MAGNETIC WELLS IN DIMENSION THREE
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ABSTRACT. This paper deals with semiclassical asymptotics of the three-
dimensional magnetic Laplacian in presence of magnetic confinement. Us-
ing generic assumptions on the geometry of the confinement, we exhibit
three semiclassical scales and their corresponding effective quantum Hamil-
tonians, by means of three microlocal normal forms a la Birkhoff. As a
consequence, when the magnetic field admits a unique and non degenerate
minimum, we are able to reduce the spectral analysis of the low-lying eigen-
values to a one-dimensional h-pseudo-differential operator whose Weyl’s
symbol admits an asymptotic expansion in powers of h3.

1. INTRODUCTION

1.1. Motivation and context. The analysis of the magnetic Laplacian
(—ihV — A)? in the semiclassical limit 4 — 0 has been the object of many
developments in the last twenty years. The existence of discrete spectrum
for this operator, together with the analysis of the eigenvalues, is related to
the notion of “magnetic bottle”, or quantum confinement by a pure magnetic
field, and has important applications in physics. Moreover, motivated by
investigations of the third critical field in Ginzburg-Landau theory for super-
conductivity, there has been a great attention focused on estimates of the
lowest eigenvalue. In the last decade, it appears that the spectral analysis
of the magnetic Laplacian has acquired a life on its own. For a story and
discussions about the subject, the reader is referred to the recent reviews
[11, 14, 24].

In contrast to the wealth of studies exploring the semiclassical approxi-
mations of the Schrédinger operator —h?A + V, the classical picture associ-
ated with the Hamiltonian ||p — A(g)||? has almost never been investigated
to describe the semiclassical bound states (i.e. the eigenfunctions of low
energy) of the magnetic Laplacian. The paper by Raymond and Va Ngoc
[25] is to our knowledge the first rigorous work in this direction. In that
paper, which deals with the two-dimensional case, the notion of magnetic
drift, well known to physicists, is cast in a symplectic framework, and using
a semiclassical Birkhoff normal form (see for instance |27, 5, 28]) it becomes
possible to describe all the eigenvalues of order O(#). Independently, the as-
ymptotic expansion of a smaller set of eigenvalues was established in [12, 15]
through different methods which act directly on the quantum side: explicit
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unitary transforms and a Grushin like reduction are used to reduce the two-
dimensional operator to an effective one-dimensional operator.

The three-dimensional case happens to be much harder. The only known
results in this case that provide a full asymptotic expansion of a given eigen-
value concern toy models where the confinement is obtained by a boundary
carrying a Neumann condition on an half space in [23] or on a wedge in [22].
In the case of smooth confinement without boundary, a construction of quasi-
modes by Helffer and Kordyukov in |13] suggests what the expansions of the
low lying eigenvalues could be. But, as was expected by Colin de Verdiére
in his list of open questions in [7], extending the symplectic and microlocal
techniques to the three-dimensional case contains an intrinsic difficulty in the
fact that the symplectic form cannot be nondegenerate on the characteristic
hypersurface. The goal of our paper is to answer this question by fully car-
rying out this strategy. After averaging the cyclotron motion, the effect of
the degeneracy of the symplectic form can be observed on the fact that the
reduced operator is only partially elliptic. Hence, the key ingredient will be
a separation of scales via the introduction of a new semiclassical parameter
for only one part of the variables. These semiclassical scales are reminiscent
of the three scales that have been exhibited in the classical picture in the
large field limit, see [2, 6]. They are also related to the Born-Oppenheimer
type of approximation in quantum mechanics (see for instance [4, 20]). In
fact, in a partially semiclassical context and under generic assumptions, a
full asymptotic expansion of the first magnetic eigenvalues (and the corre-
sponding WKB expansions) has been recently established in any dimension
in the paper by Bonnaillie-Noél-Hérau-Raymond [3].

1.2. Magnetic geometry. Let us now describe the geometry of the prob-
lem. The configuration space is
R® = {qie1 + qze2 + qze3, ¢; €R, j=1,2,3},
where (e;);—1,23 is the canonical basis of R®. The phase space is
RS = {(¢,p) € R? x R3}
and we endow it with the canonical 2-form
(1.1) wo = dp1 Adg + dp2 A dga + dps A dgs.

We will use the standard Euclidean scalar product (-,-) on R3 and || - || the
associated norm. In particular, we can rewrite wg as

wo((u1,uz), (v1,v2)) = (v1,ug) — (va,u1), Vuy,us,vi,ve € R3.

The main object of this paper is the magnetic Hamiltonian, defined for all
(4,p) € R® by

(1.2) H(q,p) = llp — A(@)]1%,
where A € C®(R3,R3).
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Let us now introduce the magnetic field. The vector field A = (A1, Aa, A3)
is associated (via the Euclidean structure) with the following 1-form
a = Ajdg; + Aadgs + Asdgs

and its exterior derivative is a 2-form, called magnetic 2-form and expressed
as

da = (0142—02A1)dq1 Adga+(01 A3—03A1)dg1 Adg3+(02 A3 — 03 Az)dgandgs -
The form da may be identified with a vector field. If we let:
B =V xA = (A3 — 0345,03A1 — 01 A3, 01 Ay — 02A1) = (By, B, Bs),
then, we can write
(1.3) da = Bsdgy A dgs — Badgy A dgs + Bidgs A dgs.
The vector field B is called the magnetic field. Let us notice that we can
express the 2-form da thanks to the magnetic matrix
0 By —By
Mg=| —Bs O By
By, —-B; 0
Indeed we have
(1.4) da(U,V) = (U,MgV) = (U,V xB) = [U,V,B], VY(U,V) € R>xR3,
where [+, -, -] is the canonical mixed product on R?. We note that B belongs

to the kernels of Mg and dao.
An important role will be played by the characteristic hypersurface

¥ =H"(0),
which is the submanifold defined by the parametrization:
R® 35 ¢+ j(q) == (q,A(q)) € R? x R®.

We may notice the relation between X, the symplectic structure and the
magnetic field in the following relation

(1.5) Jjrwo = da,
where da is defined in (1.3).

1.3. Confinement assumptions and discrete spectrum. This paper is
devoted to the semiclassical analysis of the discrete spectrum of the magnetic
Laplacian £y A := (—iAV, — A(q))?, which is the semiclassical Weyl quanti-
zation of H (see (2.1)). This means that we will consider that & belongs to
(0, hp) with g small enough.

If £ is a self-adjoint operator, we denote its spectrum by s(£). The dis-
crete spectrum of £ consists of the isolated eigenvalues with finite multiplic-
ity. The essential spectrum is by definition the complement in (L) of the
discrete spectrum and is denoted by Sess(£). It is empty when £ has compact
resolvent.
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It is known (see for example [1]) that Lj A is essentially self-adjoint and
we always consider with the same notation its self-adjoint extension.

Let us recall the assumptions under which discrete spectrum actually ex-
ists. In two dimensions, with a non-vanishing magnetic field, a standard
estimate (see |1, 8]) gives

(1.6) h/R2 |B(a)llu(@)*dg < (Lpaulu), Yu € C5°(R?).

This implies that, as B(q) — oo, the magnetic Laplacian has compact
resolvent. Fxcept in special cases when some components of the magnetic
field have constant sign, this is doesn’t hold anymore in higher dimension (see
[10]). One can give examples where |B(q)| — +oo and the operator doesn’t
have a compact resolvent. We should impose a control of the oscillations of
B at infinity. Under this condition, we get an estimate similar to (1.6) at the
price of a small loss. When there exists a constant C' > 0 such that

(1.7) IVB(g)ll < C (1 +b(q)), Vg € R,

and b(q) := ||B(g)|| tends to +o0o, one can show again that the magnetic
Laplacian has compact resolvent [16].

In the semiclassical context, we would like to consider the case of R? and,
in addition to (1.7), a confining assumption which allows the presence of
essential spectrum above a certain threshold. More precisely, we introduce

Assumption 1.1. We assume that (1.7) holds and
(1.8) b(q) = by := inf b(q) >0,
q€R3

Under Assumption 1.1, it is proven in [16, Theorem 3.1 that there exist
ho > 0 and Cy > 0 such that, for all & € (0, hg),

(1L9)  K(1— Cohl) /R3 b(q)u()?dg < (Caau|u), Yu € CT(R?).

In this case, if we do not assume that b(q) — 400, the spectrum is not nec-
essarily discrete, but using this inequality and Persson’s theorem (see [21]),
we obtain that the bottom of the essential spectrum is asymptotically above
hby, where

by := liminf b(q).

lg|—+o0

More precisely, under Assumption 1.1, there exist hg > 0 and Cy > 0 such
that, for all i € (0, hy),

(1.10) Sess(Lna) C [Abi(1 — Coht), +00).
Assumption 1.2. We assume that

(1.11) 0<by<by.
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Moreover we will assume that there exists a point ¢o € R? and € > 0, By €
(bo, by) such that

(1.12) {b(q) < Bo} € D(qo,¢),

where D(qo,€) is the Euclidean ball centered at ¢p and of radius . For the
rest of the article we let 5y € (b, Bg). Without loss of generality, we can
assume that go = 0 and that A(0) = 0 (which can be obtained with a change
of gauge).

Note that Assumption 1.2 implies that the minimal value of b is attained
inside D(qo, €).

All along this paper, we will strengthen the assumptions on the nature
of the point gg. At some stage of our investigation, gg will be the unique
minimum of b. Note in particular that (1.12) is satisfied as soon as b admits
a unique and non degenerate minimum.

1.4. Informal description of the results. Let us now informally walk
through the main results of this paper. We will assume (as precisely formu-
lated in (1.11)-(1.12)) that the magnetic field does not vanish and is confin-
ing.

Of course, for eigenvalues of order O(h), the corresponding eigenfunctions
are microlocalized in the semi-classical sense near the characteristic man-
ifold 3 (see for instance [26, 31]). Moreover the confinement assumption
implies that the eigenfunctions of £j o associated with eigenvalues less that
Boh enjoy localization estimates & la Agmon. Therefore we will be reduced to
investigate the magnetic geometry locally in space near a point gy = 0 € R3
belonging to the confinement region and which, for notational simplicity, we
may assume to be the origin.

Then, in a neighborhood of (0, A(0)) € X, there exist symplectic coordi-
nates (x1, &1, %2, &2, x3,&3) such that ¥ = {x; = & = & = 0} and (0, A(0))
has coordinates 0 € RS, Hence X is parametrized by (2, &2, 23).

1.4.1. First Birkhoff form. In these coordinates suited for the magnetic ge-
ometry, it is possible to perform a semiclassical Birkhoff normal form and
microlocally unitarily conjugate Lj a to a first normal form A} = Op}y’ (N},)
with an operator valued symbol N depending on (x3, &2, x3,£3) in the form

Nj = &3 + b(2, &2, 23)Th + £*(hy Tn, w2, &2, 73, £3) + O(|Th|™, |€5]%°).

where Zj, = hD2_ +7 is the first encountered harmonic oscillator and where
(ha -[7 T2, 527 xs3, 53) = f*(h7 I) 2, 527 X3, §3) satisﬁes, for I S (07 IO)7

|f*(ha I,$2,£2,$3,§3)| <C <|I|% + ’€3|3 + h%> .

Since we wish to describe the spectrum in a spectral window containing at
least the lowest eigenvalues, we are led to replace Zy, by its lowest eigenvalue &
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and thus, we are reduced to the two-dimensional pseudo-differential operator
N = opy (N}) where

Nf[ll] = 532, + b(x27£27$3)h + f*(h7 hv 33'2,{2,.%’3,53) + O(hoov ‘£3|OO)

1.4.2. Second Birkhoff form. If we want to continue the normalization, we
shall assume a new non-degeneracy condition (the first one was the positivity
of b).

Now we assume that, for any (z2, £2) in a neighborhood of (0, 0), the func-
tion z3 +— b(z2,&2,r3) admits a unique and non-degenerate minimum de-
noted by s(z2,&2). Then, by using a new symplectic transformation in order
to center the analysis at the partial minimum s(z2, £2), we get a new operator

N /[51] whose Weyl symbol is in the form

ﬂg] = 12(x9, 52)(5% + hx%) + hb(x2, &2, s(x2,&2)) + remainders,
with
(1.13) (2, &) = (303b(w2, &2, 5(2, &2))) /4

and where the remainders have been properly normalized to be at least for-
mal perturbations of the second harmonic oscillator €2 + hx3. Since the

frequency of this oscillator is h=3 in the classical picture, we are naturally
led to introduce the new semiclassical parameter

h=h3
and the new impulsion
€ =hig
so that
Op} (€ + ha) = h? Opy (& +3) .
We therefore get the h-symbol of N %1]:
MQ} = h2y2(a:2, hég)(é’% + x%) + hzb(a:g, hgg, s(x2, hég)) + remainders.

We can again perform a Birkhoff analysis in the space of formal series given
by & = F[x3,&3, h] where .Z is a space of symbols in the form c(h, x2, h&2).
We get the new operator M, = Opy’ (My,), with

My, = B2b(x9, héa, s(x2, hé2)) + h2T), OpY v2 (w2, hé2) + h2g* (h, T, 2, héa)
+ remainders,

where Jp, = Op}) (é’% + :1;%) and g*(h, J, x2,&2) is of order three with respect
to (J %, h%) Motivated again by the perspective of describing the low lying
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eigenvalues, we replace J;, by h and rewrite the symbol with the old semi-
classical parameter A to get the operator M = Op}) (M%”) = Opy (M}EH),
with

(1.14)

Mr[ll] = hb(x2, &2, s(x2,&2)) + h%VQ(:Eg,{g) + hg*(h%, h%,fbg,fg) + remainders.

1.4.3. Third Birkhoff form. The last generic assumption is the uniqueness
and non-degeneracy of the minimum of the new “principal” symbol

(w2,&2) > b(x2, &2, (22, &2))

that implies that b admits a unique and non-degenerate minimum at (0, 0, 0).
Up to an h%—dependent translation in the phase space and a rotation, we are
essentially reduced to a standard Birkhoff normal form with respect to the
third harmonic oscillator Ky, = hi2D2, + 3.

Note that all our normal forms may be used to describe the classical dy-
namics of a charged particle in a confining magnetic field (see Figure 1).

1.4.4. Microlocalization. Of course, at each step, we will have to provide ac-
curate microlocal estimates of the eigenfunctions of the different operators
to get a good control of the different remainders. In a first approximation,
we will get localizations at the following scales z1,&1,&3 ~ R (0 > 0is
small enough) and x3,&2,23 ~ 1. In a second approximation, we will get
z3, &5 ~ hY. In the final step, we will refine the localization by zo, & ~ h°.

1.5. A semiclassical eigenvalue estimate. Let us already state one of the
consequences of our investigation. It will follow from the third normal form
that we have a complete description of the spectrum below the threshold
boh + 3v%(0, 0)h%. This description is reminiscent of the results a la Bohr-
Sommerfeld of [17] and [18, Appendix B (see also [15, Remark 1.4]) obtained
in the case of one dimensional semiclassical operators.

Theorem 1.3. Assume that b admits a unique and non degenerate minimum
at qo. Denote

115) o= 1wl (Bl@o). Blw) det Hess,,b
203 , Hess,,b (B(qo), B(q0))

There exists a function k* € C§° (R?) with arbitrarily small compact support,
and k*(h%, Z)=0((h+ |Z|)%) when (h, Z) — (0,0), such that the following
holds.

Forallc € (0,3), the spectrum of Ly A below boh+ co3h3 coincides modulo
O(R>®) with the spectrum of the operator Fj, acting on L*(R,) given by

, 0
Fy = boh + o3hs — %rﬂ +h <2ICh + k*(h%,ICw) ,  Kn="nD;+ 2

with some constant C.
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%

FiGure 1. The dashed line represents the integral
curve of the confining magnetic field B = curlA through
g% = (0.5,0.6,0.7) for B(z,y,2) = (% z V1 +a:2> and
the full line represents the projection in the g-space of the
Hamiltonian trajectory with initial condition (qo,po) (with
po = (—0.6,0.01,0.2)) ending at (g1, p1). The motion is easier
to follow on a video: see
http://blogperso.univ-rennesl.fr/san.vu-ngoc/
index.php/post/2015/03/06/Magnetic-flow-in-3D

Remark 1.4. The constant ¢ in Theorem 1.3 is given by the formula
¢ =IVv*(0,0)],
where the function v is given in (1.13). Observe also that o = v4(0,0).

Corollary 1.5. Under the hypothesis of Theorem 1.3, let (Am(h)),,~, be the
non decreasing sequence of the eigenvalues of Ly a. For any c € (0,3), let

Npe = {m € N*;  An(h) < hby + co2h2}.
Then the cardinal of Np. is of order h_%, and there exist vi,v2 € R and
ho > 0 such that
¢

A (1) = hbo+02 13 + [O(m - - @] W2 4u (m—1)h% 4vg(m—1)+0(h3)


http://blogperso.univ-rennes1.fr/san.vu-ngoc/index.php/post/2015/03/06/Magnetic-flow-in-3D
http://blogperso.univ-rennes1.fr/san.vu-ngoc/index.php/post/2015/03/06/Magnetic-flow-in-3D
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uniformly for h € (0, ho) and m € N ..
In particular, the splitting between two consecutive eigenvalues satisfies

A1 (R) — Am(h) = OB + O(hg)

Proof. 1If the support of k* is small enough, the hypothesis k*(h2 Z) =
O((h+1Z |) ) implies that, when A is small enough,

2
(L) > K+ 5k (h2,Kn) > (1= m)K,

for some small > 0. Therefore, since the eigenvalues of Kj are (2m — 1),
m € N*| the variational principle implies that the number of eigenvalues of

Kn+2 k*(hz K1) below a threshold Cj, belongs to [3 (h(1+n)+1)’ 2(h( )—1—1)]

Taking Cp, = 5( — 1)o' /2172 + e%ﬁ, and applying the theorem, we obtain
the estimate for the cardinal of Nj .. The corresponding eigenvalues of Ly A
are of the form

Am(F) = hbo + o2 h2 — %hQ + 0 0(m — D+ k*(h2,2m — 1)| + O(h™),

with (2m —1)h < 7 C" . Therefore there exists a constant C' > 0, independent
of h, such that all m E Nj, . satisfy the inequality (2m—1)h < < ChY2. Writing

k*(h2, Z) = coh®/? + vihY2(Z)2) + e1 B2 + va(Z)2)% + vshZ
+120(h + |2))? + 0(23),

we see that, for m € Np,

2
K*(h2, (2m — 1)h) = v 13/2 <m — ;) + vgh? (m - ;) + O(h3/?),

which gives the result. O

Remark 1.6. An upper bound of A, (k) for fixed A-independent m with re-
mainder in O(h%) was obtained in [13] through a quasimodes construction

involving powers of hi. To the authors’ knowledge, Corollary 1.5 gives the
most accurate description of magnetic eigenvalues in three dimensions, in
such a large spectral window. Note also that the non-degeneracy assump-
tion on the norm of B is not purely technical. Indeed, at the quantum level,
it appears through microlocal reductions matching with the splitting of the
Hamiltonian dynamics into three scales: the cyclotron motion around field
lines, the center-guide oscillation along the field lines, and the oscillation
within the space of field lines.

1.6. Organization of the paper. The paper is organized as follows. In
Section 2, we state our main results. Section 3 is devoted to the investigation
of the first normal form (see Theorem 2.1 and Corollary 2.4). In Section 4 we
analyze the second normal form (see Theorems 2.8 and 2.11 and Corollaries
2.9 and 2.13). Section 5 is devoted to the third normal form (see Theorem
2.15 and Corollary 2.16).
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2. STATEMENTS OF THE MAIN RESULTS

We recall (see [9, Chapter 7]) that a function m : R? — [0, o) is an order
function if there exist constants Ny, Cy > 0 such that

m(X) < Co(X —Y)Nom(Y)

for any X,Y € R? The symbol class S(m) is the space of smooth -
dependent functions ay, : R¢ — C such that

Va € N¢, |0%ap(x)| < Com(x), Vh € (0,1].

Throughout this paper, we assume that the components of the vector
potential A belong to a symbol class S(m). Note that this implies that
B € S(m), and conversely, if B € S(m), then there exist a potential A
and another order function m’ such that A € S(m’). Moreover, the magnetic
Hamiltonian H (z,¢) = ||¢ — A(z)||* belongs to S(m”) for an order function
m/” on RO,

We will work with the Weyl quantization; for a classical symbol a; =
a(x,&; h) € S(m), it is defined as:

(2.1)

OpY ath(z) = ——

(2mh)d

/ cite-v8)/hg <“”” - y,g) W(y)dyde, Vi € S(RY).
R2d 2
The Weyl quantization of H is the magnetic Laplacian L o = (—ihV — A)2.

2.1. Normal forms and spectral reductions. Let us introduce our first
Birkhoff normal form Nj.

Theorem 2.1. IfB(0) # 0, there exists a neighborhood of (0, A(0)) endowed
with symplectic coordinates (x1,&1,x2, &2, x3,&3) in which ¥ = {x; = & =
&3 = 0} and (0, A(0)) has coordinates 0 € RS, and there exist an associated
unitary Fourier integral operator Uy and a smooth function, compactly sup-
ported with respect to Z and &3, f*(h, Z,x9,&2,x3,&3) whose Taylor series
with respect to Z, &3, h is

Z Z WoCh (a2, &2, AR

k>3 204+2m+pB=k
such that
(2.2) Un Ly aAUp = N + Ry,
with

Ni = *D3, + T, Op}y b+ Opyy f*(h, T, w2, &2, 3, £3),

and where
(a) we have I, = h*D2 + a3,

(b) the operator Opy f*(h, Iy, x2,&2,x3,&3) has to be understood as the Weyl
quantization of an operator valued symbol,
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(c¢) the remainder Ry, is a pseudo-differential operator such that, in a neigh-
borhood of the origin, the Taylor series of its symbol with respect to

(71,&1,&3,R) is 0.

Remark 2.2. In Theorem 2.1, the direction of B considered as a vector field

on ¥ is % and the function b € C*°(R®) stands for b o j.' o m where 7 :
3 |z

RS — ¥ : w(x1, &1, 20, &, 13,€3) = (0,0, 22, &, 23,0). In addition, note that
the support of f* in Z and &3 may be chosen as small as we want.

Remark 2.3. In the context of Weyl’s asymptotics, a close version of this
theorem appears in [19, Chapter 6].

In order to investigate the spectrum of £; o near the low lying energies,

we introduce the following pseudo-differential operator
Nfgl] = h2D3233 + hOp}’LU b + Op;f f*(ha h7 o, 527 x3, 63)7
obtained by replacing Z, by h.
Corollary 2.4. We introduce
(2.3) Nj = oy (NF).
with
Nf = & + Tib(w, &, w3) + [ (h, Tn, 22, &2, 3, 3)

and where b is a smooth extension of b away from D(0,¢e) such that (1.12)
still holds and where f*% = x (2, &, x3) f*, with x is a smooth cutoff function

being 1 in a neighborhood of D(0,e). We also define the operator attached to
the first eigenvalue of Iy,

(2.4) NiTE = opp (NI,

where Nigl},ﬂ = fg + hb(l?, €27 ‘T3) + f*7ﬁ(ha hv 2, 52) xs3, 53)
If € and the support of f* are small enough, then we have
(a) The spectra of Ly A and ./\/’,g below Soh coincide modulo O(h™).

(b) For all ¢ € (0,min(3by, o)), the spectra of Ly A and N,gl}’ﬁ below ch

coincide modulo O(h™).

Let us now state our results concerning the normal form of N, ,EH (or NV, ,Lgl]’ﬁ)
under the following assumption.

Notation 2.5. If f = f(z) is a differentiable function, we denote by T, f(-)
its tangent map at the point z. Moreover, if f is twice differentiable, the
second derivative of f is denoted by T2 f(-, -).

Assumption 2.6. We assume that T3b(B(0), B(0)) > 0.

Remark 2.7. If the function b admits a unique and positive minimum at 0
and that it is non degenerate, then Assumption 2.6 is satisfied.
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Under Assumption 2.6, we have d3b(0,0,0) = 0 and, in the coordinates
(z2,&2,x3) given in Theorem 2.1,

(2.5) 93b(0,0,0) > 0.

It follows from (2.5) and the implicit function theorem that, for small xs,
there exists a smooth function (z2,&2) — s(x2,&2), s(0,0) = 0, such that

(2.6) 83[)(1‘2,62,8(1‘2,52)) =0.

The point s(z2,&2) is the unique (in a neighborhood of (0,0, 0)) minimum of
x3 > b(xe, &2, x3). We define

v(x2,62) = (305b(22, &, s(22,&2))) /4.

Theorem 2.8. Under Assumption 2.6, there exists a neighborhood Vy of 0
and a Fourier integral operator Vi, which is microlocally unitary near Vy and
such that

VNV = A = o (a]1)

where NI = 02(29, &) (€2 + had) + hb(wa, &2, 5(2,)) + 1y and 1y is a
semiclassical symbol such that 1, = O(hx3) + O(h&3) + O(£3) + O(h?).

Corollary 2.9. Let us introduce
NI = oy (1)

where NY# = v2(x9,6) (€3 + had) + hb(wa, 2, s(wa, &) + b, with rf =
X(z2, &2, x3,&3)ry, and where v denotes a smooth and constant (with a posi-
tive constant) extension of the function v.

There exists a constant ¢ > 0 such that, for any cut-off function x equal to
1 on D(0,¢) with support in D(0,2¢), we have:

(a) The spectra of./\i/'[hl]’jj and N}glm below (bg + é£?)h coincide modulo O(h™).

(b) For all ¢ € (0, min(3bg, by + ¢£2)), the spectra of L o and M%l]’ﬁ below ch
coincide modulo O(h>).

Notation 2.10 (Change of semiclassical parameter). We let h = hi and, if
Ay, is a semiclassical symbol on T*R?, admitting a semiclassical expansion in
h%, we write
Ay = Opy Ap = Opj) Ay =: Ay,
with
An(2, 2,3, &3) = Apa (w2, héa, w3, hés).

Thus, Aj and 2}, represent the same operator when h = h%, but the former
is viewed as an fi-quantization of the symbol Ay, while the latter is an h-
pseudo-differential operator with symbol A;. Notice that, if A; belongs to
some class S(m), then Ay, € S(m) as well. This is of course not true the other
way around.
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Theorem 2.11. Under Assumption 2.6, there exist a unitary operator W,
and a smooth function g*(h, Z,z2,&2), with compact support as small as we
want with respect to Z and with compact support in (x2,&2), whose Taylor
series with respect to Z, h is

Z Cmo(m2,&2) 2R,
2m+20>3
such that
Wi, =: My = Opy (M),
with

My, = h?b(wa, héa, s(w2, h&2)) +h? Ty Opjy v* (w2, héa) + h2g* (h, T, w2, héa)
+ h*Ry + h>S(1).
where
(a) the operator mg]’ﬁ is .Mg]’ﬁ (but written in the h-quantization),
(b) we have let J, = Opy, <§§ + x%),
(c) the function Ry, satisfies Ry (w2, héa, 3, &3) = O((x3,E3)>).

Remark 2.12. Note that the support of ¢g* with respect to Z may be chosen
]

as small as we want. Note also that we have used ﬂg]’n instead of ﬂg : Since

W), is exactly unitary, we get a direct comparison of the spectra.
Corollary 2.13. We introduce
0, = Opiy (M),
with
Mi = hQQ(:L'Q, hés, s(xa, h§~2)) + hzjhf(xg, hég) + th*(h, Th, T2, hfg).
We also define
Sﬁg}’ﬁ = Op¥ (MEM> :
with
My = B2b(ws, hés, s(w3, héa)) + hP12 (w2, héa) + B2g* (h, h, w2, hés).
If € and the support of g* are small enough, we have

a) For alln > 0, the spectra ofmm’ﬁ and M below boh? +O(h**1) coincide
h h
modulo O(h™).
b) Forc € (0,3), the spectra of M and M below boh? + coh? coincide
h h
modulo O(h>).
c) If ¢ € (0,3), the spectra of Ly Ao and MIE = ol peron boh + coihs
: h h
coincide modulo O(h).
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Finally, we can perform a last Birkhoff normal form for the operator Mg]’ﬁ
as soon as (z2,&2) — b(xa, &2, s(x2,&2)) admits a unique and non degenerate
minimum at (0,0). Under this additional assumption, b admits a unique and
non degenerate minimum at (0,0, 0).

Therefore we will use the following stronger assumption.

Assumption 2.14. The function b admits a unique and positive minimum
at 0 and it is non degenerate.
Theorem 2.15. Under Assumption 2.1/, there exist a unitary h-Fourier
Integral Operator Qh% whose phase admits an expansion in powers of hs
such that

QyMFQ,y = Fit G,

%
where

(a) Fp is defined in Theorem 1.3,

(b) the remainder is in the form Gy = Opy’ (Gp), with G, = hO(|z2|*).
Corollary 2.16. Ife and the support of k* are small enough, we have

(a) For all m € (0,3%), the spectra of M%lm and Fp, below boh + O(R'*7)
coincide modulo O(h™>).

(b) For all c € (0,3), the spectra of L o and Fy, below boh + co2h3 coincide
modulo O(h*>°).

Remark 2.17. Since the spectral analysis of Fj, is straightforward, Item (b)
of Corollary 2.16 implies Theorem 1.3.

The next sections are devoted to the proofs of our main results.

Corollary 2.4b
A
T\\eote‘“ i Ni

s N
L"h,‘A

i
W‘

Theorem 1.3

. 5 ADD
Tlf@or change of sy 2
Cm o 15 semiclassical Co
2 M El ] parameter m 1]

. ——— h

3. FIRST BIRKHOFF NORMAL FORM

We assume that B(0) # 0 so that in some neighborhood €2 of 0 the mag-
netic field does not vanish. Up to a rotation in R? (extended to a symplectic
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transformation in R®) we may assume that B(0) = ||B(0)|/e3. In this neigh-
borhood, we may defined the unit vector:

B

B
and find vectors ¢ and d depending smoothly on ¢ such that (b, c,d) is a
direct orthonormal basis.

(3.1) b

3.1. Symplectic coordinates.

3.1.1. Straightening the magnetic vector field. Let Q be a small neighbor-
hood of 0 € R?. We consider the form da and we would like to find a diffeo-
morphism Y, defined on €2, such that x*(da) = dd; A dga, where we use the
notation x(§) = ¢. First, it is easy to find a local diffeomorphism ¢ such that

d3¢0(q) = b(¢(9))
and ©(q1,G2,0) = (41, G2,0). This is just the standard straightening lemma
for the non-vanishing vector field b.

The vector es is in the kernel of ¢*(da), which implies that we have
©*(da) = f(§)dg1 A dga, for some smooth function f.

But since the form ¢*(da) is closed, f does not depend on §s. This is
then easy to find another diffeomorphism 1, corresponding to the change of
variables

q=v(q) = (¥1(q1,G2), ¥2(q1, G2), G3) ,
such that
V(" (der)) = dgu A dga .
We let x = p o 1) and we notice that

(3-2) X'(da) =dgi Adge 93x(q) =b(x(d)),
Remark 3.1. Tt follows from (3.2) and (1.4) that det T'x = || B[~

3.1.2. Symplectic coordinates. Let us consider the new parametrization of X
given by
L — X

g — (x(q), A1(x(9)) , A2(x(4)), A3(x(9))) ,
which gives a basis (f, f2, f3) of T3 :

fj = (T'x(ej), TAoTx(e;)), j =1,2,3.
Using (1.5), and the fact that f3 is in the kernel of da, we find wo(f;,f3) =0,
| = 17 2. Finauy= wO(flu f2) = da(TXelyTXeQ) = X*(da)(eheg) =1.

The following vectors of R? x R3 form a basis of the symplectic orthogonal
of TL@) hIN

(3.3)  f1=|B| (e, ("Tyy

q)A)C)7 f5 = HBH_1/2(d> (th((j)A)d)v

so that
wg(f4, f5) = —1.
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We let fs = (0,b) + pif; + paofs where p; and po are determined so that
wo(fj,fs) = 0 for j = 1,2. We notice that wy(fj,fs) = 0 for j = 4,5 and
wo(fs, fs) = —1.

3.1.3. Diagonalizing the Hesstan. We recall that

H(g,p) = [lp — A(9)|?
so that, at a critical point p = A(q), the Hessian is

T?*H((Uy, V1), (Ua, V2)) = 2(Vi — T,A(U1), Vo — T,A(Us)).
Let us notice that
T?H (fy,f5) = 2|B| (B x ¢,B x d) =0,
T?H (£, f5) = 2(B x ¢,b) = 0,
T?H (f5,f5) = 2(B x d,b) = 0.

The Hessian, restricted to the symplectic orthogonal of T ; 3, is diagonal in
the basis (fy, f5, fs). Moreover we have

T?H(fy,£1) = *H(f5,55) = 2| B|7'|B x ¢* = 2|B|~"|B x d||* = 2| B
Finally we have:
T?H (fs, fs) = 2.

Now we consider the local diffeomorphism:

(2,8) = t(wa, &2, x3) + x1fa(22, §2, 23) + &1f5(22, &2, 23) + E3f6 (22, &2, 23).

The Jacobian of this map is a symplectic matrix on . We may apply the
Moser-Weinstein argument (see [29]) to make this map locally symplectic
near Y modulo a change of variable which is tangent to the identity.

Near Y, in these new coordinates, the Hamiltonian H admits the expan-
sion

(3.4) H=H+0(|z1]> + &1 + 1&3°),

where H denotes H in the coordinates (z1, x2, z3, &1, &2, £3), and with
(3.5) H® = & 4 b(w2, &2, 23) (27 + &7), b= [|B(a2, &2, 23)]].
3.2. Semiclassical Birkhoff normal form.

3.2.1. Birkhoff procedure in formal series. Let us consider the space £ of
formal power series in (1, &1, &3, h) with coefficients smoothly depending on
T = (22,82, 73):

£ = C;;)’&’x:a [[1‘1, fl, 53, h]]
We endow € with the semiclassical Moyal product (with respect to all vari-
ables (z1, z2, z3,&1, &2, &3)) denoted by x and the commutator of two series k1
and ko is defined as

[K1, ko] = K1 * kg — K2 % K1 .
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The degree of 23 ¢22¢0R! = 20¢0RL is a1 + an + B+ 20 = || + 5+ 2. Dy
denotes the space of monomials of degree N. Oy is the space of formal series
with valuation at least N. For any 7,7 € &, we denote ad, v = [7,7].

Proposition 3.2. Given v € Os, there exist formal power series T,k € O3
such that -
esz adT(HO—I-’)/) — HO—I-IQ,
with [k, |21]?] = 0.
Proof. Let N > 1. Assume that we have, for 7y € Os,

e aden (HO 4 ) = HO 4+ K+ -+ Kni1 + Byyo + Onss,
with K; € D;, [Ki, ‘Z1|2] =0and Ryy2 € Dn42.
Let 7/ € Dy12. Then we have
1
e adTN‘”/(HO +79) = H° + K34 -+ Kniy1+ Knto+ Ongs,
with K42 € Dy4o such that
Kny2 = Ryio +ih ' ads HO + Onys .
Let us temporarily admit that (see Lemma 3.3 below):
ihtad, H® =ik 'bad. |21|> + Ongs.
We obtain that
KN+2 = RN+2 + bad ‘Z1’2,
that we rewrite as
Ryio=Knio+ Z'ﬁ_lbad|21‘2 7= Knio+ b{‘Z1’2,T/}.

Since b(Z) # 0, we deduce the existence of 7/ and Kyio such that Ko
commutes with |2 |2. O

Lemma 3.3. For 7/ € Dy, we have
ihtady HY =ik tbad,y 21> + Onys.
Proof. We observe that
ihtady HY = ikt ady €3 +ih ' ad (b(Z)|21]?).

Let us write

= Z aa7g7l(:ft)zf‘§§hl.
|| +B+21=N+2
Then, for the first term, we have

ihtady. €2 ={1', &}

or'
— 9
&3 s

Oanpy, .
=2 Z 7803257 (:U)zf‘ﬁgﬂhé € Onys.
la|+Br2t=N+2 3
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We also have
ih~t(ady b(2)) ={7',b} + KON
_or b orob o7 b
863 (9.%'3 852 8.%'2 8.%'2 852

N
= D pa(Z) 5 =i 21285 + Oir € Ona
o+ B+20=N+2 3

+Ont1

Therefore, for the second term, we get
i ady (b(2)| 21 |?) =i (ady b(E))|21] + i b(F) ad, | 21|
=ih (%) ad, |21)? + Onys,
that completes the proof of the lemma. O

3.2.2. Quantizing the formal procedure. Let us now prove Theorem 2.1. Us-
ing (3.4) and applying the Egorov theorem (see |26, 31] or Theorem A.2), we
can find a unitary Fourier Integral Operator Uy, and such that

ULy AUy = Coh + Opy (HY) + Op} (r1),
T

where the Taylor series (with respect to x1, &1, &3, h) of 1y, satisfies r;, =
v € O3 and Cj is the value at the origin of the sub-principal symbol of
Uy Ly AUp. One can choose Uy, such that the subprincipal symbol is preserved
by conjugation', which implies Cy = 0. Applying Proposition 3.2, we obtain
7 and k in Oz such that

eiﬁ*1 ad, (HO +,7) — HO + K,

with [k, [21]%] = 0.

We can introduce a smooth symbol a; with compact support such that
we have a% = 7 in a neighborhood of the origin. By Proposition 3.2 and

Theorem A.4, we obtain that the operator
¢/ OPE () (Opj (H) + Op; (r))e "™ OPi ()

is a pseudodifferential operator such that the formal Taylor series of its sym-
bol is H? 4 k. In this application of Theorem A.4, we have used the filtration
O; defined in Section 3.2.1. Since £ commutes with |21|?, we can write it as
a formal series in |z;|?:

E : l 2
K= Z 10 C[}m(x2,§2,x3)|21‘ m§3/3
k>3 2042m+B=k
This formal series can be reordered by using monomials (|z1]?)*™:

p=Y 3 (e, 6, as) ().

k>3 204-2m+B=k

IThis is sometimes called the Improved Egorov Theorem. It was first discovered by We-
instein in [30], in the homogeneous setting. For the semiclassical case, see for instance [18,
Appendix A].
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Thanks to the Borel lemma, we may find a smooth function, with a compact
support as small as we want with respect to A, I and &3, f*(h, I, x9, &2, 73, &3)
such that its Taylor series with respect to h, I, 3 is

Z Z heczm(x27€27$3)]-m€§'
k>3 20+2m+ 5=k
This achieves the proof of Theorem 2.1.

3.3. Spectral reduction to the first normal form. This section is de-
voted to the proof of Corollary 2.4.

3.3.1. Numbers of eigenvalues.

Lemma 3.4. Under Assumption 1.2, there exists hg > 0 and g > 0 such

that for all h € (0,hg), the essential spectrum of Nrg admits the following
lower bound:

inf sess(NVF) = (Bo + €0)h.

Proof. By using the assumption we may consider a smooth function x with
compact support and ¢ > 0 such that

&5 + b(x2, &2, 73) + X(w2, T3, £2,&3) = Bo + 220.

Then, given n € (0,1) and estimating the second term in (2.3) by using that
the support of f* is chosen small enough and the semiclassical Calderon-
Vaillancourt theorem, we notice that, for 2 small enough,

(3.6) N = (1 —n)Opp (63 + |21]?b(wa, &2, 73)) -

Since the essential spectrum is invariant by (relatively) compact perturba-
tions, we have

Sess (N,Q + (1 = n)hOpj x(22, 23, &, 53)) = Sess (Mﬁ) :
Hence
inf Sees (./\/';g) > infs (N}g + (1 —n)hOpy X(fvz,azg,fg,fg)) )
In order to bound the r.h.s. from below, we write
N} + (1= )hOp} x(w2, 23,2, €3)
(1 =) Opyy (& + |21%0(w2, &2, 23)) + (1 = A OPY; x (w2, 73, 2, E3)

=
2 ﬁ(l - 77) Op%} (§?2> + b([l}'g,fg,l’:;) + X<$2,$3,§2,§3))
> h(1 —n)(Bo + 2e0 — Ch),

where we have used the semiclassical Garding inequality. Taking 1 and then
h small enough, this concludes the proof. ([l
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By using the Hilbertian decomposition given by the Hermite functions
(ern)k>1 associated with Zj;, we notice that

i _ (k]
Ny = k@/\fﬁ 7
where
(3.7) N = p2D2 4 (2k—1)hOpY b+Opy fH(h, (2k—1)h, xa, 2, 23, &3),
acting on L?(IR?).
Lemma 3.5. For alln € (0,1), there exist C > 0 and hg > 0 such that for
allk > 1 and h € (0, hy), we have infs(/\f%k]’ﬁ) > (1 —2n)bo(2k — 1)h.

Proof. Applying (3.6) to 1 (x1, 2, x3) = @(x2, x3)ex n(x1), we infer that

k], w
N0, 0) > (2K = )AL= n)(Opf (B, ).
With the Garding inequality, we get
(Op} (b)) = (bo — Ch)|l|?,

and the conclusion follows by the min-max principle. O
We immediately deduce the following proposition.

Proposition 3.6. We have the following descriptions of the low lying spec-

trum of/\/g.

(a) There exist hp > 0 and K € N such that, for h € (0, hy), the spectrum of
J\/}g lying below Boh is contained in the union U§:1 sp (/\/}Ek]’ﬁ).

(b) If ¢ € (0,min(3bg, Bo)), then there exists hy > 0 such that for all h €
(0, ho) the eigenvalues of/\/fg lying below ch coincide with the eigenvalues

of/\/’h[l]’ﬁ below ch.

Notation 3.7. If £ is a self-adjoint operator and E < inf sess(L), we denote
by N (£, E) the number of eigenvalues of £ lying in (—oo, E).

We deduce the following proposition.

Corollary 3.8. Under Assumption 1.11, we have
N (L3, foh) = O(*%), N (N foh) = O(h™).

Proof. To get the first estimate, we use the Lieb-Thirring inequalities (which
provide an upper bound of the number of eigenvalues in dimension three)
and the diamagnetic inequality (see [25] and Proposition 1.9). To get the
second estimate, we use the first point in Proposition 3.6. Moreover, given
n € (0,1), by using /i € (0, 1) we infer

N ) > (1= n)R(ODY (€2 + bwa, 2, 73)) 1, ).
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Note that the last inequality is very rough. By the min-max principle, we
deduce that

N (M, Boh) < N (Opf (6 + b, &2, 23)) , (1= m) ™' By)

Then, we conclude by using the Weyl asymptotics and our confinement as-
sumption:

N (Opy (€3 + b(x2, &2, 23)) . (1 — 1) ' Bo) = O(h2).

Since N, g commutes with 7, we also deduce the following corollary.

Corollary 3.9. For any eigenvalue A of N,g such that A < poh we may
consider an orthonormal eigenbasis of the space ker (./\/'g — A) formed with
functions in the form ey p(x1)pp(x2, x3) with k € {1,... K}. Moreover we
have ]1(7007505)(/\/,2) = O(h™?) and each eigenfunction associated with A <
Boh is a linear combination of at most O(h~2) such tensor products.

3.3.2. Microlocalization estimates. The following proposition follows from
the same lines as in dimension two (see [16, Theorem 2.1]).

Proposition 3.10. Under Assumptions 1.1 and 1.2, for any € > 0, there
ezist C(€) > 0 and ho(e) > 0 such that for any eigenpair (X, ) of Lp o with
A < Bo h we have for h € (0, ho(e€)):

1
/ P1-99@/1 1412 4g < O(e) expleh) ]2,
RB

1
Q1 a (e y) < Oe) expleh™ )]
where ¢ is the distance to the bounded set {||B(q)|| < Po} for the Agmon
metric (||(B(q)|| — Bo)+9g, with g the standard metric.

Proposition 3.11. Under Assumptions 1.1 and 1.2, we consider 0 < by <
Bo < by and there exist C' > 0 and hg > 0 such that for any eigenpair (X, 1))
of Ln,a with A < Boh we have for h € (0,hg) and § € (0, 3):

¥ =x0 (" Lna) xa(@) + O]

where xo 18 a cutoff function compactly supported in the ball of center 0 and
radius 1 and where x1 is a compactly supported smooth cutoff function being
1 in an open neighborhood of {||B(q)|| < Bo}-

Let us now investigate the microlocalization of the eigenfunctions of N, ;g

Proposition 3.12. Let x be a smooth cutoff function being 0 on {b < By}

and 1 on the set {b > Py +€}. If X is an eigenvalue of./\/;g such that A < Boh
and if v is an associated eigenfunction, then we have

Opy; (x(22,82,23)) ¥ = O(h™) |4
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Proof. Due to Corollary 3.9, it is sufficient to prove the estimate for a func-
tion in the form v (x1, x2, x3) = epn(x1)p(x2, x3) where k lies in {1,..., K}
and we have

/\/’}gw =\, or equivalently j\/'rgk]’ﬁ@ = \p,
where we recall (3.7). Then, we write
k 5 w w k ) w
NEEOpE (x) 0 = A0pY (x) ¢ + [N;E J Opy (X)] @
and it follows that

(38) (N Opp (x) 1, Opf (X)) = M O} (x) ¢

+ <[Nf£k]’ﬁ’ Op}y (X)} ©,0p¥ (x) ¢> .

Rough pseudo-differential estimates imply that there exist C > 0, g > 0
such that for all i € (0, hg),

(3.9)
[([W19%, 0p ()] @, 0mt (0 0| < 2 [[0mg (x) ][ *+Ch|Ow (1) o]
+ Ch(Opy (33x) ¢, Opy;’ (§3) Opy (X) ¥)-
Combining (3.9) and (3.8), we get

1 w
(3.10) 10D} (€3) Opy (x) #ll < Ch2 | Opy (x) ¢l

where x is a smooth cutoff function living on a slightly larger support than
X- By using (3.10), we can improve the commutator estimate

‘< [Nék]’ﬁ, Op}y (x)} ¢, Op}; (x) 90>‘ < onz ||lopy (x) ¢
We infer that, there exist C' > 0, iy > 0 such that for i € (0, hg),

(N 0Dy (), 0B} (x) ) < Bohll Opy () lI? + €3 [|Opy (x) ]

By using the semiclassical Garding inequality and the support of x, we get

(M2 0pf () 2. 0Bt (1) 2) > (0 + o) 0B ()l

and we deduce

2

2 1 2
10D} (x) #l* < Chz [|Opy (x) ¢||”-
The conclusion follows by a standard iteration argument. ]

The following proposition is concerned by the microlocalization with re-
spect to &3.

Proposition 3.13. Let xo be a smooth cutoff function being 0 in a neigh-

borhood of 0 and let 6 € (O, %) If X\ is an eigenvalue ofJ\/',g such that A < Boh
and if v is an associated eigenfunction, then we have

oy (xo (17°¢) ) ¥ = )|l
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Proof. We write again (1, x2, x3) = ep p(x1)p(r2, x3) with k € {1,..., K}

and we have N%k]’ﬁgp = Ap. We use again the formula (3.8) with yq (h_éfg).
We get the commutator estimate

.00 v (59))] 00 v (1)) )
<ot Jonr (, () of-
We have
Oy ((h%€s)xE (h76s) ) = Opiis (€13 (69))
so that, with the Garding inequality,
(Oopp ()G (17°6) ) ve) = (1= ORI ]
We infer

(R* (1= Ch'=%) = Boh) HOP%’,J (Xo (ﬁ_5§3>> SDHQ

< Chi™? HOp%’ (xo (1)) 9"H2'
0

USing Op%) f*(h7 Iﬁ; o, 527 x3, 63) = Op};] f(h7 |Zl ‘27 x9, 527 x3, 53)7 we de-
duce the following in the same way.

Proposition 3.14. Let x1 be a smooth cutoff function being 0 in a neigh-
borhood of 0 and let § € (O, %) If X is an eigenvalue ofj\/}gi such that X < Boh
and if Y is an associated eigenfunction, then we have

op (1 (@1, ) © = O(h=)[[9].
Proposition 3.15. The spectra of Ly o and J\/}g below Boh coincide modulo
O(h*>).
Proof. We refer to [25, Section 4.3] which contains similar arguments. O

This proposition provides the point (a) in Corollary 2.4. With Proposi-
tion 3.6, we deduce the point (b).

4. SECOND BIRKHOFF NORMAL FORM

4.1. Birkhoff analysis of the first level. This section is devoted to the
proofs of Theorems 2.8 and 2.11.

The goal now is to normalize a hA-pseudo-differential operator N, ,[Ll] on R?
whose Weyl symbol has the form

1
Nf[l ) = 5?? + hb($27 52) $3) + ’l“h($2, 627 533,53),
where 1, is a classical symbol with the following asymptotic expansion:

Tﬁ:T0+hT1+h2T2+"'
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(in the symbol class topology), where each r; has a formal expansion in &3 of
the form

(4.1) re(z2, &2, 3,83) ~ Z CZ,[?($27§2>$3)£§~

20+3>3

The leading terms of N ,g/l] are:

(4.2) N = +hb(wa, &2, m5)+e11 (w2, &2, 73)hs + O(hEF) +O(€5) +O(h?).
4.1.1. First normalization of the symbol.A We cpnsider the following local
change of variables ¢(z2, &2, 3, §3) = (22, &2, 3, &3):

Ty = x2 + £3025(2, &2)

& =& + E3015(22, &)

T3 = x3 — s(x2,&2),

&3:=6&.

It is easy to check that the differential of ¢ is invertible as soon as &3 is small
enough. Moreover, we have

P wo —wo = O(|&3]).

By the Darboux-Weinstein theorem (see for instance [25, Lemma 2.4]), there
exists a local diffeomorphism v such that

(4.4) Yp=Id+0(€2) and Y*@P*wy = wo.

(4.3)

Using the improved Egorov theorem, one can find a unitary Fourier Inte-
gral Operator V4 such that the Weyl symbol of V;* N, rgl]Vﬁ is Nj := N}[LH opo
Y + O(h?). From (4.4), and (4.3), we see that 7, 1= 7 0 (% 0 1 is still of the
form (4.1), with modified coefficients c; g. Thus, using the new variables and
a Taylor expansion in &3, we get

Ny = & +hb(22+0(E3), &+ O(83), &3+ s(d2+ O(€3), 2+ O(€3)) + O(£3))

+O(E) + 7 + O(1?)

and thus
(45) Nh - é% + hb(£27 527 :%3 + S(£27 52)) + h£3g(:%2a 523 i‘B)
+O(hé3) + s + O(E3) + O(W),

for some smooth function g(#s, o, #3).
Therefore Ny has the following form:

Ny = E34hb(io, £, E3+5(2a, E2))+e1.1 (2, Ea, 3)ha+O(RED)+O(E3)+O(R?).
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4.1.2. Where the second harmonic oscillator appears. We now drop all the
hats off the variables. We use a Taylor expansion with respect to x5, which,
in view of (2.6), yields:

2

b(wa, &2, w3+ 5(22,82)) = 5(962,52,8(962752))4‘%332,5(902,52:3(952752))‘*‘0(97%)-
We let:

(4.6) v= (%8%()(@,52, s(x2,&)))* and v = Inv.

We introduce the change of coordinates (Za, 3, o, &3) = C(x2, 23, £a, £3) de-
fined by:

r3 =Vxs3,

& =vlg,
4. .
(4.7) By = o+ SEwss,

& =& — Fasss,
for which one can check that C*wy — wy = O(z3&3) = O(&3). As before, we
can make this local diffeomorphism symplectic by the Darboux-Weinstein
theorem, which modifies (4.7) by O(£2). In the new variables (which we call
(z2,x3,&2,&3) again), the symbol N}, has the form:

Ny = v*(x2,&) (65 + has) + hb(x2, &2, s(w2, &2)) + E1,1 (w2, &2, 3) s
+O(hai) + O(h5) + O(&3) + O(h?),
for some smooth function ¢; 1 (x2, &2, x3).
4.1.3. Normalizing the remainder. The next step is to get rid of the term

¢1,1(w2, &2, w3)hE3 . Let
1

T3
a(xg, &2, x3) == —2/ ¢1,1(we, &2, t)dt .
0

Since ¢1 1 is compactly supported, a is bounded, and one can form the unitary
pseudo-differential operator exp(iA), A = Op}’(a). We have

exp(—iA) Opjy (Np) exp(iA) = Opj’ (Np) + exp(—iA)[Opy (Ny) , exp(id)].
The symbol of [exp(—iA) Opy’ (Np,) ,exp(iA)] is

§e—ia{N, ¢} + O(h?) = B{ Ny, a} + O(h*) = h{ Ny, a} + O(h?),

where Ny is the principal symbol of Nj, which satisfies:
No =&+ 0(&3).
Therefore { Nj, a} = {£2,a} + O(€2). Since
Oa .
{€5,a} = 2638703 = —&3C1,1,

we get
exp(—iA) Opy (Nh) exp(iA) = Op¥(Ny — h&3é11 + O(hfg) + O(h?)),
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which shows that we can remove the coefficient of hf3. The new operator
given by the conjugation formula /\7/'%1] = exp(—iA) Opy (Nh) exp(iA) has a
symbol of the form
(48) Ny = v%(22,6) (6 + had) + hb(w, &, 5(w2,6)) + 75,
where 1, = O(hx3) + O(h€2) + O(&3) + O(h?).

This proves Theorem 2.8.

4.1.4. The second Birkhoff normal form. We now want to perform a Birkhoff

normal form for A/ %1],ﬁ relative to the “second harmonic oscillator”
v (x2,8) (& + ha3) .

Using Notation 2.10, we introduce the new semiclassical parameter h = h%,
and use the relation

1 w1
Op} (1} #) = Opjy (N).
Thus, let éj = h_l/ij. The new symbol Ng]’ﬁ has the form:

N} (g, &, 23, €5) = B2 ( (w2, h&2) (63 + 23) + b(w2, héa, s(w2, h2))

+ h h2(x27h527x37hg3)) .

We introduce momentarily a new parameter y and define

NQ]’ﬁ(Sﬂzvé,fCa,&; p) o= V2 (g, po) (65 + a3) + blwz, o, s(wa, péa))
+h” th(xz,M£2,fU3,hf3)

Notice that Ng]’ﬁ ($2> 527 x3, 53; h) = h_2ug]’ﬁ ($2> 527 x3, 53) We define now a
space of functions suitable for the Birkhoff normal form in (z3, €3, h). Let us
now use the notation of the Appendix introduced in (A.4) in the case when
the family of smooth linear maps R? — R? is given by

Pu,R2 (332752) = (562,#52)‘
Let
ﬂ\ = C(l)RZ

where the index R? means that we consider symbols on R?. More explicitly,
we have

= {ds. t. I € S(1;]0,1]x (0, 1])g2 : d(w2, 25 1, h) = c(ppp2 (w2, E2); 1, )}
Then we define
& = Flxs, &, h],
endowed with the full Poisson bracket

of o0 dg 0
ExE5(fg) > {fgy= 3 2L L0 9908

7j=2,3
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and the corresponding Moyal bracket [f, g]. We remark that the formal Tay-
lor series of the symbol NQ]’ﬁ(x2,§2,x3,§3; w) with respect to (333,53, h) be-
longs to &. We may apply the semiclassical Birkhoff normal form relative to
the main term v?(x2, ué2) (€3 + x2) exactly as in Section 3.2.1 (and also 25,
Proposition 2.7]), where we use the fact that the function

(1132, 527 €3, 53; y h) = (EQ(:E% MgQ))il

2

belongs to & because v > C' > 0 uniformly with respect to p. Let us

consider v € & the formal Taylor expansion of h‘%,ﬁﬂ (x2, péa, 3, hfg) with
respect to (z3, &3, h). The series v is of valuation 3 and we obtain two formal
series k, T € & of valuation at least 3 such that

[k, 23 + &3] = 0
and
e (2 (29, n€) (63 + 23) + ) = 12 (w2, 1) (€ + 23) + k.

The coeflicients of 7 are in S(1) and one can find a smooth function 7, € S(1)
with compact support with respect to (z3, 53, h) and whose Taylor series in
(x3,&3,h) is 7. By the Borel summation, 7, will actually lie in S(m’) with
m/ (2, &, 13, E3) = ((x3,€3))F for any k > 0, uniformly for small & > 0 and
w € [0,1]. Notice that NQM e C(m) with m = {((z3,£))? > 1, and that
mm' = O(1).

Then, we can apply Theorem A.3 with the family of endomorphisms of R*
defined

o ra (T2, 82,73, &3) = (w2, €2, 73,&3) -

Thus, the new operator
M, = oih ™ Op} mgme—ih* OpY 4,

is a pseudo-differential operator whose Weyl symbol belongs to the class C(m)
modulo h>*°S(1) (see the notations of Theorem 2.11). Moreover, thanks to
Theorem A.4, its symbol Mj, admits the following Taylor expansion (with
respect to (z3, &3, h))

B(II,’Q, :u’£27 S($27 ,U,gg)) + 22('1:27 Mé?)(gg) + $§) + K.

We write £ = > /3 Cmp (22, 1€a)| Z3*2™h! and we may find a smooth

function g*(xa, uéa, Z, h) such that its Taylor series with respect to Z, h is
D cmulwa, uéa) 2 h".
2m+26>3
We may now replace p by h, which achieves the proof of Theorem 2.11.

4.2. Spectral reduction to the second normal form. This section is
devoted to the proof of Corollary 2.13.
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4.2.1. From N,gl}’ﬁ to .M%”’ﬁ. In this section, we prove Corollary 2.9.
Lemma 4.1. We have

N (N,g”’ﬁ, ﬂ0h> — 0?2, N (M;}M, 50h) — O(r72).

Proof. The first estimate comes from Proposition 3.6 and Corollary 3.8. The
second estimate can be obtained by the same method as in the proof of Corol-
lary 3.8. 0

Let us now summarize the microlocalization properties of the eigenfunc-
tions of N/ gm in the following proposition.

Proposition 4.2. Let xo be a smooth cutoff function on R being 0 in a
neighborhood of O and let 6 € (0, %) Let x be a smooth cutoff function
being 0 on the bounded set {x3 + b(xa, &, s(22,&2)) < Bo} and 1 on the set

{23 + b(wa, &2, 8(w2,&2)) = Bo + £}, with & > 0. If X is an eigenvalue ofﬂg]’ﬁ
such that A < Boh and if ¢ is an associated eigenfunction, then we have

Opy (X(z2,&2,23)) ¥ = O(R) |||,
and

oy (xo (%) ) v = )|l

Proof. The proof follows exactly the same lines as for Propositions 3.12 and
3.13. O

Lemma 4.1 and Proposition 4.2 on the one hand and Propositions 3.12 and
3.13 on the other hand are enough to deduce from Theorem 2.8 the point (a)
in Corollary 2.9. The point (b) easily follows from Corollary 2.4.

4.2.2. From mg]’ﬁ to imﬁl Let us now prove the point (a) in Corollary 2.13.
We get the following rough estimate of the number of eigenvalues.

Lemma 4.3. We have

(4.9) N (U, Boh?) = N (0, Boh?) = O(h™),

(4.10) N (9, 6oh?) = O(h™1).

Proof. First, we notice that ﬂgm and 91, are unitarily equivalent so that
(4.9) holds. Then, given n > 0 and h small enough and up to shrinking
the support of g* and by using the Calderon-Vaillancourt theorem (as in the

proof of Lemma 3.4), ‘)ﬁ&t > ﬁ,ﬁl in the sense of quadratic forms, with

0, = O} (W2b(ws, héa, s(w2, hé2)) ) +h27 Opf ((12(w2,hE2)) = n) -
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2

Since v > ¢ > 0, we get

Opy, (hQQ(ﬂfz, héa, (w2, hgz))) + h2J), Op}! ((22(902, héz)) - 77)
> Op}; (h%b(ws, héz, 5(a2,hé2)) ) + ST

We deduce the upper bound (4.10) by separation of variables and the min-
max principle. O

The following proposition deals with the microlocal properties of the eigen-

functions of mg]’ﬂ.

Proposition 4.4. Let n € (0,1),6 € (0,2),C > 0. Let x be a smooth
cutoff function being 0 on {b(x2, &2, s(x2,&2)) < Po} and being 1 on the set
{b(xg, &2, s(x2,&2)) = Po + €}, with € > 0. Let also x1 be a smooth cutoff
function on R2, being 0 in a neighborhood of 0.

If X is an eigenvalue ofﬂgm such that A < Boh® and if 1 is an associated
etgenfunction, we have

(411) O} (x(w2, héa)) ¥ = O™ ]

and if A is an eigenvalue ofﬂgm such that A < boh? + Ch>T™ and if ¢ is an
associated eigenfunction, we have

(4.12) Oy (xa(h ™ (25,8)) ) ¥ = O(h=) ],

Proof. The estimate (4.11) is a consequence of Proposition 4.2. Then, let us
write the symbol of mg]’ﬁ:

NI = R (20, h) (€ + 23 +h2b(w, b, s(w2, )+ Bl (2, héa, 3, hs).
We write
(20 Opi (a (b (s, ) ) . Opf! (xa(h (. 62))))
= X Ovy (xa(h~ (3, &))) |
+ ([, opp (a(h " (@s.&a0) )| Opi (xa(h (@3 8)) ) )
We get
(|20, 0pi (a(h (s, ) | Opi (xa(h~ (. &0))) )

< on*|opy (x, (™ (s, ) ) ¥)
where we have used (4.11). Then, we use that

b(xg, héa, 5(2, hés)) = by, v (9, hés) = co > 0, A < boh? + Ch2T,

2
)
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and the Garding inequality to deduce

N 2
n (cn® — cnn) oy (xa(h (w5, &))) v
- 2
< OB Hopﬁ (Xl(h*‘;(azs,fs))) wH :
The desired estimate follows by an iteration argument. (]

In the same way we can deal with zmi

Proposition 4.5. Let n € (0,1),6 € (0,4),C > 0. Let x be a smooth
cutoff function being 0 on {b(x2, &2, s(x2,&2)) < Po} and being 1 on the set
{b(z2, &2, s(x2,&2)) = Bo + £}, with € > 0. If A is an eigenvalue ofimg such
that X < Boh? and if v is an associated eigenfunction, we have

(4.13) O} (x(@2,h&2) ) v = Oh™)[¥]

and if A is an eigenvalue of fm% such that A < boh? 4+ Ch**™" and if 4 is an
associated eigenfunction, we have

(4.14) Opy (xa(h™(23.8)) ) ¥ = O(h=) ],

Proof. In order to get (4.13), it is enough to go back to the representation

with semiclassical f, that is zmﬁ = Mﬁh Indeed the microlocal estimate
follows by the same arguments as in Propositions 3.12 and 3.13. Then, (4.14)
follows as in Proposition 4.4. ([l

Propositions 4.4 and 4.5 and Theorem 2.11 standardly imply the point (a)
in Corollary 2.13.

4.2.3. From ,‘mi to img”’ﬁ. Let us now prove the point (b) in Corollary 2.13.
Note that the point (c) is just a reformulation of (b).

Let us consider the Hilbertian decomposition Mt = @,@1 zm%“]’“, where
the symbol M%ﬁm of smﬁfl’ﬁ is

h2b(w2, héa, s(x2, héa)) + (2k — 1)h3V2 (0, hs) + h2g*(h, (2k — 1)h, w2, h2).

There exists hg > 0 such that for all £ > 1 and h € (0, hy),

(e, )
> (0D} (h*b(a, héa, s(wa, héa) + (2k = DAY (2 (02, h) = 2)) 0.

Since each eigenfunction of zmﬁl’“]’ﬁ associated with an eigenvalue less than
Boh? provides an eigenfunction of E)ﬁ%, we infer that the eigenfunctions of
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Qﬁgf”}’ﬂ are uniformly microlocalized in a (z2,&2)-neighborhood of (0,0) as

small as we want. Therefore, on the range of 1(_ j52) (fmﬁf]’ﬁ), we have

(4, )
> (Opf (W2b(wa, hé, (w2, hés)) + (2k = DI (W3(0,0) = 29) ) ,).
and, with the Garding inequality in the A-quantization, we get
(@54, ) > (Opy (Wb + (2k — DI (12(0,0) — &) — CH*) 4,43,
This implies the point (b) in Corollary 2.13.

5. THIRD BIRKHOFF NORMAL FORM

5.1. Birkhoff analysis of the first level. In this section we prove Theo-
rem 2.15.
We consider /\/l,[il]’ﬁ = Opy’ (]\4}%1]%)7 with
3 1 1
Mfgl},ﬂ - hb($2a 523 S(x27 52)) + hEZZ(:C27 52) + hg*(h§7 h2 y L2, 52)
By using a Taylor expansion, we get,
(5.1)
(114 h 3 9 8 3
Mh = hby + §HeSS(0’O)Q(LE‘Q, &9, 8(1‘2, 52)) + h2v (0, 0) + cxoh? + déah?
+ hO((h% ) 22)3)a

where ¢ = 9,,12(0,0) and d = J¢,%(0,0), and we have identified the Hessian
with its quadratic form in (x3, &2).

Then, there exists a linear symplectic change of variables that diagonalizes
the Hessian, so that, if Ly is the associated unitary transform,

LML, = opy (M1}7%),
with
y [1}711 _ E 2 2 3 2 ~ 3 T 3 1 3
M3 = hbg + 29(m2 +&5) + h2v?(0,0) + cwgh2 + déahz2 + hO((hz, 22)7),

where

0= \/det Hess(oﬁo)b(:pg, &2,5(x2,&2)) -

Since (Ogz,b)(x2, &2, s(22,&2)) = 0 and (0,0) is a critical point of s, we notice
that 97,,.,b(0,0,0) = 92, ,.5(0,0,0) = 0. Thus

det Hess g0.0)b(0,0,0) = 6°92,5(0,0,0).
Using that b is identified with b o x (see Remarks 2.2 and 3.1), this provides
the expression given in (1.15).
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Note that ¢ 4 d? = 1(V5.6,72)(0,0)||? since the symplectic transform is
in fact a rotation. Moreover we have

A1\ 2 a1\ 2 SO
0(23463) +ewsh +deaht = 0 <x2— Ch2> + (52— d’“) _petd

6 0 0

Thus, there exists a unitary transform Ur 1 which is in fact an A-Fourier
1

Integral Operator whose phase admits a Taylor expansion in powers of h%,
such that

Crx Tk (1], J
Uﬁ,% Lﬁ,Mﬁ LhUﬁ

=: F, = Op} (£),

1
2
where

1(Vay.,4%)(0,0)|”
20

: 0
F, = hby + h22(0,0) — h2+n(2122\2+0<(h%,z2)3)>.

Now we perform a semiclassical Birkhoff normal form in the space of formal
series R[z2, &2, h%]] equipped with the degree such that xéf%”h% isf+m-+n
and endowed with the Moyal product. Let E% be the full Taylor series of F'j,.
We find a formal series 7(z2, &2, h%) with a valuation at least 3 such that

ih~lad, T _ T
(& Eh = F;LL 5
where FhT is a formal series of the form

[(Vay.6,4%)(0,0)|”
20

FT = hby + h212(0,0) — h2+§h|zQ\2+hkT(h%,|22|2),
and kT is a formal series in R[[h%, |22?] (and that can be also written as a
formal series in Moyal power of |z2|?, say (kT)*).

Let 7(x2, &2, 1) be a compactly supported function whose Taylor expansion
at (0,0,0) is equal to 7(x2, &2, pt). By the Egorov theorem A.2, uniformly with
respect to the parameter u, we obtain that

e~ P (D) Opp (B, o) OPH () = Opp(F,)

is an h-pseudo-differential operator depending smoothly on p. Expanding
F}, in powers of p in the S(1) topology, and letting p = V'h, we see that
Fp=Fp+ G, where

||(V£B2,£2V2)<07 O)”2
20

with k& a smooth function with a support as small as desired w.r.t. its second

variable, and G}, = hO(|z2|™). It remains to notice that OpY (k(h%, |22\2))

can be written as k*(h%, K1) modulo Op}’ (O(]22]°°)). This achieves the proof
of Theorem 2.15.

0
Fy, = hbg + h2v%(0,0) — n? + §ﬁ|22|2+ﬁk(h%, 125]2),
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5.2. Spectral reduction to the third normal form. Corollary 2.16 is a
consequence of the following lemma and proposition.

Lemma 5.1. We have
N (Mf[llmﬁoh) =0O(h?),  N(Fnboh+ Ch'™) = O 17),

Proof. The first estimate follows from Lemma 4.3 and the second one from a
comparison with the harmonic oscillator in x». O

The last proposition concerns the microlocalization of the eigenfunctions.

Proposition 5.2. Letn € (0,1),6 € (0,4),C > 0. Let x be a smooth cutoff
function being 0 in a bounded neighborhood of (0,0) and 1 outside a bounded

neighborhood of (0,0). If A is an eigenvalue of /\/1%1]’ﬁ or of Fn such that
A < boh 4+ CRMM and if ¢ is an associated eigenfunction, we have

O} (x(h~ (w2, &))) v = O(n).

Proof. The proof is similar with the one of Proposition 4.4. O

APPENDIX A. EGOROV THEOREMS

We start with the classical result (see for instance [31, Theorem 11.1]
and |26, Théoréme IV.10]).

Theorem A.1 ([31, Theorem 11.1, Remark (ii)]). Let P and Q be h-pseudo-
differential operators on Rd, with P € Opy (S(1)) and Q@ € Opy (S(1)).
Then the operator e @ Pe™ %9 is a pseudo-differential operator in Opy’ (S(1)),
and

ei@Pe w9 — OpY(po k) € hOpY (S(1)) .

Here p is the Weyl symbol of P, and the canonical transformation k is the
time-1 Hamiltonian flow associated with principal symbol of Q.

From this classical version of Egorov’s theorem, one can deduce the fol-
lowing refinement that is useful when p does not belong to S(1) (as it is the
case in this paper).

Theorem A.2. Let P and Q be h-pseudo-differential operators on R®, with
P € Opy (S(m)) and Q € Opy (S(m')), where m and m' are order functions
such that:

(A1) m' =0(1); mm' =0(1).

Then the operator er QP9 js g pseudo-differential whose symbol is in
S(m), and en®Pe" w9 — Opl(po k) € hOpY (S(1)).
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Proof. The proof is based on the following observation. In order to compare
Op}y(po k') and e%QPef%Q, we consider the derivative:

d iT iT
o (eTQ Opy(po /ﬁt—T)e_WQ)

i i w -7 d w —r _iT
=79 (11Q.0nf (o ]+ 1 Opilpo s ) ) F

From Hypothesis (A.1), the term [Q, Op}’(p o k'~ 7)] belongs to Op}’ (S(1));

moreover, if we denote by ¢ the principal symbol of ), we have
d _ _
- O} (por"™7) = = Opj({g0,p o #"7}),

which implies that this term is also in Op}’ (S(1)). By symbolic calculus, we
see that

{ w —T d w -7 w
(A.2) E[Q’ Opy (pow'™7)] + i Opy (po x'"7) € hOpy) (S(1)),
uniformly for ¢, 7 in compact sets. It follows by integration from 0 to ¢ that

, , t .
(A.3) ehQPe 1w = Op¥(po k') + h/ en@P(s)e s,
0

for some Py (s) € Opy, (S(1)), uniformly for s € [0,¢]. Applying Theorem A.1
to the integrand, we see that enQPe n@ — Opy(pox!) € hODPY (S(1)). O

In order to quantize the formal Birkhoff procedure of Section 4.1.4, one
needs to consider symbols in a class C stable under the Moyal product. For
that purpose we first define the families of symbols S(m; [0, 1] x (0, 1]), that
is of smooth functions a : R2? x [0, 1] x (0, 1] — C such that, for any a € N2?,
there exists C, such that, V(z; i, h) € R?? x [0,1] x (0, 1],

0% a(z; p, h)| < Cam(z)
and where m is an order function on R?¢. The pair (1, h) is considered as a
parameter.

Then, let (¢u),c
define the following families of symbols on R?? by

0,1] be a smooth family of linear maps R2d — R? and

(A4) c(m) = {a e S(mi[0,1] x (0,1]);  alz5ph) = alu(2); 1, h)
with @ € S(m; [0, 1] x (0, 1])} :

Theorem A.3. Let P and Q be h-pseudo-differential operators on R%, with
P € Opy (C(m)) and Q € Op}’ (C(m)), where m and m’ are order functions
such that:
m>1; m'=0(1); mm' =0(Q).
Then en®Pe~ 129 = P 4+ R, where P € OpY’ (C(m)), R € h™® Op} (S(1)),
and with P — Op¥(po k) € hOp¥ (C(1)).
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Proof. Since ¢,, is linear, one can see (using for instance |31, Theorem 4.17])
that C is stable under the formal Moyal product, i.e. for all order functions
mq and msg, we have

(C(m1)) * (C(ma)) C C(mams) + h=S(1).

Let k be the canonical transformation associated with ). Then, since
m > 1, we have p o k € C(m); indeed, if we write the Hamiltonian flow of @
in terms of the variable Z = ¢,(2), we see from the linearity of ¢, that the
components of the transformed vector field belong to C(m'). Therefore ¢, 0k
is of the form &, o ¢, for some diffeomorphism &, depending smoothly on .

Therefore, both terms in (A.2) belong to Opj’ (C(1)). Applying this argu-
ment inductively in (A.3), we may write, for any k > 0,

en@Pe hQ — OpP(po k) — (hPL + h2Py + -+ h*Py) € KL Op¥ (S(1)),

with P; € Op¥ (C(1)). By a Borel summation in h, parametrized by Z =

¢u(2), we can find a symbol P e Op}’ (C(1)) such that we have the asymp-
totic expansion in Op}’ (S(1)):

pNhP1+h2P2+"‘
We conclude by letting P = Opj(po k) + P. O

We will also need to examine how the Egorov theorem behaves with re-
spect to taking formal power series of symbols. For this, it is convenient to
introduce a filtration of S(m).

Theorem A.4. Let m be an order function on R?, and let (O;)jen be a
filtration of S(m), i.e

Oy = S(m), Oj+1 C Oj.

Let P = Op}p and Q = Opy}) q be h-pseudo-differential operators on RY,
with p € S(m) and g € S(m'), where m' is an order function such that m’
and mm’ are bounded.

Assume that:

(A.5) +adq(0;) C Oj41; Vi > 0.
Then for any k > 0, the Weyl symbol of the pseudo-differential operator
ehQPe~ 7@ — Z] 07 L(+adg)? P belongs to Op} (Op11). In other words, the

series of exp(; adg) P converges to en@Pe i@ for the filtration (O;)jen.

Proof. By the Taylor formula, we can write
1 1 i i
enQPe#Q = Z (a1l P+ (adip-19)" ! / (1—t)kenQPe~ 7t
k! 0
By Theorem A.27 we see that the integral belongs to Op}’ (S(m)) = Opy’ (Op).

Therefore, by Assumption (A.5), the remainder in the Taylor formula lies in
Opy, (Ok1). O
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