (Rn · g)|
|Rn|

= P
(
∀n ∈ N, S(−)

n 6= g
)
P (∀n ∈ N, Sn 6= g| ∀n ∈ N, Sn 6= idG)

+ P
(
∀n ∈ N, S(−)

n 6= g−1
)
P
(
∀n ∈ N, Sn 6= g−1

∣∣∀n ∈ N, Sn 6= idG

)
.

Proof. This is a direct consequence of Corollary 2.4 and the fact that {Sn}∞n=1 and

{S(−)
n }∞n=1 are independent.

Remark 5.3. In the case where G is Abelian, S(−)
n

d
= (Sn)

−1 and thus for all g ∈ G,

P
(
∀n ∈ N, Sn 6= g−1

)
= P

(
∀n ∈ N, S(−)

n 6= g
)
.

The statement of Corollary 5.2 can be simplified in this case. Note that for a general
group (S

(−)
n )−1 is a (multiplication from the) left random walk and Sn is a (multiplication

from the) right random walk and their distribution as processes may no longer coincide.

Our next result links the Følner property of a transient G-valued random walk, with
the decay of its Green function at infinity.

Proposition 5.4. Let Sn be a G valued transient random walk and suppose there exists
a sequence {gn}∞n=1 ⊂ G such that

lim
n→∞

max(G (gn) , G(−) (gn)) = 0,

where G(−) denotes the Green function of S(−)
n , defined in (5.2). Then {Rn}∞n=1 is almost

surely not a Følner sequence. Furthermore if g ∈ G is of infinite order in G and

lim
n→∞

max(G (gn) , G(−) (gn)) = 0,

then

lim
n→∞

|Rn4 (Rng)|
|Rn|

> 0 a.e.

Proof. It follows from Lemma 5.1 that G (gn) −−−−→
n→∞

0 implies that q (gn) −−−−→
n→∞

1. Letting

An := {∀k ∈ N, Sk 6= gn} , B := {∀k ∈ N, Sk 6= idG} ,

we have that P(An) = q(gn)→ 1 and P(B) = q, whence it easily follows that

lim
n→∞

P (∀k ∈ N, Sk 6= gn| ∀k ∈ N, Sk 6= idG) = lim
n→∞

P (An ∩B)

P(B)
= 1.
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A similar reasoning shows that G(−) (gn) −−−−→
n→∞

0 implies that

lim
n→∞

P
(
∀k ∈ N, S(−)

k 6= gn

)
= 1.

By this

lim
n→∞

[
P
(
∀k ∈ N, S(−)

k 6= gn

)
P (∀k ∈ N, Sk 6= gn| ∀k ∈ N, Sk 6= idG)

]
= 1,

and an application of Corollary 5.2 shows that for all large n ∈ N, almost surely

lim
k→∞

|Rk4 (Rk · gn)|
|Rk|

>
1

2
.

We conclude that almost surely the range is not a Følner sequence.

In order to show the second part let g be of infinite order. Consequently, gn −−−−→
n→∞

∞
and there exists n ∈ N such that almost everywhere,

lim
k→∞

|Rk4 (Rk · gn)|
|Rk|

>
1

2
. (5.3)

By the triangle inequality for cardinality of symmetric differences of sets, for all k ∈ N,

|Rk4 (Rk · gn)| ≤ |Rk4 (Rk · g)|+
n∑
j=2

∣∣(Rkgj−1
)
4
(
Rk · gj

)∣∣
= |Rk4 (Rk · g)|+

n∑
j=2

∣∣(Rk4 (Rk · g)) gj−1
∣∣

= n |Rk4 (Rk · g)| ,

since for all h ∈ G and A ⊂ G, |Ah| = |A|. We conclude that for all k ∈ N,

|Rk4 (Rk · gn)|
|Rk|

≤ n |Rk4 (Rk · g)|
|Rk|

Taking limits as k →∞ we see that almost everywhere,

n · lim
k→∞

|Rk4 (Rkg)|
|Rk|

≥ lim
k→∞

|Rk4 (Rkg
n)|

|Rk|
>

1

2
,

where the last inequality is (5.3). This concludes the proof of the second part.

Corollary 5.5. Let G be a torsion free countable group. Let Sn be a G valued transient
random walk for which the Green function tends to 0 at infinity. For all g ∈ G \ {id}, there
exists c(g) > 0 such that

c(g) = lim
n→∞

|Rn4 (Rng)|
|Rn|

a.e.

5.2 Transient random walks on virtually cyclic groups

Let us show that the skip-free random walks (defined just before Theorem 1.4) are
the only transient Z-valued random walks with almost surely Følner range.

Proposition 5.6. Let Sn =
∑n
k=1Xk be a transient Z-valued random walk. If {Rn}∞n=1

is almost surely a Følner sequence then Sn is a skip-free random walk.
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Proof. If E (|X1|) = ∞ then by [34, P8, page 287] the Green function of Sn and S
(−)
n

decays at infinity. By Corollary 5.5, limn→∞ (|Rn4 (Rn + 1)| / |Rn|) > 0.
It remains to treat the case when E (|X1|) < ∞. If E(X1) = 0, it follows from the

Chung Fuchs Theorem [12] that the walk is recurrent, which we exclude. Therefore, by
the strong law of large numbers, either limn→∞ Sn =∞ almost surely or limn→∞ Sn =

−∞ almost surely according to whether E(X1) > 0 or E (X1) < 0. It remains to show
that if Sn →∞ almost surely and P (X1 > 1) > 0 then the range process is almost surely
not a Følner sequence, the opposite case being similar.

Now if the random walk is transient and and Sn →∞ almost surely then4

P (∀n ∈ N, Sn > 0) > 0.

Since P (X1 > 1) > 0, there exists Z 3 j > 1 such that P (X1 = j) > 0. Therefore,

P (∀n ∈ N, Sn > 1) ≥ P (X1 = j and ∀2 ≤ n ∈ N, Sn −X1 > 0)

= P (X1 = j)P (∀n ∈ N, Sn > 0) , by the Markov property of Sn.

It follows that P (∀n ∈ N, Sn > 1) > 0 and

P (∀n ∈ N, Sn 6= 1| ∀n ∈ N, Sn 6= 0) ≥ P (X1 = j)P (∀n ∈ N, Sn > 0)

P (∀n ∈ N, Sn 6= 0)
> 0.

As the distributions of
{
S

(−)
n

}∞
n=1

and {−Sn}∞n=1 are the same

P
(
∀n ∈ N, S(−)

n 6= 1
)

= P (∀n ∈ N, Sn 6= −1) ≥ P (∀n ∈ N, Sn > 0) > 0.

We have shown that

P
(
∀n ∈ N, S(−)

n 6= 1
)
P (∀n ∈ N, Sn 6= 1| ∀n ∈ N, Sn 6= 0) > 0.

By Corollary 5.2, limn→∞ (|Rn4 (Rn + 1)| / |Rn|) > 0 almost surely and {Rn}∞n=1 is almost
surely not a Følner sequence.

Let us show that, on groups which are virtually Z but not Z, there is no transient
walk for which the range is Følner.

Proposition 5.7. Let Sn be a transient random walk on a group which is virtually Z, but
not isomorphic to Z. Then the range {Rn}∞n=1 is almost surely not a Følner sequence.

Proof. By [33, Theorem 5.12], there is a surjective morphism π from G to either Z or the
infinite dihedral group ZoZ/2, with finite kernel F . Since the kernel is finite, the image
under π of the transient random walk on G is still a transient random walk in the image
group. We will treat separately the two cases.

Assume first that π(G) = Z. Let p denote the measure on G driving the random walk
Sn, and pπ its image in Z driving the image random walk Sπn . Write G, resp. Gπ for the
Green function of Sn, resp. Sπn . If Xπ

1 has no first moment, then the Green function of Sπn
decays at infinity, by [34, P8, page 287]. Since G(g) ≤ Gπ(π(g)), it follows that the Green
function of Sn also decays at infinity, since π has finite kernel. Then Proposition 5.4
shows that Rn is not a Følner sequence. If Xπ

1 has a first moment, then E(Xπ
1 ) has to be

nonzero by [12] since the walk Sπn is transient. In this case, by the strong law of large
numbers, the probability that Sπn 6= 0 for all n ∈ Z \ {0} is positive, as in the proof of
Proposition 5.6. Since we are assuming G 6= Z, the kernel F is nontrivial. Therefore, we

4See the proof of Corollary 2.2 where it shown that P(l = 0) > 0.
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may choose g ∈ F \ {idG}. With positive probability, we have Sn 6= g for all n ∈ Z \ {0},
as this follows from the fact that Sπn 6= 0 = π(g) for the projected random walk. Then
Corollary 5.2 yields that |Rn4 (Rn · g)| /|Rn| converges to a positive limit, and therefore
Rn is not Følner.

Consider now the case where π(G) = ZoZ/2. The dihedral group ZoZ/2 is made
of two copies of Z that we denote by Z and Z× {ρ} where ρ is the nontrivial element of
Z/2, acting on Z by sign reversal. Decomposing pπ as a sum of two measures on these
two copies of Z, we write pπ = αp1 + (1− α)ρ∗p2 for some probability measures p1, p2 on
Z and some α ∈ [0, 1) (the value α = 1 being excluded as the walk is admissible, so it can
not remain stuck in Z). Let p̌i be the reversed measure, given by p̌i(n) = pi(−n). The
first return of the random walk Sπn to Z is distributed according to the measure

p′ = αp1 + (1− α)2
∞∑
k=0

αk(p2 ∗ p̌∗k1 ∗ p̌2),

where the k-th term corresponds to trajectories of the random walk jumping to the
second copy of Z, making k steps there, and then coming back. Here, ∗ denotes the
convolution of measures, i.e., µ1 ∗ µ2 is the distribution of the sum of two independent
random variables distributed respectively as µ1 and µ2. The presence of the reversed
measures is coming from the action of ρ that reverses signs.

If p1 or p2 has an infinite moment, then so does the measure p′. Therefore, the Green
function associated to p′ tends to zero at infinity on Z, by [34, P8, page 287]. Since,
for points in Z, it coincides with the Green function of the random walk Sπn , it follows
that Gπ(g) also tends to zero at infinity along Z. As G(g) ≤ Gπ(π(g)), we get a sequence
tending to infinity in G along which G(gn) and G(−)(gn) tend to 0. By Proposition 5.4, Rn
is almost surely not a Følner sequence.

Assume now that both p1 and p2 have a finite moment. Then so does p′. Moreover,
the expectation of a variable distributed according to p′ is given by

αE(p1) + (1− α)2
∞∑
k=0

αk(E(p2) + kE(p̌1) + E(p̌2)).

As E(p̌i) = −E(pi), this reduces to

αE(p1) + (1− α)2
∞∑
k=0

αk(E(p2)− kE(p1)− E(p2)) = E(p1)
(
α− (1− α)2

∞∑
k=0

kαk
)

= 0.

Therefore, by [12], the random walk associated to p′ is recurrent. Then so is Sπn . This is
a contradiction, concluding the proof.

5.3 Green functions vanish at infinity

The proof of Theorem 1.4 will essentially follow from Proposition 5.4 and the results
of Subsection 5.2, once we establish the decay of the Green function of any admissible
transient random walks on non-virtually cyclic groups. This is the main goal of this
section.

As in Section 5.1 we consider a probability measure p on a group G, and let
Sn = ξ1 · · · ξn be the corresponding random walk, where ξi are i.i.d. random variables
distributed as p. When this random walk is transient, the Green function G(g) of the walk
is defined as in (5.1), by G(g) =

∑∞
n=0 pn(idG, g), where pn(idG, g) = P (Sn = g). More

generally, let G(g, h) = G(g−1h). This is the average time that the walk starting from g

spends at h.
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The main result of this section is a proof of Theorem 1.3, asserting that if G is not
virtually cyclic (i.e., there is no finite index subgroup which is isomorphic to Z) then the
Green function G(g) tends to 0 when g tends to infinity. By this, we mean that for any
ε > 0 there are only finitely many points g with G(g) ≥ ε, so this notion does not depend
of the choice of a distance on the group.

In the proof, we will have to separate the case where G is virtually Z2. Let us start
with this case.

Lemma 5.8. Assume that G is virtually Z2, and that the admissible probability measure
p on G defines a transient random walk. Then its Green function tends to 0 at infinity.

Proof. Assume first that G = Z2. Then the convergence to 0 at infinity of the Green
function is [34, 24.P.5], as p is admissible and therefore aperiodic.

Assume now that G has a finite index subgroup H which is isomorphic to Z2. Replac-
ing H with the intersection of its (finitely many) conjugates, one can even assume that
H is normal in G. The measure p induces a measure on the group G/H, which defines a
recurrent walk as G/H is finite. In particular, almost every trajectory of the random walk
returns to H. The distribution of this first return is an admissible probability measure
pH on H, to which one can apply the previous result: its Green function tends to 0 at
infinity. Moreover, the Green functions of p and pH coincide on H as the trajectories of
the random walk associated to pH can be obtained from the trajectories of the random
walk for p by restricting to the times where the walk is in H. It follows that G(g) tends
to 0 when g tends to infinity along H.

By Harnack’s inequality [38, 25.1], there exists a constant C such that, for all
g1, g2 ∈ G, one has G(g1) ≤ Cd(g1,g2)G(g2). This inequality is also easy to prove directly, by
concatenating a path from idG to g1 with a path γ from g1 to g2 to obtain G(g2) ≥ G(g1)pγ ,
where pγ is the probability to follow γ. Thanks to admissibility, one can choose such a
path γ with pγ ≥ cd(g1,g2) for some c > 0, proving Harnack’s inequality.

As H has finite index in G, every point of G is within uniformly bounded distance of
H. Therefore, the convergence to 0 of the Green function along H extends to the whole
group.

To prove Theorem 1.3, we can therefore assume that G is virtually neither Z or Z2.
Then all admissible random walks on G, including the simple random walk, are transient,
by [38, Theorem 3.24]. For symmetric walks (i.e., such that p(g−1) = p(g)), the decay of
the Green function at infinity is easy, as shown in the next lemma. The main point of the
argument will be to deduce this also for non-symmetric walks by a comparison argument
explained below.

Lemma 5.9. Assume that a symmetric random walk on a group G is transient. Then its
Green function tends to 0 at infinity.

Proof. Let pn(g, h) denote the probability that the walk starting at g is at position h at
time n. Then it is a standard fact that p2n(idG, g) is maximal for g = idG. This is proved
using Cauchy-Schwarz inequality and the symmetry of the walk as follows:

p2n(idG, g) =
∑
h

pn(idG, h)pn(h, g) ≤

(∑
h

pn(idG, h)2

)1/2(∑
h

pn(h, g)2

)1/2

=

(∑
h

pn(idG, h)pn(h, idG)

)1/2(∑
h

pn(g, h)pn(h, g)

)1/2

= p2n(idG, idG)1/2p2n(g, g)1/2 = p2n(idG, idG).
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Conditioning on the position of the walk at time 1, one gets p2n+1(idG, g) ≤ p2n(idG, idG).
Therefore, for any g and any N ,

∞∑
n=2N

pn(idG, g) ≤ 2

∞∑
n=2N

pn(idG, idG).

The right hand side is the tail of the converging series
∑
n pn(idG, idG) = G(idG). If N

is large enough, it is bounded by an arbitrarily small constant ε. For each n < 2N , the
measure pn(idG, ·) is a probability measure on G. Hence, there are only finitely many
points g for which pn(idG, g) > ε/(2N). Summing over n ≤ 2N , it follows that for all but
finitely many points one has

∑
n<2N pn(idG, g) ≤ ε, and therefore G(g) =

∑
n pn(idG, g) ≤

2ε for all but finitely many points.

The next lemma is the main step of the proof of Theorem 1.3.

Lemma 5.10. Consider a finitely generated group G, with a finite symmetric generating
set S. Assume that the simple random walk on G (driven by the uniform measure on S)
is transient. Let c > 0. Consider a probability measure p on G with p(s) ≥ c for all s ∈ S.
Then its Green function tends to 0 at infinity.

When the simple random walk is transient, all the admissible random walks on G are
transient, by [38, Theorem 3.24]. Hence, under the assumptions of the lemma, the Green
function associating to p is finite, and it makes sense to ask if it tends to zero at infinity.

Proof. The proof will rely on a classical comparison lemma, making it possible to relate
general random walks to symmetric ones. Denote by G the Green function associated
to p, and by GS the Green function associated to the simple random walk. Under the
assumptions of the lemma, [36, Proposition, Page 251] ensures that for any nonnegative
square-integrable function f on G,∑

g,h∈G

f(g)G(g, h)f(h) ≤ c−1
∑
g,h∈G

f(g)GS(g, h)f(h). (5.4)

Let F (g, h) be the probability to reach h starting from g. By Lemma 5.1, we have
F (g, h) = qG(g, h) for a fixed q > 0, independent of g and h.

Let Ω = GN be the space of all possible trajectories, endowed with the probability
measure P corresponding to the distribution of the random walk given by p starting from
idG. A cylinder set is a set of the form

[g0, . . . , gn] = {ω ∈ Ω | ω0 = g0, · · · , ωn = gn} ⊆ Ω.

Assume by contradiction that G(g) does not tend to 0 at infinity. Then one can find
ε > 0 and an infinite set I ⊆ G on which F (idG, g) = qG(g) > ε. Let M > 0 be large
enough (how large will be specified at the end of the argument). We define a sequence
hn of elements of I as follows.

• First, take h0 = idG. Let also T0 = [idG] ⊆ Ω be the set of all trajectories starting
from idG, and R0 = {idG}.

• Then, take an h1 ∈ I at distance at least M of h0. As the probability to reach h1

starting from idG is > ε by definition of I, one can find (by throwing away very long
trajectories or very unlikely trajectories in finite time) a finite number of cylinder
sets starting at idG and ending at h1 with total probability > ε. Denote this set of
trajectories by T1, with P(T1) > ε. Let R1 be the set of points that trajectories in T1

reach before h1. As T1 is a finite union of cylinders, R1 is finite.
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• Then, take an h2 ∈ I at distance at least M of h0 and h1. We can also require that it
does not belong to R0 ∪R1, as this set is finite while I is infinite. As above, we can
then define a set T2 which is a finite union of cylinders ending at h2 with P(T2) > ε,
and R2 the finite set of points reached by these trajectories before h2.

• The construction goes on inductively to define hn.

The point of the previous construction is that for i ≤ j we have the inequality

P(Ti ∩ Tj) ≤ F (hi, hj). (5.5)

Indeed, this is clear for i = j. For i < j, note that trajectories in Ti ∩ Tj reach hi and
then hj , in this order as hj /∈ Ri. Therefore,

P(Ti ∩ Tj) ≤ P(∃n < m,Sn = hi and Sm = hj) = F (idG, hi) · F (hi, hj) ≤ F (hi, hj),

where the central equality follows from the Markov property. This proves (5.5).

Let us now take N large, and apply the inequality (5.4) to the characteristic function
of {h0, · · · , hN−1}. We obtain∑

i,j<N

G(hi, hj) ≤ c−1
∑
i,j<N

GS(hi, hj). (5.6)

We will bound the left hand side from below and the right hand side from above to get a
contradiction. Thanks to (5.5), we have∑

i,j<N

G(hi, hj) ≥
∑

i≤j<N

G(hi, hj) = q−1
∑

i≤j<N

F (hi, hj)

≥ q−1
∑

i≤j<N

P(Ti ∩ Tj)

≥ q−1

2

∑
i,j<N

P(Ti ∩ Tj) =
q−1

2

∫ (∑
i<N

1Ti

)2

dP

≥ q−1

2

(∫ ∑
i<N

1TidP

)2

=
q−1

2

(∑
i<N

P(Ti)

)2

≥ q−1

2
ε2N2.

The Green function GS tends to 0 at infinity, by Lemma 5.9. As the distance between
hi and hj is at least M for i 6= j by construction, it follows that GS(hi, hj) ≤ η(M) where
η tends to 0 with M . We obtain∑

i,j<N

GS(hi, hj) ≤
∑
i=j

GS(hi, hj) +
∑
i6=j

GS(hi, hj) ≤ NGS(idG) +N2η(M).

Combining these two estimates with (5.6) yields

q−1

2
ε2N2 ≤ c−1NGS(idG) + c−1N2η(M).

We obtain a contradiction by taking M large enough so that c−1η(M) < q−1ε2/2, and
then letting N tend to infinity.

EJP 26 (2021), paper 110.
Page 33/39

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP667
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The boundary of the range of a random walk and the Følner property

Proof of Theorem 1.3. The result follows from Lemma 5.8 if G is virtually Z2. Hence, we
can assume that this is not the case, and therefore that the simple random walk on G is
transient by [38, Theorem 3.24].

The Green functions for the probability measures p and (p+ δidG
)/2 are related by the

identity G(p+δidG
)/2(g) = 2Gp(g), by [38, Lemma 9.2]. Without loss of generality, we can

therefore replace p with (p+ δidG
)/2 and assume p(idG) > 0. As p is admissible, it follows

that there exists N with pN (idG, s) > 0 for all s in the generating set S. By Lemma 5.10,
the Green function associated to pN , denoted by GN , tends to 0 at infinity.

To compute G(g), split the arrival times to g according to their values modulo N . For
times of the form i + kN , such arrivals can be realized by following p for i steps, and
then pN for k steps. It follows that

G(g) =
∑
h∈G

∑
i<N

pi(idG, h)GN (h−1g).

Let ε > 0. Take a finite set F ⊂ G such that
∑
h/∈F

∑
i<N pi(idG, h) < ε. Then

G(g) ≤
∑
h∈F

∑
i<N

pi(idG, h)GN (h−1g) + ε‖GN‖L∞ .

When g tends to infinity, the first term tends to 0 as this is a finite sum and GN tends to 0

at infinity. For large enough g, we get G(g) ≤ 2ε‖GN‖L∞ .

We are now ready to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. For groups which are not virtually Z, the result follows directly
from Proposition 5.4 and Theorem 1.3 showing that the Green functions G and G(−) tend
to 0 at infinity. Groups which are virtually Z but not Z are handled in Proposition 5.7.
Finally, the case of Z is done in Proposition 5.6.

A Flatto’s inequality enhancement procedure

Proof of Theorem A. Assume that A(δ) holds for |∂Rn|. Fix ε0 > 0 and denote by κ > 0

the unique constant, see Proposition 3.4, so that

E (|∂Rn|) ∼
κn

log2(n)
as n→∞.

For n ∈ N we will write N = N(n) =
⌊
logδ/3(n)

⌋
. For 1 ≤ i ≤ N , write ni = bni/Nc and

divide the range Rn into N -blocks,

Xn,i :=
{
Sni−1+1, Sni−1+2, . . . , Sni

}
, 1 ≤ i ≤ N.

As before

∂vXn,i := Xn,i \ {Xn,i + v} , ∂Xn,i =
⋃
v∈Ed

∂vXn,i.

Clearly

|∂Rn| ≤
N∑
i=1

|∂Xn,i|.

Let ε ≥ ε0 and set

Ai :=

{
ω ∈ Ω : |∂Xn,i| ≥

(
1 +

ε

2

) κn

N log2(n)

}
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and

Bi :=

{
ω ∈ Ω : |∂Xn,i| ≥

(
1 +

εN

2

)
κn

N log2(n)

}
,

for 1 ≤ i ≤ N . Then a simple combinatorial argument (see equation (4.9) in [19]) gives,

[
|∂Rn| > (1 + ε)

κn

log2(n)

]
⊂

 ⋃
1≤i<j≤N

Ai ∩Aj

 ∪( N⋃
i=1

Bi

)
(A.1)

First we estimate P (Ai), P (Bi) from above. Writingmi = mi(n) = ni−ni−1 for 1 ≤ i ≤ N ,
|∂Xn,i| is equal in distribution to |∂R (mi)|. In addition,

lim
n→∞

mi/ log2 (mi)

n/(N log2(n))
= 1

uniformly in 1 ≤ i ≤ N . In addition, by (3.7), since mi →∞ as n→∞,

lim
n→∞

E (|∂R(mi)|)
κmi/ log2 (mi)

= 1.

Consequently there exists n = n(ε0), such that for all ε > ε0 and n > n,

Ai ⊂
[
|∂Xn,i| ≥

(
1 +

ε

3

) κmi

log2(mi)

]
⊂
[
|∂Xn,i| ≥

(
1 +

ε

4

)
E (|∂R(mi)|)

]
. (A.2)

We deduce that for all ε > ε0, n > n and 1 ≤ i ≤ N ,

P (Ai) ≤ P
(
|∂Xn,i| >

(
1 +

ε

4

)
E (|∂R(mi)|)

)
= P

(
|∂R(mi)| >

(
1 +

ε

4

)
E (|∂R(mi)|)

)
, by property A(δ)

≤ 16C (ε0/4, δ)

ε2 logδ (mi)
.

Finally, as logδ(mi) ∼ logδ(n) as n → ∞, we can enlarge n such that for all ε > ε0, and
n > n,

P (Ai) ≤
32C (ε0/4, δ)

ε2 logδ (n)
≤ 32C (ε0/4, δ)

ε0ε logδ (n)
(A.3)

To bound P(Bi) from above notice that by similar considerations as in (A.2), for all ε > ε0
and n > n,

Bi ⊂
[
|∂Xn,i| ≥

(
1 +

εN

4

)
E (|∂R(mi)|)

]
,

consequently for all 1 ≤ i ≤ N,

P (Bi) ≤ P
(
|∂Rmi | ≥

(
1 +

εN

4

)
E (|∂Rmi |)

)
≤ 16C (ε0/4, δ)

ε2N2 logδ(mi)
.

Now as N ∼ logδ/3(n) as n → ∞, by enlarging n if needed, we can assume that for all
n > n uniformly on 1 ≤ i ≤ N and ε > ε0,

P (Bi) ≤
32C(ε0/4, δ)

ε2N log4δ/3(n)
. (A.4)
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Since for 1 ≤ i < j ≤ N , the events Ai and Aj are independent it follows from (A.1),
(A.3) and (A.4) that for all ε > ε0 and n > n,

P (|∂Rn| > (1 + ε)E (|∂Rn|)) ≤
∑

1≤i<j≤N

P(Ai)P(Aj) +

N∑
k=1

P(Bk)

≤
(

32C(ε0/4, δ)

ε0

)2
N2

ε2 log2δ(n)
+

32C(ε0/4, δ)

ε2 log4δ/3(n)

∼

((
32C(ε0/4, δ)

ε0

)2

+ 32C(ε0/4, δ)

)
1

ε2 log4δ/3(n)

as n→∞. It follows that there exists C(ε0, 4δ/3) such that for all ε ≥ ε0 and n ≥ 2

P (|∂Rn| > (1 + ε)E (|∂Rn|)) ≤
C(ε0, 4δ/3)

ε2 log4δ/3(n)
.

As ε0 is arbitrary this concludes the proof of Theorem A.

Proof of Theorem B. The proof essentially follows Sections 5,6 in [19], which is quite
lengthy and technical. Rather than reproducing the full argument we opt instead to point
out the necessary modifications for the statements of the relevant results in [19] to apply
to the objects of interest in our case. Divide the random walk path S = {Sj ; 1 ≤ j ≤ n}
into N = [n/L] + 1 blocks of size L = [n/ log log n], where [x] denotes the integer part of x.

We will write S(i) for the i-th block andR(i)
n for its range. That isR(i)

n = {S(i)
k : k = 0, L−1},

with S(i)
k = SiL+k for k = 0, . . . , L− 1.

One may follow [19, Section 6] replacing the objects T pn by |∂VRn|, Ti by
∣∣∣∂VR(i)

n

∣∣∣.
Finally the object Tij must be replaced by

Ti,j :=
∣∣∣{x ∈ ∂VR(i)

n : R(j)
n ∩ (x+ (V ∪ {0})) 6= ∅

}∣∣∣ .
With this definition we have

|∂VRn| ≥
N∑
i=1

∣∣∣∂VR(i)
n

∣∣∣− ∑
1≤i<j≤N

Ti,j ,

and given the analogous version of [19, Theorems 5.1, 5.2] one can proceed verbatim as
in [19, Section 6].

We will now briefly explain how one can adapt the proof of [19, Theorems 5.1] for the
Ti,j written above. This is possible by replacing the events A(i, j;µ, µ;x) defined therein
by the events

A′(i, j;µ,µ′;x) := {S(i)
µ = x} ∩

{
S(i)
µ − S

(i)
l /∈ V, 0 ≤ l ≤ µ

}
∩
{
S

(i)
l − S

(i)
µ /∈ {0} ∪ V, µ < l ≤ L− 1

}
∩
{
S

(j)
l − S

(i)
µ /∈ {0} ∪ V, 0 < l ≤ µ′

}
∩
{
S

(j)
µ′ − S

(i)
µ ∈ {0} ∪ V

}
.

For a collection of distinct positive integers i1, . . . , i2m, 1 ≤ µ1, . . . , µ2m ≤ L and
x1, . . . , xm ∈ Z2 let σ be the unique permutation of {1, . . . , 2m} such that letting jk := iσ(k)

we have j1 < · · · < j2m, i.e. the unique increasing re-arragement of i1, . . . , i2m. Let
νk = µσ(k) and zk := x[(σ(k)+1)/2] and

∆ :=
{

(yi)
2m
i=1 : ∀i ∈ {1, . . . , 2m}, yi − zi ∈ V ∪ {0}

}
.
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Then, again following [19, Theorem 5.1] we have

m⋂
k=1

A(i2k−1, i2k;µ2k−1, µ2k;xk)

⊆
⋃

(yi)
2m
i=1∈∆

B(ν1; y1) ∩
2m⋂
j=2

B(j − 1; νj−1, νj ; yj−1, yj) ∩B′(ν2m; y2m)


where the events

B(ν; y) := {S(j1)
ν = y} ∩

{
S

(j1)
l /∈ y + V, 0 ≤ l < ν

}
B(k; νk, νk+1; yk, yk+1) :=

{
S(jk)
νk

= yk, and S(jk)
l /∈ yk + (V ∪ {0}), νk < l ≤ L− L− νk

2

}
∩ {S(jk+1)

νk+1
= yk+1} ∩

{
S

(jk+1)
l /∈ yk+1 − V,

νk+1

2
≤ l < νk+1

}
,

B′(ν; y) :=
{
S

(j2m)
l − S(j2m)

ν /∈ V ∪ {0}
}
∩
{
S(j2m)
ν = y

}
,

are independent since they depend on disjoint blocks of random variables. The calcu-
lations then are similar to [19], subject to routine modifications to [19, Lemma 5.1].
Indeed, writing sk = (jk+1 − jk)L + ν′ − ν, and using [19, Lemma 5.1], it is straight-
forward to prove that there exists C > 0 such that for all 1 ≤ k ≤ 2m − 1, writing
Mk = sk − [(L− ν)/2]− [(ν′ − 1)/2],

P (B(k; ν, ν′; yk, yk+1)) ≤ C

Mk

1

log(L− ν) log (ν′)

e.g. proving (5.1) of Flatto. Since jk+1 > jk then,

M ≥ L+ ν′ − ν − L− ν
2
− ν′

2
≥ L+ (ν′ − ν)

2
,

then

P (B(k; ν, ν′; yk, yk+1)) ≤ 2

(L+ ν′ − ν) log(L− ν) log(ν′)
. (A.5)

We get an extra ∆m| = (|V |+ 1)2m constant from the summation on ∆m.
One can similarly modify the proof of [19, Theorem 5.2].
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