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RÉSUMÉ. Le mélange fil - sable possède de meilleurs propriétés mécaniques que le sable seul.
Afin de mieux cerner les mécanismes de ce géo-composite, nous l’avons modélisé par des mé-
thodes continues et discrètes. La formulation d’une loi thermodynamiquement admissible tenant
compte de l’unilatéralité du renfort permet, en outre, une modélisation cohérente du matériau.
Parallèlement, les investigations éléments discrets permettent de mettre en évidence les micro-
phénomènes de renfort. Ce sont ces deux approches numériques que nous souhaitons confronter
afin d’identifier les paramètres de notre loi continue.

ABSTRACT. The sand and wire mixture have a higher strength than the sand alone. We modeled it
by continuous and discrete methods to emphasize its reinforcement mechanisms. In one hand,
the formulation of a thermodynamics law which take into account for the wire network unilat-
erality, models consistently this material. In the other hand, investigations by discrete elements
highlight reinforcement micro phenomena. We want to use these two numerical approaches to
identify the parameters of our continuous law.

MOTS-CLÉS : Unilatéralité de la structure, thermodynamique, modélisation continue, modélisa-
tion discrète.
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1. Motivations

Civil engineers are often expected to build larger and larger constructions ; the
ground needs assistance in supporting such works. Various solutions can be used to
reinforce soil, columns, micro-piles, geomembranes, geogrids and geotextiles. This
paper focuses on a particular process, belonging to the last reinforcement category :
TexSolTM. It is a soil reinforcement process created in 1984 by Leflaive, Khay and Bli-
vet from the LCPC (Laboratoire Central des Ponts et Chaussées) (Leflaive et al., 1985)
and (Khay et al., 1990). Its originality lies in combining the soil (sand) with wires. A
machine, called a “texsoleuse”, does this by depositing sand and feeding in the wire
at the same time. The latter is randomly distributed on the free surface and is simul-
taneously covered with sand to create a TexSolTM layer. Although the wire volume is

Figure 1. Schematic TexSolTM sections

negligible compared to that of the sand, the wire becomes a strong reinforcement when
it tangles up inside the geomaterial (cf. Figure 1). The TexSolTM behavior depends on
sand and wire constitutive parameters. They lead this mixed material friction angle
to be larger than sand by 0◦ to 10◦ (Khay et al., 1990). The wire is described by
its linear density in dtex units (1 dtex = 10−7 kg.m−1), ponderal content and stiff-
ness. Classically, the wire density in a TexSolTM sample ranges between 105 m−2 and
3.105 m−2. This type of material is adapted for embankments requiring a strong slope
or works which may be subjected to dilatation strain (protection dome of a gas reserve
for example). Indeed, the wire works in tensile directions and the wire network main-
tains the structure (when wire density is high enough) ; TexSolTM can be regarded as
a composite material. In the literature, we find two different continuous modellings.
The model suggested in (Fremond, 2002) is non local and includes remote interac-
tions (corresponding to the wire effects) but requires identification of their parameters
using macroscopic experiments. Villard proposes a simpler local model in (Villard et
al., 1989). It couples a standard model of sand and an equivalent unilateral elastic
stiffness contribution corresponding to the wire network. This last contribution is ac-
tivated only on the tension directions because of the unilateral behavior of wire. This
study interest lies in multi-scale theoretical contributions of unilateral structures with
long internal length. Thus, we propose to clearly define thermo-dynamical potentials



TexSolTM homogenization attempt 3

of the Villard local model with both stress and strain formulations to identify the best-
adapted one. Such a stage is useful before carrying out a homogenization procedure
applied to an untypical material. In the absence of physical experiments, the identifi-
cation of macroscopic model will be performed using discrete numerical experiments.
Those allow to study in detail the microstructure and reinforcement interactions on a
microscopic scale.

2. Thermodynamical modelling in a local formalism

The local model proposed by Villard couples a standard model of sand with an
equivalent unilateral elastic stiffness for the wire network. The unilateral characteris-
tic of this feature means that stiffness is only activated in tensile directions. To “super-
pose” the elasto-plastic model of the sand and the unilateral elastic model of the wire
network, some mechanical assumptions have to be considered : the strain rates equa-
lities

�
εs =

�
εw =

�
ε and the stress additivity σ = σs + σw. Those two assumptions

Figure 2. Rheological TexSolTM diagram

on the two phases are quiet restrictives and they would have to be verified by discrete
simulations before carrying out an identification procedure. Figure 2 represents the
mono-dimensional rheological diagram of both sand and wire network model, super-
posed using the two previous assumptions. We want to write this type of model in a
consistent thermodynamical framework with both strain and stress formulations. The
interest of this work lies in the identification possibilities of thermodynamical poten-
tials parameters.
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2.1. Several descriptions of a thermodynamics state

We thus use the Legendre–Fenchel transformation, to carry out our study with both
strain and stress formulations. Let us write the Clausius–Duhem inequality where u is
the internal energy, s the massic entropy, q the heat flow vector and T the temperature,

σ :
�
ε− ρ

(
�
u− T

�
s
)
− q

T
· ∇T ≥ 0 . [1]

The intrinsic dissipation depends on a state variable X (or its dual X∗), some internal
variables α = {α1, · · · , αp} (each internal variable can be scalar, vectorial or tenso-
rial) and the temperature T . It can also be expressed with the free energy ψ = u− Ts
or its Legendre–Fenchel transformation ψ∗ with respect to the state variable X ,

ψ(X, α, T ) = u(X, α, T )− Ts(X, α, T )
ψ∗(X∗, α, T ) = sup

X

{
X : X∗ − ψ(X, α, T )

}
= X : X∗ − ψ(X, α, T ) .

[2]

where X is the argument of the supremum. Considering either X or X∗, we find two
expressions of the Clausius–Duhem inequality,

σ :
�
ε− ρ

[
∂ψ
∂X :

�
X +

(
s+ ∂ψ

∂T

) �
T + ∂ψ

∂αm

�
αm

]
− q

T · ∇T ≥ 0 , [3]

σ :
�
ε− ρ

[
�

X : X∗ +
(
X − ∂ψ∗

∂X∗

)
:

�
X∗ +

(
s− ∂ψ∗

∂T

) �
T − ∂ψ∗

∂αm

�
αm

]
− q
T · ∇T ≥ 0 .

[4]

Using the Helmholtz postulate, we deduce one part of the state laws, and we also
define thermodynamical forces Am associated to internal variables αm to complete
those laws such as,

Primal state laws Dual state laws
X∗ ∈ ∂Xψ(X, α, T ) X ∈ ∂X∗ψ∗(X∗, α, T )
−s ∈ ∂Tψ(X, α, T ) s ∈ ∂Tψ∗(X∗, α, T )
−Am

ρ ∈ ∂αmψ(X, α, T ) Am

ρ ∈ ∂αmψ
∗(X∗, α, T )

[5]

Formally, we use subdifferentials instead of derivatives. In the general case, the
Clausius–Duhem inequality (3) or (4) can be reduced to a dot product of a vector flow
and a vector force. It is convenient to introduce a dissipation potential ϕ from which
the evolution laws are derived. By duality, a force function ϕ∗ is automatically defined
using the Legendre–Fenchel transformation. Generally, we distinguish the reversible
and irreversible parts of the transformation. We thus postulate an additive decomposi-
tion for both reversible and irreversible parts of the strain tensor ε = εr + εir and the
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State variable : εr State variable : σ

σ :
�
εir +Am

�
αm − q

T · ∇T ≥ 0 σ :
�
εir +Am

�
αm − q

T · ∇T ≥ 0
Free energy : ψ Dissipation potential : ϕ Free enthalpy : ψ∗ Force function : ϕ∗

1
ρ σ ∈ ∂εrψ σ ∈ ∂�

εirϕ
1
ρ εr ∈ ∂σψ

∗ �
εir ∈ ∂σϕ

∗

−s ∈ ∂Tψ Am ∈ ∂ �
αm

ϕ s ∈ ∂Tψ
∗ −Am ∈ ∂ �

αm
ϕ∗

− 1
ρAm ∈ ∂αmψ ∇T ∈ ∂“

− q
T

”ϕ 1
ρAm ∈ ∂αmψ∗ −∇T ∈ ∂“

− q
T

”ϕ∗
State variable : ε State variable : σr

σir :
�
ε +Am

�
αm − q

T · ∇T ≥ 0 σir :
�
ε +Am

�
αm − q

T · ∇T ≥ 0
Free energy : ψ Dissipation potential : ϕ Free enthalpy : ψ∗ Force function : ϕ∗

1
ρ σr ∈ ∂εψ σir ∈ ∂�

ε
ϕ 1

ρ ε ∈ ∂σrψ∗
�
ε ∈ ∂σirϕ

∗

−s ∈ ∂Tψ Am ∈ ∂ �
αm

ϕ s ∈ ∂Tψ
∗ −Am ∈ ∂ �

αm
ϕ∗

− 1
ρAm ∈ ∂αmψ ∇T ∈ ∂“

− q
T

”ϕ 1
ρAm ∈ ∂αmψ∗ −∇T ∈ ∂“

− q
T

”ϕ∗

Tableau 1. Strain versus stress formulations

stress tensor σ = σr + σir. At this stage, we have to choose the external state variable
X for the strain formulation and consequently X∗ for the stress formulation. The two
most relevant choices are given in Table 1. Classically, an experimenter choose an ob-
servable variable as the total strain ε, but other variables can be used as the reversible
strain εir. This choice changes dual variables, state and complementary laws and the
inequality (1).

2.2. Thermodynamical potentials of the TexSolTM in a three-dimensional modelling

Concerning our continuous model, the sand phase is described by an elastic-plastic
model with an isotropic and kinematic hardening combination. The sand elastic do-
main is bounded by a Drucker – Prager criterion which is regular and close enough
from the classic soil criterion of Mohr – Coulomb. We consider that the wire network
phase behave like an elastic three-dimensional structure when it is fully in tension.
However, the continuous law have to take into account the unilateral characteristic of
a wire element at the structure scale. Those two phase model are superposed by the
strain rates equality and the stress additivity as mentioned in section 2. We choose ε
as the state variable combined with the internal variables εp, α and p describing the
plasticity, kinematic and isotropic hardening respectively. The model elastic parame-
ters are the sand elasticity tensor Ks, depending on the sand elasticity modulus Es
and νs, and the wire network coefficients of Lamé λw and µw. The hardening ones
are Hi and Hk the isotropic and kinematic hardening respectively. The TexSolTM free
energy is written as,

ψ(ε, εp,α, p) = ψs(ε, εp,α, p) + ψw(ε)
ψs(ε, εp,α, p) = 1

2 (ε− εp) :Ks (ε− εp) + Hk
2 α : α + Hi

2 p
2

ψw(ε) = λw

2 〈tr(ε)〉2 + µwε≥ : ε≥ ,
[6]
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where 〈.〉 = max(., 0). The spheric term of the wire network free energy has re-
gard of the unilaterality of the volumic deformation. Concerning the other one, it
has to activate the wire stiffness only on the tensile principle directions. The ope-
rator (.≥), described more precisely in (Laniel et al., 2007), is define by ε≥ =
P 〈diag(ε1, ε2, ε3)〉P T , where ε1, ε2, ε3 and P are the principle values and the pas-
sage matrix of ε respectively. The wire network model is non dissipative, consequently
the TexSolTM and the sand dissipation potentials are the same. We thus write the Le-
gendre – Fenchel transform of the dissipation potential as,

ϕ∗(σir,A,χ, R) = I{0}(σirs ) + IΩ(χ,R)(A) , [7]

where σir, A, χ and R are thermodynamical forces associated to ε, εp, α and p
respectively. The indicative function of a D domain is noted ID(.). In the principle
stresses space, Ω represents the elastic domain which is bound by a Drucker – Prager
criterion depending on the internal friction angle θf and the cohesion C0, as mentio-
ned previously. The state laws and complementary laws associated to potentials (6)
and (7) have been implemented and tested in the finite element software Cast3MTM.
Three different models are tested : a sand alone called “sand”, a sand bilaterally rein-
forced called “reinforced sand” and a sand unilaterally reinforced called “texsol”. A

Figure 3. Cyclic compression test

cyclic compression test is carried out, using a single linear element and a piloted dis-
placement, on the three models to emphasize the unilateral properties of the TexSolTM

compared to the two other limit models. After 20 loading loops, we remark in Figure 3
that all force/displacement plots are stabilized. However, “texsol” and “reinforced san-
d” stabilization occurs earlier and closer to the zero displacement axis than “sand” one.
We can also clearly observe a switch in the TexSolTM slope depending on the tension
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or compression domain. Another test is carried out to highlight the repartition of the
wire network stress. We thus simulate a crushing test of 0.1% on a cylinder meshed
by 400 linear elements. Figure 5 shows the equivalent Von-Mises stress σeq map on a

Figure 4. Wire network pressure

Figure 5. Wire network equivalent stress

axial/radial section of the sample (σeq =
√
J2(S) is considered as the pseudo norm of

the deviatoric stress tensor S). The wire network equivalent stress level of the “texsol”
is bounded by the two other models but the repartition is close to that of “reinforced
sand”. The wire network pressure map is shown in the Figure 4 and we remark that
the “texsol” generates only negative pressure in the wire network phase, due to its
unilateral definition.

3. Numerical discrete investigations

It is classical to identify the material parameters (stiffness, hardening et cætera)
in a continuous model of a complex structure, by carrying out a backward analysis.
Experimental tests are generally used to update the set parameters but the measurable
fields are limited (surface strain, partial displacement field, total force on boundary
conditions). In our approach, the measure fields are replaced by discrete numerical
experiments. Thus, all the particle displacements and contact forces can be extracted
from the sample. By locally averaging the previous fields, the equivalent stress and
strain tensors of the granular material are built up (Bagi, 1996),(Cambou et al., 2001).
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These provide more accurate information than the experimental method with a more
relevant cost function.

3.1. A discrete modelling of the TexSolTM

The NSCD is a discrete element method used in the LMGC90 code which simu-
lates multibody vs. multicontact problems, privileging velocity fields (Jean, 1999). For
a single contact α problem, the NSCD evaluates the external forces and dynamic ef-
fects on the contactor point. To make such a transformation, Hα and HT

α are used to
move variables from the local contact frame to the global body and vice-versa. For a
time step i + 1, a linear relation between the relative velocity uαi+1 and the averaged
impulse pαi+1 over [ti, ti+1] is found ; this is associated to a contact condition such as,{

uαi+1 − Wααpαi+1 = uαfree,i +
∑
β 6=α Wαβpβi+1

Law[uαi+1, p
α
i+1] = true .

[8]

The smooth dynamic effects are included in the expression of the relative free velocity
uαfree,i. The Delassus operator Wαβ = HT

αM−1Hβ naturally appears in the dynamics
reduced to contacts. In this way, for a frictionless problem with a Signorini contact
condition 0 ≤ un,i+1 ⊥ pn,i+1 ≥ 0, the system (8) reveals to be a standard Li-
near Complementarity Problem (LCP). For a frictional contact problem, tangential
reactions and tangential velocities have to verify a similar non smooth relation. A
Gauss – Seidel loop computes all contact reactions until convergence.

In the NSCD framework, the wire network must be discretized. So, it is broken
up into a collection of equidistant material points, with the wire mass equal to the
sum of all point masses. All these points must be connected by a behavior law which
accounts for a small segment of wire. The wire must keep its free flexion and unilate-
rality properties. Consequently, a wire contact law concerns only the normal direction
and there is no constraint on the tangential directions. In all cases, flexion is imposed
and mesoscopic unilaterality can be seen, as, in longitudinal compression, the discrete
wire (more than two points) behaves like a buckling beam. Thus, four laws, suppor-
ted by contactor points, can be introduced (cf. Figure 7) implemented in LMGC90,
corresponding to four different wire behaviors :

– “Rigid rod” : this couples the normal velocity of both candidate and antagonist
particles.

– “Elastic rod” : this law adds regularisation (due to elasticity k) to the contact
problem in both compression and tensile directions.

– “Rigid wire” : this is a unilateral law which couples the normal velocity of both
particles only if the element strain tend to be positive.

– “Elastic wire” : this includes unilaterality and the wire stiffness parameter k ;
“elastic rod” and “rigid wire” are coupled into this interaction law.

An advantage of the “unilateral” laws is that the returned reaction on the contact ele-
ment is only tensile, better accounting for the wire behavior. Finally, to ensure the
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Figure 6. Discrete wire modeled by a
chain of beads with a local contact frame.

Figure 7. Schematic representation
of different wire interaction laws on
the normal axis.

interactions between the wire and the sand, spheres (as contactors) are attached to all
material points. This allows the wire to be modeled by a chain of beads (cf. Fig. 6).

3.2. Numerical experiments

Once the TexSolTM sample clearly generates as a granular media (Radjaï et
al., 1998), mechanical tests can be carried out. Large vs. small strain tests are distin-
guished to emphasize the differences in reinforcement mechanisms. First a qualitative
test on a TexSolTM slope highlights the reinforcement mechanisms often associated
with this special material. This test consisted in depositing a geometrically densified
sample on a rubber plan assimilated to a collection of equal radius beads in a hexago-
nal distribution. The initial sample includes a wire network, quasi-equiprobably dis-
tributed, discretized by beads which are connected with an “elastic wire” contact law.
The simulation is carried out by LMGC90 until sample kinetic energy is close to zero.
Indeed the reinforcement structure was mobile and subsided following the sand par-
ticles. But this transformation leads the wire to form horizontal “stoppings” around the
divergent particle flow which prevent sand circulation under gravity. The wire network
becomes orthotropic. Consequently, the slope friction angle of the TexSolTM is higher
than the sand one ; numerical and experimental values coincided (Khay et al., 1990)
lying between 0◦ to 10◦.

The previous test dealt with reinforcement mechanisms in large transformations.
But with a small strain background the wire network is not as mobile and may not
generate long distance interactions as previously. Therefore, a triaxial test was carried
out on a box-shaped sample. We also define a tool which is able to emphasize the
interaction length inside a material (i.e. the characteristic length discriminating the
local or non local behavior).
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DEFINITION. We call λ
m

the length of a wire segment with a tension higher than
mpavg, where pavg is the average tension of the wire network and m ∈ R+. Moreover
we use the maximum length λ

m

max such as,

λ
m

max = sup
s1,s2

{∫ s2

s1

ds

∣∣∣∣ ∀s ∈ [s1, s2] with s1, s2 ∈ [0, L], |p(s)| ≥ mpavg

}
,

where s, s1 and s2 are curvilinear coordinates associated to the wire. It seems that
m = 3 is a good compromise to vanish weak segments and to highlight strong seg-
ments.

We compare in Figure 8 the characteristic length, assimilated to λ
3

max, of the two
tests ; we also give in Table 2 the number of mid-ray particles of the granular media
which is equal to this characteristic length. The test implying large transformations,

(a) Active wire segments after a triaxial test (b) Active wire segments in a deposit slope

Figure 8. Active wire segments distributions for both small and large strain assump-
tions

Tests λ
3

max
Equivalence number
of mid-ray particles

Slope deposit 21.56 mm 54
Triaxial test 4.29 mm 4

Tableau 2. Characteristic length comparison for different tests

leads to changes of the reinforcement structure which tend to linearize itself. This
transformation is not alleviating, since it supports the propagation of the tension and
then increases the remote effects. Quiet contrary, the loading applied on triaxial test
induces small strains which involve the reinforcement quasi-staticity and generate se-
veral small wire active elements. Consequently, this test is considered as a local one
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and dimensions of a representative elementary volume of TexSolTM must be, at least,
higher than the characteristic length. The parameters of the wire discrete model may
also have an influence on reinforcement mechanisms, especially the diameter of the
wire beads. We simulate triaxial tests where the wire beads diameter are decreasing
and we observe that the average strains of both phases diverge when wire beads are
too small. The related physical phenomenon is the sudden large sliding of the wire
with respect to the sand. This sliding occurs in the same direction leading to a non
symmetry of the two horizontal wire strains. The thinner the wire, the more it slips.
These relative slidings conflict with the assumptions of the continuous model. Thus,
if an identification approach is performed using discrete element investigations, the
validity limits can be so defined.

4. TexSolTM behaviour and identification

During the triaxial process, the wire network stress level increases linearly as
shown in Figure 9. The reinforcement is considered as a linear elastic structure for
both “elastic” and “rigid” contact laws, which is surprising for the rigid network. The

Figure 9. Wire equivalent stress vs. strains plots for TexSolTM samples

first has a stress shift due to the sample preparation above. This increase with wire
stiffness but a strain shift appears, especially for the “rigid wire”. From the very start
of the triaxial test, wire behavior is disturbed by a brutal contracting reorganization
amplified for “rigid wire”. The slope of the (εzz, σ

eq
w ) plot may represent a macro-

stiffness. This one increases with the micro-stiffness k but not linearly. Indeed, it tends
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to stabilize around a limit macro-stiffness corresponding to that of “rigid wire”. Using
average fields εs, σs, εw and εw of a homogeneous test (as triaxial), a global identi-
fication procedure of the continuous model is then carried out. It starts by identifying
the elastic parameters Es, Ew and νs = νw (since we assume that ε = εs = εw)
from the previous fields in an elastic domain. Several tests, using different confine-
ment pressures, are simulated to determine the Drucker – Prager criterion coefficients
θf and C0. Finally, we use a finite element method updating (FEMU), reduced to the
hardening modulus Hk and Hi, to conclude the identification procedure. This identi-

Pression [bars] Ew [kPa] Es [kPa] τy [Pa] Hk [kPa] Hi [kPa]
0.5 405.4 11 302 6 832 800 400
0.6 321.4 12 280 6 947 1 000 500
0.7 305.1 9 701 8 429 1 040 520
0.8 309.5 14 606 9 679 960 480
0.9 318.7 12 948 5 810 920 460

Tableau 3. Identification of elastic modulus Es and Ew, shearing limit τy and harde-
ning modulus Hk and Hi, with respect to the confinement pressure

fication procedure of a given TexSolTM sample included in spherical domain (to limit
edge effects) and subjected to a triaxial compression test, provides νs = νw = 0.2,
θf = 0.079 rad, C0 = 2 842 Pa and values given in Table 3. Those are constant with
respect to the confinement pressure.

5. Bibliographie

Bagi K., « Stress and strain in granular assemblies », Mechanics of materials, n˚ 22, p. 165-177,
1996.

Cambou B., Jean M., Micromécanique des matériaux granulaires, Hermès, Science-Paris, 2001.

Fremond M., Non-Smooth Thermo-mechanics, Springer-Verlag, Berlin Heidelberg New York,
2002.

Jean M., « The non smooth contact dynamics method », Computer Methods in Applied Mecha-
nic and Engineering, n˚ 177 (Special issue), p. 235-257, 1999.

Khay M., Gigan J.-P., TEXSOL - Ouvrage de soutènement, Technical report, LCPC, 1990.

Laniel R., Alart P., Pagano S., « Consistent thermodynamic modelling of wire-reinforced ma-
terials », European Journal of Mechanics - A/Solids, vol. 26, p. 854-871, 2007.

Leflaive E., Khay M., Blivet J.-C., « Un nouveau matériaux : le TEXSOL », Travaux, n˚ 602,
p. 1-3, 1985.

Radjaï F., Wolf D. E., Jean M., Moreau J.-J., « Bimodal Character of Stress Transmission in
Granular Packings », Phys. Rev. Lett., vol. 80, n˚ 1, p. 61-64, 1998.

Villard P., Jouve P., « Behavior of granular materials reinforced by continuous threads », Com-
puters and Geothechnics, vol. 7, p. 83-98, 1989.



ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER

LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

1. ARTICLE POUR LA REVUE :
L’objet. Volume ?? – n˚??/2007

2. AUTEURS :
Romain Laniel* — Pierre Alart* — Stéphane Pagano*

3. TITRE DE L’ARTICLE :
Homogenization attempt of a wire-reiforced geomaterial

4. TITRE ABRÉGÉ POUR LE HAUT DE PAGE MOINS DE 40 SIGNES :
TexSolTM homogenization attempt

5. DATE DE CETTE VERSION :
29 septembre 2007

6. COORDONNÉES DES AUTEURS :

– adresse postale :
* Laboratoire de Mécanique et Génie Civil
UMR CNRS 5508, Université de Montpellier II
CC 048 Place Eugène Bataillon
34095 Montpellier cedex 5
laniel@lmgc.univ-montp2.fr

– téléphone : 04 67 14 45 37
– télécopie :
– e-mail : laniel@lmgc.univ-montp2.fr

7. LOGICIEL UTILISÉ POUR LA PRÉPARATION DE CET ARTICLE :
LATEX, avec le fichier de style article-hermes.cls,
version 1.23 du 17/11/2005.

8. FORMULAIRE DE COPYRIGHT :
Retourner le formulaire de copyright signé par les auteurs, téléchargé sur :
http://www.revuesonline.com

SERVICE ÉDITORIAL – HERMES-LAVOISIER
14 rue de Provigny, F-94236 Cachan cedex

Tél. : 01-47-40-67-67
E-mail : revues@lavoisier.fr

Serveur web : http://www.revuesonline.com


