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Abstract.

In Civil Engineering soils may be reinforced by different structures. Wires will
interest us. Mixed sand and wire, known as TexSol, may be modelled as a continuous
medium with classical behaviour laws [6] or with more sophisticated ones taking into
account remote interactions [1].

Our approach consists of a discrete model based on the Non Smooth Contact
Dynamics. Different choices have been tested on some numerical examples to exhibit
at the macroscopic scale the influence of the local models of interaction [5].

First of all we make some numerical tests to compare the mechanical behaviour
of a TexSol and a sand sample. Then, we compute in both samples the stress tensors
of the wires and the sand in order to understand the role of each component.

Our final goal is to define a micro-macro approach and a homogenized realistic

behaviour law; if this study is only a first step, it is essential.

1 Motivations

The civil pieces of work needs planed stable floor. The environment config-
uration often forces civil engineers to raise huge embankments. Moreover, it
can be interesting to reinforce them in order to assure a better embankment
mechanical behaviour. A lot of different solutions can be used to reinforce soil
but one interests us : the TexSol process.

Leflaive, Khay and Blivet from LCPC3, have created the TexSol in 1984
[4]. The TexSol is a heterogeneous material composed by mixed sand and
wires network. This particularity gives to this material a better mechanical
resistance than the sand without wires. Of course, the TexSol behaviour de-
pends on sand and wire parameters and its frictional angle can be larger than
sand one from 0◦ to 10◦ [3]. The wire is described by its linear density with a
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dtex unit (1 dtex = 0, 1 g.km−1), its ponderal content, and its stiffness. Clas-
sically, the wire density in a TexSol sample is included between 100 km.m−3

and 200 km.m−3.
To make a TexSol bank, a machine named “Texsoleuse” is used. It works

on throwing sand and, in the same time, injecting wire. The wire is deposed
on the free plane of the sand with a random orientation. This machine carries
out several passes to raise the bank. The figure 1 is the TexSol microstruc-
ture representation. We find, in the literature, a lot of different continuous

Fig. 1. Schematic TexSol sections

models. The model suggested in [1] is non local includes remote interactions
(corresponding to the wires effects on an sub-domain) but also needs an iden-
tification of their parameters with macroscopic experiments. Villard proposes
a simpler local model in [6]. This one couples a standard model of sand and an
equivalent unilateral elastic stiffness contribution corresponding to the wire
network. This last contribution is activated only on the traction directions be-
cause of the unilateral behaviour of wires. Our first work (exit from the scope
of this paper) was to clearly define thermo-dynamic potentials of the Villard
local model with both stress and strain formulations in order to identify the
best-adapted one. But which micro-mechanisms are working? No continuous
theory could ever answer this question.

We thus explore currently a new track using the distinct elements ap-
proach. Indeed, thanks to the computation power we have our days, it is
possible to carry out some numerical experiments using only microstructural
contact laws. Those contact laws must be able to account for the grain/grain,
grain/wire and wire/wire interactions.

2 A Numerical discrete model for experiments

We use as a numerical simulation tool, the computer code LMGC90 which
uses the Non Smooth Contact Dynamics [2].
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2.1 Model of sand

The NSCD method is able to solve multi-body multi-contact problems with
rigid and/or deformable bodies. However, our sand sample corresponds to a
poly-disperse rigid spheres collection. This kind of problem can thus be com-
puted by LMGC90. On a single contact problem, the principle is to evaluate

Fig. 2. Local/Global transformations

external forces dynamic effects on the contactor point. To make such a trans-
formation, we use H and H∗ to move variables from the local contact frame
to the global body one (cf. figure 2) and vice-versa. In that way, the PFD4 is
expressed in the local contact frame.

We thus consider q, r respectively the Lagrange’s coordinates vector of

the bodies and the contact reactions/torques vector5 and U , R the relative
velocity and the contact reactions in the contact local frame (U = H∗q and
r = HR). F are the external forces, M the mass matrix and h the time step :

Global PFD : Md
·
q = (F + r) dt

Discrete Local PFD : U i+1 = Ufree + hWRi+1

(1)

Smooth dynamic effects are included in the expression of the relative free
(of contact) velocity U free = U i + hH∗M−1F . W = H∗M−1H is called
the Delassus matrix. This local expression of PFD can “intersect” a normal
contact condition (equation 2) modellig an inelastic shock.

0 ≤ Un ⊥ Rn ≥ 0 ⇔ Un ≥ 0 Rn ≥ 0 UnRn = 0 (2)

Tangential reactions are computed with a frictional condition (Coulomb for
example). One Gauss – Seidel loop computes all contact reactions, a conver-
gence criterion (quadratic, maximum et cætera) decides or not to re-execute
the loop until a good convergence.

4 The Principle of Fundamental Dynamic
5 Reactions imposed on a candidate particle by the neighbour ones
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2.2 How making wires with discrete elements

The main difficulty is to model a continuous object with discrete elements. The
“discrete wire” is described as a chain of beads [5]. Those are connected with
a particular interaction law representing the wire resistance on the normal
axis (Rt = 0 imposes the wire flexion). We have selected four laws, which can
describe the wire behaviour.

• elastic wire and elastic rod : respectively unilateral and bilateral elas-
tic laws6. Those laws should be the most realistic but their numerical
behaviour was so catastrophic7 that we have quickly given them up.

• rigid rod : the simplest law we can use. It imposes Un = 0. Of course,
this kind of law may produces some compression stresses in the wire which
are not realistic.

• rigid wire : This law makes possible to free from disadvantages of the pre-
ceding one while keeping its advantages. Moreover, no compression com-
ponent disturb tensile stresses in the wire.

Unilateral laws must define a reference gap8 gref . This last one is a maximum
length of the wire between two beads. Beyond this limit, the tensile stress is
activated. Let us define a contact candidate particle. We try to solve the α

contact (β are neighbour ones) without friction (Rα
t = 0), t−, t+ the initial

and final instants. Let us write a comparative study between a normal Sig-
norini spheres contact law and a rigid wire law on a “quasi-inelastic shock”
formalism.

Spheres contact Rigid wire interaction
Predicted gap computation : gα

pred = gα (t−) + hUα
n free

• Case gα
pred > 0 ⇒ Rα

n = 0 • Case gα
pred < gα

ref ⇒ Rα
n = 0

• Case gα
pred ≤ 0 ⇒ (*) • Case gα

pred ≥ gα
ref ⇒ (*)

(*) : Modified Inelastic Shock

Uα
n cont = −

gα(t−)
h

Ũα
n = Uα

n (t+) − Uα
n cont

R̃α
n = Rα

n

Uα
n cont =

gα
ref−gα(t−)

h

Ũα
n = Uα

n cont − Uα
n (t+)

R̃α
n = −Rα

n

hW ααR̃α
n − Ũα

n = −Uα
n free −

∑

α6=β

hW αβR̃β
n + Uα

n cont

0 ≤ Ũα
n ⊥ R̃α

n ≥ 0

(3)

Uα
n cont is non null when a contact have to be established during the time

step and is the contribution of the velocity to establish this contact. The
inelastic shock in the second part of the time step leads to define new variables

6 The tension is proportional to the gap
7 Uncontrolled vibrations in the sample until its explosion
8 It is the minimum distance between two particles
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(Ũα
n , R̃α

n) on which are applied the Signorini conditions. Those two problems
thus resume to a classical LCP9 thanks to adapted variable changes.

Let us notice that the wire and sand reactions are computed with two
different interaction laws. We can thus separate those contributions in order
to analyse how do the wire and the sand work independantly (cf. section 3).

3 A 2D numerical study

This study is a qualitative comparison between sand and TexSol [5]. Its aim
is to understand the wire contribution towards mechanical solicitations. The
two last rigid interaction laws will be used to model the wire but in a first
step we start with the TexSol sample preparation.

Its wire network must be in a random orientation state (cf. section 1) and
the 2D membrane effect must be minimized. Consequently, we define a wire
bead diameter close to that of sand particles and the reference gap must be
large enough to let pass the coarsest sand grain.

Once the wire generates, two solutions exist to add sand grains. The first
superposes a grid of poly-disperse particles and let them deposit by LMGC90.
The main problem with this solution is the computing time. Indeed, the NSCD
method convergence is slow with weak contact reactions (characteristic of a
deposit test). The second uses the Taboada 2D pre-processor. This one makes a
geometrical deposit sample of sand with poly-disperse grains. A little LMGC90
deposit relaxes the sample and tightens grains around the wire.

Let us make a biaxial compression test on the final sample in order to
compare interaction laws. We consider a 2000 particles TexSol sample with
300 for the wire. We carry out three simulations. One with a rigid wire in-
teraction law between wire particles, another with a rigid rod interaction law
and the last one without interaction law (sand). The figure 3 represents the
graph of support reaction according to the crushing percentage. Let us notice
that the unilateral or bilateral TexSol behaviour is stiffer than sand one. But
an accident happens to the bilateral law at the middle of the simulation. A
brutal increase of the support reaction shows that a wire compression column
has been formed. Sand particles hold it on and it returns a jump of vertical
reaction. This bilateral law can makes us a mistake so we would rather use
the rigid wire law.

The figure 4 is a deformation state comparison between the TexSol and
the sand at the same level of an upper side force. It also displays contact
reaction chains of spheres contacts (red/grey one) and rigid wire interactions
(blue/dark one). In the sand sample, reaction chains are developing every-
where in every directions. In the TexSol sample, rigid wire tensile stresses
concentrate sphere contact reactions in the centre of the sample. They work
on the horizontal direction to prevent the sample from widening.

9 Linear Complementarity Problem
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Fig. 3. Different material responses

Fig. 4. Reaction chains in TexSol (left) and Sand (right)

Thus we interest in the TexSol stress tensor. A discrete material stress
tensor does not express like continuous material one. We choose the Weber’s
definition. We thus introduce two complementary parts of the TexSol stress
tensor, one on the wire and the other on sand. The unilaterality of the wire and
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Fig. 5. Evolution of stress tensors in the TexSol

TexSol is highlighted on the figure 5 graph. Indeed, for the wire component,
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only one principle stress is positive ; the other one is close to zero. That is
reflected in the global TexSol behaviour where one principle stress is equal to
one of the sand alone and the other one is reduced by the wire component.

4 A first attempt in 3D modelling

The TexSol problem is naturally 3D and the preceding model has some draw-
backs. Indeed membrane effects disturbing the material behaviour does not
reveal real mechanisms of the wire. We thus have to carry out some 3D nu-
merical study on samples carefully generated. The section 1 tells about the
industrial process to raise a TexSol bank. Such a process cannot provide an
isotropic material. Indeed, the wire is deposed layer by layer and is arranged
on parallel planes. The equivalent elastic tensor does not have stiffness on the
normal planes direction. It becomes an anisotropic tensor. A 3D pre-processor
has been written to define the chain of beads with several rules.

• Each bead is defined with a constant interstice with respect to the previous
one.

• The direction of a bead n in the
(
O, x, y

)
plane is given by the angle

θn = θn−1 + θrandom with θrandom ∈ [−θmax; θmax] and θ0 = 0.
• The direction of a bead n in the z axis is determinate by the angle ϕn =

ϕup + ϕrandom with ϕrandom ∈ [−ϕmax; ϕmax] and ϕup = cst.
• Skirting of the chain : if the bead n intersect the chain then ϕrandom ∈[

− 2π
3

; 2π
3

]
.

• Rebound of the chain : if the bead n get out from lateral box limits then
θrandom ∈

[
− 2π

3
; 2π

3

]
.

• Switch of the chain : if the bead n get out from vertical box limits then
ϕup = −ϕup.

Fig. 6. 3D wire disposition : isometric (left) and lateral view (right)

The raise angle is generally calculated to put the last bead at the top of the
box. Sometimes it is impossible to define a bead position, so the wire is cut.
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This wire model must have beads diameter around 20% than the smallest
sand particle diameter. Indeed, a too large bead would make a rough wire
and the friction parameter would be more difficult to control. But such a
condition increases the number of particle to make a realistic sample and
the LMGC90 deposit problem still exist in 3D. In fact, good sample would
represent around 10000 particles. We are currently working on a 3D extension
of the pre-processor which generates dense sample.

Fig. 7. Wire disposition (left) and dense TexSol (right)

Conclusion and perspectives

The distinct elements give us a new approach of the TexSol problem. They
are able to show us which are the wire deformation mechanisms. Those 3D
investigations will be soon compared with the continuous local model in order
to determinate if it is the best adapted.

First of all, we have to optimise our simulation tools on several areas :
samples preparation, deposit, compaction and mechanical test computation.
Then we will be able to analyse 3D wires mechanical influence on the TexSol.
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