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Abstract. We consider the Schrödinger evolution of strongly localized wave pack-
ets under the magnetic Laplacian in the plane R2. When the initial energy is low,
we obtain a precise control, in Schwartz seminorms, of the propagated states for
times of order 1/~, where ~ is Planck’s constant. In this semiclassical regime, we
prove that the initial particle will always split into multiple coherent states, each
one following the average dynamics of the guiding center motion but at its own
speed, demonstrating a purely quantum ‘ubiquity’ phenomenon.

1. Introduction

1.1. Motivation. The aim of this article is to study the propagation of coherent
states in the 2-dimensional plane, subject to a strong magnetic field B. In general,
a magnetic field is a closed 2-form; in R2, it is naturally identified with a function
B : R2 → R. In this article, B will be a C∞ smooth, non vanishing function. From
the Poincaré lemma, one can find a smooth function A : R2 → R2, the magnetic
potential, such that

dA := ∂2A1 − ∂1A2 = B.

The classical magnetic Hamiltonian is

H : R2 × R2 3 (q, p) 7→ ‖p− A(q)‖2 ∈ R,

giving rise to the Hamiltonian flow Φt
H(q0, p0) = (q(t), p(t)) defined by Hamilton’s

equations

(1.1)

q̇(t) = ∂H
∂p

(q(t), p(t))
ṗ(t) = −∂H

∂q
(q(t), p(t)),

with initial condition q(0) = q0, p(0) = p0. The corresponding quantum operator, or
magnetic Laplacian, is the differential operator given by

(1.2) L~,A := ‖ − i~∇− A(q)‖2 := (−i~∂1 − A1(q))2 + (−i~∂2 − A2(q))2 .
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It is well known that L~,A, as an unbounded operator acting on L2(R2), is essentially
self-adjoint [22], and one can define the associated Schrödinger unitary group on
L2(R2) given by

(1.3)

i~∂tϕt~ = L~,Aϕ
t
~

ϕt=0
~ = ϕ0

~

We shall consider the case where the initial quantum state ϕ0
~ is coherent, which

means strongly localized in phase space (see Section 2). The general semiclassical
theory states that, for finite times (by finite, we mean a time t that does not depend
on ~), the quantum evolution (1.3) closely follows the classical trajectories (1.1),
in the regime where ~ is small. Early works in semiclassical physics and chemistry
emphasize the importance of this idea, see [20, 25]. More precisely, one can define the
classical limit (or semiclassical wavefront set, see Definition 2.16) of a coherent state;
this is a position z = (q, p) in phase space. Then, if z0 denotes the classical limit
of the initial quantum state ϕ0

~, Egorov’s theorem (Proposition 2.9) ensures that the
classical limit of ϕt~ coincides with the flow at time t of the classical Hamiltonian
starting from z0. See for instance [13, 5] for a mathematical account of this in the
case of electric potentials, or [35, 46] for a more general formulation.

However, for long times, i.e. times that tend to infinity when ~→ 0, most of the
results break down. In many cases, the non-commutativity of the limits ~ → 0 and
t→∞ is simply inextricable, at least beyond the so-called Ehrenfest time t � |ln ~|.
The importance of the Ehrenfest time, in relation to classical dynamics, is not to
be demonstrated anymore, in particular in the presence of chaotic dynamics, where
it plays a major role in the understanding of the Gutzwiller trace formula, see for
instance [41, 36, 11, 44] and the many reference therein. In this paper, we will
investigate the propagation of a coherent quantum wave packet under the action of
strong magnetic fields, for times of order t � 1/~. How is this possible?

Classical trajectories of a charged particle under a strong magnetic field have a
distinctive feature: they can be approximately described as a superposition of a fast
rotation motion (cyclotron, or Larmor motion) with a slow drifting motion (often
called the guiding center motion [24]), see Figure 1. If the energy of the initial state is
small enough, then this guiding center motion can be controlled, and the fast rotation
is almost decoupled, giving rise to an adiabatic invariant (see the classical book [28],
or the recent review [6]). Then, since we work on a two-dimensional plane, the
motion becomes nearly integrable. For general Hamiltonian systems, it is expected
— at least in the sense of semiclassical measures, see [1, 26, 2] — that the control
on the classical dynamics offered by the integrability permits the treatment of longer
times for the associated quantum problem, see also [39, 40]. Thus, for a low energy
motion under a strong magnetic field, even though the magnetic Hamiltonian is in
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Figure 1. Motion of a classical particle in a strong magnetic field. The
particle oscillates around a level line of B. Here B(q1, q2) = 2−cos(q1)+q2

2.

general neither classically or quantum mechanically integrable, this near-integrability
is a crucial element in an attempt to explain why it is possible to describe the motion
for such long times.

1.2. Mathematical background. We shall assume that the magnetic field B and
its derivatives have at most polynomial growth at infinity, in the sense that B belongs
to a symbol class S(m) for some order function m on R2 (see Section 2.2). For
instance, m(q) = (‖q‖2 + 1)M for some M ∈ R. Then one can find a potential A
lying in some S(m′), with an order function m′ on R2, showing that H ∈ S(m′′) for
an order function m′′ on R4. The magnetic Laplacian defined in (1.2) is the natural
symmetric (Weyl) quantization of H, acting of the Schwartz space S (R2):

L~,A := Opw~ (H).

Since L~,A is essentially self-adjoint on L2(R2) we will identify L~,A with its self-
adjoint extension, and we may now consider the magnetic Schrödinger evolution
equation (1.3), where ϕ0

~ ∈ S (R2). From Stone’s theorem (see e.g. [34]), there is
a unique continuous family of unitary operators (P t)t∈R satisfying the propagation
equation i~∂tP t = L~,AP

t

P t=0 = idL2(R2)
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and for any t ∈ R, the solution to (1.3) is given by ϕt~ := P tϕ0
~. In this work, ϕ0

~
will be a coherent state in a generalized sense, as follows (see Section 2 for a precise
definition).

Defining for ~ > 0 and z = (q, p) ∈ R2 × R2 the rescaled translation operator

T~(z) ◦ Λ~ : L2(R2) 3 f 7→
[
x 7→ 1√

~
e−

i
2~ q·pe

i
~x·pf

(
x− q√

~

)]
a state ϕz will be called a coherent state if one can find a function f ∈ S (R2) with
normalized L2-norm, a family of functions (g~)~∈(0,~0) ∈ S (R2) with seminorms that
are uniformly bounded in ~, and a real number β > 0, such that

ϕz := T~(z)Λ~ · (f + ~βg~).
Such a coherent state is said to be centered at z in phase space. We denote by C the
set of coherent states. Since we are interested in the propagation of quantum states
with low energy, we shall consider coherent states centered at a vanishing point of
the Hamiltonian H, i.e. z ∈ Σ with

Σ := H−1({0}) =
{

(q, A(q)) | q ∈ R2
}
⊂ R2

q × R2
p.

On this smooth surface we define the pull-back B̃ of the magnetic field B as follows.
Let j be the projection

j : Σ 3 (q, A(q)) 7→ q ∈ R2
q.

Since Σ is the graph of the function A, j is invertible and then we can view the
magnetic field as a function on Σ via

B̃ := B ◦ j
One can check that, when B is non-vanishing, Σ is a symplectic submanifold of the
canonical phase space R2 ×R2 = T ∗R2 (in fact, the restriction to Σ of the canonical
symplectic form on T ∗R2 is exactly the pull-back j∗(Bdq1 ∧ dq2)). Hence B̃ is now
a Hamiltonian on Σ and we can consider its Hamiltonian flow Φt

B̃
. A basic result in

magnetic dynamics (see also [33]) is that this flow gives a good approximation of the
guiding center motion. In this work, in order to simplify notations, we will assume
without loss of generality that B is positive.

1.3. Description of the main results. The main goal is to prove the following
fact. Let ϕ0

~ be a coherent state centered at a point z in the characteristic surface
Σ. Classically, this state cannot move because it has zero kinetic energy. However,
due to the uncertainty principle, the quantum state lives on a ball of radius � ~1/2

around z, and so almost all the points in this ball will actually move slowly, at various
speeds of order ~, with a precise factor depending on the distance to Σ. But, because
of energy quantization, the involved speeds will actually be quantized: only integer
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multiples of ~B0, for some positive constant B0, will play a part. Thus, the initial
state will be split into a number of new coherent states evolving at theses speed
scales, becoming genuinely separated from each other after a time of order � ~−1.

Theorem 1.1. There exists a self-adjoint pseudodifferential operator J~ (the ‘Quan-
tum adiabatic invariant’) on L2(R2) such that for any α ∈ (0, 1) and K > 0, if J~ ∈ N
is a family of integers satisfying J~ > K~−α, then the following holds.
Let ϕ0

~ ∈ C be a coherent state centered in z0 ∈ Σ = H−1(0) and consider its
propagation (ϕt~)t∈R through the Schrödinger equation (1.3):

∀t ∈ R, ϕt~ := P tϕ0
~.

Then ϕt~ can be decomposed as follows:

(1.4) ϕt~ =
J~∑
j=0

αjϕ
t
j,~ + rt~

where (αj)j∈N ∈ `2(R+), there exists T > 0 such that the remainder rt~ satisfies, for
any N ∈ N,
(1.5) sup

t∈[0,T/~]
‖(L~,A)Nrt~‖L2(R2) = O(~∞),

and the ϕtj,~ have the following properties.
(1) ∀j > 0, αjϕtj,~ is the orthogonal projection of ϕt~ onto ker(J~ − (2j + 1)~);
(2) ∀t̃ ∈ [0, T ],

(1.6) ϕ
t̃/~
j,~ ∈ C;

(3) we can follow the center of these coherent states : for any t̃ ∈ [0, T ], we have

(1.7) WF
(
ϕ
t̃/~
j,~

)
=
{
z((2j + 1)t̃)

}
where z(t̃) := Φt̃

B̃
z0, and Φt̃

B̃
is the Hamiltonian flow of B̃ on Σ.

Here, WF(f) denotes the semiclassical wavefront set of the function f ∈ S (R2),
see Definition 2.16 below. The quantum adiabatic invariant J~ corresponds to the
pure cyclotron motion that one would obtain for a homogeneous magnetic field of
strength 1. Its spectrum consists of the eigenvalues {(2j + 1)~; j ∈ N}, and the
corresponding eigenspaces

Hj,~ = ker(J~ − (2j + 1)~)
are infinite dimensional Hilbert spaces that one can call the adiabatic Landau levels of
the system. Up to an error of size O(~∞), these spaces are preserved by the quantum
dynamics. We see from (1.7) that the “adiabatic value” (2j + 1)~ is coupled with
the original dynamics in that it defines a quantized speed of motion for a coherent
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state living in Hj,~. Since, to the best of our knownledge, the description given
by Theorem 1.1 is new, it would be very interesting to observe this quantization
effect in a (real or numerical) experiment; but the long time ~−1 clearly poses serious
numerical challenges.

Notice that the remainder in (1.5) is controlled in terms of the obvious Sobolev-like
norms that are preserved by the dynamics: the L2-norms of arbitrary powers of the
magnetic Laplacian (which, in particular, control the quadratic form 〈L~,Aψ, ψ〉, and
hence, by the Cauchy-Schwarz inequality, the norm of the usual magnetic Sobolev
spaceH1

A, where derivatives are replaced by magnetic derivatives ~∂j+Aj). But recall
that L~,A is not elliptic in the semiclassical sense, since the characteristic manifold
Σ extends to infinity in q. Therefore, if one is interested in quantum transport or,
rather, quantum localization, it is in general an important, non obvious question to
check whether, and to which extent, these norms can be compared to more ’localized’
norms like Schwartz seminorms or standard Sobolev norms. The answer is expected
to depend on the geometry of the magnetic field. Recently, the control of Schwartz
seminorms has been obtained in [4], under the assumption that the magnetic field is
uniformly non-vanishing, and satisfies the following property.

(P) : for all α ∈ N2, there exists C > 0 such that, for all x ∈ R2,
‖∂αB(x)‖ 6 C‖B(x)‖.

This assumption states that the derivatives of the magnetic field are controlled
by the magnetic field itself, preventing B from ‘oscillating too much’ at infinity.
It appears to be rather known and used in literature. In dimension d > 3, this
property is crucial to obtain that, under some ellipticity condition, L~,A has compact
resolvent and hence no essential spectrum; and if these ellipticity conditions do not
hold, there is a rather precise description of the essential spectrum (see [3, 18]). The
lower bound at the bottom of the essential spectrum of L~,A obtained in [19] is an
important ingredient in the localization estimates of [4].

In general, Property (P) is optimal to prove the compactness of the resolvent: in
the paper [10], the author constructs a magnetic field that does not satisfy this prop-
erty and such that L~,A, while enjoying some ellipticity properties, has no compact
resolvent. On the other hand, in dimension 2, the diamagnetic inequality gives an
immediate lower bound on the essential spectrum without needing (P). It would be
interesting to investigate whether, in dimension 2, the localization estimates of [4]
could be obtained under a weaker condition than (P).

In this work, we take advantage of the results of [4] to obtain a stronger estimate
of the remainder rt~ in Theorem 1.1, as follows.
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Theorem 1.2. With the same notations as in Theorem 1.1, for a magnetic field B
satisfying the above property (P), assuming that there exists b0 > 0 such that
(1.8) ∀q ∈ R2, B(q) > b0 ,

we get the following estimate of rt~ : given any T ∈ R and any Schwartz seminorm
p, we have
(1.9) sup

t∈[0,T/~]
p(rt~) = O(~∞) .

We surmise that this result does not hold for general magnetic fields B. Although
the control in terms of Schwartz seminorms is much more satisfying in the setting
of coherent states, the price to pay for this is that the proof of Theorem 1.2 is
substantially more involved than the proof of Theorem 1.1.

1.4. Organization of the article. In section 2, we define the class of coherent
states that we will use, and we present some facts about their propagation. We will
prove some short time propagation properties for these coherent states and some
long-time estimates in the case of coherent states centered at a critical point of the
classical dynamics. In section 3, we introduce the symplectic and quantum magnetic
normal forms, which are here the main tools to study the long time dynamics. In
section 4, we prove Theorems 1.1 and 1.2.

2. A general class of coherent states and related propagation
results

The goal of this section is to introduce a class of ‘coherent states’, which is large
enough to contain the usual ones (such as the Gaussian coherent states and the
squeezed ones — see for instance [7]), but also more flexible, allowing to replace
exponential localization by a softer Schwartz-like ‘rapid decay’. As the following
discussion holds in any dimension, in this paper we will not limit ourselves to the
dimension 2, but we will consider instead the general dimension n. Recall that the
Schwartz space S (Rn) has the Fréchet topology induced by the seminorms
(2.1) pm,N(f) := sup

x∈Rn
α∈Nn,|α|6m
β∈Nn,|β|6N

∣∣∣xβ∂αf(x)
∣∣∣ , m,N ∈ N.

2.1. Definition of the class. We consider first s[n], the set of shapes of coherent
states defined as follows.
Definition 2.1. We say that f~ ∈ s[n] if and only if one can find f ∈ S (Rn) with
‖f‖L2(Rn) = 1, a family (g~)~∈(0,~0) ⊂ S (Rn) with seminorms uniformly bounded with
respect to ~, and a real number β > 0 such that

f~ = f + ~βg~.
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In the definition below, we use the following unitary operators on L2(Rn): the
rescaling operator

(Λ~u)(x) = 1
~n/4

u

(
x√
~

)
and the translation operator

∀z = (q, p) ∈ R2n, (T~(z)u)(x) = e−
i

2~ q·pe
i
~x·pu(x− q) .

Definition 2.2. A coherent state ϕ~ in the class C[n] is given by its center z in the
phase space R2

q × R2
p, a phase δ ∈ R and a shape f~ ∈ s[n] by the formula

ϕ~ = e−iδ/~ T~(z)Λ~ · f~.
In other words, we have

C[n] :=
{
ϕ~ = e−iδ/~ T~(z)Λ~ · f~

∣∣∣ δ ∈ R, z ∈ R2n, f~ ∈ s[n]
}
.

We will denote C := C[2]. In this text, unless explicitly stated, the expression
‘coherent state’ will always refer to an element of C. This definition mildly generalizes
the ones in [13], [8] or [5], that only allow a ~ independent part in the shape f~. In
[31, 29], the author uses a full expansion in ~1/2 for the shape in S (Rn) in the
Borel sense. In this paper, the shape of the coherent state admits an expansion at
the first order in any ~β in the shape, β > 0, bounded in ~ in S (Rn). Finally, an
interesting thing in this definition is that, using results in [7, 8, 37], under short-time
propagation this class must remain stable. This point will be dealt with in what
follows.

2.2. Propagation results. A first and natural question is ‘How is such a coherent
state propagated for finite times?’. The propagation of coherent states has been
widely studied over the last few decades. A lot of results are related to approximation
of the propagation of coherent states by sums of coherent states whose parameters
depend on time. In [13, 14, 15] we find such propagation results for finite times and
for Gaussian like coherent states, defined as the squeezed states in [8]. In [16, 17],
the authors investigate the propagation for longer times, reaching Ehrenfest times,
i.e. times of order | log(~)| and the bounds in these approximations are precised in [7]
in terms of the the linearized flow around the underlying classical dynamics, using
the well-known propagation of purely Gaussian coherent states through quadratic
Hamiltonians and the theory of metaplectic operators. One can find a precise review
of the quadratic propagation of coherent states in [36, 29]. In [43] the authors
investigate expansion in power of ~ instead of ~1/2 of the dynamics of coherent states
defined in the formalism of Lagrangian states. Nevertheless, due to the analysis of
the turning points, this study holds for short times in the propagation. Finally, we
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can state the work done in [30, 31] where the authors use coherent states and their
propagation in order to build quasimodes for general Schrodinger operators

We now present some facts about the propagation of coherent states in the class
C[n], and some Schwartz estimates of these propagations. Our goal is not to approx-
imate the propagation by expansions of coherent states but, because of the general
definition of the shape f~, to turn these results into a stability property of the class
through finite time propagation. We also give estimates on these propagations. To
do so, it will be convenient to introduce the semiclassical Sobolev spaces, which are
more suitable for pseudodifferential computations. We recall here their definition,
and refer to [46, Chapter 8] for a more detailed presentation.

An order function on R2n is a function m : R2n → R for which there is an integer
N and a constant C > 0 such that for any X, Y ∈ R2n

m(X) 6 C〈X − Y 〉Nm(Y )
where 〈X〉 := (1 + ‖X‖2)1/2, ‖ · ‖ denoting the euclidian norm on Rn (see for in-
stance [9, Definition 7.4]). The symbol class associated with this function is

S(m) :=
{
a ∈ C∞(R2n;R) | ∀α ∈ N2n, ∃Cα > 0,∀X ∈ R2n , |∂αa(X)| 6 Cαm(X)

}
.

One can find an order function m̃ such that S(m̃) = S(m) and m̃ ∈ S(m̃); therefore
we will always assume that the order function m lies in its own class, i.e.
(2.2) m ∈ S(m).
Given an ‘observable’ a ∈ S(m), its Weyl quantization is the operator

[Opw~ (a)ψ](x) := 1
(2π~)n

∫∫
R2n

e
i
~ (x−y)ηa

(
x+y

2 , η
)
ψ(y)dy dη

for ψ ∈ S (Rn). Let g := log(m) and gw := Opw~ (g); the exponential e±gw is a
pseudodifferential operator with symbol c± ∈ S(m).

Definition 2.3. The generalized Sobolev space associated with m is given by

H~(m) :=
{
u ∈ S ′(Rn) | egwu ∈ L2(Rn)

}
and the norm on H~(m) is defined by

‖u‖H~(m) = ‖egwu‖L2(Rn).

We have the following equivalence of seminorms.

Lemma 2.4. Let p be a Schwartz seminorm. One can find two order functions m
and m̃ satisfying (2.2) and C > 0 such that for any u ∈ S (Rn) and ~ ∈ (0, 1],

1
C
‖u‖H~(m) 6 p(u) 6 C‖u‖H~(m̃).
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Operators with a symbol in S(m) map the Schwartz space to itself and, more
precisely, the continuity between semiclassical Sobolev spaces is given by the following
proposition.

Proposition 2.5. Given two order functions m1, m2, if a ∈ S(m1), then

Opw~ (a) : H~(m2)→ H~

(
m2

m1

)
defines a continuous operator uniformly for ~ ∈ (0, 1], such that as ~→ 0

‖Opw~ (a)‖H~(m2)→H~(m2/m1) = O(1).

The following well-known (and straightforward) lemma will be repeatedly used to
deal with the

√
~-localization of coherent states.

Lemma 2.6. Let c ∈ S(m), for some order function m on R2n. Then(
T~(z)Λ~

)−1
Opw~ (c)T~(z)Λ~ = Opw~=1(c1),

where c1(X) := c(z +
√
~X) (and hence c1 ∈ S(m)).

We can now prove some propagator estimates.

Lemma 2.7. Let z ∈ R2n and ~ > 0. Then for any f, ϕ ∈ S (Rn), for any order
function ν on R2n,

‖T~(z)Λ~f‖H~(ν) 6 C1‖f‖H1(ν)

and ∥∥∥∥(T~(z)Λ~

)−1
ϕ
∥∥∥∥

H1(ν)
6 C2‖ϕ‖H~(ν)

with C1, C2 independent of ~, and H1(ν) := H~=1(ν).

Proof. Let f , z, ν as above. Let γ := log(ν), and γw := Opw~ (γ), γw1 := Opw~=1(γ).
Then, using the unitarity of T~(z)Λ~,

‖T~(z)Λ~f‖H~(ν) =
∥∥∥∥(T~(z)Λ~

)−1
eγ

w

T~(z)Λ~e
−γw1 eγ

w
1 f

∥∥∥∥
L2(Rn)

.

Since e±γw = Opw~ (c±) with c± ∈ S
(
ν±1

)
, Lemma 2.6 gives(

T~(z)Λ~
)−1

eγ
w

T~(z)Λ~ = Opw~=1(c1)

with c1 : X 7→ c(z +
√
~X), c1 ∈ S(ν). Therefore,(
T~(z)Λ~

)
eγ

w

T~(z)Λ~e
−γw1 = Opw~=1(c1)e−γw1
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is bounded on L2(R) because it is a pseudodifferential operator with a symbol in
S(1). Finally,

‖T~(z)Λ~f‖H~(ν) 6 ‖Opw~=1(c1)e−γw1 ‖L2(Rn) ‖f‖H1(ν).

For the reverse inequality, we can write∥∥∥∥(T~(z)Λ~
)−1

ϕ
∥∥∥∥

H1(ν)
= ‖T~(z)Λ~e

γw1
(
T~(z)Λ~

)−1
e−γ

w

eγ
w

ϕ‖L2(Rn).

But,
T~(z)Λ~e

γw1
(
T~(z)Λ~

)−1
= Opw~ (c−1)

with
c−1 : X 7→ c

(
X − z√

~

)
,

The symbol c−1 belongs to the ‘limit’ class S1/2(ν) (see [46, Chapitre 4] for a definition
and the related theory). Thus, Opw~ (c−1)Opw~ (c−) is a pseudodifferential operator
with a symbol in S1/2(1), and from the Calderon-Vaillancourt theorem it defines a
bounded operator on L2(Rn). Finally,

‖
(
T~(z)Λ~

)−1
ϕ‖H1(ν) 6 ‖Opw~ (c−1)e−γw‖L2(Rn)‖ϕ‖H~(ν),

which concludes the proof. �

We prove now the following continuity property of bounded propagators on gen-
eralized Sobolev spaces.

Lemma 2.8. Let (Ht)t∈[0,1] be a real-valued time-dependent family of Hamiltonians.
We assume (Ht)t∈[0,1] to be continuous in time and to lie in S(1) uniformly in times.
Then there exists a family (U~(t, s))t,s∈[0,1] of unitary operators on L2(Rn) satisfying

(1) U~(0, 0) = idL2(Rn) and for any r ∈ [0, 1],

U~(t, s) = U~(t, r)U~(r, s);
(2) U~(·, ·) is strongly continuous on L2(Rn);
(3) for any ψ ∈ L2(Rn) and any s ∈ [0, 1], the map t 7→ U~(t, s)ψ is differentiable,

and satisfies
(2.3) i~∂tU~(t, s)ψ = Opw~ (Ht)U~(t, s)ψ in L2(Rn) ,
and this family is unique. Moreover, for any order function ν, for any ϕ ∈ S (Rn),
we have

‖U~(t, 0)ϕ‖H~(ν) 6 C‖ϕ‖H~(ν)

where C is ~-independent.



12 GRÉGORY BOIL, SAN VŨ NGO. C

Proof. We consider the equation

(2.4) i~∂tU~(t, 0)ϕ = Opw~ (Ht)U~(t, 0)ϕ ϕ ∈ S (Rn).

Let ν be an order function on T ∗Rn. Since Ht ∈ S(1) uniformly for t ∈ [0, 1],
Opw~ (Ht) defines a continuous linear operator on H~(ν) with a uniform bound for
t ∈ [0, 1]. So, considering (2.4) as an EDO with values in H~(ν), the Cauchy-
Lipschitz theorem gives us a unique solution (U~(t, 0)ϕ) ∈ C1([0, 1],H~(ν)), with
(U~(t, s))(t,s)∈[0,1] satisfying the above assumptions (1), (2) and (3). One should re-
mark that U~(t, 0) then defines an operator in C1([0, 1],L(H~(ν))), that is unitary for
ν = 1, i.e. on L2(Rn). In order to prove the announced estimate, let now γ := log(ν)
and γw := Opw~ (γ). We set also Uγ

~ := eγ
w
U~e

−γw , and Ĥγ
t := eγ

wOpw~ (Ht)e−γ
w , so

that Uγ
~ ∈ C1([0, 1],L(L2(Rn))) and Ĥγ

t is a pseudodifferential operator with symbol
in S(1) such that

i~∂tUγ
~ (t, 0) = Ĥγ

t U
γ
~ (t, 0) and − i~∂tUγ

~ (t, 0)∗ = Uγ
~ (t, 0)∗Ĥ−γt .

Then we have for ϕ ∈ L2(Rn),

i~∂t ‖Uγ
~ (t, 0)ϕ‖2

L2(Rn) =
〈
Uγ
~ (t, 0)∗e−γw [e2γw ,Opw~ (Ht)]e−γ

w

Uγ
~ (t, 0)ϕ0, ϕ0

〉
L2(Rn)

(2.5)

= ~ 〈ηw(t)Uγ
~ (t, 0)ϕ,Uγ

~ (t, 0)ϕ〉L2(Rn)

where ηw(t) := Opw~ (η(t)) = i
~e
−γw [e2γw ,Opw~ (Ht)]e−γ

w whose symbol η(t) belongs to
S(1) uniformly in time. Therefore ηw(t)Uγ

~ (t, 0)ϕ ∈ L2(Rn), which justifies the above
computation. Then by Proposition 2.5, we have

∂t‖Uγ
~ (t, 0)ϕ‖2

L2(Rn) 6 ‖η
w(t)‖L2(Rn)→L2(Rn)‖U

γ
~ (t, 0)ϕ‖2

L2(Rn)

which implies

‖Uγ
~ (t, 0)ϕ‖L2(Rn) 6

(
exp

∫ 1

0
‖ηw(s)‖L2(Rn)→L2(Rn) ds

)
‖ϕ‖L2(Rn).

Considering now ψ ∈ H~(ν) and ϕ = eγ
w
ψ proves the result. �

We now turn to the propagation of coherent states for finite times. The following
proposition generalizes to the class C[n] the result obtained by Robert for Gaussian
states (see [8, Section 4.3.1]).

Proposition 2.9. Let (Ht)t∈[0,1] and the associated propagator
(
U~(t, s)

)
t,s∈[0,1]

be as
in Lemma 2.8. Consider the associated Hamiltonian flow ΦH : [0, 1] × R2n → R2n.
Then, for a coherent state ϕ~ ∈ C[n] centered at z0 ∈ R2n, the state ψ~ := U~(1, 0)ϕ~
is still a coherent state in C[n], centered at z1 := Φt=1

H (z0).
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Proof. Let
ϕ~(t) = U~(t, 0)ϕ~ and ψ~ = ϕ~(1).

Since ϕ~ ∈ S (Rn), from Lemma 2.8 we know that, for all t in [0, 1], ϕ~(t) ∈ S (Rn).
Because ϕ~ ∈ C[n], there are f0

~ ∈ s[n], δ0 ∈ R and z0 ∈ R2n such that
(2.6) ϕ~ = e−iδ0/~ T~(z0)Λ~(f + ~βg~),
β > 0, f ∈ S (Rn) and (g~)~∈(0,~0) ⊂ S (Rn) (see Definition 2.2). Let (zt)06t61 denote
the classical evolution from z0 led by the time-dependent Hamiltonian (Ht)06t61,

∀t ∈ [0, 1], zt = Φt
H(z0).

As (Ht)t∈[0,1] lies uniformly in times in S(1), the corresponding Hamiltonian vector
field is uniformly bounded in times, that ensures us the global existence of the flow
(Φt

H)t∈[0,1]. Introducing the action integral

δt := δ0 +
∫ t

0
(ps · q̇s −Hs(zs))ds−

1
2(qt · pt − q0 · p0),

we define
(2.7) v~(t) := e−iδt/~Λ−1

~ T~(−zt)U~(t, 0)ϕ~(0).
We establish the propagation equation of v~(t). Noting that ∀ψ ∈ S (Rn),

∂t
(
T (zt)ψ

)
(x) =

[
T~(−zt)

(
− i
~

(
q̇tpt − qtṗt

2 + ṗt · x+ q̇t · i~∇x

))
ψ
]

(x)

and by the differentiability property (2.3),

i∂tv~(t) = 1
~

Λ−1
~ T~(−zt)Opw~ (Ht)T~(zt)Λ~

− Λ−1
~

(
Opw~ (x)∂qHt(zt)−Opw~ (ξ)∂pHt(zt)

)
Λ~ −Ht(zt)

v~(t)
where (x, ξ) = X ∈ R2n. Since

Λ−1
~ T~(−zt)Opw~ (Ht)T~(zt)Λ~ = Opw~ (X 7→ Ht(zt +

√
~X)),

we are naturally led to Taylor expanding the function X 7→ Ht(zt +
√
~X) around

the point zt; let
K2(t,X) := XTHess(Ht, zt)X

and let R(3)
~ be the integral remaining term of order 3 in this Taylor expansion. We

obtain i∂tv~(t) = Opw~=1

(
K2(t,X) +

√
~R(3)

~ (t,X)
)
v~(t)

v~(t = 0) = f + ~βg~



14 GRÉGORY BOIL, SAN VŨ NGO. C

Recall, from the definition (2.7) of v~(t), that this equation admits a propagator
P1(·, ·) given by

P1 : (t, s) ∈ [0, 1]2 7→ P1(t, s) =
(
T~(zt)Λ~

)−1
U~(t, s)T~(zt)Λ~.

From this formula, P1 inherits the group and strong continuity properties of U~.
Moreover, it defines a map from S (Rn) to itself that satisfies, for any v ∈ S (Rn),

i∂tP1(t, 0)v = Opw~=1

(
K2 +

√
~R(3)

~

)
v ,

and from Lemma 2.7 and Lemma 2.8, for any order function ν,
‖P1(t, 0)v‖H1(ν) 6 C‖v‖H1(ν) ,

where C is time and ~ independent. We consider now the following propagation
equation in v(0):

(2.8)

i∂tv(0)(t) = Opw~=1(K2(t, ·))v(0)(t)
v(0)(t = 0) = f

.

Since it is defined by a time-dependent quadratic Hamiltonian, we may apply the
result of [7, Theorem 2.8], which asserts that the propagator is well-defined as long as
the classical flow zt exists. Hence for t ∈ [0, 1], Equation (2.8) admits a propagator
(Pq(t, s))t,s∈[0,1] (where the subscript q stands for ‘quadratic’), which is smooth in t
and unitary on L2(Rn), satisfying

Pq(t, r)Pq(r, s) = Pq(t, s).
In order to prove that Pq acts on S (Rn), we will use Gaussian coherent states. Let
G0 be the normalized Gaussian on Rn,

G0(X) = 1
πn/4

e−
X·X

2

and define
Gz̃ := T~=1(z̃)G0.

Since Pq(t, 0)f ∈ L2(Rn), the resolution of identity property of Gaussian coherent
states gives

(2.9) Pq(t, 0)f =
∫
R2n
〈f, Pq(t, 0)∗Gz̃〉Gz̃dz̃.

From [8, Chapter 3, Theorem 16], there is a differentiable map
t ∈ [0, 1] 7→ Γt ∈ Π+

n

where Π+
n is the Siegel space of complex and symmetric matrices with positive-definite

imaginary part, such that,
Pq(t, 0)Gz̃ = GΓt

z̃t .
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Here we have denoted, for Γ ∈ Π+
n ,

GΓ
0 (X) = aΓe

−iX·ΓX2 ,

where aΓ is the L2-normalization constant and z̃t corresponds to the Hamiltonian
flow of the quadratic Hamiltonian starting from z̃. Since f ∈ S (Rn) we can, for any
t ∈ [0, 1], integrate by parts and obtain, for any integer N > 0

〈f,Gz̃t〉L2 6
CN(f,Γt)
〈z̃t〉N

.

This ensures, from usual theorems of derivation under the integral (2.9), that

[0, 1] 3 t 7→ Pq(t, 0)f ∈ S (Rn)

is continuous. We now prove that such a quadratic propagator satisfies the Schwartz
estimates as in Lemma 2.8. To do so, considering ν an order function, γ := log(ν),
and γw1 := Opw~=1(γ), we have for any Schwartz function f ,

‖Pq(t, 0)f‖H1(ν) = ‖eγw1 Pq(t, 0)f‖L2(Rn) 6
∫∫

R2n
|〈f,GΓt

z̃t 〉| ‖e
γw1 Gz̃‖L2(Rn)dz̃.

A computation gives (see Proposition 2.12) that there is an integer l depending only
on the order function ν such that

‖eγw1 Gz̃‖L2(Rn) 6 C〈z̃〉l,

where C is a constant depending only on ν; hence one can find an order function ν̃
such that

‖Pq(t, 0)f‖H1(ν) 6 C(ν)‖f‖H1(ν̃).

So, Equation (2.8) admits a propagator family
(
Pq(t, s)

)
t,s∈[0,1]

that satisfies the same
Schwartz continuity property as P1. For t ∈ [0, 1], let

v(0)(t) := Pq(t, 0)f ∈ S (Rn)

be the solution to (2.8); notice that v(0)(t) does not depend on ~ and satisfies, for
any t ∈ [0, 1], ‖v(0)(t)‖L2(Rn) = ‖v(0)(0)‖L2(Rn). Using now Duhamel’s principle, we
get

v~(t)− v(0)(t) = ~βP1(t, 0) g~ − i
√
~
∫ t

0
P1(t, s) Opw~=1(R(3)

~ )Pq(s, 0)fds.

From Lemma 2.8, as the Schwartz seminorms of (g~)~>0 are bounded, the same holds
for

(
P1(t, 0) g~

)
~>0

for any t ∈ [0, 1]. Since Ht ∈ S(1), it follows from Taylor’s
formula that R(3)

~ ∈ S(〈X〉2), uniformly for t ∈ [0, 1]. Therefore we may apply
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Lemma 2.4 and Proposition 2.5 to conclude, from the continuity of
(
P1(t, s)

)
t,s∈[0,1]

and
(
Pq(s, 0)

)
s∈[0,1]

with respect to (t, s) in [0, 1], that the integral

∫ t

0
P1(t, s) Opw~=1(R(3)

~ )Pq(s, 0)fds

is uniformly bounded in S (Rn) for all t ∈ [0, 1] and ~ ∈ (0, 1]. Finally, we have

v~(1) = v(0)(1) + ~β̃ g̃~

where

g̃~ := ~β−β̃P1(t, 0) g~ − i~1/2−β̃
∫ t

0
P1(t, s) Opw~=1(R(3)

~ )Pq(s, 0)fds

and β̃ := min(1/2, β), which proves v~(1) ∈ s[n] (actually we obtain v~(t) ∈ s[n] for
any t ∈ [0, 1]). Finally,

ψ~ = eiδ1/~T~(z1)Λ~v~(1)

where δ1 := δt=1 and z1 := zt=1, which establishes the announced result. �

Remark 2.10. The fact that the function f in (2.6) is normalized in L2 is not
relevant. Indeed, the proof still works for any shape function of the form f~ = f+~βg~,
where f is an ~-independent function of L2(R2), β > 0 and (g~)~>0 is a family of
functions in S (R2) with bounded seminorms, uniformly with respect to ~ ∈ (0, 1].

We now develop some very useful tools on the study of the coherent state class we
introduced earlier on, that is the Wigner transform.

2.3. Wigner transform of coherent states and applications. The main idea
of the Wigner transform is to take advantage of the strong localization of coher-
ent states (sometimes called ‘peak states’) to get estimates on pseudodifferential
operators from the associated symbol. We refer to [12] for the definition below of
the Wigner transform. In [36, 8], authors use fast decay properties of the Wigner
transform of coherent states to get strong approximation results on the propagation
of coherent states depending on the regularity of the generator of the propagation.
Here, we will take advantage of the Schwartz property of our class of coherent states
to prove some estimates on pseudodifferential operators for symbols class S(m) for
arbitrary large order functions m.

We consider a family (ϕz)z∈R2n of coherent states with the same shape: for any
z ∈ R2n, ϕz = T~(z)Λ~f~, where f~ is a given shape in s[n]. Now, let a ∈ S(m) a given
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symbol, with m(z) 6 〈z〉l for an integer l. We have

〈Opw~ (a)ϕz, ϕz′〉L2(Rn) = 2n
(2π~)n×∫

Rn

∫∫
R2n
e

2i
~ (x−ỹ)η a (ỹ, η) e− i

2~ qp+
i
~p(2ỹ−x) f~

(
2ỹ−x−q√

~

)
dỹdη e i

2~ q
′p′− i

~p
′x f~

(
x−q′√

~

)
dx ,

which leads to the following definition.

Definition 2.11. We define the Wigner function Wz,z′ associated with the family
(ϕz)z∈R2n of coherent states with shape f~ ∈ s[n] as

Wz,z′(y, η) = 2n
~n/2

e
i
~ω(Y− 1

2 z
′,z−z′)×

∫
Rn
e

2i
~ u

(
η− p+p

′
2

)
f~

y − q+q′
2 − u√
~

 f~
(
y − q+q′

2 + u√
~

)
du

where ω is the canonical symplectic form on R2n

ω((a, b), (c, d)) = b · c− a · d
and where Y := (y, η).

With this definition we have the following formula

(2.10) 〈Opw~ (a)ϕz, ϕz′〉L2(Rn) = 1
(2π~)n

∫
R2n

a(Y )Wz,z′(Y )dY ,

which highlights the Wigner function as a Kernel to compute the action of pseudo-
differential operators on coherent states. Setting

Ψ~ := (ŷ, u) ∈ R2n 7→ f~(ŷ − u)f~(ŷ + u),
Ψ~ is a Schwartz function on R2n with all Schwartz seminorm uniformly bounded
with ~ ∈ (0, ~0) and we have the shorter expression

Wz,z′(y, η) = 2n
~n/2

e
i
~ω(Y− 1

2 z
′,z−z′) ×

∫
Rn
e

2i
~ u

(
η− p+p

′
2

)
Ψ~

 u√
~
,
y − q+q′

2√
~

 du.

The goal is to use the oscillating integral structure to show some fast decay with
respect to Y − z+z′

2 and z−z′ and to prove the following key property for this article.

Proposition 2.12. Let a ∈ S(m) for an order function m on R2n satisfying for
l ∈ N, C > 0,

∀Y ∈ R2n, |m(Y )| 6 C〈Y 〉l.
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Let (ϕz)z∈R2n being a family of coherent states with shape f~ ∈ s[n]. Then we have for
ε > 0, for N ,M ∈ N large enough,

‖Opw~ (a)ϕz‖2
L2(Rn) 6 ~−3n/2Cε(f~) ‖f~‖2−ε

L2(Rn)×∫∫
R2n

∫∫
supp(a)

〈
Y − z+z′

2√
~

〉−N
dY

〈
z − z′√

~

〉−M
dz′

with
(2.11) Cε(f~) = max

α∈Nn,|α|6K

(
‖∂αa(Y )〈Y 〉−l‖L∞(Rn)

)∑
i∈I

∏
j∈J

pi,j(f~)δi,j

where K is an integer depending on N and M and I, J finite sets depending only on
N , M , l and ε, and with pi,j being some Schwartz seminorm, δi,j > 0 depending on
ε.
Remark 2.13. The parameter ε is necessary to handle the growth of the symbol
a at infinity, which is compensated by fε~. Of course, if a ∈ S(1) we don’t need
this analysis, and the result holds for ε = 0, directly from the Calderon-Vaillancourt
theorem.
Proof. Applying Plancherel’s theorem along with (2.10), we first get

‖Opw~ (a)ϕz‖2
L2(Rn)‖f~‖

2
L2(Rn) = 1

(2π~)3n

∫∫
R2n

∣∣∣∣∫∫
R2n

a(Y )Wz,z′(Y )dY
∣∣∣∣2 dz′ .

We now use the fact that the Wigner function is an oscillating integral. Noting that〈
z − z′√

~

〉−2N

· (1− ~∆Y )N · e i~ω(Y− z
′

2 ,z−z
′) = e

i
~ω(Y− z

′
2 ,z−z

′)

and, for any integer M ,〈
η − p+p′

2√
~

〉−2M

· (1− ~∆u)Me
2i
~ u·(η−

p+p′
2 ) = 2Me 2i

~ u·(η−
p+p′

2 )

we get

‖Opw~ (a)ϕz‖2
L2(Rn)‖f~‖

2
L2(Rn) 6

1
(2π~)3n ·

22n

~n
×

∫∫
R2n

[ ∫∫
R2n

〈Y 〉l〈
z−z′√

~

〉2N
〈
Y− z+z′2√

~

〉2M

2N∑
|k|=0

22MCk〈Y 〉−l|∂kY a(Y )|×

∫
Rn

〈
y − q+q′

2√
~

〉2M ∣∣∣∣∣∣(1− ~∆u)MΨ[k]
~

 u√
~
,
y − q+q′

2√
~

∣∣∣∣∣∣ dudY
]2

dz′
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with

Ψ[k]
~

 u√
~
,
y − q+q′

2√
~

 =
∑

06|j1
k
|,|j2

k
|62N

C̃k

(
u√
~

)j1k
∂
j2k
y Ψ~

 u√
~
,
y − q+q′

2√
~


constants C̃k not depending on ~, for k ∈ N2n. As a ∈ S(m), with ∀Y ∈ R2n

|m(Y )| 6 〈Y 〉l, we have
sup

06|k|6N
‖22MCk∂

k
Y a(Y )〈Y 〉−l‖L∞(dY ) 6 C(l,M)

with C(l,M) independent of ~. Moreover,
〈Y 〉l〈

z−z′√
~

〉2N
〈
Y− z+z′2√

~

〉2M 6
C l〈z〉l〈

z−z′
2

〉2N−l
〈
Y− z+z′√

~√
~

〉2M−l .

Finally, setting

Cl,M(Y ) = C(k, l,M)×
2N∑
|k|=0

∫
Rn

〈
y − q+q′

2√
~

〉2M ∣∣∣∣∣∣(1− ~∆u)MΨ[k]
~

 u√
~
,
y − q+q′

2√
~

∣∣∣∣∣∣ du,
from Hölder inequality in Y variable, we get

‖Opw~ (a)ϕz‖2
L2(Rn)‖f~‖

2
L2(Rn) 6 C2l〈z〉2l · 22n

(2π~)3n~n
×

∫∫
R2n

∫∫
supp(a)

〈z − z′√
~

〉2N−l 〈
Y − z+z′

2√
~

〉2M−l−2

dY

×
[∫∫

supp(a)
|Cl,M(Y )|2 dY

]
dz′ .

We now estimate ∫
R2n
|Cl,M(Y )|2dY.

For more simplicity, we set

ŷ := y − q + q′

2 η̂ := η − p+ p′

2 Ŷ := Y − z + z′

2
Noting that 〈

Ŷ√
~

〉−1

6

〈
η̂√
~

〉−1



20 GRÉGORY BOIL, SAN VŨ NGO. C

and that
2N∑
|k|=0

〈
ŷ√
~

〉2M

(1− ~∆u)MΨ[k]
~

(
u√
~
,
ŷ√
~

)
=

∑
i,j∈Î

Ci,j

(
ŷ√
~

)i (
u√
~

)j
∂αi,j f~

(
u− ŷ√

~

)
∂βi,j f~

(
ŷ + u√

~

)

where the Î is a finite set and Ci,j only depends on the integers k,N,M and l, but
not on the shape f~, we get for δ > 0 small enough

|Cl,M(Y )|2 6
∑
i,j∈Ĵ

C̃i,j

〈
η̂√
~

〉−2M̃

pi,j

(
(v, w) 7→ f~

(
v√
~

)
f~
(
w√
~

))2δ

×

∣∣∣∣∣∂αi,j f~
(
·√
~

)∣∣∣∣∣
1−δ

?

∣∣∣∣∣∂βi,j f~
(
·√
~

)∣∣∣∣∣
1−δ
2

(2ŷ)

with again J̃ a finite set and C̃i,j > 0, these two only depending on the integers
k,N,M and l, but not on the shape f~, and where ? is the convolution product. So,
integrating, we have
∫
R2n
|Cl,M(Y )|2 dY 6

∑
i,j∈Ĵ

C̃i,j
∫
Rn

〈
η̂√
~

〉−2M̃

dη×

pi,j

(
f~
(
·√
~

))2δ

pi,j

(
f~
(
·√
~

))2δ

2−n×∥∥∥∥∥∂αi,j f(1−δ)
~

(
·√
~

)∥∥∥∥∥
2

L2(Rn)

∥∥∥∥∥∂βi,j f(1−δ)
~

(
·√
~

)∥∥∥∥∥
2

L1(Rn)

due to usual estimates on the convolution product. Noting that∥∥∥∥∥∂αi,j f(1−δ)
~

(
·√
~

)∥∥∥∥∥
2

L2(Rn)
6 ~−n/2‖∂αi,j f~‖2(1−2δ)

L2(Rn) ‖∂
αi,j f~‖2δ

L1(Rn)

and that∥∥∥∥∥∂βi,j f(1−δ)
~

(
·√
~

)∥∥∥∥∥
L1(Rn)

6 ~−n/2‖∂βi,j f~‖(1−2δ)
L2(Rn)pK(∂βi,j f~)2δ/(1+2δ)

∫
Rn
〈x〉Kdx

for some fixed integerK and for pK a seminorm depending onK, we use the following
lemma to estimate the terms ‖∂αf~‖L2(Rn) and ‖∂βf~‖L2(Rn). This lemma is known as
the Kolmogorov inequalities.
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Lemma 2.14. Let f ∈ S (Rn). Then for any L ∈ N, for any c ∈ N, c 6 L, for any
integer i such that 1 6 i 6 n, we have

‖∂ci f‖L2(Rn) 6 ‖f‖
1− c

L

L2(Rn)‖∂
L
i f‖

c
L

L2(Rn)

Then, for any f ∈ S (Rn), for c = (c1, . . . , cn) ∈ Nn, for L ∈ N, L > max c, and
L := (L, . . . , L), we have
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So,

(2.12)
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∑
i,j∈Ĵ
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for, given i, j ∈ Ĵ , αi,j = (α(0)
i,j , . . . , α

(n)
i,j ), βi,j = (β(0)

i,j , . . . , β
(n)
i,j ), and for L ∈ N,

L > maxi,j,k(α(k)
i,j , β

(k)
i,j ). Let now ε > 0 : for L great enough and δ small enough,

from (2.12) we get ∫
R2n
|Cl,M(Y )|2 dY 6 ~−3n/2Cε(f~)‖f~‖4−ε

L2(Rn)

with Cε(f~) satisfying (2.11). We then get the expected result

‖Opw~ (a)ϕz‖2
L2(Rn) 6 ~−3n/2Cε(f~) ‖f~‖2−ε×∫∫

R2n
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〈
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~
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�

We state two applications of this result. The first one is a straightforward appli-
cation of the above Proposition 2.12.

Proposition 2.15. Let (ϕz)z∈R2n a family of coherent states with shape f~ ∈ s[n] and
let m be any order function on R2n. Then, given any ε > 0 we have the continuity
property

(2.13) ∀a ∈ S(m), ∀z ∈ R2n, ‖Opw~ (a)ϕz‖2
L2(Rn) 6 ~−3n/2C̃(a)Cε(f~)‖f~‖2−ε

L2(Rn)

with C̃(a) 6 C max06|α|6K ‖m−1∂αa‖L∞(R2n) where C > 0 only depending on m and
with Cε(f~) as in (2.11).
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This property gives a useful boundedness property for pseudodifferential operators
acting on C[n]. We will mainly use this property in the last part of the paper, where
the shape will depend on a parameter j ∈ N. The second property is about the
localization of elements of C[n]. We first define what mean by localization (one could
also say microlocalization) of a function depending on ~.
Definition 2.16. Let ~0 > 0 and let (ϕ~)~∈(0,~0] be a family of Schwartz functions
on Rn such that

‖ϕ~‖L2(Rn) = O~(1).
We define its semi-classical wavefront set WF(ϕ~) as follows. Let Z0 ∈ T ∗Rn, then
Z0 /∈ WF(ϕ~) if and only if there exists a ∈ S(1) such that a(Z) > γ > 0 for a fixed
γ ∈ R and for Z in a small neighborhood of Z0 with

‖Opw~ (a)ϕ~‖L2(Rn) = O(~∞).

Then a function ϕ~ ∈ S (Rn) is said localized at X0 ∈ T ∗Rn if WF(ϕ~) ⊂ {X0}.
Proposition 2.17. Let ϕz be a coherent state centered at z ∈ T ∗Rn. Let a ∈ S(m),
for some order function m, and assume that one can find δ > 0 such that a vanishes
on B(z, δ), then

‖Opw~ (a)ϕz‖2
L2(Rn) = C̃(a)Cε(f~)‖f~‖2−ε

L2(Rn)O(~∞)

with C̃(a) and Cε(f~) as in Proposition 2.15 and with constants in O(~∞) only de-
pending on δ.

Proof. Let δ > 0 and a ∈ S(m) such that supp(a) ⊂ T ∗Rn = R2n \ B(z, δ). Then, if
ε > 0, because of Proposition 2.12, we have

‖Opw~ (a)ϕz‖2
L2(Rn) 6 Cε(f~)‖f~‖2−ε

L2(Rn)×∫∫
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~
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dz′.

We denote Cε := C̃(a)Cε(f~)‖f~‖2−ε. Then, setting Υ := Y − z and ζ := z′ − z, we
get

‖Opw~ (a)ϕz‖2
L2(Rn) 6 Cε
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
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and one can check that (1) = O(~M) and (2) = O(~N), so that for any integerM,N ,
we have

‖Opw~ (a)ϕz‖2
L2(Rn) 6 CεO(~N + ~M).

�

From this we get the following strong localization property.

Proposition 2.18. Let z ∈ T ∗Rn and ϕz = T~(z)Λ~f~ ∈ C[n]. Then ϕz is localized
at z, i.e.

WF(ϕz) = {z}.
Moreover if a ∈ S(m), where m is a given order function, a vanishing near z, then
for any order function µ and any ε > 0 we have

‖Opw~ (a)ϕz‖H~(µ) = C̃(a, µ)Cε(f~)‖f~‖1−ε
L2(Rn)O(~∞)

with C̃(a, µ), Cε(f~) as in Proposition 2.17.

Proof. From Proposition 2.17, we get that
WF(ϕz) ⊂ {z}.

Now, using stationary phase methods (see e.g. [46, Chapter 3]), for a ∈ S(1) with
compact support we get

‖Opw~ (a)ϕz‖2
L2(Rn) = |a(q, p)|2‖f~‖2

L2(Rn) +O(~) ,
which gives

WF(ϕz) = {z}.
We now consider a ∈ S(m) and γ := log(µ), for some order functions m, µ. We have

‖Opw~ (a)ϕz‖H~(µ) = ‖eγwOpw~ (a)ϕz‖L2(Rn).

Since L := eγ
wOpw~ (a) is a pseudodifferential operator with its symbol in S(mµ), we

may apply Proposition 2.17 to obtain the announced result. �

In order to apply the above properties to the magnetic propagation of coherent
states, we now introduce the magnetic normal form background.

3. Geometry and propagation under magnetic field

In this section, for the reader’s convenience, we recall some recent results on the
geometry and analysis of magnetic fields that will be crucial for our analsis.

The first part of this section is about the geometry underlying the magnetic field,
more precisely about the classical and quantum normal forms of L~,A. Classsical and
quantum normal forms for the magnetic Hamiltonian were introduced by Raymond
and the second author, see [33]. We first briefly present the symplectic normal form
adapted to the Hamiltonian H, and the corresponding quantum normal form. The
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second part of this section recalls the long time quantum propagation estimates
from [4].

3.1. Symplectic normal form. The following symplectic normal form result is
about the existence of a symplectomorphism that locally around Σ ∩ Ω transform
the magnetic Hamiltonian H into an almost integrable system.

Theorem 3.1 ([33]). Let

H(q, p) := ‖p− A(q)‖2, (q, p) ∈ T ∗R2 = R2 × R2,

where the magnetic potential A : R2 → R2 is smooth. Let B := ∂q1A2 − ∂q2A1 be the
corresponding magnetic field. Let Ω ⊂ R4 be a bounded open set such that B does
not vanish on

Ω0 = {q ∈ R2|(q, A(q)) ∈ Ω}.
Then there exists a symplectic diffeomorphism κ, defined in an open set Ω̃ ⊂ Cz1×R2

z2,
with values in T ∗R2, wich identifies the plane {z1 = 0}∩Ω̃ with the surface {H(q, p) =
0|q ∈ Ω0}, and such that

H ◦ κ = |z1|2f(z2, |z1|2) +O(|z1|∞),

where f : R2 × R→ R is smooth. Moreover, the map

φ : Ω0 3 q 7→ κ−1 ◦ j(q) ∈ ({0} × R2
z2) ∩ Ω̃

is a local diffeomorphism and

f ◦ (φ(q), 0) = |B(q)|.

From this theorem, we get a better understanding of the dynamics near the char-
acteristic surface Σ. Indeed, up to an O(|z1|∞) term, that is for trajectories very
close to Σ, the trajectories in the (z1, z2) coordinates are given by the Hamiltonian
|z1|2f(z2, |z1|2) that gives the center-guide dynamics, whose center z2(t) follows the
Hamiltonian flow led by f(·, |z1|2). Moreover, as f(z2, |z1|2) = B̃(z2) +O(|z1|2), still
near the surface Σ, the dynamics of the center z2(t) is given by the magnetic field
pulled back on Σ, B̃ := B ◦ φ−1.

Remark 3.2. The formal form |z1|2f(z2, |z1|2), together with the ‘adiabatic invari-
ant’ |z1|2, is a completely integrable Hamiltonian system in the sense of Liouville.
Since the flow of |z1|2 is periodic, this system is actually semi-toric [42, 32], at least
in a loose sense (the Morse type conditions imposed in [42] will depend on B itself).
It would be interesting to systematically develop a KAM-like perturbation theory for
semi-toric systems, with a view to applying this to the Schrödinger evolution problem.
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3.2. Quantum normal form. The following theorem is the quantum version of
Theorem 3.1. It introduces the normal form of L~,A.

Theorem 3.3 ([33]). For ~ small enough, there is a unitary Fourier integral operator
U~ such that

U∗~L~,AU~ = N +R~,

where
(1) N is a pseudodifferential operator that commutes with

I~ := ~2∂2
x1 + x2

1;

(2) For any hermite function hj, such that I~hj = ~(2j+ 1)hj, the operator N (j)

acting on L2(Rx2) by
(3.1) hj ⊗N (j)(u) = N (hj ⊗ u)

is a classical pseudodifferential operator in S(1) of order 1 in ~ with its prin-
cipal symbol

n(j)(x2, ξ2) = ~(2j + 1)B ◦ φ−1(x2, ξ2)
with φ the diffeomorphism in Theorem 3.1;

(3) Given any pseudodifferential operator D~ whose principal symbol d0 such that
d0(z1, z2) = c(z2)|z1|2+O(|z1|3), and any N > 1, there exist pseudodifferential
operators S~,N and ZN such that

R~ = S~,N(D~)N + ZN ,

with ZN a pseudodifferential operator whose symbol is supported away from a
fixed neighborhood of |z1| = 0.

(4) N = H0
~+H1

~, where H0
~ = Opw~ (H0), H0 = B◦φ−1(z2)|z1|2, and the operator

H1
~ is relatively bounded with respect to H0

~ with an arbitrarily small relative
bound.

In [33], the authors used this normal form to produce magnetic quasimodes to
all orders in various situations, the generic one being obtained by finding excited
states of the reduced operator N (j). Then, the true eigenfunctions have the form
of “Gaussian beams”, and can be seen as a degenerate (or subprincipal) case of the
Gaussian beams studied in [45].

Actually, the above theorem is a slightly different formulation of the one stated in
[33]. Indeed, in that paper, the Fourier integral operator Ũ~ is unitary only microlo-
cally in a fixed neighborhood of Σ. It will be useful for us to have a genuinely unitary
operator, which microlocally satisfies the same assumptions. Since the canonical
transformation associated to U~ is obtained by the flow of a compactly supported,
time-dependent Hamiltonian, one can in fact obtain U~ as the quantum flow of a
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time-dependent, uniformly bounded self-adjoint propagator, as in Lemma 2.8; see
[46, Chapter 11].

3.3. Quantum propagation under magnetic field. As is well known, for a gen-
eral Schrödinger operator, and for times bigger than the Erhenfest time � |ln ~|,
propagated coherent states may not remain coherent. Thus, in order to obtain a
rough control on the localization of the propagated state, it is natural to estimate
the growth of its Schwartz seminorms. In the case of a purely magnetic propagation,
this is given by the following theorem, proved in [4]. For the purpose of this article,
we only state it in the 2-dimensional case.

Theorem 3.4 ([4]). Let P t be the propagator of L~,A, given by Stone’s theorem,

P : t ∈ R 7→ P t = e−
it
~ L~,A .

Under property (P), and assuming B > b0 > 0,we have
∀t ∈ R, P tS (Rd) ⊂ S (Rd) .

More precisely, for all M ∈ N∗, for any Schwartz seminorm p, there exist ~0 > 0,
C > 0, N ∈ N∗ and a seminorm p̃, such that, for all ~ ∈ (0, ~0), and for all
ψ0 ∈ S (Rd), and all t ∈ [0, ~−M ],

p(P tψ0) 6 C~−N p̃(ψ0) .

In general, the difficulty for obtaining propagation estimates is to control the
bracket term similar to the one appearing in (2.5). A general framework where the
bracket can estimated by symbolic calculus (which unfortunately does not apply to
our situation) was recently set up in [27]. The proof of Theorem 3.4 involves iterated
brackets, based on the special form of the magnetic Laplacian as a sum of squares,
in the spirit of Hörmander’s approach to hypoellipticity [21].

4. Propagation of C-class states

Our goal is to propagate a state ϕ0
~ ∈ C through the magnetic Schrödinger equa-

tion,

(4.1)

i~∂tϕt~ = L~,Aϕ
t
~

ϕt=0
~ = ϕ0

~ ,

where the initial state ϕ0
~ is such that
WF(ϕ0

~) ⊂ {X0} for X0 ∈ Σ ∩ Ω.
We consider the Fourier integral operator U~ from Theorem 3.3. Since U~ is the

time-1 flow of a time-dependent quantum Hamiltonian, the same holds for the adjoint
(or inverse) U∗~ , and we may apply Proposition 2.9, which shows that ψ0

~ := U∗~ϕ
0
~ is
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still a coherent state of the class C. Moreover, because the canonical transformation
associated with U∗~ is the symplectomorphism κ−1, we obtain that ψ0

~ is centered at
a point z0 := κ−1(X0) ∈ κ−1(Σ) = {z1 = 0}. Our strategy is to first propagate ψ0

~
through the quantum normal form N and then to relate it to the propagation of ϕ0

~
through the initial Schrödinger equation (4.1).

4.1. Propagation through the normal form. The normal formN of Theorem 3.3
defines an essentially self-adjoint operator on S (R2). Indeed, as

N = H0
~ +H1

~

with H1
~ relatively bounded with respect to H0

~, it suffices to prove that H0
~ is es-

sentially self-adjoint. This follows from the fact that H0
~ is a tensor product of two

essentially self-adjoint operators on S (R). Thus, we can study the following Cauchy
problem:

(4.2)

i~∂tψt~ = Nψt~
ψt=0
~ = ψ0

~ .

From Stone’s theorem, we have a unique family of propagators (Qt)t∈R, unitary on
L2(R2) and satisfying

∀ψ ∈ S (R2) i~∂tQtψ = NQtψ.

Then, we denote ψt~ := Qtψ0
~ the solution to (4.2). As explained above, ψ0

~ ∈ C is
localized on

κ−1(X0) = (0, z0
2).

Considering the harmonic oscillator in the variable z1,
I~ = −~2∂2

x1 + x2
1,

and the associated Hermite functions (hj)j∈N ⊂ S (Rx1), we get the following Lemma.

Lemma 4.1. There is a family of states (f 0
j )j∈N ⊂ S (Rx2) and a sequence (αj)j∈N ⊂

`2(R+) such that

ψ0
~ =

∞∑
j=0

hj ⊗ f 0
j

with for any integer j, if αj 6= 0 then α−1
j f 0

j ∈ C[1], and WFx2(f 0
j ) = {z0

2}. In the
case of αj = 0, we have fj = OL2(~β) and WFx2(f 0

j ) ⊂ {z0
2}.

Proof. From Definition 2.2, one can find a function f in S (R2), with ‖f‖L2(R2) = 1,
and a family (g~)~∈(0,~0) ⊂ S (R2), with seminorms in S (R2) bounded uniformily in
~, such that

ψ0
~ = T~(0, z0

2)Λ~(f + ~βg~).
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Then we let
(4.3) f 0

j := 〈ψ0
~, hj〉dx1 = T

(z2)
~ (z0

2)Λ(z2)
~ 〈(f + ~βg~), h(~=1)

j 〉dx1 ∈ S (Rx2).

Since (hj)j∈N is a Hilbert basis of L2(Rx1), after defining

∀j ∈ N, αj := ‖〈f, h(~=1)
j 〉L2(Rx1 )‖L2(Rx2 ),

we get ∑α2
j = ‖f‖2

L2(R2) = 1 and, for j ∈ N, αj 6= 0, α−1
j f 0

j ∈ C[1], centered at
z0

2 . In the case of αj = 0, we get f 0
j = OS (~β) and applying Proposition 2.17 we

have WFx2(f 0
j ) ⊂ {z0

2}, with equality if g~ is not OS (~∞) (in that case, we have
WFx2(f 0

j ) = ∅). �

Lemma 4.1 expresses ψ0
~ as a sum of functions, each one corresponding to a ‘Lan-

dau level’ of the harmonic oscillator: f 0
j corresponds to the occupation of the jth

energy level. The following lemma gives the energy distribution of these levels, in
the semiclassical limit ~→ 0.

Lemma 4.2. Taking the ~-independent sequence (αj)j∈N ⊂ `2(R+) introduced above,
there is an ~-dependent sequence (ε(~))j ⊂ R such that for any j ∈ N

‖f 0
j ‖2 = α2

j + ~βεj(~)
with ∑j>0 α

2
j = 1 and where ∑j>0 |εj(~)| is bounded independently of ~.

Proof. From the proof of Lemma 4.1 we have ∑j>0 α
2
j = 1 and we can compute,

using (4.3):

‖f 0
j ‖2

L2(Rx2 ) = ‖〈f, h(~=1)
j 〉dx1‖2

dx2+

~β
(

2Re
(〈
〈f, h(~=1)

j 〉dx1 , 〈g~, h
(~=1)
j 〉dx1

〉
dx2

)
+ ~β‖〈g~, h(~=1)

j 〉dx1‖2
dx2

)
= α2

j + ~βεj(~),
where

|εj(~)| 6 1
2(‖〈f, h(~=1)

j 〉dx1‖2
dx2 + ‖〈g~, h(~=1)

j 〉dx1‖2
dx2) + ~β‖〈g~, h(~=1)

j 〉dx1‖2
dx2

and ∑
j>0
|εj(~)| 6 ‖g~‖2

L2(R2)(
1
2 + ~β) + 1,

wihch is uniformly bounded for ~ ∈ (0, ~0). �

Remark 4.3. The result of Lemma 4.2 can be extended to the functions xγ∂δxψ0
~, for

any γ, δ in N2. Indeed, we have
xγ∂δxT~(z)Λ~ = ~−|δ|T~(z)Λ~[q +

√
~x]γ[ip+

√
~∂x]δ
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where we denote z = (z1, z2) ∈ C × R2, z1 = q1 + ip1, z2 = (q2, p2) and finally
q = (q1, q2), p = (p1, p2). Then, for ψ0

~ = T~(z)Λ~ · (f + ~βg~), with f and the family
(g~)~ as in Definition 2.2, we get

xγ∂δxψ
0
~ = ~−|δ|T~(z)Λ~(fγ,δ + ~β̃gγ,δ~ ),

with β̃ = min(1/2, β), where the function fγ,δ ∈ S (R2) is independent of ~, and the
family (gγ,δ~ )~ belongs to the Schwartz class with bounded seminorms, uniformly in ~,
satisfying the definition of C. Then, letting

xγ∂δxψ
0
~ = ~−|δ|

∑
j∈N

hj ⊗ fγ,δj

with fγ,δj = ~|δ|〈xγ∂δxψ0
~, hj〉dx1, mimicking the above proof, we get

‖fγ,δj ‖2
L2(dx2) = |αγ,δj |2 + ~β̃εγ,δj (~)

where (αγ,δj )j and (εγ,δj ) are sequences as in Lemma 4.2 except that ∑j |αγ,δj |2 is not
necessarily equal to 1.

Applying Lemma 4.1, we now study the propagation of

ψ0
~ =

∞∑
j=0

hj ⊗ f 0
j .

From (3.1), the solution to (4.2) can be written as

ψt~ =
∞∑
j=0

hj ⊗ f tj

where for all j ∈ N, f tj satisfies the evolution equation

(4.4)

i∂tf
t
j =

(
1
~N

(j)
)
f tj

f t=0
j = f 0

j

where 1
~N

(j) is a semi classical pseudodifferential operator whose principal symbol
is (2j + 1)B ◦ φ−1. In order to apply usual propagation results to (4.4) we rescale
time as follows. Given j ∈ N, we set τj := t × ~(2j + 1) so that τj represents the
reduced time corresponding to the slow drift of the jth landau level. So for a global
time propagation t ∈ [0, T~−1], we have a reduced time τj ∈ [0, (2j + 1)T ]. We let
now f̃

τj
j := f tj and get the following equivalent propagation equationi~∂τj f̃

τj
j = F (j)f̃

τj
j

f̃
τj=0
j = f 0

j ,
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where
F (j) := 1

~(2j + 1)N
(j)

is a pseudodifferential operator acting on L2(Rx2) whose principal symbol is B ◦ φ−1.
At this point, we may highlight that even if the total symbol of F (j) depends on j, its
principal symbol does not. Since N (j) is the restriction of an essentially selfadjoint
operator to a stable subspace, it is essentially selfadjoint on L2(Rx2). Therefore, from
Stone’s theorem we get a family of propagators (Qτj

j )τj∈R for this equation; coming
back to the initial propagation time t, we obtain, for t ∈ [0, T/~],

f tj = f̃
τj
j = Q

(2j+1)~t
j f 0

j .

Furthermore, from Lemma 4.1 and Proposition 2.9, we know that α−1
j f̃

τj
j is a coherent

state in C[1] when τj is fixed, and the evolution of its wavefront set is governed by
the Hamiltonian flow of

K := B ◦ φ−1,

which is the pull back of the magnetic field B from Ω0 ⊂ R2
q on the zero energy

surface {z1 = 0} by φ = κ ◦ (j|Σ)−1. More precisely, let Φt
K denote the Hamiltonian

flow ofK, and let T > 0 be such that Φ(2j+1)t̃
K (z0

2) stays in the open set Ω̃ for t̃ ∈ [0, T ].
Then, since

WFx2(f t̃=0
j ) ⊂ {z0

2},
we get

WFx2(f̃ τjj ) ⊂ {Φτj
K(z0

2)}

for τj ∈ [0, (2j + 1)T ]. In other words, for any t̃ ∈ [0, T ], the wavefront set of f t̃/~j is
given by

(4.5) WFx2(f t̃/~j ) ⊂ {Φ(2j+1)t̃
K (z0

2)},

while the solution to (4.2) is given by

∀t ∈ [0, T/~], ψt~ =
∑
j∈N

hj ⊗ f tj .

We can then at this stage of the proof give an informal explanation about the
quantum phenomenon occurring here. Actually, our coherent state splits into a
weighted sum of coherent states, each one with a wavefront set with its own dynamics.
For times t of order ~−1, the localization of ψt~ is no more a point in phase space
but a sequence of points lying on the integral curve of the Hamiltonian provided
by the magnetic field in restriction to the characteristic set, or the zero set. The
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point labelled by ‘j’ corresponds to the occupation of the jth Landau levels of I~.
Furthermore, since the Schrödinger evolution preserves the L2-norm, that is
(4.6) ‖f tj‖L2(Rx2 ) = ‖f 0

j ‖L2(Rx2 ),

the occupied energy level of the harmonic oscillator remains occupied with the same
amount of energy, that is α2

j . In other words, we do not have any shift of energy to
higher or lower levels during the evolution.

4.2. Back to the initial magnetic laplacian. After the study of the propagation
in the normal form setting, we need to return to the initial laplacian L~,A. The first
step is the following lemma. Recall that from Lemma 4.1 that we write

(4.7) ψ0
~ =

∞∑
j=0

hj ⊗ f 0
j .

Lemma 4.4. Let α ∈ (0, 1) and for K > 0 consider an ~ dependent integer J~ such
that J~ > K~−α.

Then, for
(4.8) ψ̃0

~ :=
∑
j6J~

hj ⊗ f 0
j ,

we have
ψ0
~ − ψ̃0

~ = OS (~∞).

Proof. Let us first recall a useful fact about Hermite coefficients of Schwartz func-
tions. Consider some function ψ in S (R). We have

ψ =
∑
j∈N

cjhj

with cj := 〈ψ, hj〉L2(R). Since ψ ∈ S (R), for any N ∈ N, for any ~ > 0, IN~ ψ ∈ S (R).
Furthermore, we have

IN~ ψ =
∑
j∈N

~N(2j + 1)Ncjhj .

Hence, taking the L2-norm of IN~ ψ, and ~ = 1, we get
(4.9)

∑
j∈N

(2j + 1)2N |cj|2 <∞

and so for any non negative integerN the sequence (j2N |cj|2)j∈N is bounded. Consider
now the above function ψ0

~ ∈ C ⊂ S (R2). We have
ψ0
~ = T~(0, z2)Λ~ · (f + ~βg~)

with f and (g~)~ as in Definition 2.2. In (4.7) we have f 0
j = 〈ψ0

~, hj〉L2(dx1) and
‖f 0

j ‖2
L2(dx2) = α2

j+~βε(~) according to Lemma 4.2. Then, from (4.9), and by definition



32 GRÉGORY BOIL, SAN VŨ NGO. C

of the sequence (αj)j, for any non negative integer N , (α2
jj

2N)j is bounded (and
independent of ~). Moreover, from the ~-boundedness of (g~)~ in S (R2), we get
that for any N , ‖IN~ g~‖L2(R2) is bounded uniformly with ~ ∈ (0, ~0). From this, we
have that for any non negative integer N , (j2Nεj(~))j is bounded uniformly with
~ ∈ (0, ~0). We now turn to (4.8); let

d := ψ0
~ − ψ̃0

~ =
∑
j>J~

hj ⊗ f 0
j ,

and we wish to prove that, for any γ, δ ∈ N2

‖xγ∂δxd‖∞ = O(~∞).

To do so, we note that

xγ∂δxd =
∑
j>J~

xγ1
1 ∂

δ1
x1hj ⊗ x

γ2
2 ∂

δ2
x2fj.

First, if we set
fγ2δ2
j := ~δ2(xγ2

2 ∂
δ2
x2fj),

then because of the definition of the sequence (fj)j and applying Remark 4.3, we get
that there is a sequence of real numbers (αγ2δ2

j )j independent of ~ and a family of
sequences (εγ2δ2

j (~))j uniformly bounded with respect to ~ ∈ (0, ~0) such that

‖fγ2δ2
j ‖2

L2(dx2) =
(
αγ2δ2
j

)2
+ ~β̃εγ2δ2

j (~).

We now study the xγ1
1 ∂

δ1
x1hj term. One can note that from the 1-D recursion relations

h′j =
√
j

2hj−1 −
√
j + 1

2 hj+1

and

xh′j =
√
j

2hj−1 +
√
j + 1

2 hj+1

we get

xγ1
1 ∂

δ1
x1hj =

j+(γ1+δ1)∑
k=j−(γ1+δ1)

Cγ1δ1j
k hk

where (Cγ1δ1j
k )k,j is a sequence of real numbers such that for any integers γ1, δ1, there

exists Cγ1,δ1 > 0 such that for any k, j in N,

|Cγ1δ1j
k | 6 Cγ1δ1j

γ1+δ1
2 .
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We finally get

xγ∂δxd = ~−δ2
∑
j>J~

 j+γ1+δ1∑
k=j−(γ1+δ1)

Cγ1δ1j
k hk

⊗ fγ2δ2
j

that we rewrite as

xγ∂δxd = ~−δ2
∑

k>J~−(γ1+δ1)
hk ⊗

 k+γ1+δ1∑
j=k−(γ1+δ1)

Cγ1δ1j
k fγ2δ2

j

 .
Denoting

f̌γδk :=
k+γ1+δ1∑

j=k−(γ1+δ1)
Cγ1δ1j
k fγ2δ2

j ,

which is a Schwartz function as a finite sum of Schwartz functions on R, we get that

‖xγ∂δxd‖2
L2(R2) 6 ~−2δ2

∑
k>J

γ1δ1
~

‖f̌γδk ‖2
L2(dx2)

with Jγ1δ1
~ := J~ − (γ1 + δ1). Note that there is a constant K̃ > 0 such that Jγ1δ1

~ >
K̃~−α. The sequence

(
(2k+1)N‖f̌γδk ‖L2(dx2)

)
k
, is bounded uniformly with ~ ∈ (0, ~0).

Indeed, from above computations,

(2k + 1)N‖f̌γδk ‖L2(dx2) 6 Cγ1δ1

k+(γ1+δ1)∑
j=k−(γ1+δ1)

j
γ1+δ1

2 +N
(

2k + 1
j

)N [
(αγ2δ2

j )2 + ~β̃0 |ε
γ2δ2
j (~)|

]

6 CNγ1δ1

k+(γ1+δ1)∑
j=k−(γ1+δ1)

[
j
γ1+δ1

2 +N(αγ2δ2
j )2 + j

γ1+δ1
2 +N~β̃0 |ε

γ2δ2
j (~)|

]

6
(
2(γ1 + δ1) + 1

)
CNγ1δ1

(
‖j

γ1+δ1
2 +N(αγ2δ2

j )2‖∞

+ ~β̃0‖j
γ1+δ1

2 +Nεγ2δ2
j (~)‖∞

)
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and from what precedes, for any non negative integer N , the sequences
(
(αγ2δ2

j )2j2N
)
j

and
(
εγ2δ2
j (~)j2N

)
are bounded uniformly in ~ ∈ (0, ~0). Finally, from the bounded-

ness of
(
(2k + 1)N‖f̌γδk ‖L2

)
, we get

‖xγ∂δxd‖2
L2(R2) = ~−2δ2

∑
k>J

γ1δ1
~

‖f̌γδk ‖2
L2(dx2)

= ~−2δ2
∑

k>J
γ1δ1
~

(
‖f̌γδk ‖2

L2(dx2)k
2N
)
(k~α)−2N~2Nα

6 CγδN~2(Nα−δ2) ∑
k>J

γ1δ1
~

(k~α)−2N

for any non negative integer N . Then, by sum-integral comparison methods, we have

‖xγ∂δxd‖2
L2(R2) = O(~(2N−1)α−2δ2),

from what we obtain that xγ∂δxd = OL2(~∞) for any multi-indices γ, δ in N2. So,
giving any order function m, we get ‖d‖H~(m) = O(~∞), which is the expected result.

�

Remark 4.5. It appears in the above proof that for any Schwartz seminorm p and
for any δ > 0, we have ∑

j∈N
p(f 0

j )δ <∞

We will use this property later on.

Thus, this lemma teaches us that only the first Landau levels of our initial state
ψ0
~ matter in the propagation, but we need to consider a large number of levels in

order to get a nice estimation of the remainder. We now relate the propagation of
the state

ψ̃0
~ :=

∑
j6J~

ψ0
j,~

through N to the propagation of ϕ0
~ through the initial laplacian.

Propagation under general magnetic fields. In what follows, we assume that
the magnetic field B does not vanish on Ω0, but we don’t require Property (P). Recall
also from the introduction that B belongs to a symbol class S(m). Theorem 3.3 gives
the relation between L~,A and N ,

L~,A = U~NU∗~ + U~R~U
∗
~ .
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For j ∈ N and t ∈ R, we let ψtj,~ := hj ⊗ f tj . From (4.4) we get the following
propagation equation:

i~∂tU~ψ
t
j,~ = L~,AU~ψ

t
j,~ − U~R~ψ

t
j,~.

Considering α ∈ (0, 1) and J~ ∈ N as in Lemma 4.4 and summing for j 6 J~, we get
the following propagation equation for ψ̃t~ := ∑

j6J~ hj ⊗ f
t
j :

(4.10)

i~∂tU~ψ̃
t
~ = L~,AU~ψ̃

t
~ + et~

ψ̃t=0
~ = ψ̃0

~

with et~ = U~R~ψ̃
t
~. We compare the solution to (4.10) to the solution ϕt~ to (4.1).

For any ~ > 0 and for any t ∈ R, setting Dt~ = ϕ~ − U~ψ̃
t
~, the Duhamel principle

gives

(4.11) Dt~ = P tD0
~ −

i

~

∫ t

0
P t−ses~ds

where P t is the propagator associated with (4.1), given by Stone’s theorem. We
aim at proving that for a given time T and a given integer N , uniformly for times
t ∈ [0, T/~], ∥∥∥L~,A

NDt~
∥∥∥

L2(R2)
= O(~∞).

Since P t is unitary and commutes with L~,A, we have∥∥∥L~,A
NDt~

∥∥∥
L2(R2)

6
∥∥∥L~,A

ND0
~

∥∥∥
L2(R2)

+ T

~2 sup
s∈[0,T/~]

∥∥∥L~,A
Nes~

∥∥∥
L2(R2)

.

Since L~,A
N is a pseudo-differential operator with symbol in S(mN) and U~ is unitary,

we have due to Lemma 4.4∥∥∥L~,A
ND0

~

∥∥∥
L2(R2)

6

∥∥∥∥∥∥
∑
j>J~

ψ0
j,~

∥∥∥∥∥∥
H~(m−N )

= O(~∞).

Noting that ‖L~,A
Nes~‖L2(R2) 6 ‖R~ψ̃

s
~‖H~(m−N ), it remains to prove

(4.12) sup
s∈[0,T/~]

∥∥∥R~ψ̃
s
~

∥∥∥
H~(m−N )

= O(~∞).

Actually, we prove that for any order function µ,

(4.13) sup
s∈[0,T/~]

∥∥∥R~ψ̃
s
~

∥∥∥
H~(µ)

= O(~∞),

which implies (4.12). To do so, we begin with giving an explicit expression of R~.
Using D~ = H0 in Item 3 of Theorem 3.3, we get that for any N ∈ N, there are
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pseudodifferential operators S~,N , ZN such that R~ = S~,NHN
0 + ZN . Then, for any

order function µ, as j 6 K~−α

(4.14) ‖R~
∑
j6J~

ψtj,~‖H~(µ) 6 CN~(1−α)N ∑
j6J~

∥∥∥S~,NOpw~
(
B ◦ φ−1

)
(hj ⊗ f tj )

∥∥∥
H~(µ)

+
∑
j6J~

∥∥∥ZNψtj,~∥∥∥H~(µ)
.

From Proposition 2.15, we get that for t ∈ [0, T/~], for a given ε ∈ (0, 1),

(4.15)
∥∥∥S~,NOpw~

(
B ◦ φ−1

)
(hj ⊗ f tj )

∥∥∥
H~(µ)

6 ~−3/2C(µ,N)C(ψtj,~)‖f 0
j ‖1−ε

L2(Rx2 )

because of (4.6), with C(ψtj,~) as in (2.13). To estimate this constant, we note that

ψtj,~ = idL2(Rx1 ) ⊗Qt̃
j · [hj ⊗ f̃ 0

j ]

where t̃ = t~ ∈ [0, T ] so from Lemma 2.8 and because of n(j) ∈ S(1), we have for any
order function µ

sup
t∈[0,T/~]

‖ψtj,~‖H~(µ) 6 sup
t̃∈[0,T ]

‖idL2(Rx1 ) ⊗Qt̃
j · [hj ⊗ f̃ 0

j ]‖H~(µ) 6 C(µ)‖f 0
j ‖H~(µ).

Then using the link between the Schwartz seminorms and the weighted Sobolev
norms in Lemma 2.4, we get

(4.16) sup
t∈[0,T/~]

C(ψtj,~) 6 C̃(f 0
j )

and because of the definition of f 0
j ,
(
‖f 0

j ‖H~(ν)
)
j∈N

is a bounded sequence for any

order function ν, and so is
(
C̃(f 0

j )
)
j∈N

. Then (4.15) becomes

(4.17) sup
t∈[0,T/~]

(∥∥∥S~,NOpw~
(
B ◦ φ−1

)
(hj ⊗ f tj )

∥∥∥
H~(µ)

)
6 ~−3/2M C(µ,N)‖f 0

j ‖1−ε
L2(Rx2 ).

We now estimate the Schwartz seminorms of ZNψt~. Using Proposition 2.18, as
ZN is a pseudodifferential operator with symbol `N supported away from a fixed
neignborhood of {z1 = 0}, where the states ψtj,~ are centered at any time t ∈ [0, T/~],
and because of (4.16), we get for any order function µ and for any ε > 0,

(4.18) sup
t∈[0,T/~]

(
‖ZNψtj,~‖H~(µ)

)
6 C̃(`N , µ)Cε(f 0

j )‖f 0
j ‖1−ε

L2(R)O(~∞).
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Finally, using (4.17) and (4.18) with (4.14) we get, for any t ∈ [0, T/~],

‖R~
∑
j6J~

ψtj,~‖H~(µ) 6MCNC(µ,N)~(1−α)N−3/2 ∑
j6J~

‖f 0
j ‖1−ε

L2(R2)

+ C̃(`N , µ)O(~∞)
∑
j6J~

Cε(f 0
j )‖f 0

j ‖1−ε
L2(R).

Now, from Remark 4.5, we get that∑
j6J~

(1 + Cε(f 0
j ))‖f 0

j ‖1−ε
L2(R)

is a convergent series whose sum is bounded uniformly with ~, so that
(4.19) sup

t∈[0,T/~]
‖R~

∑
j6J~

ψtj,~‖H~(µ) = O(~∞)

for any order function µ. This proves (4.13), and then we get

(4.20) sup
t∈[0,T/~]

∥∥∥L~,A
N
(
ϕt~ − U~ψ̃

t
~

)∥∥∥
L2(R2)

= O(~∞).

Propagation under magnetic fields satisfying the property (P). We now es-
tablish the propagation result for magnetic fields satisfying (P). We assume hence-
forth that (P) holds for B. We assume also there exists b0 > 0 such that ∀q ∈ R2,
B(q) > b0. Considering again Dt~ = ϕ~ − U~ψ̃

t
~, from (4.11) we have

Dt~ = P tD0
~ −

i

~

∫ t

0
P t−ses~ds

and we now aim at proving that for a given T > 0, uniformly for times t ∈ [0, T/~],
Dt~ = OS (~∞).

We will reach this goal in two steps. We first prove that P tD0
~ = OS (~∞). We have

U∗~D0
~ =

∑
j>J~

ψ0
j,~

then from Lemma 4.4, we get that
(4.21) U∗~D0

~ = OS (~∞).
Applying Lemma 2.8 to U~, which is a time-1 quantum flow, we get

D0
~ = U~

(
U∗~D0

~

)
= OS (~∞) .

Finally, applying Theorem 3.4 to P t, t ∈ [0, T/~], we have the long-time estimate

sup
t∈[0,T/~]

(
p
(
P tD0

~

))
= O(~∞).
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It remains now to be shown that

(4.22)
∫ t

0
P t−ses~ds = OS (~∞).

We first prove that uniformly for times s ∈ [0, T/~], es~ = OS (~∞). Recall that
et~ = U~R~

∑
j6J~ ψ

t
j,~ and the estimate (4.19), holding for any order function µ.

Using Lemma 2.4 and Lemma 2.8, we get for any Schwartz seminorm p,

sup
t∈[0,T/~]

p

U~R~
∑
j6J~

ψtj,~

 = O(~∞)

and so
sup

s∈[0,T/~]
p (es~) = O(~∞).

Now, applying Theorem 3.4 again, the same estimate holds for p(P t−ses~), and by the
semi-norm property we may integrate and obtain (4.22). This gives

sup
t∈[T/~]

p
(
Dt~
)

= O(~∞).

In other words, letting ϕtj,~ = U~ψ
t
j,~, we have proved

(4.23) sup
t∈[0,T/~]

p

ϕt~ − ∑
j6J~

ϕtj,~

 = O(~∞),

where (ϕt~)t∈R is the solution to (4.1),

4.3. End of the proof of Theorems 1.1 and 1.2. We consider for any j the
subspaces

Hj,~ = U~ ·
(
span(hj)⊗ L2(Rx2)

)
and the operator

J~ = U~I~U∗~ ,
which is pseudodifferential by the Egorov theorem. Since (hj)j∈N is a Hilbert basis,
the spaces Hj,~ are in direct sum, and

∀j ∈ N, ∀f ∈ Hj,~, J~f = (2j + 1)~f.

For all t ∈ R, ϕtj,~ := U~ψ
t
j,~, and ψtj,~ is the projection of ψt~ on the space span(hj)⊗

L2(Rx2). Therefore, ϕj,~ is the projection of ϕt~ on Hj,~, so ϕtj,~ ∈ Hj,~, and

ϕt~ =
∑
j∈N

ϕtj,~.
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This with (4.20) proves (1.4) and (1.5). Now, for each j, using (4.5) and Proposi-
tion 2.9 applied to the Fourier integral operator U~, we see that the wavefront set of
ϕt~

−1
j,~ is located at the point

κ(0,Φ(2j+1)t
K z0

2) = Φ(2j+1)t
B X0

which proves (1.7). Finally, (1.6) is proved by Lemma 4.1. This ends the proof of
Theorem 1.1. In order to prove Theorem 1.2, we still need to estimate the remainder
r~ in Schwartz seminorms. These estimates are given by (4.23), which gives (1.9).

5. Conclusion

In this paper, we have shown that localized quantum particles can be split into dis-
tinct pieces by long time magnetic propagation, a property that, in similar contexts,
was sometimes called quantum ubiquity. On a mathematical level, this splitting al-
ways holds modulo a small O(~∞) term in L2 norm (Theorem 1.1). In order to get
the stronger Schwartz estimates (1.9), in our study it was necessary for the magnetic
field to satisfy property (P) and the ellipticity condition (1.8). These properties
allow the use of Theorem 3.4 which is crucial in handling the remainder terms. It
would be interesting to investigate whether, under magnetic confinement leading to
discrete spectrum, as in [33], we could get rid of property (P). In this case, thanks
to the control on the Hamiltonian dynamics (see [33, Section 3]), one expects to get
good estimates for quantum propagators up to times of order ~−M for any M > 0.
In this regime, the split wave-packets should self-interfere, giving rise to magnetic
revivals (see [38, 23]). We hope to return to this question in the future.

Acknowledgement : The authors are grateful to Nicolas Raymond for his impor-
tant contribution to the article by bringing to their attention the property (P),
leading to the proof of Theorem 3.4.

References
[1] N. Anantharaman, C. Fermanian-Kammerer, and F. Macià. Semiclassical completely integrable

systems: long-time dynamics and observability via two-microlocal Wigner measures. Amer. J.
Math., 137(3):577–638, 2015.

[2] N. Anantharaman, M. Léautaud, and F. Macià. Wigner measures and observability for the
Schrödinger equation on the disk. Invent. Math., 206(2):485–599, 2016.

[3] J. Avron, I. Herbst, and B. Simon. Schrodinger operators with magnetic fields. I. general
interactions. Duke Math. J., 45(4):847–883, 12 1978.
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