Calcul différentiel — TD 4 avec corrections

Applications linéaires continues

Exercice 1. Question de cours. Soient E, F des espaces vectoriels normés (réels ou complexes). Donner la caractérisation des applications linéaires continues de E dans F.

Correction. $A \in \mathcal{L}_c(E, F)$ si et seulement si A est linéaire $(A(u + \lambda \cdot v) = A(u) + \lambda \cdot A(v)$ pour tous u, v dans E et tous $\lambda \in \mathbb{R}$) et il existe C > 0 tel que $||Au||_F \leqslant C ||u||_E$ pour tous $u \in E$.

Exercice 2. Soit $E = C^0([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . On admettra que les applications $f \mapsto \|f\|_{\infty} = \max_{t \in [1,0]} |f(t)|$ et $f \mapsto \|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t$ sont des normes sur E. On considère les applications $\phi_0 : E \to \mathbb{R}$ et $\phi_1 : E \to \mathbb{R}$ données par

$$\phi_0(f) = f(0)$$
 et $\phi_1(f) = \int_0^1 f(t) dt$.

- 1. Montrer que l'application ϕ_1 est linéaire et continue sur $(E, \|\cdot\|_{\infty})$ et sur $(E, \|\cdot\|_1)$. On calculera les normes de ϕ_1 dans les deux cas.
- 2. Montrer que ϕ_0 est linéaire mais pas continue sur $(E, \|\cdot\|_1)$.
- 3. ϕ_0 est-elle continue sur $(E, \|\cdot\|_{\infty})$?

Correction.

1. ϕ_1 est linéaire par linéarité de l'intégrale. Pour montrer qu'elle est continue, il suffit donc d'appliquer le critère rappelé dans l'exercice 1 : on veut trouver une constante C telle que

$$\|\phi_1(f)\| \leqslant C \|f\|$$
.

Traitons d'abord le cas de $\|\cdot\|_{\infty}$.

1ère étape : majorer $|\phi_1(f)|$ en fonction de $||f||_{\infty}$. On a clairement

$$|\phi_1(f)| = \left| \int_0^1 f(t) dt \right| \le \max |f| \int_0^1 dt = ||f||_{\infty},$$

c'est-à-dire $|\phi_1(f)| \leq C ||f||_{\infty}$ avec C = 1. On sait donc déjà que ϕ_1 est continue de $(E, ||\cdot||_{\infty})$ dans \mathbb{R} , et sa norme est ≤ 1 .

2ème étape : est-ce que C=1 **est optimale ?** Il suffit de trouver un f particulier qui réaliste l'égalité. Prenons f(t)=1 : ça marche! Donc $\|\phi_1\|_{\mathcal{L}((E,\|\cdot\|_{\infty}),\mathbb{R})}=1$. Traitons maintenant le cas de $\|\cdot\|_1$. On a directement

$$|\phi_1(f)| = \left| \int_0^1 f(t) \, \mathrm{d}t \right| \le \int_0^1 |f(t)| \, \mathrm{d}t = ||f||_1,$$

et l'égalité est également vérifiée pour $f \equiv 1$. Donc ϕ_1 est continue de $(E, \|\cdot\|_1)$ dans \mathbb{R} , et sa norme est 1.

- 2. La linéarité est claire. On applique donc le critère de continuité de l'exercice 1 : il faut montrer qu'il n'existe pas de constante C telle que $|f(0)| \leq C \int_0^1 |f|$ pour tous $f \in E$. Il suffit pour cela de construire une **suite** f_n de fonctions telles que $f_n(0) \to \infty$ et $\int_0^1 |f_n| = 1$. Pensez au graphe d'un triangle rectangle en 0 de base 1/n et de hauteur 2n...
- 3. Oui, $|f(0)| \leq ||f||_{\infty}$.

Exercice 3. On munit $E = \mathbb{R}^n$ de la norme uniforme $||(x_1, \dots, x_n)|| = \max_i |x_i|$.

- 1. Soit $A \in M_n(\mathbb{R})$ une matrice $n \times n$, qu'on identifiera avec l'application linéaire $E \ni X \mapsto AX \in E$. Calculer sa norme subordonnée en fonction de ses coefficients $(a_{i,j})$.
- 2. On considère l'application « transposée » de $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ qui à A associe tA . Est-elle continue? Quelle est sa norme?

Correction.

1. 1ère étape : majorer ||AX|| en fonction de ||X||. Le *i*-ème coefficient de AX est

$$(AX)_i = \sum_{k=1}^n a_{ij} x_k \,,$$

donc

$$||AX|| = \max_{i} \left| \sum_{k} a_{ik} x_{k} \right|.$$

C'est facile de majorer cette quantité en faisant apparaître ||X||, puisque c'est le max des $|x_k|$:

$$||AX|| \le \max_{k} |x_k| \max_{i} \sum_{k} |a_{ik}| = ||X|| \max_{i} \sum_{k} |a_{ik}|.$$

On a donc $||AX|| \le C ||x||$ avec $C = \max_i \sum |a_{ik}|$.

2ème étape : montrer que C **est optimale.** Est-ce que notre majoration était assez fine pour que C soit la constante optimale? Pour cela il faut trouver un X particulier tel que $||AX|| \ge C ||X||$.

Supposons $A \neq 0$ (sinon il n'y a rien à montrer) et prenons l'indice $i = i_0$ pour lequel le max_i est atteint dans C, c'est-à-dire

$$C = \sum_{k} |a_{i_0k}| .$$

On cherche donc un X qui vérifierait

$$\left| \sum_{k} a_{i_0 k} x_k \right| = \sum_{k} |a_{i_0 k}| \|X\| ;$$

il suffit de prendre $X = (\text{signe}(a_1), \dots, \text{signe}(a_n))$ (qui est de norme 1)! L'égalité ci-dessus est vérifiée, et donc si on reprend le calcul de AX on trouve

$$||AX|| = \max_{i} \left| \sum_{k} a_{ik} x_{k} \right| \geqslant \left| \sum_{k} a_{i_0 k} x_{k} \right| = \sum_{k} |a_{i_0 k}| ||X|| = C ||X||.$$

2. C'est une application linéaire en dimension finie (n^2) , donc continue. Pour trouver sa norme, il faut trouver la constante C optimale telle quelle

$$||tA|| \leqslant C ||A||$$
.

Par la question précédente, on a immédiatement que

$$||^t A|| = \max_k \sum_i |a_{ik}|.$$

La majoration la plus naturelle est

$$\max_{k} \sum_{i} |a_{ik}| \leqslant \sum_{k} \sum_{i} |a_{ik}| = \sum_{i} \sum_{k} |a_{ik}| \leqslant \sum_{i} ||A|| = n ||A||.$$

On a donc $||^t A|| \leq C ||A||$ avec C = n. Est-ce que C est la constante optimale? Remarquons que ||A|| consiste à sommer les valeurs absolues des coefficients des lignes de la matrice A. Cherchons une matrice particulière telle que ||A|| = 1 et $||^t A|| = n$. Il suffit de choisir

$$A = \left(\begin{array}{c|c} 1 & & \\ \vdots & 0 & \\ 1 & & \end{array}\right)$$

La norme de l'application « transposée » est donc bien $||t||_{\mathcal{L}(M_n(\mathbb{R}),M_n(\mathbb{R}))} = n$.

Exercice 4. Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.

- 1. Montrer que $P = \sum_{i=0}^{\deg(P)} a_i X^i \mapsto ||P|| = \max_i |a_i|$ est une norme sur E.
- 2. On considère les applications $D: P \mapsto P'$ et $A: P \mapsto XP$ de E dans E. Sontelles linéaires? injectives? surjectives? continues pour la norme ci-dessus? (si oui, calculer leurs normes)
- 3. Mêmes questions pour l'application D mais sur l'espace $F = \mathbb{R}_n[X]$ des polynômes de degré $\leq n$.

Correction.

- 1. Les conditions pour être une norme sont aisément vérifiées :
 - (a) $\forall P \in E, ||P|| \geqslant 0.$
 - (b) $||P|| = 0 \iff \max_i |a_i| = 0 \iff |a_i| = 0, \forall i \in \{1, \dots \deg(P)\} \iff a_i = 0, \forall i \in \{1, \dots \deg(P)\} \iff P = 0.$

- (c) $\forall P \in E \text{ et } \lambda \in \mathbb{R}, \|\lambda P\| = \max_i |\lambda a_i| = \max_i |\lambda| |a_i| = |\lambda| \max_i |a_i| = |\lambda| \|P\|.$
- (d) Pour $P = \sum_{i=0}^{\deg(P)} a_i X^i$ et $Q = \sum_{i=0}^{\deg(Q)} b_i X^i$, quitte à ajouter des coefficients nuls lorsque l'indice dépasse le degré du polynôme, on peut écrire

$$P + Q = \sum_{i=0}^{\max(\deg(P),\deg(Q))} (a_i + b_i) X^i,$$

donc on a

 $||P + Q|| = \max_i |a_i + b_i| \le \max_i (|a_i| + |b_i|) \le \max_i |a_i| + \max_i |b_i| = ||P|| + ||Q||.$

2. (a) L'application D est linéaire puisque la dérivée l'est, son noyau $\ker(D)$ est formé des polynômes constants, n'est donc pas réduit à $\{0\}$ par suite D n'est pas injective.

Comme tout polynôme $P = \sum_{i=0}^{\deg(P)} a_i X^i = D\left(\sum_{i=0}^{\deg(P)} a_i \frac{X^{i+1}}{i+1}\right)$, l'application D est surjective.

Enfin, D n'est pas continue, il suffit pour montrer cela de trouver une suite de polynômes (P_n) bornée pour la norme et dont les dérivées en norme tendent vers $+\infty$. Pour cela, on choisit $P_n = X^n$, on a alors $||P_n|| = 1$, mais $||DP_n|| = n$ tends vers $+\infty$.

(b) L'application A est linéaire puisque, pour $(\lambda,\mu) \in \mathbb{R}^2$, $(P,Q) \in E^2$ on a $A(\lambda P + \mu Q) = X(\lambda P + \mu Q) = \lambda XP + \mu XQ = \lambda AP + \mu AQ$. Comme $\mathbb{R}[X]$ est un anneau intègre, « $XP = 0 \implies P = 0$ », le noyau Ker(A) est alors réduit à $\{0\}$, d'où A est injective. L'image de A est $X.\mathbb{R}[X] \subsetneq \mathbb{R}[X]$, donc A n'est pas surjective (les polynômes constants ne sont pas dans l'image).

Pour tout $P = \sum_{i=0}^{\deg(P)} a_i X^i$, on a $||AP|| = \left\| \sum_{i=0}^{\deg(P)} a_i X^{i+1} \right\| = ||P||$, ainsi A est continue et ||A|| = 1.

3. F est un s.e.v. de dimension finie de E, l'application $D: F \to F$ est bien définie (la dérivation fait baisser le degré), est encore linéaire, n'est pas injective (comme audessus), par suite n'est pas surjective, puisque c'est un endomorphisme en dimension finie; en fait l'image de D est l'espace $\mathbb{R}_{n-1}[X]$ des polynômes de degrés $\leqslant n-1$. Enfin, la dimension finie nous garantit la continuité de l'application linéaire D.

On va calculer sa norme; on a pour $P = \sum_{i=0}^{n} a_i X^i$

$$||DP|| = \max_{1 \le i \le n} |ia_i| \le n \max_{1 \le i \le n} |a_i| = n ||P||.$$

Par conséquent $||D|| \leq n$.

D'autre part, si $P = X^n$, on a alors ||P|| = 1 et ||DP|| = n, cela montre que $||D|| \ge n$ et donc ||D|| = n.