

Durée: 1h.

Les documents (cours, TD, ...) et les appareils (calculatrice, téléphones, ...) ne sont **pas** autorisés. Chaque réponse devra être soigneusement justifiée.

Exercice 1. 8 points.

- 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par $f(x,y) = (\sin(x+y), 2xy^3, ye^x)$.
 - (a) Montrer que f est de classe C^{∞} sur \mathbb{R}^2 .
 - (b) Calculer les dérivées partielles $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ en un point $z_0 = (x_0, y_0)$ et écrire la matrice jacobienne.
 - (c) Rappeler le lien entre dérivées partielles et différentielle et donner la valeur de $Df(x_0, y_0)(h)$ pour un vecteur $h = (h_1, h_2)$ quelconque.
 - (d) Ecrire l'approximation de $f(z_0 + h)$ fournie par la différentielle lorsque h est petit et donner la version matricielle.
- 2. Soit $g: \mathbb{R}^3 \to \mathbb{R}^2$ la fonction définie par $g(u, v, w) = (2u + uv^2w^3, ue^v)$. Calculer la matrice jacobienne de g.
- 3. Calculer les dérivées partielles de $f \circ g$ au point p = (1, 0, 3).

Exercice 2. 7 points.

Soit $E = C^0([0,1], \mathbb{R})$ muni de la norme uniforme $\|.\|_{\infty}$. Soit F un espace de Banach et $\varphi : \mathbb{R} \to F$ une application de classe C^2 . On définit $T : E \to F$ par

$$\forall f \in E, \quad T(f) := \int_0^1 \varphi(f(t)) \, \mathrm{d}t.$$

- 1. Montrer que T est bien définie pour tout $f \in E$.
- 2. Montrer que T est continue.
- 3. Montrer que T est différentiable que sa différentielle en tout point $f \in E$ est donnée par

$$\forall h \in E, \quad DT(f) \cdot h = \int_0^1 h(t) \cdot \varphi'(f(t)) dt.$$

(On pourra utiliser une formule de Taylor.)

4. Expliciter les formules obtenues pour T(f) et $DT(f) \cdot h$ lorsque $\varphi(x) = x^3 - 2x^2 - x$, et $F = \mathbb{R}$.

Exercice 3. 5 points.

On munit $E = \mathbb{R}^n$ de la norme $\|(x_1, \dots, x_n)\|_1 = \sum_{i=1}^n |x_i|$.

- 1. Soit $A \in M_n(\mathbb{R})$ une matrice $n \times n$, qu'on identifiera avec l'application linéaire $E \ni X \mapsto AX \in E$. Calculer sa norme subordonnée en fonction de ses coefficients $(a_{i,j})$.
- 2. On considère l'application « transposée » de $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ qui à A associe tA . Est-elle continue? Quelle est sa norme?