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Abstract

We present a new continuous automata based computer simulation
of virus propagation in human populations, and apply it to the Covid-
19 outbreak, in various scales and situations. We also take the oppor-
tunity to propose various mathematical questions, and ask about their
biological relevance.

Modelling the evolution of epidemic outbreaks has become an important
tool for all politicians to take appropriate measures for fighting the disease.
However, one has to be aware that all simulations are very crude, and their
scientific grounds will never ensure that their predictions have anything to
do with reality. The reason is that they are based on oversimplifications of
models and parameters, choosing unrealistic rules simply because they lead
to tractable mathematical equations. This is the case for the celebrated SIR
model, which assumes that all individuals behave in the same way, and any
infected person will possibly infect any healthy individual, regardless of their
position in society, or even their geographical localization. The beauty of
mathematics — and of simple models — is that they can still mean some-
thing. When researchers have succeeded in singling out the most important
behaviour, neglecting all secondary effects, they might come up with a result
that, qualitatively, show global trends that can be observed in reality, statis-
tically. The temptation is great, then, to tune all possible parameters to try
and make it fit the real curves (of infected people, of deaths, etc. — assuming
that we can trust these numbers), in order to finally make predictions. This
is of course very dangerous.
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The goal of our work is to implement a “microscopic” simulation at the
level of individuals, without attempting to obtain solvable differential equa-
tions, based as much as possible on the virus transmissions mechanisms that
are observed in reality, in order to then scale the simulation to a whole pop-
ulation. Thus, this work belongs to the general class of “Individual-Based
Models” (IBM), see [8].

A physics analogy would be to check whether the celebrated Ohm Law
V = RI relating electric current to electric potential, which is a purely phe-
nomenological law, can be justified by understanding the microscopic be-
haviour of atoms and electrons in the metal. (Such a rigorous justification,
by the way, is still an open question.) For us, atoms are replaced by indi-
viduals, and electron transfer is replaced by viral contamination; instead of
observing global trends at the macroscopic level, we equip individuals with
interaction laws, and let them evolve. Of course, a crucial difference between
Ohm’s law and the virus problem is that the former has been amply verified
to high degree of precision by many experiments, while we can of course not
perform such experiments with human populations.

Even though we believe that IBMs can implement much more realistic pa-
rameters than in the usual compartmental models like SIR or SEIR, we can’t
claim that the final result gives a better prediction; this remains a crude sim-
ulation and should be taken with all care. Moreover, our automata approach
is by nature more adapted to a closed cohort situation rather than a whole
country. It may, nevertheless, be useful in discovering new qualitative sce-
narios that can happen in response to various political decisions like closing
schools, locking the population down, etc.

Disclaimer. The initial goal of this paper was mainly to help the author
(who is a mathematician) understand virus modelling. The same incentive
explains why I have decided to program the model “from scratch”, without
relying on existing libraries. However, I now hope that this can be helpful
to others, and while I don’t claim originality, I believe that it contains some
new remarks of interest, be it merely the sometimes unusual viewpoint.

This work was done during the first pandemic lockdown of France in
Spring 2020. I initially thought I would continue it afterwards, but I was
unable to find the necessary time to do it. My excuse for putting it online
in this draft form is twofold. First I think that some ideas are interesting.
Second, I understand that, in such a case like the Covid-19 pandemic, re-
searchers are expected to quickly post their findings, in a global effort to find
the best solutions. This contradicts the natural desire to check everything in
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details before release. This is my second reason. As a corollary, I’m happy to
receive any feedback.

This version: June 13, 2020.

1 Continuous automata

The principle of the simulation is very simple. It can be compared to a com-
puter game with many characters. Each individual has a set of specifications
— age, gender, geographic position, viral load, immunity, etc. — and even a
personal motion specification (stay at home, moves randomly, commutes to
work, etc.). This automaton is called continuous, as opposed to the better
known “cellular” automata, simply because its location is not restricted to
a discrete grid, but can be any floating-point number in the 2-dimensional
plane R2.

Then, each individual has an evolving state (healthy, infected, sick, etc.
— we shall discuss the precise meaning of these states below). The state
can evolve simply in time (a sick individual can naturally recover after a
couple of weeks), or can switch to “infected” by proximity to other infected
persons. One of the most important parts of our simulation is to compute
the transmission probability between two persons.

The program is implemented in the OCaml language. This choice is mo-
tivated by a high-level functional language, which makes it simple to im-
plement rigorous rules, and makes it hard to produce a code that would be
obviously wrong, and by the fact that it is a fast compiled language, which
we need when growing the number of automata to several thousands.

We propose two simulation modes. The graphical mode shows, on the
computer’s screen, all persons, moving and getting infected, on “real (ac-
celerated) time”. This is useful for small scale experiments (less than 1000
individuals) and for demonstrations and public outreach. In the batch mode,
no graphics is produced, but the logs are saved in a file and can be used to
show statistics. The batch mode is of course much faster and can handle a
larger population, depending on the computer power and memory.

It would be very interesting to try and parallelize the algorithm; this is
not currently done.
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2 Individuals’ states

Our choice of “states” is quite similar to the usual “compartments” used in
many virus simulations. In order to simplify the reasoning — and the pro-
gram — we have chosen injective states, meaning that an individual can only
belong to one and only one state. We believe that the choice of states is very
important and debatable. Our states are defined in the Stats module, as fol-
lows. For each state, we indicate the possible evolution, which is summarized
in Figure 1.

1. Healthy : Has never been infected, or was Latent with viral load close
to zero. No evolution when isolated. Will become Latent when in-
fected.

2. Latent : Is infected but unnoticeable: is not symptomatic and cannot
transmit the virus. Was either Healthy or Recovered before. Will
becore either Carrier or Healthy (very rare).

3. Carrier : Carries the virus but not symptomatic. Was Latent before.
Will become Sick or Latent (if the person can fight the virus away
before being symptomatic).

4. Sick : Has symptoms (should stay in bed). Was Carrier or Critical
before. Will become either Critical or Recovered.

5. Critical : Must/should be taken to Critical Care Unit. Was Sick
before. Will become either Dead or Sick again.

6. Recovered : Same viral load as Carrier but only happens after being
Sick. No symptoms anymore, cannot get sick again but can infect
others. Was Sick before. Will become Dormant.

7. Dormant : Same as Latent but can be reinfected again.

8. Dead : Was Critical before.

In addition to these states, we allow any individual to be temporarily
“removed” from our spatial domain, which means that they continue their
self-evolution, but are isolated from the rest of the population. This can be
used to model people going to sleep at night, for instance.

Question 2.1 Do all arrows between the states in Figure 1 correspond to
existing biological or medical processes? F
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Figure 1: Individuals’ states and their evolution

3 Viral load

One of the main novelty of this work, as far as we can tell, it to endow
each individual with a specific viral load function, upon which all evolution
between one state to another — and the virus transmission probability as
well — will be essentially based.

Of course, the name “viral load” suggests that we are inspired here by
the amount of viruses present in the body. However, the analogy with the
biological viral load should not be take too literally. Our viral load should be
taken as a phenomenological mean to conveniently summarize what happens
to the person: will she or he become infected, infectious, or recover, or die,
etc.

Any viral load can be tested with our program; in principle, it should
depend on the virus under study, and on each individual. For the SARS-
CoV-2, our choice for the viral load curve will be based on the reference
curve shown in Figure 2; it is similar to what can be found in the literature
(see for instance [4]), and obtained as the graph of the following function of
time (d is expressed in days):

vload(d) = 1.1e
−15

(d+1)2 (b+ e
−80

(28−d)2 )

where the limit as d → ∞ is given by b, which we take as b = 0.05. (For
simplicity and speed, we assume that the limit is reached when d > 25). The
precise mathematical expression is not important — we could have taken a
mixture of Weibull shapes, but we wanted to implement the following fea-
tures: first, after a short latency period, we have a steep exponential growth
(virus replication inside the body), then a large peak, and finally a slower
exponential decay (when the immune system succeeds in fighting the virus).
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Figure 2: In red, the reference viral load function; the horizontal lines represent the
various thresholds.

The limit b is taken non zero to account for the fact that most infected per-
sons will keep a small portion of the virus in their body forever. However, we
will show (??) that this does not have a big influence on simulations.

As soon as a simulated person is infected, we assign them the viral load
curve, and let it evolve under (shifted and renormalized) time. In order to
decide of the evolution of the disease, we introduce four thresholds.

1. Latency threshold : The virus is not transmissible if the viral load is
below it.

2. Incubation threshold : The person is symptomatic only if the viral load
is above it.

3. Critical threshold : When the viral load goes above it, the individual
needs intensive care.

4. Vital threshold : A viral load above it leads to death.

Not everybody reacts in the same way to a viral attack. For the Covid-
19, its was shown, to a sufficient degree of certitude(???ref), that children
are mildly affected, while symptoms become more severe with increasing age.
Hence, instead of remodelling the viral load curve for each individual (which,
in fact, is left as a possibility by the program), we adjust the various thresh-
olds according to the age of the person. For instance, the curve represented
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in Figure 2 will be assigned to persons of age 40 (with random small varia-
tions). Such a person will be contagious after day 1.5, become sick at day 5,
stay so until day 16, and finally recover. After day 23, he or she will not be
contagious anymore. These numbers have been chosen to represent current
knowledge, but are highly debatable.

Question 3.1 Are these numbers correctly following the true Covid-19 evo-
lution, on average? Should we allow various time stretching depending on
individuals? F

The variation of thresholds with age is also a highly unclear issue. Here
we consider that people of age > 70 will likely have to go to intensive care, and
hence set their critical threshold to 0.70 instead of 0.85. In fact, we will raise
of lower the four thresholds by the same amount. Likewise, for most children
under 10, a SARS-CoV-2 infection will not develop the disease; hence we set
their incubation threshold to 0.80. Of course, they can be carriers.

Question 3.2 What do we know precisely concerning statistics of Covid-19
evolution with respect to the age? Are the above numbers realistic? F

4 Immunity

At the time of writing, one of the biggest mysteries about the Covid-19 dis-
ease is the conferred immunity. Can you become sick again one month after
recovering from the disease? Or one year? or never? There is no firm answer.
This explains why most governments are hesitant about the best strategy to
remove lock-downs. Of course, many of us hope that, as is the case for In-
fluenza, the virus should confer a immunity that should last at least a couple
of months. It this were the case, and if severe cases were less frequent than
what we currently observe, a reasonable strategy would be to let most of
the population get infected and reach a mass immunity that would prevent
the virus from spreading further. Wether this option is politically reasonable
highly depends on the mortality rate, which is unknown as well, but strongly
suspected to be high enough to rule this option out. Other, more pessimistic
researchers remark that a few well known coronaviruses responsible for com-
mon cold confer very little immunity. As everybody knows, it is not unusual
to catch several colds in a row in the same month.

In this study we take a semi-optimistic viewpoint. During the sickness
and recovery period, we assume that temporary cellular response will be
enough to prevent overinfection. Thus, only Healthy and Dormant states
can become infected (hence changing their state to Latent). A long-term
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humoral response (antibodies), which starts about 7-10 days after symptoms,
should be strong after a couple a weeks, and remains present hopefully several
months.

Hence, each person, after recovery, once the viral load has dropped down
below the latency threshold, will acquire a certain immunity. We can devise
a different immunity for each person. Moreover, we don’t simply employ the
naive, binary option “may I or may I not get infected again”; instead, as we
did for the viral load, we will model this by the “immunity function”, which
depends on time. The effect of the immunity curve is to reduce the person’s
own viral load. Precisely, the immunity function takes values in the interval
[0, 1], and the person’s effective viral load will be computed by multiplying
the viral load by one minus the immunity:

vloadeff(d) = vload(d)(1− immunity(d)). (1)

The function we chose for modelling the long-term immunity is inspired
by [2], and represented in Figure 3. You can see that this optimistic curve
grants a fairly good immunity after 7-8 days, and on, forever. However, note
that the limit immunity is not 1, which makes it possible to have a new
infection, but with relatively low probability (see next section).

Figure 3: The immunity curve

Question 4.1 What do we really know about Covid-19 immunity? Is the
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curve of Figure 3 realistic? F

5 Transmission probability

The crucial ingredient of the simulation is, of course, how we decide that one
individual A will infect another one B. Here again, we try to rely as much as
possible on what is currently known about the mechanisms of transmission.
At the time of writing, the main vector for the virus seems to be exhaled
breath, and hence is highly dependent on the mutual distance between A
and B. People are encouraged to respect social distancing, and a distance
of 3 meters seems to be safe of infection risk — except when sneezing or
coughing.

How to model this? It is an interesting question. Should we consider a
contamination rate or a contamination probability?

In the first case, the contaminated person may be strongly or weakly
contaminated, and this will influence the development of the disease. In the
second case, a person is either contaminated or not.

Although the first option seems reasonable, the highly exponential rate
of virus reproduction in the body could lead to conclude that the difference
is only a matter of shifting the curve by a few hours, which is negligible.

On the other hand, a low virus quantity in the first few hours could be
enough for the body to efficiently fight against the virus, before it gets over-
whelmed. (This would explain why the biological viral load resembles the
SIR curve, but at the scale of the body instead of that of a population).

Most research models think in terms of “transmission probability per con-
tact per unit time”, but the precise meaning of this is far from clear. If you
stay close to an infected person during one minute or one hour, clearly your
chances of being infected are not identical; but how many “contacts” did you
have? Physically speaking, you might have never touched the person at all,
but still have a high probability of getting infected by droplets carried by the
breath.

Question 5.1 What is the good notion of transmission probability between
two people, that would correspond to a solid biological ground? (see also
Section 5.2 below). F

5.1 Instantaneous infectiousness

In this work, we introduce a contamination probability pA→B “per unit of
time”, but not per contact. Instead, the probability will strongly depend on
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the distanceAB betweenA andB. Thus, if they are far apart, the probability
will be zero, and this amounts to considering that there was no contact. On
the contrary, if the distance is zero, or close to zero, for a period of time T ,
then the contact is maximal, and it makes sense to introduce a probability
pA→B(T ) that depends on T . How does pA→B(T ) depend on T? Suppose
that A produces infected droplets at a constant rate. Then, for a very short
period of time δt, you inhale a certain quantity mδt of these droplets. This
will trigger immediate response from your immune system, which is able to
kill the virus at the rate M per second. If M < m, the virus will be able to
replicate, leading to exponential growth, and you will be infected. On the
contrary, if M > m, you will not let the virus replicate, and we consider that
you are not infected. Of course, this description is simplistic, and we don’t
know m and M , but these numbers are reasonably accounted for by the “safe
critical distance” beyond which you stay safe. Indeed, the number m clearly
decreases with the distance AB (for at least two reasons: one is that they are
emitted in every direction and hence the concentration per unit air volume
decreases as the inverse distance squared; the second one is that droplets will
eventually fall on the ground, so the concentration is actually even smaller).
If AB is close to zero, with this reasoning the infection is certain, i.e. the
probability of being infected in one second is 1. This is not realistic, first
because the rate of expelled infected droplets may vary, especially if δt is
very small, and only the time average of m is relevant; likewise, the immune
system is not so steady, and may have time variations. We can change the
reasoning as follows. Assume that the average number of “contaminating
droplets” inhaled by B per unit of time is ν(AB) (taking into account the
possible immune response). From the Poisson law, the probability of zero
contaminating droplets during a time δt is e−ν(AB)δt. Hence, a first candidate
would be

pA→B(δt) = 1− e−ν(AB)δt

Thus, as soon as ν(AB) 6= 0, we see that the probability of getting infected
tends to 1 as δt→∞, which is consistent with the crudest analysis above.

Let us now compare to the experiment on influenza outbreaks conducted
by [7]. They assumed ν(AB) = 0 if AB > 3m, and ν(AB) = ν0 to be con-
stant otherwise. Based on the Moser study [6], they estimated the probability
pA→B(20s) = 0.003, which means ν0 = − ln 0.997/20 ' 1.5× 10−4s−1. With
these figures, the probability of getting infected is 50% after one hour and
17 minutes. Most studies agree on the fact that the SARS-CoV-2 is more
contagious that influenza, but we could not find precise experiments. For
instance, we could decide that the infection probability would be 50% after
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30 minutes close to a sick individual, which means ν0 = 3.8 × 10−4s−1. Of
course, ν0 has an enormous influence on the development of the epidemics,
see for instance (14), (15); in the absence of direct experiments, one could try
to calibrate it a posteriori, but this may falsely compensate for other hidden
mechanisms. ??? étudier la variation de ν0

However, the infection probability pA→B depends actually on many more
parameters. It varies in a essential way with the distance r = AB: it is
clearly much more dangerous to be at distance 1cm rather than one meter
away of an infected individual A. Moreover, studies (???ref) also suggest that
a severely ill individual will be more contagious than an asymptomatic one.
Hence, pA→B should depend on the viral load of A. Finally, there remains
an important, external factor: prophylaxis (preventive healthcare) of both A
and B.

Given our ignorance of a precise study concerning the dependence of
pA→B on the distance r = AB, we propose the following argument. As-
sume that A produces on average N infected droplets per second. These
droplets will travel all around him or her. To simplify, we assume a purely
horizontal motion at constant speed in the disc of radius rmax = 3 meters,
and then a quick fall down. Hence the droplets initially produced in a small
disc of radius r0 around A will move, at time t, into an annulus bounded by
the circles of radii r and r + r0, which has area πr0(2r + r0). Therefore, if
r = AB, the average number of infected droplets that can be inhaled by B
per second is

ν(r) =
Nr0

2r + r0
,

Of course, a more realistic version would take into account droplets regularly
falling down on the ground; moreover, what happens at a larger distance
r > rmax is absolutely unclear. In order to take these effects into account,
we simply multiply by an affine cut-off max(0, c(rmax − r)). Seeing that the
average distance to the origin in the disc of radius rmax (assuming uniform
2D distribution) is 2rmax

3 = 2, we wish to enforce ν(2) = ν0, hence finally

ν(r) =
ν0(4 + r0)(rmax − r)+

2r + r0
. (2)

We will choose r0 = 15cm.
How does the viral load of A contribute to pA→B? (We are talking here

about the effective viral load, which takes into account A’s immunity, see
Section 4). To our knowledge, nothing more precise than “if the viral load is
important, A should be more contagious” is known. In our model, a person is
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not contagious when the viral load goes below the latency threshold. Hence
it is reasonable to take into account only the proportion of viral load above
the latency threshold τlat:

vcont := max

(
0,

vloadeff − τlat

vmax − τlat

)
where vmax ' 0.8 is the maximum of the viral load curve, see Figure 2.

In order to model prophylaxis, we will endow each individual with a pro-
tection factor between 0 (not protected) and 1 (fully protected). For simplic-
ity, we don’t distinguish between outgoing protection (not infecting others)
and ingoing protection (not infecting oneself). For instance, if someone wears
a protective face mask, we assume it will work in both directions (which is not
technically correct, but probably OK as a first approximation). If needed, it
would be easy to modify the program to implement two protection factors
per individual.

Summarizing, the final formula for pA→B is the following (assuming that
all characteristics of A and B don’t vary within the time δt):

pA→B(δt) = 1− e−νA→Bδt, (3)

where νA→B is the average amount of contamination per second, which we
take as

νA→B = ν0s(AB)vcont(A)(1− prophylaxis(A))(1− prophylaxis(B)), (4)

where s(AB) is the excretion spread factor at distance r = AB defined as
(see (2))

s(r) =
(4 + r0)(rmax − r)+

2r + r0
(5)

with rmax = 3m, r0 = 0.15m, and ν0 = 3.8 × 10−4s−1. Thus, if we stay
one meter away from a fully infected person during half an hour, without
protection, the probability of getting infected is 93% (Figure 4).

Question 5.2 Is the infection probability represented in Figure 4 realistic?
F

5.2 Effective infectiousness and reproduction number R

In many studies, for which the time scale is much larger (the unit being often
one day), and for which all constants are considered on a population average,
the answer to Question 5.1 is of course easier. The “infectiousness” [3] of
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Figure 4: Infection probability after 30min as a function of the distance between
A and B. Person A is supposed to have maximum viral load, and neither A nor B
take any protective measure. When all parameters are randomized, the particular
shape of this curve is not important, but the integral

∫ rmax

0
rs(s) dr is crucial, see

Section 8.1.

an “individual” (meaning an average individual) is the average number of
persons who where infected by this individual during a day.

Then the “reproduction number”R (orR0, if one discard long-term immu-
nity effects and re-infections) is the cumulative infectiousness of an average
individual during a complete infectious period.

How can one relate these quantities to our instantaneous infectiousness
pA→B(δt) defined in (3)? Of course we cannot expect a general formula, be-
cause it depends on the random properties of the motion and characteristics
of all individuals.

For a given person A, one may reasonably assume that the random events
“B is infected by A” and “B′ is infected by A” are independent, whenever
B 6= B′. Hence the expectation of the random variable “XA :=number of
persons infected by A” during the time δt is

EA(δt) =
∑
B 6=A

pA→B(δt). (6)

However, to obtain the total expected number if infected people, one should
not sum over all A’s, because the random variables XA and XA′ , when A
and A′ are different persons, are not independent: if A infects B, then B
cannot be overinfected by A′ anymore. This problem can be ignored if we
know that the probability that three persons get close to each other is very
small. In a densely populated environment, this probability is certainly not
negligible. Another mathematical issue to be aware of is the fact that (3)
is in principle not valid if A or B moves during the time δt. So, one can

13



certainly not use the formula for δt = one day. Instead, one should consider a
non-homogeneous Poisson distribution, which amounts to replacing νA→Bδt
in (3) by

∫ t0+δt
t0

νA(t)→B(t) dt. In view of (4), if we assume that the viral load
of A does not significantly vary in the time δt (more than one day would not
be realistic), and that prophylaxis stays constant, we see that this amounts
to replacing νA→B by the effective value

νeff := ν0vcont(A)(1− prophylaxis(A))(1− prophylaxis(B))

and to replacing δt by the actual time Teff passed in the vicinity ofA, weighted
by the spread factor s(r):

Teff :=

∫ t0+δt

t0

s(AB(t)) dt.

As a first approximation, when s(AB) 6= 0 we may replace AB by its mean
value AB = 2, which gives s(AB) = 1 (see (5)), thus Teff is simply the time
spent within distance rmax = 3m of the infected person A.

In our program, time has to be discretized. In most applications, we
choose a constant time step δt (although the program accepts variable time
steps as well), and at each step we apply the infect_world operator. This
operator considers all pairs (A,B) and performs the infection conditionally to
the computed probability. (In view of the remark above, this gives an advan-
tage to the first considered A, since this A will be able to infect more people
than if it were selected later.) We take advantage of the time discretization
to compute, for each individual A, the expected value of the number EA of
persons infected by A according to (6), which gives:

EA =
∑

steps i

∑
B 6=A

at step i

pA→B(δt),

which we can compare to the actual number of persons infected by A in the
simulation

RA =
∑

steps i

∑
B infected by A

at step i

1.

The number RA is nothing but the reproduction number of A. We define the
average reproduction number in a given period [T0, T1] to be

R =
1

|NI(T0)|
∑

A∈NI(T0)

RA(T1) (7)
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where NI(T0) is the population of infectious individuals at time T0, and
RA(T1) is the number of persons infected by A as of time T1. Notice that,
with this definition, the average reproduction number can grow with the
event of multiple infections of the same individual.

5.3 Infectiousness and immunity

Recall from Section 4 that only Healthy and Dormant states can become
infected, so the probability of infection will not be applied to them. For the
rest, how to model the relation between infectiousness and immunity? A
natural option would be to make the probability pA→B actually depend on
B’s immunity. However, this is not what we have chosen. Recall that B’s
effective viral load is reduced by her immunity (1). If B’s immunity is strong
(close to one), then, even if B is infected and becomes Latent, she may never
develop the disease. We believe that applying twice the role of immunity,
once in reducing the infectiousness, and once again in reducing the viral load,
would be redundant, from a biological viewpoint. This is probably debatable.

However, this procedure impacts the way of counting infected people and
the reproduction number. If B is very mildly infected and never becomes
symptomatic, should it be counted as a new infected person? This “subtelty”,
which is not considered within the SIR categories, because a Latent person is
neither susceptible nor infectious, has a noticeable effect on the computation
of the effective reproduction number R. Formula (7) counts all infections,
including those who never be symptomatic, and hence will give a value that
can sometimes be surprisingly high.

In future works it could be interesting to keep track of the full infection
graph, or transmission network, only linking individuals that have effectively
been contaminated to the point of being infective themselves.

6 Spatial motion

An interesting feature of our simulation is to endow each person with an indi-
vidual motion function. This function takes an arbitrary (i.e. floating-point)
time as a parameter, and returns the 2D position of the character. Thus,
mathematically, it is nothing but a time parametrization of the motion. Mo-
tions can be deterministic or stochastic (using the computer’s random num-
ber generator). Currently, our spatial domain Ω is a rectangle of arbitrary
size. It would be interesting to limit allowed positions by using geographical
data like mountains, roads, buildings, or population density maps, etc.
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The following question could be important for governments to decide
what strategy to adopt to limit the epidemic: strict or partial lockdowns,
closing schools, etc.

Question 6.1 Without information on the health status of individuals, what
characteristics of people’s motion influence virus spreading in the popula-
tion? F

In order to exemplify our discussion, we shall consider the following col-
lective motions.

• Static motion. No motion; the population is randomly, uniformly
distributed. We can only vary the density.

• Chaotic motion. A piece-wise affine random walk: each individual
walks straight during a random time, then makes a random turn, and
continues; this models a chaotic motion with diffusive properties. Al-
though not particularly realistic, this kind of motion is often used to
justify approximations of simple situations (typically, SIR-like models,
and Fisher-KPP equations) by partial differential equations in the limit
of a very dense population.

• Bound motion. A circular motion, with random initial angle, radius,
and speed. This may model a confined motion (no diffusion).

We shall also be interested in irregular distribution of motion. For instance,
what happens if the population is fully locked down (no motion), except for
a few individuals with a chaotic motion (we called this the “outlaw” experi-
ment). Details of the experiments can be found in the appendix.

6.1 Contact surface

In view of the transmission probability discussed in Section 5, we are tempted
to introduce the notion of “contact surface per person” ς, as follows. Take
a number of persons N , all equipped with the same motion (with possible
randomized parameters), and randomly distributed in our domain, thus with
density ρ̄ = N/S, where S is the area of the domain Ω (in m2). For each
person A, compute the average duration of “contacts” CA, i.e. the time spent
within a distance less than rmax to another individual, divided by the total
time of the simulation. The contact duration is counted “with multiplicity”
and hence can be larger than 1: for instance if two persons are close to A
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during time δt, then CA includes 2δt. Then define

γN :=
1

N

∑
A

CA.

More precisely, since the right-hand side is a random variable, one should
define γN as its expected value. Thus, γN is the average percentage of time
that each person spends close to another person (with multiplicity). There
are several ways to compute or interpret this quantity.

First, let us introduce the symmetric matrix C = (CA,B) where each entry
0 6 CA,B 6 1 with A 6= B is the relative amount of time when AB 6 rmax
(AB is the distance between A and B). By convention we take CA,A = 0.
Then CA is the A’th coordinate of the vector C := C · (1, 1 . . . , 1), and γN is
related to the L1-norm of the matrix C:

γN =
1

N

∑
A,B

CA,B (8)

and hence 0 6 γN 6 N − 1. The extreme case γN = N − 1 corresponds to
the situation where all persons are constantly in contact with all others.

If we define δA,B to be the characteristic function 1AB6rmax(A,B) (i.e.
δA,B = 0 if the distance AB > rmax and 1 otherwise), then, for a simulation
of time T ,

CA,B =
1

T

∫ T

0
δA(t),B(t) dt,

and hence (by the Fubini Theorem, i.e. just swapping sum and integral),

CA =
1

T

∫ T

0

∑
B;B 6=A

δA(t),B(t) dt.

If the population is static (or if T is small), we see that γN is simply the
number of pairwise contacts between two different persons. In general, it can
grow with N , but it is reasonable to infer that γN is controlled by the density
of the population. We already see a first indication of this with the inequality
γN/ρ̄ 6 (N − 1)/ρ̄ 6 SN−1

N < S. This leads to the following definition of
“contact surface per person” ς:

ς(N) :=
SγN
N

, 0 6 ς < S.

Coming back to γN itself, we see that it is natural to express it in terms
of population density. Let us define the local density:

ρ(A, r) :=
#{persons within distance r of A}

area of the disc B(A, r)
,
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in other terms:

ρ(A, r) =
1

πr2

∑
B

δA,B, CA =
πr2

max

T

∫ T

0
ρ(A(t), rmax) dt− 1.

We now make our first assumption on the motion: namely that for each t,
the points B(t) are independent, identically distributed in the domain, with
uniform distribution. Hence, by Monte-Carlo approximation,

S

N − 1

∑
B;B 6=A

δA(t),B(t) '
∫

Ω
1d(A(t),x)6rmax dx,

where dx is the surface element in R2. If we neglect the boundary terms,
which will contribute to a lower order when Ω >> r2

max,
∫

Ω 1d(A(t),x)6rmax dx '
πr2

max, and hence

CA '
1

T

∫ T

0

N − 1

S
πr2

max dt =
N − 1

S
πr2

max;

which does not depend on A anymore (again, up to our approximations, of
course). Hence

γN =
1

N

∑
A

CA '
N − 1

S
πr2

max,

which gives, very roughly,

ς ' N − 1

N
πr2

max ' πr2
max,

where N is large.
The first conclusion of this small computation is that, at first order, the

“contact surface” ς is not a very interesting dynamical invariant, at least in
the case where the population distribution is uniform, and if the collective
motion of individuals does not destroy this uniformity. Although the Fu-
bini argument looks like ergodicity, notice that we would have obtained the
same result, obviously, if there were no motion at all. The approximation
ς ' πr2

max should hold for all three examples above: static, chaotic or bound
motions, provided the initial population distribution is uniform. A second
conclusion, which may seem evident, it that before looking at fine charac-
teristics of motion, the main factor governing the number of contacts is the
population density; indeed, CA ∼ ρ̄πr2

max. Finally, this suggests that motion
will play a more interesting role in situations where the population is not
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Figure 5: The orange graph is the numerical computations of the contact surface
ς(T ), for a population initially randomly uniformly distributed, and evolving from
T = 0 to T = 0.5 day. Here the domain Ω is a square of size 100 × 100, and
rmax = 3. The whole population moves with a “chaotic” motion. In our discussion
in Section 6.1 we have used the rough approximation ς ' πr2

max (top horizontal line
in the figure). But, because of the boundary of the domain Ω, the correct value
should be strictly less. One can directly approximate the sum (8) by the quadruple
integral N−1

S2

∫
Ω×Ω

1d(x,y)6r dxdy. In the case of a square domain of area S, one
has ς ' 1

S

∫
Ω×Ω

1d(x,y)6r dxdy = πr2 − 8
3r

3/S1/2 +O(r4/S). This gives the second
horizontal line in the picture.

uniformly distributed on the territory. A contact surface ς > πr2
max suggests

a population with locally high density. If, when time advances, ς gets closer
to πr2

max, we have a sign that the motion scatters the population evenly. We
shall study further such diffusive effects in the next section.

6.2 Social curve

For each individual A, we now define FA(t), the number of distinct persons
met by A during the time interval [0, t], where by ’met’ we mean ’at distance
less than rmax. Like the contact surface defined in Section 6.1, this quantity is
purely spatial and dynamical; it does not depend on any medical parameter.
Then we consider the average

F (t) :=
1

N

∑
A

FA(t), (9)

where N is the total population. Contrary to the contact surface, it is clear
that a static population has a much smaller social number F than a fully
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chaotic curve: in the static case, assuming that the population is uniformly
distributed, we have (neglecting boundary effects)

∀A, FA,static(t) ' F (t) ' N πr2
max

S
for all t.

On the other hand, in the chaotic case, the whole population will be visited
by each individual A:

∀A, lim
t→∞

FA,chaotic(t) = N − 1.

It would be very interesting to have a good mathematical understanding of
the curve t 7→ F (t). Let us briefly discuss how to compute FA(t) when all
persons have a chaotic motion, except for A, who stays still. It does not seem
to us completely obvious to say how the asymptotic growth of FA(t) depends
on the position of A inside the domain Ω, although, intuitively, a position
close to the boundary should induce a lower increase rate, because people
trying to “get out” of Ω are being reflected by the boundary, and hence A
is more likely to meet them several times, instead of meeting new unknown
persons. It turns out that this can be made explicit by a spectral analysis.

At each time t, we have to monitor the flux of persons entering and leav-
ing the disc of radius rmax centered at A. All persons entering this area
become “met by A” (one could say “infected”, assuming in this case that the
probability of infection is one in the disc). The increase of FA(t) equals the
number of persons not previously met by A entering the disc. Inside the disc,
all persons are already met by A, and hence their density ρA is equal to the
global, uniform density ρ̄ = N/S (strictly speaking, we should take N−1

S
since A itself should be excluded). Hence, the outgoing flux of persons out
of the disc is constant, and easy to estimate. On the contrary, the crucial
quantity, which is the incoming flux of “not already met by A” persons, is
not obvious to determine. It depends on the spatial variation of the den-
sity ρA at the boundary of the disc, and we believe that this is not a local
quantity: it depends on how persons are able to “escape” away from the disc
B = B(A, rmax). Initially, at t = 0, ρA = ρ̄ > 0 in B, while ρA = 0 outside
of B. However, as soon as t > 0, and people start to escape from B, people
outside of B but very close to it should enjoy the same density of population:
ρA is now continuous. Therefore, the incoming flux of persons “not met by A”
cannot depend only on the value of ρA on ∂B, since the net flux (incoming
minus outgoing) should be high for small t, and tend to zero when t → ∞
(when everybody in our domain was already met by A). A PDE (partial
differential equation) description of this diffusion problem is a good way to
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understand these issues. Let Ω̌ = Ω\B. Let ρA(t, x) be the density of persons
met by A at position x. Thus the total number of persons met by A outside
the disc B is

F̌A(t) =

∫
Ω̌
ρA(t, x) dx = FA(t) + 1− ρ̄πr2

max,

where ρ̄ = N/S, and the (negligible) “+1” is to account for the individual A
itself. The density ρA(t, x) is subject to the following equation:

∂tρA −D∆xρA = 0, (t, x) ∈ (0,∞)× Ω̌ (10)

ρA(0, x) = 0, x ∈ Ω̌

ρA = ρ̄, (t, x) ∈ (0∞)× ∂B
∂nρA = 0, (t, x) ∈ (0∞)× ∂Ω.

The first one is the standard diffusion (or heat) equation with diffusion coef-
ficient D, which depends on the parameters of our random walk. The second
line is the initial condition at t = 0. The third line is the boundary condition
on ∂B, while the last one, where ∂n denotes the outgoing normal derivative,
expresses that no individual can escape the domain Ω. If we replace ρA by
ρ̃A(t, x) := ρA(t, x) − ρ̄ we obtain a standard heat equation with homoge-
neous Dirichlet and Neumann boundary conditions, and non-homogeneous
initial condition −ρ̄. A common way of solving this problem is to consider
the Laplace operator ∆Ω̌ on the domain Ω̌ with the mixed Dirichlet and
Neumann boundary conditions on the two boundaries ∂B and ∂Ω. Since,
one each boundary, one of ρ̃A and ∂nρ̃A must vanish, ∆Ω̌ is self-adjoint and
non-negative. By ellipticity, the spectrum of ∆Ω̌ is discrete and consist of
a non-decreasing sequence of eigenvalues (λj)j∈N tending to infinity. Hence
we can, in principle, find a complete orthonormal basis of eigenfunctions uj ,
j ∈ N in the appropriate Hilbert space, which is dense in L2(Ω̌). Hence we
may express the initial condition as a sum

− ρ̄ =
∑
j

ajuj(x), aj := −ρ〈1, uj〉

and finally obtain
ρ̃A(x, t) =

∑
aje
−Dλjtuj(x).
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Therefore

FA(t) =

∫
Ω
ρA(t, x) dx− 1 = N − 1 +

∫
Ω̌
ρ̃A(t, x) dx

= N − 1 +
∑

aje
−Dλjt

∫
Ω̌
uj(x) dx,

= N − 1 +
∑
j

aje
−Dλjt

∫
Ω̌
uj(x) dx,

= N − 1− ρ̄
∑
j

e−Dλjt
(∫

Ω̌
uj(x) dx

)2

, (11)

which can be written equivalently as

FA(t) = ρ̄πr2
max − 1 + ρ̄

∑
j

(1− e−Dλjt)
(∫

Ω̌
uj(x) dx

)2

To conclude this mathematical apparté we see that the increase of F (t)
up to the maximal value N−1 does not follow an simple exponential law, but
a sum of exponentials. For large t, we should be able to get a good approxi-
mation of the increase rate by selecting the smallest eigenvalue λ0 > 0 (note
that λ0 6= 0 because the only constant solution to (10) is zero). Moreover, by
Courant’s theorem, the corresponding eigenfunction u0 does not change sign,
which implies that the constant c0 = 〈1, u0〉 =

∫
Ω̌ u0(x) dx does not vanish.

Hence we may conjecture the following asymptotic behaviour, for large t:

FA(t) ∼ N − 1− Nc2
0

S
e−Dλ0t. (12)

Question 6.2 Prove (12) (when N and t are large). F

We can now compare the asymptotic behaviours of the “social number
of A”, FA(t), for different initial positions of A. We used for this a numer-
ical solver (FreeFEM++) to compute λ0 in the following situations. Ω is
a rectangle of size 100 × 100 with lower left corner at position (0, 0) ∈ R2,
and rmax = 3. It is obvious from the table in Figure 6 that the position
of A greatly influences the value of the lowest eigenvalue λ0. If A is close
to a corner, the growth of FA(t) will be much slower; the maximum growth
rate seems to be at the center. The numbers are confirmed by the popula-
tion simulations, see Figure 7. From the epidemiological viewpoint, we see
that infected persons should not stand at the center of a crowd, because they
will likely meet much more people than if they we standing along a wall, or
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Position of A λ0 c0 Eigenfunction

(50, 50) 0.0002771325491 98.45152348

(10, 50) 0.0001657424295 95.96970218

(5, 50) 0.0001427185441 96.82151423

(10, 10) 0.0001072342178 96.75283201

(5, 5) 8.261371309e-05 97.86664575

Figure 6: First eigenvalue of the Laplace problem associated with (10), numerically
computed with FreeFEM++.

even better, a corner of the room, and this holds even if other persons are
“bouncing” on the walls.

Coming back to the question of the incoming flux of “infected” individuals,
we see that we have to integrate ∂nρA on ∂B, that is to say we want to
recover the Neumann boundary condition from the Dirichlet condition that
was imposed in the global Cauchy problem (10) (although the fact that we
only need the integral might simplify the problem). Equation (11) suggests
that the incoming flux for t > 0 is

dFA
dt

(t) ' ρ̄D
∑
j

λje
−Dλjt

(∫
Ω̌
uj(x) dx

)2

,

which is not well-defined at t = 0, as expected (for small t, one can ignore the
boundary ∂Ω and solve the heat equation on R2\B, which gives a singularity
of the flux of type 1/

√
t, see [cf H. S. Carslaw, J. C. Jaeger, Conduction of

Heat in Solids [2 ed., 1959] p335-336])
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Figure 7: Five superposed simulations of the Social Number FA(t) (Section 6.2),
with 500 persons in a square of size 100× 100, when A is static at position (10, 50),
and all other persons move according to a random walk with diffusion coefficientD =
1/4. The average F (t) is defined in (9). The conjectural theoretical approximation
for large times, defined in (12), is displayed here in black, with λ0 ' 1.66 × 10−4

(see Figure 6). The figure on the right presents the same data in a logarithmic scale
(more precisely, mapped by the function x → ln(N − 1 − x)). Currently, we don’t
know how to express the growth rate of F (t), see Question 6.4

Remark 6.3 Equation (10) is exactly the heat equation governing the tem-
perature in a 2D rectangular plate (the domain Ω) with a circular hole in the
middle (the disc B), insulated at ∂Ω, and with imposed temperature at ∂B.
4

Question 6.4 What is the correct growth rate for F (t) or FA(t) when A
moves (i.e. performs the same random walk as the rest of the population)?
Can one find a diffusion equation similar to (10)? The difficulty seems the
be that we have to consider a moving boundary. However, considering the
average F (t) instead of FA(t) might simplify the problem. Numerics show
that the growth rate is significantly higher than in the case of static A, see
Figure 7. F

Question 6.5 The numerical evidence that the asymptotics of FA(t) are
governed by the eigenvalues of the Laplace operator (eg. Figure 7) was ob-
tained when the population (except A) moves according to a simple random
walk, where at each time step δt, the new position is p′A = pA + ~r, where
~r has random direction and fixed size r. This walk is approximated by a
Brownian motion (or diffusion process) of diffusion coefficient D = r2/4δt.
If we use the more general motion described above, which is a jump process,
where we move on a line segment of (possibly random) size r for a (possibly
random) time δt before performing a random turn, then there is a noticeable
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discrepancy with the solution to (10) with D = 〈r〉2/4〈δt〉. How to explain
this? F

We don’t know how to theoretically handle the intermediate cases like
the “bound” motion; we will instead rely on the numerical results. In order
to compute FA(t), one can simply use the main program, setting the initial
population to Healthy, and “infect” any Healthy person with probability one
as soon as they are within distance rmax of A. The infected person gets a new
state, for instance Sick, in order not to be counted twice.

However, this strategy does not handle the computation of the average
F (t), because a person “met” by A should remain available for being later
“met” by another person A′. Thus, we need to equip each person with a new
data, the set of all encountered persons, which we update at each time step.
This was used to produce Figure 7.

6.3 Population conductance

We consider here the spatial propagation speed, a dynamical quantity that
now depends on the complete model, with infectiousness. It is sometimes
called the “speed of spreading” of the epidemic wave, see for instance the re-
cent article [1], which studies a SIR-like PDE model with spatial diffusion.
The unusual name “population conductance” is inspired by electric conduc-
tance, and Ohm’s law alluded to in the introduction. Take a domain which
is a thin rectangle: Ω = [0, L] × [0, ε], where L >> ε. Suppose that the
whole population is Healthy at t = 0; add a small number N0 of infected
individuals on the left hand-side of the rectangle (x ' 0). What will happen?
If the virus spreading is much faster than recovery, the whole rectangle will
soon be infected. But if recovery is also fast, or if L is very large, we will
observe a front of infected people (like a wave front), because as the head
of the front becomes infected, the tail will recover. If recovery is faster than
infection, the epidemic front should disappear. Using our program, one can
numerically test these output parameters: speed and width of the wave front
with various collective motions.

7 Operators

The program runs as a discrete dynamical system acting on the total pop-
ulation. Since we wish here to put a strong emphasis on spatial properties,
it is natural to consider the population as a spatial distribution Ψ(x, y) of
persons. Of course, this distribution is discrete (sum of Dirac functions) but
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when the total number of persons is large, it is useful to consider a continu-
ous, approximate population density.

Our implementation consists in applying successively three operators.

1. A point-wise, time evolution operator T . It acts separately on each
person, considered in isolation, and update the temporal parameters:
evolution of the viral load and immunity, and consequently performs
the passage from one state (or compartment) to another. For instance,
if a person is infected, then the viral load increases, and after crossing
thresholds, the person becomes Sick, or Critical, etc. See Section 2.
It is of course a local operator, because it does not change the position
of each individual, and the evolution of the individual’s parameters
does not depend on other individuals.

2. A point-wise spatial propagation operator P. This operator performs
the motion of all individuals, but does not change any medical parame-
ter. It a non-local operator, but acts point-wise: in our simulation, the
motion of an individual is not influenced by the other persons. Hence it
should not be thought of as a global transformation (diffeomorphism,
etc.); on the contrary the trajectory of different persons may cross in
arbitrary ways. This operator can be used to perform special time-
dependent actions like ’going to bed’, ’going to work’, etc.

3. A non-local, infection operator I. For each individual A, this operator
considers all neighboring persons, and perform conditional infection,
as described in Section 5. If the domain is large enough, this operator
can be considered as “pseudo-local”, because only persons B at distance
d(A,B) 6 rmax, which is small compared to the size of the domain, are
involved in the conditional infection of A. In many cases this operator
will be translation invariant (it will not depend on the position of A,
but rather on the relative positions B − A); hence it can be viewed as
a convolution operator, if we ignore boundary effects.

Note that the order of application of T and P is irrelevant: [T ,P] = 0.
However, neither P nor T commutes with I.

8 Results

By varying population density, age distribution, motions of individuals, etc.
one can simulate very different situations, including governments decisions of
full of partial lock downs, school closing or opening again, etc. In this article,
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we only start a few experiments, while more sophisticated ones are still under
investigation.

8.1 Virus spreading in a random crowd

We simulate a crowd of random people, walking erratically in random direc-
tions, without stopping, for a few hours. This could represent a concert, a
shopping center, a street demonstration, etc.

The domain is a square of 100m by 100m, and we vary the population
from 10 to 10000 persons. Age is chosen randomly according to France’s 2020
population distribution [5]. Motion is a random walk (see also Section 6.3),
where each individual walks straight during 5 to 15 seconds, then makes a
random turn, and continues. The distance of the straight line segment and
the speed is fixed for each person (from 0 to 2 meters per second), but varies
randomly from one person to another.

The time step for the simulation is δt = 1s, and we simulate 3 hours spent
in the crowd. Because the whole setting is random and iid, the geographical
map is not so interesting, so we shall only give here the time curves of each
health state. At the start of the simulation, everybody is Healthy, except for
10% that are infected at a random stage, and placed randomly in the square.

Under appropriate assumptions on randomness, It is easy (and well known)
to mathematically predict what will happen. Indeed, during the short time
of the simulation, infected people are not infectious themselves. So, the num-
ber NI of infectious persons stays constant. Moreover, we may assume that
the viral charge of all individuals can be considered constant, and hence the
whole evolution becomes a Markov chain. Let us compute EA([0, t]), the
number of persons contaminated by A ∈ NI (we use the same notation NI

for the set of infectious persons). By (6) and (3), the infinitesimal variation
of EA is

d

dt
EA([0, t]) = lim

δt→0

EA(δt)

δt
=
∑
B 6=A

νA→B

where the sum is taken over the set of susceptible persons B. Let us assume
for simplicity that the prophylaxis factor is zero for everyone. Then, using (4)
we get

d

dt
EA([0, t]) = ν0vcont(A)

∑
B 6=A

s(AB).

Now the analysis is similar to Section 6.1, taking into account that the set
where B varies has cardinal NS(t) := N − I(t), where I(t) is the number of
infected (but not yet infectious) individuals, and N is the number of initially
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susceptible people, i.e. I(0) = 0. If we assume that, at each time t, the sus-
ceptible persons B ∈ NS are randomly uniformly distributed in the domaine
Ω (this may hold only if the mixing strength of the motion — or the diffu-
sion coefficient — is high enough), then the Monte-Carlo scheme says that
the expectation of S

N−I(t)
∑

B∈NS(t) s(AB) is the integral
∫
x∈Ω s(d(A, x)) dx,

which, if A is not too close to the boundary, is equal to

σ0 :=

∫
R2

s(r)r dr dθ = 2π

∫ rmax

0
rs(r) dr.

In the case of Section 6.1, the factor s was not taken into account, and we
integrated the constant 1, yielding the surface of the contact ball πr2

max. Here
instead, the area is weighted by s. With the formula chosen for s (5), the
integral can be explicitly computed; an approximate value (with rmax = 3m)
is σ0 ' 50.44m2. We now have

d

dt
EA([0, t]) = ν0vcont(A)

σ0

S
(N − I(t)). (13)

Since I(t) =
∑

A∈NI
Ea([0, t]), we can let

β := ν0
σ0

S

∑
A∈NI

vcont(A), (14)

and we obtain the simple ODE Cauchy problem{
d
dtI(t) = β(N − I(t))

I(0) = 0

which gives
I(t) = N(1− e−βt). (15)

So, in this regime, our model merely reproduces the simplest possible
model with exponential behaviour. Of course, the factor β is primarily im-
portant; depending on it, after the simulation has finished, either a small
fraction, or the quasi-totality of the population will be infected.

For instance, we have simulated a crowd of 3000 people with N = 2700
and NI = 300, where the 300 infective individuals were all Carrier but
with slightly different viral charges, leading to a theoretical β = 18.937day−1

using (14). Figure 8 shows that the simulated curve of I(t) is in agreement
with the “theoretical” exponential curve (15). In this case, after 3 hours
(0.125 day), 2451 persons have been contaminated, i.e. 91% of the initially
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Figure 8: Randomly moving crowd simulation, see Section 8.1. 3000 persons in
10000m2 during 3 hours. The color curves are the result of the experiment. The
black curve is the theoretical prediction Ne−βt (14) (15).

healthy population. If we assume that the percentage of infective individuals
is roughly constant in the population (here, 10%), then β is proportional to
N . Hence if N = 270, we obtain a proportion of 1 − e−0.125β/10 ' 21%. We
can have 3000 persons going to the shopping-center by successsive groups of
300, this will lead to 10×270×(1−e−0.125β/10) ' 569 contaminations, which
of course much better than the 2451 contaminations if the 3000 persons go
at the same time.

Remark 8.1 Had we instead imposed a confined motion (like the bound
motion introduced above), the situation would be quite different. For a con-
fined motion, at t = 0, formula (13) is still valid, so the initial decay rate
βN is the same as in the chaotic case. But for t > 0 there are two main
difficulties. First, each infective individual A can only reach a fraction FA of
the population, see Section 6.2. So the “limit” number of infected people (in
this regime of small t, of course) is not N but is bounded by

∑
A∈NI

FA. Sec-
ond, we cannot assume that the distribution of susceptible persons B stays
uniform. The susceptible population close to A decays faster, while distant
persons will remain unaffected.

A mathematically tractable case is the static case (no motion), under the
assumption that the few infectious persons A are far enough from each other,
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so that we can separate the reachable populations: in this case, the decay of
the susceptible population “controlled by A” (or rather, its expected value)
depends only on the distance r = AB. Let us introduce ρA(r, t), the density
of persons infected by A at distance r; in other words,

EA[(0, t)] = 2π

∫ rmax

0
ρA(r, t)r dr.

Restricting B to a thin annulus of radius r around A, and applying (6), we
obtain, similarly to (13):

∂tρA(r, t) = ν0vcont(A)s(r)(ρ̄− ρA(r, t))

where ρ̄ = N/S is the initial density of susceptible individuals, which is
uniform. Thus, we may introduce the radial exponential rate

βA(r) := ν0vcont(A)s(r)

and we have
ρA(r, t) =

N

S

(
1− e−βA(r)t

)
.

Therefore,

EA[(0, t)] =
2πN

S

∫ rmax

0

(
1− e−βA(r)t

)
r dr. (16)

(See Figure 9) Letting t be large, we recover that the maximum number of
persons infected by A is πr2max

S N , in accordance with Section 6.2. As a double
check, we compute the initial slope d

dtEA([0, t])t=0 = 2πN
S

∫ rmax
0 rβA(r) dr =

ν0vcont(A)σ0N/S, same as in (13). 4

8.2 The aircraft carrier experiment

Suppose an aircraft carrier stops for a couple of days at a harbour, where
soldiers can meet their family, and then leaves port for one month, with no
contact with the outside world. After this period, at least 50% of the 2000
crew members are tested positive to the Covid-19. What happened? Such a
situation is very interesting from the epidemiological viewpoint, because the
ship is a relatively small, confined world, with homogeneous population, in
complete isolation.

When a person becomes Sick, he or she stops moving, and resumes mo-
tion when becoming Recovered.
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Figure 9: Infected curve for a static crowd. Simulation for a crowd of 3000 people
including 30 infective persons. The curve first follows closely the theoretical predic-
tion (16), but at some point the rate becomes slightly slower. This can be explained
by the fact that the 30 infective persons have a random initial position, and several
of them have overlapping contact surface (see Figure 12), while the theoretical curve
assumes that the population groups reached by each infected individual are pairwise
distinct.

8.3 Subway train

8.4 University classroom

8.5 Small city

We try here (very crudely) to implement a simulation of a city being infected
by a few people, with and without lock-down.
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Figure 11: Static simulation. 2000 persons stay still in a box of size 100m×100m,
and 10 of them are infected at t = 0. Time lapse between 2 images is 3.75 days.
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Figure 12: Static crowd simulation. 3000 static persons including 30 infective ones,
after 6 hours. One can see that the 30 infective individuals have sometimes overlap-
ping contact surfaces, leading to the curve in Figure 9.

Figure 13: Bound conductance experiment. We have simulated 1000 persons in a
rectangular domain of size 200m× 50m; 999 of them are initially Healthy, and one
has just been infected, and is located on the left border, mid-height. Everybody
moves with the “bound motion” (small stationary circles). The picture shows 50
images, each image is a screenshot of the simulation taken every day. Day 0 on top
left, Day 49 on bottom right. After formation of the full epidemic front (about Day
30), it takes about 100 days for the front to move across the whole domain. See also
Figure 14.
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Figure 14: Bound conductance experiment. Population vs time in days. From this
graphics it seems that the situation is stable between days 30 to 100, but Figure 13
shows that the cluster of infected people constantly moves.
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