Calcul différentiel - TD 1

Espaces affines, fonctions continues, notations de Landau

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ donnée par $f(t) = x_0 + \alpha t$, où $x_0, \alpha \in \mathbb{R}$.

- 1. Montrer que f est continue sur \mathbb{R} .
- 2. Montrer que \mathbb{R} est naturellement un espace affine et que f est une application affine.
- 3. On suppose que f(t) = o(t) quand $t \to 0$ (notation « o » de Landau). Que peut-on dire de x_0 et α_0 ?
- 4. Décrire l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ qui vérifient f(t) = o(t) et f(0) = 0, en termes de continuité et dérivabilité.

Exercice 2. Pour chacune des assertions suivantes, préciser si elle est vraie ou fausse puis justifier la réponse donnée. Toutes les fonctions mentionnées f, g, h sont des fonctions de \mathbb{R} dans \mathbb{R} .

- 1) Soit λ un réel non nul. f = o(g) en $t_0 \implies f = o(\lambda g)$ et $\lambda f = o(g)$ en t_0 .
- 2) $f_1 = o(g_1)$ et $f_2 = o(g_2)$ en $t_0 \implies f_1 + f_2 = o(g_1 + g_2)$ en t_0 .
- 3) f = o(g) et g = o(h) en $t_0 \implies f = o(h)$ en t_0 .
- 4) Soit $\phi : \mathbb{R} \to \mathbb{R}$ une application telle que $\lim_{t \to t_1} \phi(t) = t_0$.

$$f = o(g)$$
 en $t_0 \implies f \circ \phi = o(g \circ \phi)$ en t_1 .

5) Soit $\phi : \mathbb{R} \to \mathbb{R}$ une application.

$$f = o(g)$$
 en $t_0 \implies \phi \circ f = o(\phi \circ g)$ en t_0 .

Mêmes questions pour \mathcal{O} à la place de o.

Exercice 3. Soit E un espace vectoriel normé et $f: \mathbb{R} \to E$. On dit que f est continue en $t_0 \in \mathbb{R}$ si et seulement si $\forall \varepsilon > 0, \exists \alpha > 0$ tel que : « si $s \in \mathbb{R}$ est tel que $|t_0 - s| < \alpha$, alors $||f(t_0) - f(s)|| < \varepsilon$ ».

On suppose f continue en 0; montrer que pour toute suite $t_k \to 0$, on a $||f(t_k) - f(0)|| \to 0$.

Exercice 4. Soit $\ell^{\infty}(\mathbb{N};\mathbb{R})$ l'ensemble des suites bornées $(x_n)_{n\in\mathbb{N}}$ à coefficients réels.

- 1. Montrer que $E:=\ell^{\infty}(\mathbb{N};\mathbb{R})$ est un espace vectoriel sur \mathbb{R} .
- 2. Montrer que $(x_n)_{n\in\mathbb{N}}\mapsto \sup_n|x_n|$ est une norme sur E, qu'on notera $\|(x_n)\|_{\infty}$.
- 3. On considère l'application $f: \mathbb{R} \to E$ définie par

$$t \mapsto f(t) := (e^{-nt^2})_{n \in \mathbb{N}}.$$

Montrer que f n'est pas continue en 0 pour la norme $\|\cdot\|_{\infty}$.

Exercice 5. Montrer que l'ensemble des suites réelles qui convergent vers 1 est naturellement un espace affine. Donner une norme sur l'espace vectoriel associé.