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Abstract The aim of the study is to build discrete nu-
merical models of a wire-reinforcement for geomateri-
als to perform multi-scale investigations. Non Smooth
Contact Dynamics is used to carry out large or small
strain mechanical tests on a granular sample. Different
numerical experiments distinguish the main reinforce-
ment micro-mechanisms and their consequences for macro-
scopic behavior.
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1 Investigation context

The discrete element investigations presented in this pa-
per concern a reinforced granular material. The scope of
the study is an attempt to homogenize this material and
will be introduced in this section.

1.1 A soil reinforcement process: the TexSolTM

Civil engineers are often expected to build larger and
larger constructions; the ground needs assistance in sup-
porting such works. Various solutions can be used to
reinforce soil, columns, micro-piles, geomembranes, ge-
ogrids and geotextiles. This paper focuses on a particu-
lar process, belonging to the last reinforcement category:
TexSolTM. It is a soil reinforcement process created in
1984 by Leflaive, Khay and Blivet from the LCPC (Lab-
oratoire Central des Ponts et Chaussées) [9; 12]. It is
original in that it combines the soil (sand) with wire.
A machine, called a “texsoleuse”, does this by deposit-
ing sand and feeding in the wire at the same time. The
latter is randomly distributed on the free surface and is
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simultaneously covered with sand to create a TexSolTM

layer. Although the wire volume is negligible compared
to that of the sand, the wire becomes a strong reinforce-
ment when it tangles up inside the sand. This type of
material is adapted for embankments requiring a strong
slope or works which may be subjected to dilatation
strain (protection dome of a gas reserve for example).
Indeed, the wire works in tensile directions and the wire
network maintains the structure (when wire density is
high enough); TexSolTM can be regarded as a compos-
ite material. But the reinforcement micromecanisms re-
main relatively obscure. The macroscopic maintenance
of the structure can be roughly explained by phenomena
like tangles or remote forces even if these are difficult to
highlight and to quantify.

1.2 Interest of continuous modeling

On the macroscopic scale, it is useful for engineers to
have continuous models of their materials (to insert in a
finite element code) to predict structural behavior. Two
kinds of continuous modeling are found in the litera-
ture for geomaterials reinforced by wire. The first model
suggested by Fremond in [7] is non local and includes
remote interactions (corresponding to the wire effects).
This model also takes wire breaking potential into ac-
count. A second, local model is proposed by Villard in
[19] coupling a standard model of sand with an equiva-
lent unilateral elastic stiffness for the wire network. The
unilateral characteristic of this feature means that stiff-
ness is only activated in tensile directions. A local model
was created from the previous one, in a coherent ther-
modynamic framework [13]. We give in [10] two thermo-
dynamic potentials. The first is TexSolTM free energy,

ψt(ε, εp,α, p) = Es(ε, εp) + E +
w (ε) + Hs(α, p) . (1)

The state and internal variables are respectively, total
strain, plastic strain, kinematic and isotropic hardening
variables; this potential is defined as the sum of sand
elastic energy, the unilateral elastic energy of the wire



2

network and the sand hardening energy. The second po-
tential is the Legendre – Fenchel transform of TexSolTM

dissipation potential,

ϕ∗t (σ
ir,A,χ, R) = I{0}(σir) + IΩ(χ,R)(A) . (2)

The state variable σir is the irreversible strain and the
internal variables are the conjugate of εp, α and p; ID
is the indicator function of a setD and Ω is the Drucker –
Prager elastic domain in the principal-stresses space. State
laws and complementary laws were derived from these
potentials. The model previously described is valid within
the small strain framework and must validate the as-
sumptions of stress additivity σt = σs + σw and strain
rate equalities

.
εt =

.
εs =

.
εw between the TexSolTM, the

sand and the wire respectively described by subscripts
t, s and w. The study of a numerical discrete TexSolTM

model enables us to compare the macroscopic behavior
of a heterogeneous sample with an equivalent continuous
model.

1.3 An identification approach based on discrete
numerical experiments

It is classical to identify the material parameters (stiff-
ness, hardening et cætera) in a continuous model of a
complex structure, by carrying out a backward analysis.
Moreover, Finite Element Method Updating (FEMU) is
an iterative method varying the material parameters set
Θ to minimize a cost function J(Θ) [1] (cf. table 1). This
function represents the error between the measured value
fields and those computed by the finite element method.
Experimental tests are generally used to update the set
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Table 1 FEMU algorithm.

parameters but the measurable fields are limited (surface
strain, partial displacement field, total force on bound-
ary conditions). In our approach, the measure fields are
replaced by discrete numerical experiments. Thus, all
the particle displacements and contact forces can be ex-
tracted from the sample. By locally averaging the pre-
vious fields, the equivalent stress and strain tensors of

the granular material are built up [2; 5; 15]. These pro-
vide more accurate information than the experimental
method with a more relevant cost function.

2 Discrete element modeling

As TexSolTM is a reinforced granular material, the sand
matrix can be perfectly integrated in discrete modeling.
However, the continuous nature of the wire requires a
specific modeling effort.

2.1 Non Smooth Contact Dynamics (NSCD) approach

The NSCD is a discrete element method used in the
LMGC90 code which simulates multibody vs. multicon-
tact problems, privileging velocity fields [8]. For a rigid
body collection, let us consider q and R the Lagrange co-
ordinate vector and the contact reactions, torques vector
(reactions imposed on a candidate particle by the neigh-
bour ones) respectively. The dynamic equations are ex-
pressed as follows

M
..
q(t) = Fext(t) +R , (3)

where Fext and M are the external forces and mass ma-
trix respectively. The integration scheme of the NSCD is
a θ-method with θ ranging between 0.5 and 1 to be un-
conditionally stable. The evolution law of q is written on
the interval ]ti, ti+1] with a time step h and the velocity,
free of contacts is defied as

.
qfree,

qi+1 = qi + θ
.
qi+1 + (1− θ)

.
qi

.
qfree,i+1 =

.
qi + hM−1(θFext,i+1 + (1− θ)Fext,i) .

(4)

For a single contact α problem, the NSCD evaluates
the external forces and dynamic effects on the contac-
tor point. To make such a transformation, Hα and HT

α

are used to move variables from the local contact frame
to the global body and vice-versa. The local contact α
variables uα and rα (respectively the relative velocity
and the contact reactions in the contact local frame) are
defined with uα = HT

α

.
q and R = Hαr

α. We also in-
troduce the average impulsion pα =

∫ ti+1

ti
rαdt and can

write{
uα

i+1 −Wααpα
i+1 = uα

free,i +
∑

β 6=αW
αβpβ

i+1

Law[uα
i+1, p

α
i+1] = true .

(5)

The smooth dynamic effects are included in the expres-
sion of the relative free velocity uα

free,i. The Delassus
operator Wαβ = HT

αM
−1Hβ naturally appears in the

dynamics reduced to contacts. In this way, for a fric-
tionless problem with a Signorini contact condition, the
system (5) reveals to be a standard Linear Complemen-
tarity Problem (LCP),{
ui+1 −Wpi+1 = ufree,i

0 ≤ ui+1 ⊥ pi+1 ≥ 0 . (6)
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For a frictional contact problem, tangential reactions and
tangential velocities have to verify a similar non smooth
relation. A Gauss – Seidel loop computes all contact re-
actions until convergence.

2.2 Discrete wire modeling

In the NSCD, a body is represented by its gravity cen-
ter, its mass, its inertia moments and a set of contactors
(sphere, plan, polyheron, point et cætera). These describe
the object material border used by LMGC90 in the con-
tact detection process which creates contact elements
between two contactors (sphere-sphere for example). To
discretize the wire, it is broken up into a collection of
equidistant material points, with the wire mass equal to
the sum of all point masses. All these points must be
connected by a behavior law which accounts for a small
segment of wire. The wire must keep its free flexion and
unilaterality properties. Consequently, a wire contact law
concerns only the normal direction and there is no con-
straint on the tangential directions. In all cases, flexion is
imposed and mesoscopic unilaterality can be seen, as, in
longitudinal compression, the discrete wire (more than
two points) behaves like a buckling beam. The contac-

Fig. 1 Discrete wire modeled
by a chain of beads with a lo-
cal contact frame.

Fig. 2 Schematic represen-
tation of different wire in-
teraction laws on the nor-
mal axis.

tors used to support these laws are points located at the
gravity centers. Thus, four laws can be introduced (cf.
Fig. 2, 3) implemented in LMGC90, corresponding to
four different wire behaviors.

– “Rigid rod”: this is the simplest contact law used
for the wire. It couples the normal velocity of both
candidate and antagonist particles

un = 0 ; pn ∈ R ⇒ g = gref , (7)

where g = g+ = g(ti+1) is the minimum distance
between two contactors (referred to as a gap) at the
end of the considered time step (in opposition to g− =
g(ti), the gap at the beginning of the considered time
step) and gref = g(0)

1+ε0
is the gap with no force and

no displacement on the contact element (ε0 is the

prestrain). Let us introduce two variable changes on
un and pn,

ũn = gref−g−

h − un

p̃n = −pn .
(8)

The previous interaction law then becomes,

ũn = 0 ; p̃n ∈ R . (9)

– “Elastic rod”: this law adds regularisation (due to
elasticity k) to the contact problem in both compres-
sion and tensile directions.

pn = −h2k

(
un −

gref − g−

h

)
. (10)

Expressed with ũn and p̃n this condition becomes,

p̃n = −h2kũn . (11)

– “Rigid wire”: this is a unilateral law which can
be described by,

un ≤
gref − g−

h
, pn ≤ 0 , unpn = 0 . (12)

With variables ũn and p̃n a classical LCP is obtained,

0 ≤ ũn ⊥ p̃n ≥ 0 . (13)

– “Elastic wire”: this includes unilaterality and the
wire stiffness parameter k,

pn =

0 if un ≤
gref−g−

h

−h2k
(
un −

gref−g−

h

)
if un ≥

gref−g−

h

. (14)

If we consider another variable change, ûn = gref−g−

h −
un − pn

h2k , the previous condition can be written as a
LCP (like all unilateral interaction laws),

0 ≤ ûn ⊥ p̃n ≥ 0 . (15)

This law may be interesting to implement in LMGC90
(cf Sect. 1.2) since the behavior of the wire network
is elastic in our continuous model.

An advantage of the “Unilateral” laws is that the re-
turned reaction on the contact element point-point is
only tensile, better accounting for the wire behavior.
To ensure the relevance of the model, a discrete wire
was loaded under gravity by fixing both ends. For the
“Rigid” laws, the position (x, y) of the material points
obtained at the end of the test, agrees with the classic
equation y − y0 = a cosh

(
x−x0

a

)
, where the parameters

a, x0 and y0 have to be identified. The “Elastic” laws
also provide results very close to the previous solution
if the specific masses do not involve too much strain in
the wire. Another test reserved for the “Elastic” laws,
consists in initializing a discrete wire under tension ac-
cording to the first vibrating mode of the chord. For a
sufficiently small time step, the principal frequencies be-
tween the computed solution and that found using the vi-
brating chord equation are close, y(x, t) = A sin(−π vt

L ),
v = (F

µ )1/2. Parameters µ, F , L and t are respectively
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Fig. 3 Velocity graphs of the four wire interaction laws.

linear mass density, wire tension, wire length and time.
Finally, to ensure the interactions between the wire and
the sand, spheres (as contactors) are attached to all ma-
terial points. This allows the wire to be modeled by a
chain of beads (cf. Fig. 1).

2.3 Why three-dimensional modeling ?

It is easier to work with a discrete TexSolTM sample in
two-dimensional modeling [11; 16] (TexSolTM

2D). This
study is a first approximation providing some answers
to the question: What kind of action mode does wire re-
inforcement have on the sand ? In the two-dimensional
environment of LMGC90, the sand is modeled by a col-
lection of disks and the wire network by a chain of beads.
The TexSolTM

2D sample is built with a geometrical thick-
ening preprocessor (its three-dimensional extension is ex-
plained in Sect. 2.4) which is then subjected to a biaxial
test. This is equivalent to a deviatoric load, on a mate-
rial under pressure, due to a force increment or velocity
on the upper bound. In this example, only the “Rigid”

Fig. 4 Biaxial test of sand
and TexSolTM

2D samples us-
ing unilateral and bilateral
laws [16].

Fig. 5 Representation of the
TexSolTM

2D reinforcement
mechanism [16].

models are used and the behavior of the “Unilateral” or

“Bilateral” laws are analyzed with the force vs. crushing
graphs of each material in Fig. 4. The two “Rigid” laws
provide the same reinforcement up to a critical crush-
ing level where an extra reinforcement occurs with the
“Rigid Rod” law. This phenomenon is explained by the
formation of a wire column involving compression and
not tensile state. In this way the wire contributes to
the vertical strength of the sample. This occurrence is
amplified by two-dimensional modeling. Moreover, two-
dimensional modeling introduces an artificial membrane
effect which is not reproduced in a real three-dimensional
simulation. In some regions, the sand grains are confined
by a chain of bead behaving like a membrane as shown
in Fig. 5. Finally, these drawbeads are required to carry
out three-dimensional modeling.

2.4 How to prepare a numerical TexSolTM sample

The simulation of granular media requires starting from
an initial configuration characterized not only by its ge-
omaterial particle distribution but also by the force net-
work obtained at the end of a numerical preparation close
enough to a realistic TexSolTM sample. As mentioned in
Sect. 1.1, the two main features to reproduce are the en-
tanglement of the wire through the sand and the stress
network deriving from it.

The first step is to distribute the wire in a container
(box, cylinder, sphere et cætera); this is built bead by
bead. Let us consider a particle i of centerXi = (xi, yi, zi),

Fig. 6 Example of a wire generating process in a box.

radius rw and a gap gw between each wire particles. For
an isotropic wire network, the reference direction is de-
fined by,

yref =
{

yini if i = 1
yi = (Xi −Xi−1)

1 if i 6= 1 ,
(16)

where yini is an initial normalized direction andX1 is the
normalized vector of X defined by X1 = X

||X|| . The fol-
lowing random direction yi+1 has to belong to a cone of
axis yref and angle αsearch called the research angle; the
position of the particle i+1 isXi+1 = Xi+(2rw+gw)yi+1

(cf. Fig. 6). If after n random pullings the new parti-
cle always intersects a previous one or is always outside
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the container, the following random pulling is performed
using a new increased angle αsearch taken equal to 4π

3
(respectively “Bypassing” or “Rebound” procedure). If
these procedures do not give an acceptable solution, the
wire is broken and a new wire started again elsewhere.
The random distribution is conditioned by associating
the research cone and the recursive continuation yi. For
an orthotropic wire required by samples where the wire
is laid out in horizontal layers, the reference direction is
modified as follows,

yref =


yini if i = 1xi − xi−1

yi − yi−1

sin(αrise)


1

if i 6= 1 ,
(17)

where αrise is a small constant parameter called the rise
angle. In the orthotropic case, the vertical component of
Xi is computed around a constant value.

Once the wire is generated, the sand particles have
to be created in the container. The two-dimensional geo-
metrical deposit method developed by Taboada [18] has
been extended to three-dimensional problems. Its prin-
ciple consists in placing a new spheric particle onto the
free surface of previously deposited grains, minimizing an
energetic criterion (in our study, the potential energy).
In the simplest case, a list of sphere triplets must be
found on which to place the new particle. The final posi-
tion of the sphere on the optimal triplet is established by
solving a large number of 2nd degree equations discrimi-
nated with the previous energetic criterion. If the poly-
dispersity of the collection of grains (ratio of the biggest
sphere radius over the smallest) is wide enough, a small
sphere may be placed inside the sample and not only on
the free surface. Specific triplet selection procedures have
been developed to get samples as dense as possible. At
this stage the sample is only geometrically admissible.
A deposit is then made under gravity to relax the sam-
ple and to obtain the force network. Consequently, the
geometry is modified, namely wire tortuosity ξ is ampli-
fied as shown in Fig. 7. We chose to define the tortuosity
coefficient by ξ = 1

l

∫
ρ−1(s)ds with l the wire length

and ρ(s) the curvature radius at the curvilinear abscissa
s. Moreover, the previous strategy decreases the make-
ready time from 2 days to 2 hours for a 40000 particle
sample compared with a classic deposit process starting
from a periodic grid repartition.

3 Mechanical tests

Once the TexSolTM sample clearly generates as a granu-
lar media (with the preprocessor described previously),
mechanical tests can be carried out. Large vs. small strain
tests are distinguished to emphasize the differences in
reinforcement mechanisms. First a qualitative test on
a TexSolTM slope highlights the reinforcement mecha-
nisms often associated with this special material. Second,

Fig. 7 Tortuosity evolution of a wire network before (I) and
after (II) a deposit under gravity from ξI = 839 m−1 to ξII =
1464 m−1.

triaxial tests on cylindrical samples are carried out and
some macroscopic information such as strain or stress
tensor is computed.

3.1 Qualitative test on a TexSolTM slope

This test consisted in depositing a geometrically den-
sified sample on a rubber plan assimilated to a collec-
tion of equal radius beads in a hexagonal distribution.
The initial sample represented in Fig. 8 was a cylinder-
shaped ∅ 12 mm in diameter and 14 mm in height cho-
sen to minimize the dynamic effects. The sand part was
made of 26000 particles with a polydispersity lying be-
tween ∅ 0.2 mm and ∅ 0.6 mm. The wire network was
composed of 2900 beads of diameter ∅ 0.2 mm with
a voluminal length density equal to 400 km.m−3. The

Fig. 8 TexSolTM sample before deposit on a rubber plan
with the distribution of wire element directions projected on
several plans ((O, x, y), (O, x, z) and (O, y, z)).

wire beads were connected with an “elastic wire” con-
tact law. As shown in Fig. 8 the initial reinforcement
network was quasi-equiprobably distributed. A periferic
granular layer without any wires was added to the sam-
ple to compare the two domain behaviors. The particles
was placed on a rubber plan by gravity until sample ki-



6

netic energy was close to zero; this part of the simula-
tion took around 0.2 s. Our discrete simulation was made
with 4000 time steps of 0.05 ms. Once the sample was
stabilized, the wire network was seen to spread out (cf.
Fig. 9). Indeed the reinforcement structure was mobile

Fig. 9 TexSolTM sample after deposit on a rubber plan with
the distribution of wire element directions projected on sev-
eral plans ((O, x, y), (O, x, z) and (O, y, z)).

and subsided following the sand particles. But this trans-
formation leads the wire to form horizontal “stoppings”
around the divergent particle flow which prevent sand
circulation under gravity. The wire network becomes or-
thotropic with two main directions x and y as shown in
Fig. 9. This large transformation implies that the wire
crosses itself and consequently increases its tangles. The
zoom represented in Fig. 9 illustrates that the two op-
posed movements of the two wire parts vanish; this cre-
ates a new wire anchoring point. The wire network was
fixed by multiplying these anchoring points (resulting
from tangles or blocking by sand). Reinforcement mod-
ify the final shape and contact force distribution. The
averaged shapes, the averages pressures on the floor and
their regressions are drawn in Fig. 10. A similar sample
was made of 800 km.m−3 of wire. The shape regressions
(linear for the sand, cubic for TexSolTM(1), to the 8th de-
gree for TexSolTM(2)) were derived to find the maximum
slope; the pressure regressions (cubic) smooth the phe-
nomenon of contact concentration on hollow rings (due
to the periodic distribution of the rubber plan beads).
This graph confirms that the wire retains sand particles
at the top of the sample. This effect increased with wire
quantity. In both cases, the slope friction angle of the
TexSolTM θt was higher than the sand one θs; numerical
and experimental values coincided [9] lying between 0◦
to 10◦. Moreover, this simulation emphasized the paring
arcs phenomenon of the granular assemblies described
in [14]. Indeed, the floor pressure regressions show that
they do not depend directly on the upside granular mass.
In fact, granular slopes created chains of contact forces,
like paring arcs, supporting the mass. The pressure plots

Fig. 10 Shape and pressure of sand, TexSolTM(1) with a
wire voluminal length density equal to 400 km.m−3 and

TexSolTM(2) with a wire voluminal length density equal to
800 km.m−3.

maxima point out the effects of arc roots on the ground.
The wire network increases these paring arc curvatures
and intensity. In this test, reinforcement did not react di-
rectly, it simply increased the efficiency of existing gran-
ular mechanisms.

3.2 Wire network behavior on small strain tests

The previous section dealt with reinforcement mecha-
nisms in large transformations. But with a small strain
background the wire network is not as mobile and may
not generate long distance interactions as previously. There-
fore, a triaxial test was carried out on a box-shaped sam-
ple which is a three-dimensional extension of the biaxial
one (cf. Sect. 2.3). The TexSolTM sample of side 1.6 cm,
included 8000 particles with 1500 to model a wire of vo-
luminal length density 200 km.m−3. This was subjected
to a constant pressure around 15 kPa on the lateral sides
and to a prescribed velocity of the upper side leading to
a global deviatoric loading. The loading rate was cho-
sen to avoid dynamic effect. The wire was modeled with
an “elastic wire” contact law and the simulation was
made with 100000 time steps of 0.05 ms. The wire was
randomly distributed as shown in Fig. 11(a). The Force
network between sand grains and wire beads is displayed
in Fig. 11(b). The strong and weak networks, characteris-
tic of granular assemblies can be distinguished [17], but
a statistical study showed that the properties of force
magnitude distribution were not significantly modified
in comparision with standard granular media. Attention
focused on the wire force network only (cf. Fig. 11(c))
which was in fully tensile state. To the naked eye, the
wire seems to work mainly in the horizontal directions;
this is more evident in the upper part. The following
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(a)

(b)

(c)

Fig. 11 Different views of a TexSolTM box-shaped sample
after a triaxial test: particles and wire position Fig. 11(a),
contact forces network Fig. 11(b) and wire in tensile state
Fig. 11(c). The last figure shows three frames Ru, Rl and
Rg respectively the stress principal directions of the upper
sample part, the lower sample part and the global sample.
Precisions are added to these directions to distinguish the
strong ones from the weak ones.

concepts attempt to quantify this feature. Considering a
granular domain Ω of volume VΩ including m particles
and some contact forces, the Weber tensor [5] defines an
average stress of Ω by

σΩ =
1
VΩ

∑
α∈Ω

lα ⊗ pα , (18)

where lα is the inter-center vector of a contact α. To de-
fine a granular strain, the relative displacement of the p
particle to an average displacement is introduced: Ũp =
Up − 1

m

∑
p∈Ω U

p. A similar formula defines the rela-
tive position: X̃p = Xp − 1

m

∑
p∈Ω X

p. In [3], Bagi an-
alyze the formulation proposed by Cambou [4; 6] to be
the best-fit for three-dimensional granular samples. This
equivalent strain tensor εΩ has to minimize the quadratic
error of the equality Ũp = εΩX̃

p, leading to the expres-
sion

εΩ =

(∑
e∈Ω

X̃e ⊗ X̃e

)−1

:

(∑
e∈Ω

X̃e ⊗ Ũe

)
. (19)

The principal directions of the reinforcement stress ten-
sor are drawn on the right side of Fig. 11(c). The princi-
pal stresses are all positive throughout the process; two
of them (the horizontal ones) are dominant. The mag-
nitude of the vertical principal direction is negligible;
this means that the wire network does not work in the
compressive direction. In fact, while compression occurs,
particles move laterally, dragging the wire beads along;
the wire is tensely solicited on the dilating horizontal
plan. This phenomenon is clearly observable on the up-
per part (Ru) because loading is applied on the upper
side. On the lower part, particles are more static; the
principal stresses are weak and their directions (Rl) are
chaotic throughout the loading path.

The parameters of the wire discrete model may have
an influence on this mechanism, especially the diame-
ter of the wire beads. To verify this, a little box-shaped
TexSolTM sample of 3700 particles was created; its wire
was modeled by beads of diameter equal to that of the
smallest sand particle. Two other samples were made
with wires which respectively tripled and quadrupled the
original number of beads at the same time dividing the
original beads diameter by three and four as shown in
Fig. 12. Despite few volumic differences, they are close
enough in terms of wire and particle distribution (zooms
of Fig. 12). The principal strains of the TexSolTM, the
sand alone and the wire, are given with respect to time
in Fig. 12 for three sizes of beads.

– rw = rmin, the principal strains are similar to the
others throughout the process.

– rw = 1
3rmin, the principal strains diverge from the

outset of loading.
– rw = 1

4rmin, the principal strains merge initially. Then
they diverge from a critical instant; the gap increases
in the horizontal directions.



8

Fig. 12 Comparison of the equivalent strain tensor between several samples made with different wire size.

The related physical phenomenon is the sudden large
sliding of the wire with respect to the sand. This sliding
occurs in the same direction leading to a non symmetry
of the two horizontal wire strains. The thinner the wire,
the more it slips. These relative slidings conflict with
the assumptions of the continuous model (cf. Sect. 1.2).
Thus, if an identification approach is performed using
discrete element investigations, the validity limits can
be so defined.

3.3 Triaxial tests on cylinder-shaped samples

However, triaxial tests on box-shaped samples may in-
troduce some edge effects (stress devolution). Cylinder-
shaped samples were preferred to limit these parasite
phenomena. The pressurization of such a sample was
made by a specific procedure [18] which applies a con-
finement loading on free surface particles. A TexSolTM

granular medium was generated in a cylindrical container
of 20 mm height and ∅ 9 mm, including 6200 sand par-
ticles lying between ∅ 0.3 mm and ∅ 0.8 mm, and 1100
wire beads with a lineic density equal to 250 km.m−3.
The deviatoric load was imposed by an upper-wall con-
stant velocity and fixed bound conditions were simulated
for the TexSolTM sample to carry out a inhomogeneous
mechanical test. Several “Unilateral” contact laws were
compared in these simulations performed with 2000 time
steps of 0.05 ms (without dynamic effects). The sample
final state represented in Fig. 13(a) shapes like a barrel.
This classic shape in continuum mechanics is obtained
because sand particles try to spread out in the least con-
strained plan (maximum dilatancy plan) which, in our
case, is the median horizontal one. The wire law used was
the “elastic wire” with a lineic stiffness k equal to 1 N
(force per strain). The initial unilateral behavior is re-
covered in Fig. 13(b). Consequently, wire spherical stress
is a non negative value as the wire principal stresses. Us-
ing the Weber tensor (Eq. (18)), an equivalent wire stress
map is given in Fig. 13(c) drawn in the axial/radial sec-
tion. This proves that the wire works best in the maxi-
mum dilatancy plan in a tensile state. These results con-
firm the continuous modeling chosen in [10]. As men-
tioned in the previous section, a wire stress appears on

the upper side of the sample and is due to asymmetric
loading. Similar tests were carried out on several samples
varying k, including a sand sample and a TexSolTM made
with a “rigid wire”. In Fig. 14 and 15, the behavior of

Fig. 14 Equivalent stress vs. strains plots for TexSolTM and
sand samples.

a “Rigid” TexSolTM sample and an “Elastic” TexSolTM

sample of lineic stiffness k = 0.2 N is compared to a
sand sample. On the stress vs. strain plots in Fig. 14, we
can distinguish an initial quasi-elastic behavior. Then,
some dissipative phenomena appear, due to micro-slips.
For the same strain level at the end of the test, “Rigid”
wire provides a 23% equivalent stress increase. Despite
its great softness, “Elastic” wire improves mixture stiff-
ness with a 7% stress increase. Sample preparation, espe-
cially the pressurization process, leads to initial stresses
related to wire stiffness. The more the wire network is
preloaded, the more it interacts with the sand grains;
this explains the initial stress shift between sand and
TexSolTM underlined in Fig. 14.

During the process, the wire network stress level in-
creased linearly as shown in Fig. 15. The reinforcement
was considered as a linear elastic structure for both “Elas-
tic” and “Rigid” contact laws, which is surprising for
the rigid network. The first had a stress shift due to
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(a) (b) (c)

Fig. 13 Different views of a TexSolTM cylinder-shaped sample after a triaxial test: particles and wire position in Fig. (a),
wire in tensile state Fig. (b) and wire equivalent stress in Fig. (c) computed on several torus. The equivalent stress is defined
as σeq

w = ||dev(σw)||.

Fig. 15 Wire equivalent stress vs. strains plots for TexSolTM

samples.

the sample preparation above. This increased with wire
stiffness but a strain shift appeared, especially for the
“rigid wire”. From the very start of the triaxial test,
wire behavior was disturbed by a brutal contracting re-
organization amplified for “rigid wire”. To quantify the
linear elastic behavior of the wire network, a represen-
tative macro-stiffness H was defined as the slope of a
(εzz, σ

eq
w ) plot. Table 2 and Fig. 16 emphasize the non

linear relation between micro-stiffness k and a macro one
H. Moreover, it tended towards a limit represented by
the macro-stiffness H∞ of the “rigid wire” network.

Wire lineic
stiffness k [N]

Wire equivalent
stiffness H [N]

Linear starting
point (ε%, [N])

0.1 1519 (0, 90)
0.2 3267 (0, 90)
0.5 3981 (, )
1 3563 (0.2, 100)
2 4303 (, )
5 4384 (, )
10 4479 (0.3, 125)
20 4603 (, )
50 3930 (, )
100 4695 (, )
∞ H∞ = 5142 (0.6, 230)

Table 2 Wire network macro-stiffness vs. wire micro-
stiffness.

4 Conclusion and perspectives

These numerical investigations using a discrete elements
method highlight that different reinforcement mechanisms
occur according to the strain level of the test. Non local
phenomena like long distance interactions tend to appear
in large transformations. The study also emphasizes the
unilateral feature of the wire network. This experimen-
tal numerical study confirms two main points useful for
further identification procedures. First, the strain rate
equalities (cf. Sect. 1.2) are validated for a range of wire
geometrical parameters (cf. Fig 12). Secondly, the uni-
lateral feature of the wire network and its linear elastic
behavior are underlined (cf. Fig 15). In this paper, we
chose to illustrate the elastic macro-stiffness of the rein-
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Fig. 16 Wire network macro-stiffness vs. wire micro-
stiffness.

forcement using only one parameter. In the general case,
the elastic tensor depends on micro-stiffness and wire
lineic density, but may also depend on tangle, tortuosity
et cætera.
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