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Abstract

The TexSol is a composite geomaterial: a sand matrix with a wire network reinforcement. For small strains a thermodynamic
continuous model of the TexSol including the unilaterality of the wire network is postulated. This model is described by two
potentials which depend on some internal variables and a state variable either strain or stress tensor (the choice of this last one
gives two different ways of identification). The TexSol continuous model is implemented in a finite element code to retrieve the
mechanical behaviour given by discrete element numerical experiments.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Motivations

1.1. What is the TexSol?

The civil-engineering constructions need plane stable floor. The environment configuration often forces civil engi-
neers to setup huge embankments. Moreover, it can be interesting to reinforce them to ensure a better embankment
mechanical behaviour. A lot of different solutions can be used to reinforce soil but, in this paper, we focus our attention
on the TexSol method.

The TexSol, created in 1984 by Leflaive Khay and Blivet from LCPC (Laboratoire Central des Ponts et Chaussées)
(Leflaive et al., 1985), is a heterogeneous material obtained by mixing sand and wire network. This reinforced material
has a higher strength than sand without wire. Of course, the TexSol behaviour depends on sand and wire parameters
and its friction angle can be larger than sand by 0◦ to 10◦ (Khay and Gigan, 1990). The wire is described by its linear
density in dtex units (1 dtex = 10−7 kg m−1), ponderal content and stiffness. Classically, the wire density in a TexSol
sample ranges between 105 m−2 and 2 × 105 m−2.

To make a TexSol bank, a machine named “Texsoleuse” is used. It proceeds by throwing sand and, at the same time,
injecting wire. The wire is placed on the free surface of sand with random orientation. This machine carries out several
passes to setup the bank. Fig. 1 represents the TexSol microstructure. In the literature, we find two different continuous
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Fig. 1. Schematic TexSol sections.

modellings. The model suggested in (Fremond, 2002) is non-local and includes remote interactions (corresponding
to the wire effects) but requires identification of their parameters using macroscopic experiments. Villard proposes
a simpler local model in (Villard, 1988; Villard and Jouve, 1989). It couples a standard model of sand and an equivalent
unilateral elastic stiffness contribution corresponding to the wire network. This last contribution is activated only on
the tension directions because of the unilateral behaviour of wire. Our main work is to clearly define thermo-dynamical
potentials of the Villard local model with both stress and strain formulations to identify the best-adapted one. Such
a stage is useful before carrying out a homogenisation procedure applied to an untypical material. In the absence of
physical experiments, the identification of macroscopic model will be performed using numerical experiments. In the
paper we use the continuum mechanics conventions.

1.2. Assumptions of the continuous local model

To couple the elasto-plastic model of the sand and the unilateral elastic model of the wire network, we have to
consider some mechanical assumptions, which may be backed by numerical experiments performed with a discrete
elements software (Dubois and Jean, 2003; Moreau, 1999). We limit this study to the small strain framework; the
stress tensor σ becomes a Cauchy stress tensor.

1.2.1. Stress additivity assumption
In this paper, the stress additivity assumption of sand and wire network is assumed. Then, we write

σ = σ s + σw, (1)

where σ , σ s and σw are the second order stress tensors of the TexSol, sand and wire network, respectively.
This assumption seems to be consistent with the TexSol quasi-static behaviour. We can get a good approximation

of the stress tensor in numerical simulation of 2D granular matter (Mouraille, 2004) using the Weber stress tensor
(Cambou and Jean, 2001),

σΩ = 1

VΩ

∑
α∈Ω

lα ⊗ rα.

This tensor is an average over a domain Ω of volume VΩ , where lα and rα are the inter-center vector and the contact
force vector of a contact α. It may be asymmetric if inertial effects are not negligible. For quasi-static processes this
discrete tensor is a good candidate to represent a continuous stress tensor. Moreover, we can define such a tensor grain
by grain with the approach of Moreau (Moreau, 1999). In this way, a wire network stress and a sand stress may be
computed, to retrieve by addition the full TexSol stress (in the discrete simulation, the wire is modelled by a chain
of beads with unilateral interactions, (Laniel et al., 2005)). In a biaxial test (deviatoric load on a confined material)
computed with LMGC90 using the Non Smooth Contact Dynamics method (Dubois and Jean, 2003; Jean, 1999), we
check the symmetry of the stress tensor even at large strains as long as the process remains slow (no inertial effects).

In Fig. 2, we display the principal values of the Weber stress tensor (EV1,EV2), where the contributions of each
components can be compared. The wire network is in tension and sand is in compression in both principal directions.
These features may be also observed in the force network of granular samples.
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Fig. 2. Stress eigen values evolution in the TexSol.

1.2.2. Non-sliding assumption
This second assumption is not as evident as the previous one. Although micro slidings occur between sand grains

and wire, we assume that at the macroscopic level of the continuum model, the sand network does not slip with respect
to the wire network. This assumption can be written by the equality of the three strain rates,

ε̇s = ε̇w = ε̇, (2)

where εs , εw and ε are the second order strain tensor of the sand, wire network and TexSol, respectively.
We have to be very careful with such a condition and define some validity domains for it. Indeed, the limits of

this assumption are difficult to quantify and we will restrict the validation of the following continuum model to small
strains.

1.3. Role of the wire unilaterality

The wire network contributes to the tensile stiffness of the composite material but not to the compression stiffness
(cf. Fig. 2). To model such a behaver at the macroscopic scale, it is convenient to introduce a unilateral condition in
the behaviour law of the wire network. This unilaterality accounts for two microscopic phenomena. The first one is the
lack of bending strength of the wire network viewed as a piece of cotton. The second one is the local buckling of short
segments. The first aspect is not explicitly taken into account by a unilateral condition at the microscopic scale in our
discrete numerical simulation since the chain of beads has no bending strength. The second aspect may be enforced by
introducing a unilateral interaction law between two successive beads. Such an interaction models an elemental wire
between two beads: we denote by “rigid wire”; otherwise, we will refer to it as “rigid rod” (cf. Fig. 4) for bilateral law
between beads. Fig. 3 illustrates the difference of global behaviour between the two simulations for biaxial test using
the LMGC90 software. Until 6% of deformation, the responses are almost identical, for larger deformations the “rigid
rod” model leads to a rough increase of stiffness due to the appearance of compressive columns in the wire. Such
a phenomenon does not seem very realistic and stems probably from a scale effect since the numerical sample is not
fully representative of the material. In particular, the model of wire as a chain of beads generates unrealistic jamming
effect with sand grains.

1.4. Why strain and stress formulations?

In this paper, we propose to carry out a thermodynamic study with both strain and stress formulations. The interest
of this work is in the identification possibilities of potentials parameters. Indeed, an experimenter performing tests on
a sample has only access to the global strain. Our numerical investigations allow us to have access to finer data such
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Fig. 3. Vertical force vs. vertical strain response with different models.

Fig. 4. Schematic discrete laws.

as the local stress field throughout the sample. Moreover, the global stress tensor over the sample can be deduced by
averaging.

The post-processing of numerical experiments mentioned in Section 1.2.1 provides precise information on the
stress fields in sand and wire network. The stress “unilaterality” in the wire is clearly established in Fig. 2. This
observation could lead us to favour a stress formulation. But the finite element softwares are essentially developed
using a strain formulation. Moreover, the unilaterality may be postulated either on the strain or on the stress according
to the chosen approach. But these models are not dual of one another as we will see in the next section. Consequently,
we propose in the following study strain formulations which are easily implementable. Dual stress formulations are
provided when they can be analytically deduced by the Legendre–Fenchel transformation.

2. A general thermodynamic framework

In this part, we define potentials written with different state variables. These potentials have to satisfy the Clausius–
Duhem inequality to be thermodynamically admissible. The notation conventions for an unspecified variable are X

for a scalar or a vector, X for a second or third order tensor and X for a fourth or higher order tensor.

2.1. Strain versus stress approach in thermodynamics

This work must be as exhaustive as possible, when passing from unspecified state variables to its dual. We thus use
the Legendre–Fenchel transformation (Moreau, 1966), to carry out our study with both strain and stress formulations.
Let us write the Clausius–Duhem inequality where u is the internal energy, s the massic entropy, q the heat flow vector
and T the temperature,

σ : ε̇ − ρ(u̇ − T ṡ) − 1

T
q · ∇T � 0, (3)

where ∇ is the gradient operator. The intrinsic dissipation depends on a state variable X (or its dual X∗), some
internal variables α = {α1, . . . , αp} (each internal variable can be scalar, vectorial or tensorial) and the temperature T .
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It can also be expressed with the free energy ψ or its Legendre–Fenchel transformation ψ∗ with respect to the state
variable X,

ψ(X, α,T ) = u(X, α,T ) − T s(X, α,T ) and

ψ∗(X∗, α,T ) = sup
X

{
X: X∗ − ψ(X, α,T )

} = X : X∗ − ψ(X, α,T ),

where X is the argument of the supremum. Considering either X or X∗, we find two expressions of the Clausius–
Duhem inequality,

σ : ε̇ − ρ

[
∂ψ

∂X
: Ẋ +

(
s + ∂ψ

∂T

)
Ṫ + ∂ψ

∂αm

α̇m

]
− q

T
· ∇T � 0, (4)

σ : ε̇ − ρ

[
Ẋ : X∗ +

(
X − ∂ψ∗

∂X∗
)

: Ẋ∗ +
(

s − ∂ψ∗

∂T

)
Ṫ − ∂ψ∗

∂αm

α̇m

]
− q

T
· ∇T � 0. (5)

Using the Helmholtz postulate (which can be applied with the generalised standard materials assumption (Halphen
and Nguyen, 1975)) and the previous definitions, we are now able to deduce the state laws,

Primal state laws Dual state laws

X∗ ∈ ∂Xψ(X, α,T ), X ∈ ∂X∗ψ∗(X∗, α,T ),

−s ∈ ∂T ψ(X, α,T ), s ∈ ∂T ψ∗(X∗, α,T ),

− 1

ρ
Am ∈ ∂αmψ(X, α,T ),

1

ρ
Am ∈ ∂αmψ∗(X∗, α,T ),

(6)

where Am is the thermodynamic force associated with αm. Formally, we use subdifferentials instead of derivatives;
for a function f at the point p it is defined by ∂pf = {q | ∀r, f (r) − f (p) � q(r − p)}. If convexity is not required,
previous relations still hold using the Clarke subdifferential (Clarke, 1983). Then, the primal and dual forms are not
necessarily equivalent. In the general case, the Clausius–Duhem inequality (4) or (5) can be reduced to a dot product
of a vector flow and a vector force,[

σ̂

A

∇T

]
︸ ︷︷ ︸

force

T

·
[ ˙̂ε

α̇

− q
T

]
︸ ︷︷ ︸

flow

� 0, where

{ ˙̂ε = ε̇ or ε̇ir,

σ̂ = σ ir or σ .
(7)

The flow variables have to be related through evolution laws to the force variables. To satisfy the inequality (7)
some assumptions may be added to these relations. It is convenient to introduce a dissipation potential ϕ from which
the evolution laws are derived. By duality, a force function ϕ∗ is automatically defined using the Legendre–Fenchel
transformation,

Primal complementary laws Dual complementary laws

σ̂ ∈ ∂ ˙̂εϕ
(

˙̂ε, α̇,− q

T

)
, ˙̂ε ∈ ∂σ̂ ϕ∗

(
σ̂ , α̇,− q

T

)
,

A ∈ ∂α̇ϕ

(
˙̂ε, α̇,− q

T

)
, −A ∈ ∂α̇ϕ∗

(
σ̂ , α̇,− q

T

)
,

∇T ∈ ∂(−q/T )ϕ

(
˙̂ε, α̇,− q

T

)
, −∇T ∈ ∂(−q/T )ϕ

∗
(

σ̂ , α̇,− q

T

)
.

(8)

To satisfy the Clausius–Duhem inequality, some assumptions on the dissipation potential are necessary. For simplicity,
we consider now an isothermal process. The left-hand side of the inequality is reduced to,

σ̂ : ˙̂ε + Aα̇ = ∂ϕ

∂ ˙̂ε : ˙̂ε + ∂ϕ

∂α̇
α̇ = ∂ϕ( ˙̂ε, α̇) · ( ˙̂ε, α̇

)
and the primal state laws are summarised as (σ̂ ,A) ∈ ∂ϕ( ˙̂ε, α̇), the potential ϕ being a convex function. With a convex
analysis characterisation of the subdifferential we write

∀(x, y) ϕ( ˙̂ε, α̇) − ϕ(x, y) �
(
( ˙̂ε, α̇) − (x, y)

) · (σ̂ ,A).
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Table 1
Strain versus stress formulations

State variable: εr State variable: σ

σ : ε̇ir + Amα̇m − q
T

∇T � 0 ε̇ir : σ + Amα̇m − q
T

∇T � 0

Free energy: ψ Dissipation potential: ϕ Free enthalpy: ψ∗ Force function: ϕ∗
1
ρ σ ∈ ∂εrψ σ ∈ ∂

ε̇irϕ
1
ρ εr ∈ ∂σ ψ∗ ε̇ir ∈ ∂σ ϕ∗

−s ∈ ∂T ψ Am ∈ ∂α̇mϕ s ∈ ∂T ψ∗ −Am ∈ ∂α̇mϕ∗
− 1

ρ Am ∈ ∂αmψ ∇T ∈ ∂(−q/T )ϕ
1
ρ Am ∈ ∂αmψ∗ −∇T ∈ ∂(−q/T )ϕ

∗

State variable: ε State variable: σ r

σ ir : ε̇ + Amα̇m − q
T

∇T � 0 ε̇ : σ ir + Amα̇m − q
T

∇T � 0

Free energy: ψ Dissipation potential: ϕ Free enthalpy: ψ∗ Force function: ϕ∗
1
ρ σ r ∈ ∂εψ σ ir ∈ ∂ε̇ϕ 1

ρ ε ∈ ∂σ rψ∗ ε̇ ∈ ∂σ irϕ
∗

−s ∈ ∂T ψ Am ∈ ∂α̇mϕ s ∈ ∂T ψ∗ −Am ∈ ∂α̇mϕ∗
− 1

ρ Am ∈ ∂αmψ ∇T ∈ ∂(−q/T )ϕ
1
ρ Am ∈ ∂αmψ∗ −∇T ∈ ∂(−q/T )ϕ

∗

Moreover, if ϕ is minimum in (0,0), the Clausius–Duhem inequality is then satisfied (Suquet, 1982),

σ̂ : ˙̂ε + Aα̇ � ϕ( ˙̂ε, α̇) − ϕ(0,0) � 0.

Similar properties are required for ϕ∗ to recover the Clausius–Duhem inequality. Generally, we distinguish the re-
versible and irreversible parts of the transformation. We thus postulate an additive decomposition for both reversible
and irreversible parts of the strain tensor ε = εr + εir (which is classical for the so called small strain assumption)
and the stress tensor σ = σ r + σ ir. The reversible/irreversible splitting of σ is less classical. To illustrate its interest,
remark that possible residual stresses may be accounted for in the irreversible part.

At this stage, we have to choose the external state variable X for the strain formulation and consequently X∗ for
the stress formulation. It is usual to consider for X the total strain tensor ε. By the way, the reversible stress σ r appears
in the state law and becomes the state variable in the dual stress formulation. But we can also use the reversible strain
part εr and deduce the full stress tensor σ as the dual state variable (cf. Table 1). The first column expresses the primal
model using εr or ε as state variable. The second column provides the corresponding dual formulations.

2.2. 1D model of reinforced geomaterial

Let us apply previous results to a rheological 1D model of TexSol taking into account the wire unilaterality.

2.2.1. Strain formulation
We choose to superpose a classical 1D model of elasto-plasticity with hardening for sand (Lemaitre and Chaboche,

1990) and a 1D unilateral model of elasticity for wire. We thus propose the two potentials ψ (free energy) and ϕ

(dissipation potential) depending on the external state variable ε and on the internal variable ε2 as shown in Fig. 5,

Fig. 5. Rheological TexSol diagram.
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ψ(ε, ε2) =
{

ψ1(ε, ε2) if ε ∈ C1,

ψ2(ε, ε2) if ε ∈ C2,
(9)

ϕ(ε̇, ε̇2) = σ0|ε̇2|, (10)

where

ψ1(ε, ε2) = 1

2
Kwε2 + 1

2
Ks(ε − ε2)

2 + 1

2
Hε2

2, C1 = {ε ∈ R | ε � 0},

ψ2(ε, ε2) = 1

2
Ks(ε − ε2)

2 + 1

2
Hε2

2, C2 = {ε ∈ R | ε � 0}
and σ0 the stress threshold. According to Table 1 the state and complementary laws are derived,

State laws:

σ r = ∂ψ

∂ε
= Kw〈ε〉 + Ks(ε − ε2), A = − ∂ψ

∂ε2
= Ks(ε − ε2) − Hε2.

Complementary laws:

σ ir = ∂ϕ

∂ε̇
= 0, A ∈ ∂ε̇2ϕ =

{{
sign ε̇2σ0

}
if ε̇2 ∈ R

∗,
[−σ0, σ0] if ε̇2 = 0,

where 〈ε〉 = max(0, ε) is the non-negative part of ε and sign(·) is the signum operator.

2.2.2. Stress formulation
To determine the stress formulation, we have to calculate the Legendre–Fenchel transformations of ψ and ϕ which

are not always analytically accessible. However, we can use the following general result convenient for piecewise
smooth functions.

Proposition 1. Consider a non-overlapping splitting (Ci)i=1,n of the strain space R
3×3,

⋃n
i=1 Ci = R

3×3, Ci close
convex cone with mes(Ci ∩ Cj ) = 0, i �= j . If ψ(ε) is piecewise defined by ψ(ε) = ψi(ε) if ε ∈ Ci, i = 1, . . . , n, then

ψ∗(σ ) = sup
i

{
(ψ∗

i ∇IC◦
i
)(σ )

}
.

Proof. Let us recall the definition of inf-convolution of two functions f and g (Moreau, 1966), the indicator function
of a convex set A and the polar cone C◦ of C,

◦ (f ∇g)(ε) = inf
ε=ε1+ε2

{
f (ε1) + f (ε2)

}
,

◦ IA(ε) =
{

0 if ε ∈ A,

+∞ if ε /∈ A,

◦ C◦ = {
σ | ε : σ � 0,∀ε ∈ C

}
.

According to classical rules of convex analysis,

ψ∗(σ ) = sup
ε̄

{
σ : ε̄ − inf

i

{
ψi(ε̄) + ICi

(ε̄)
}} = sup

i

{
sup
ε̄

{
σ : ε̄ − ψi(ε̄) − ICi

(ε̄)
}}

= sup
i

{
(ψi + ICi

)∗(σ )
} = sup

i

{
(ψ∗

i ∇IC◦
i
)(σ )

}
.

For the 1D model the split into two half spaces is obvious and the analytical forms of conjugate functions from (9) are
accessible,

ψ∗
1 (σ r, ε2) = (σ r + Ksε2)

2

2(Kw + Ks)
− (Ks + H)ε2

2

2
, C◦

1 = {σ ∈ R | σ � 0},

ψ∗
2 (σ r, ε2) = (σ r + Ksε2)

2

− (Ks + H)ε2
2

, C◦
2 = {σ ∈ R | σ � 0}.
2Ks 2
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Using Proposition 1, we obtain successively,

ψ∗
1 ∇IC◦

1
=

⎧⎪⎪⎨
⎪⎪⎩

− (Ks + H)ε2
2

2
if σ r + Ksε2 � 0,

(σ r + Ksε2)
2

2(Kw + Ks)
− (Ks + H)ε2

2

2
if σ r + Ksε2 � 0,

ψ∗
2 ∇IC◦

2
=

⎧⎪⎪⎨
⎪⎪⎩

− (Ks + H)ε2
2

2
if σ r + Ksε2 � 0,

(σ r + Ksε2)
2

2Ks

− (Ks + H)ε2
2

2
if σ r + Ksε2 � 0.

Finally,

ψ∗(σ r, ε2
) =

⎧⎪⎪⎨
⎪⎪⎩

(σ r + Ksε2)
2

2(Kw + Ks)
− (Ks + H)ε2

2

2
if σ r + Ksε2 � 0,

(σ r + Ksε2)
2

2Ks

− (Ks + H)ε2
2

2
if σ r + Ksε2 � 0.

(11)

The Legendre–Fenchel transformation of the dissipation potential is computed classically from (10),

ϕ∗(σ ir, ε̇2
) = I{0}

(
σ ir) − σ0|ε̇2|. (12)

From Eq. (12) we implicitly get σ ir = 0. The state and complementary laws in the stress formulation are derived in a
straightforward manner.

State laws:

ε = ∂ψ∗

∂σ r

(
σ ir, ε2

) =

⎧⎪⎪⎨
⎪⎪⎩

σ r + Ksε2

Kw + Ks

if σ r + Ksε2 � 0,

σ r + Ksε2

Ks

if σ r + Ksε2 � 0,

A = ∂ψ∗

∂ε2

(
σ ir, ε2

) =
⎧⎨
⎩

Ks

Kw + Ks

(σ r + Ksε2) − (Ks + H)ε2 if σ r + Ksε2 � 0,

σ r + Ksε2 − (Ks + H)ε2 if σ r + Ksε2 � 0.

Complementary laws:

ε̇ ∈ ∂σ irϕ
∗(σ ir, ε̇2

) = R

A ∈ −∂ε̇2ϕ
∗(σ ir, ε̇2

) =
{{

sign ε̇2σ0
}

if ε̇2 ∈ R
∗,

[−σ0, σ0] if ε̇2 = 0.

This set of equations is equivalent to the one obtained with the strain formulation Section 2.2.1.

3. Strain and stress approach for 3D models

The three dimensional effects cannot be neglected in modelling the complex microstructure of the TexSol material.
To define a 3D model, we follow the previous 1D approach superposing a classical elastic plastic behaviour for
the sand and a unilateral elastic one for the wire network. Simple and sophisticated unilaterality conditions may be
considered leading to different formulations more or less easy to handle in a general primal/dual framework.

3.1. 3D thermodynamical potentials of the sand

First of all, let us recall that the stress tensor can be split into a spherical part and a deviatoric one,

σ = 1

3
tr(σ )I︸ ︷︷ ︸+ S︸︷︷︸

deviatoric

,

spherical



862 R. Laniel et al. / European Journal of Mechanics A/Solids 26 (2007) 854–871
where I is the identity second order tensor (Iij = δij ) and tr(·) is the trace operator. Let us introduce the spherical
projection tensor S = 1

3I ⊗ I and the deviatoric projection tensor D = I − S where I is the identity fourth order tensor
(Iijkl = 1

2 (δikδjl + δilδjk)). In a classical model the state variable is sand’s full strain εs , the internal variables contain
the plastic strain ε

p
s , the kinematic and isotropic hardening variables α and p (Wood, 1990). The free energy ψs has

the following form,

ψs

(
εs ,ε

p
s ,α,p

) = 1

2

(
εs − ε

p
s

) : Ks

(
εs − ε

p
s

) + Hk

2
α : α + Hi

2
p2, (13)

where Ks , Hk and Hi are stiffness coefficients. The state laws are directly derived from it,

σ r
s=

∂ψs

∂εs

= Ks

(
εs − ε

p
s

)
,

A = −∂ψs

∂ε
p
s

= Ks

(
εs − ε

p
s

)
,

χ= −∂ψs

∂α
= −Hkα,

R = −∂ψs

∂p
= −Hip.

(14)

To derive the complementary laws, it is more convenient to define the force function ϕ∗ instead of the dissipation
potential ϕ,

ϕ∗
s

(
σ ir

s ,A,χ ,R
) = I{0}

(
σ ir

s

) + IΩ(χ,R)(A), (15)

where Ω(χ ,R) = {A | F(A,χ ,R) � 0} is the elastic domain bounded by the Drucker–Prager criterion F defined by
(Drucker and Prager, 1952),

F(A,χ ,R) = √
J2(A − χ) − τy(A) − R(p). (16)

Remark that
√

J2(·) is the pseudo norm of the tensor deviatoric part implied in the plastic phenomenon (where J2 is
the second invariant). The initial threshold τy depends on the pressure (as it is usual in soil mechanics), on the friction
coefficient β related to the friction angle θf (β = tan(θf )) and on the cohesion parameter C0, τy(A) = C0 −β tr(A) =
σy/

√
3. The Drucker–Prager yield criterion is smooth on its deviatoric part and it depends only on two invariants

J1 = tr(·) and J2. Moreover, for friction angles below 30◦ (Desrues, 2002), it gives a good approximation of the
Mohr–Coulomb yield criterion which is classically used for sand. Other models can be used to define the soil plasticity
such as those proposed by Vermeer and Nova. Since we use the dual dissipation potential, we get the complementary
laws usually obtained from the stress formulation (cf. Table 1),

ε̇ ∈ ∂σ ir
s
ϕ∗(σ ir

s ,A,χ ,R
) = R

3×3,

ε̇
p
s = λ̇

∂F

∂A
(A,χ ,R) = λ̇

[
A − χ

2
√

J2(A − χ)
+ βI

]
,

α̇ = λ̇
∂F

∂χ
(A,χ ,R) = −λ̇

A − χ

2
√

J2(A − χ)
,

ṗ = λ̇
∂F

∂R
(A,χ ,R) = −λ̇,

(17)

where λ̇ is the plastic multiplier always non-negative. Its value can be found with the plastic condition F = 0 and the
consistency condition Ḟ = 0,

{
F = 0
Ḟ = 0

⇒
⎧⎨
⎩

√
J2(A − χ) = τy(A) + R(p),

λ̇ = 1

Hi + Hk/2

(
A − χ

2(τy(A) + R(p))
+ βI

)
: Ȧ.

(18)

In contrast to the 1D case, we cannot explicitly express a 3D dissipation potential depending on flow variables.
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3.2. Unilateral wire network model

According to the 1D model, we neglect the dissipation effects, and we focus on the free energy. Its stiffness cannot
be reduced to the stiffness of the wire and has to account for the wire distribution in the sample, assumed to be
isotropic in the following. Due to the entanglement of the wire network, it is convenient to consider continuously
differentiable free energy to derive smooth relations between strain and stress at the macroscopic level. A model
directly derived from the isotropic linear elasticity may be expressed in the principal directions; the strain and stress
tensors assumed to be coaxial. This property is lost when the unilaterality is considered and we can derive two different
models starting either from a strain approach or a stress approach. For instance, using the Lamé coefficients λw , μw

and the strain principal values denoted ε1
w , ε2

w , ε3
w (we introduce the notations ε̃w = diag(ε1

w, ε2
w, ε3

w) and 〈ε̃w〉 =
diag(〈ε1

w〉, 〈ε2
w〉, 〈ε3

w〉), where diag(a, b, c) is a diagonal matrix with the diagonal coefficients a, b and c) the free
energy may be defined by,

ψw(εw) = λw

2

〈
ε1
w + ε2

w + ε3
w

〉2 + μw

(〈
ε1
w

〉2 + 〈
ε2
w

〉2 + 〈
ε3
w

〉2)
. (19)

The first term describes the bulk unilateral behaviour of the wire network activated by the trace of the strain. The
second part concerns the shear component which is not activated in all directions simultaneously but according to the
sign of the strain principal values. With a stress approach we could formulate a similar expression for the free enthalpy
but using the principal values of the wire stress tensor.

Gw(σw) = 1 − 2νw

6Ew

〈
σ 1

w + σ 2
w + σ 3

w

〉2 + 1 + νw

2Ew

(〈
S1

w

〉2 + 〈
S2

w

〉2 + 〈
S3

w

〉2)
, (20)

where Sw is the deviatoric part of σw . The stress expressed in the principal directions is easily derived from (19),

σ̃ r
w = dψw

dε̃w

(ε̃w) = λw

〈
tr(ε̃w)

〉
I + 2μw

〈
ε̃w

〉
.

In the current frame, the strain-stress relationship has the form,

σ r
w = λw

〈
tr(εw)

〉
I + 2μwP

〈
ε̃w

〉
P T, (21)

where P depending on εw is the transformation matrix from the principal directions to the current ones. The expres-
sion P 〈ε̃w〉P T is the positive part of the wire strain tensor denoted ε

�
w . The convexity of the free energy is easily

satisfied for μw = 0 because the trace is a linear operator. When μw �= 0, the convexity is proved using a composition
argument given in (Yang, 1980).

In (De Buhan and Sudret, 1999) a two-phase elastoplastic model for unidirectionally reinforced material is pro-
posed, i.e., the reinforcement network takes the form of a uniaxial stress variable. In our approach, we consider a
three-dimensional reinforcement coupled with a strong unilateral condition. We use the same assumption of equality
strain rates (Section 1.2) to superpose both sand and wire models.

3.3. Models superposition and TexSol potentials

The previous models are combined according to the 1D approach. Moreover, we introduce two possible initial
stresses σ 0

w and σ 0
s . These are generated by the deposit process under gravity which may be simulated by a discrete

element software (Dubois and Jean, 2003; Moreau, 1999). Then we can reasonably assume that principal values
of σ 0

w are non-negatives. We define the corresponding initial strains using the elastic parts of the previous models,
ε0

w = K
−1
w σ 0

w and ε0
s = K

−1
s σ 0

s , where Kw = λwI ⊗ I + 2μwI. The total free energy is then postulated,

ψ
(
ε,εp,α,p

) = 1

2

(
ε − εp + ε0

s

) : Ks

(
ε − εp + ε0

s

) + λw

2

〈
tr
(
ε + ε0

w

)〉2 + μw

(
ε + ε0

w

)� : (ε + ε0
w

)�

+ Hk

2
α : α + Hi

2
p2. (22)

The state laws are derived,
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σ r = ∂ψ

∂ε
= Ks

(
ε − εp) + σ 0

s + λw

〈
tr
(
ε + ε0

w

)〉
I + 2μw

(
ε + ε0

w

)�
,

A = − ∂ψ

∂εp = Ks

(
ε − εp) + σ 0

s ,

χ = −∂ψ

∂α
= −Hkα,

R = −∂ψ

∂p
= −Hip. (23)

The complementary laws are derived considering the dual dissipation potential of the sand alone (cf. Eq. (15)). In
the simple case where μw = 0, we can complete the dual stress formulation by computing the Legendre–Fenchel
transformation of the free energy ψ (denoted in this case ψ◦) via the Proposition 1.

ψ∗◦
(
σ r,εp,α,p

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
σ r + Ks

(
εp − ε0

s

) + σ 0
w

) : (Ks + K
◦
w

)−1(
σ r + Ks

(
εp − ε0

s

) + σ 0
w

)
−1

2

((
εp − ε0

s

) : Ks

(
εp − ε0

s

) + Hkα : α + Hip
2) − 1

2
ε0

w : σ 0
w

if tr
(
σ r + Ks

(
εp − ε0

s − ε0
w

))
� 0,

1

2

(
σ r + Ks

(
εp − ε0

s

)) : K
−1
s

(
σ r + Ks

(
εp − ε0

s

))
−1

2

((
εp − ε0

s

) : Ks

(
εp − ε0

s

) + Hkα : α + Hip
2)

if tr
(
σ r + Ks

(
εp − ε0

s − ε0
w

))
� 0,

(24)

where K
◦
w = λwI ⊗ I . In this expression it is difficult to distinguish a contribution of the unilaterality of the wire

network as given in (20). Consequently the two approaches (19) and (20) are no more equivalent when unilaterality
occurs (Lucchesi et al., 2000). The Legendre–Fenchel transformation cannot be catched in the more general case.

4. Numerical development

Starting from a consistent thermodynamic model for the TexSol, the next step consists in implementing it in a finite
element software (Keryvin, 1999; Kichenin and Charras, 2003). We discuss then responses provided by the simulation
of simple compression/traction tests according to the expected behaviours detailed in Section 1.

4.1. Numerical implementation

The variables being known at step n − 1, we have to compute them at step n using a predicted value of the strain
increment �εn. For the sake of simplicity, the initial stresses are neglected (σ 0

s = σ 0
w = 0). Two sets of variables,

(σ s,n,χn,pn) for the sand and (σw,n) for wire network are computed simultaneously. The stress in the wire network
is directly deduced from the potential defined by (19). For sand, the relations given in (14), (17) and (18) can be
reduced to three equations depending on the three unknowns (σ s,n,χn,pn). This system is solved by the Newton–
Raphson method applied to the following residuals Qα

n;α = 1,2,3.

Q1
n = pn − pn−1

2(Rn + τy,n)

(
Ss,n − χn + 2(Rn + τy,n)βI

) + �εn − Ks
−1(σ s,n − σ s,n−1),

Q2
n = Hk(pn − pn−1)

2(Rn + τy,n)
(Ss,n − χn) + χn − χn−1,

Q3
n = 1 (

Ss,n − χn + 2(Rn + τy,n)βI
) : (σ s,n − σ s,n−1) + pn − pn−1,
(Rn + τy,n)(Hk + 2Hi)
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where α = 1 corresponds to Eqs. (2), (14)1, (17)2,4 and (18)1, α = 2 corresponds to Eqs. (14)3, (17)3,4 and (18)1
and finally α = 3 corresponds to Eqs. (17)4 and (18)1,2 (in all these equations, Rn is calculated using Eq. (14)4).
Classically, the Taylor development is defined as follows

Qα
n,i+1 = Qα

n,i +
(

∂Qα
n

∂σ s,n

)
i

δσ s,n,i+1 +
(

∂Qα
n

∂χn

)
i

δχn,i+1 +
(

∂Qα
n

∂pn

)
i

δpn,i+1.

The analytical formulations of the local tangent matrix coefficients are

∂Q1
n

∂σ s,n

= pn − pn−1

2(Rn + τy,n)2

[
(Rn + τy,n)D + β(Ss,n − χn) ⊗ I

] − Ks
−1,

∂Q1
n

∂χn

= − pn − pn−1

2(Rn + τy,n)
I,

∂Q1
n

∂pn

= Rn + τy,n + Hi(pn − pn−1)

2(Rn + τy,n)2
(Ss,n − χn) + βI ,

∂Q2
n

∂σ s,n

= Hk(pn − pn−1)

2(Rn + τy,n)2

[
(Rn + τy,n)D + β(Ss,n − χn) ⊗ I

]
,

∂Q2
n

∂χn

=
(

1 − Hk

pn − pn−1

2(Rn + τy,n)

)
I,

∂Q2
n

∂pn

= Hk

Rn + τy,n + Hi(pn − pn−1)

2(Rn + τy,n)2
(Ss,n − χn),

∂Q3
n

∂σ s,n

= C1
n

(
2Ss,n − Ss,n−1 − χn + 2(Rn + τy,n)βI

) + C2
n(Ss,n − χn) : (σ s,n − σ s,n−1)I ,

∂Q3
n

∂χn

= −C1
n(σ s,n − σ s,n−1),

∂Q3
n

∂pn

= 1 + C3
n

(
Ss,n − χn − 2(Rn + τy,n)βI

) : (σ s,n − σ s,n−1),

where

C1
n(Rn, τy,n) = 1

(Rn + τy,n)(Hk + 2Hi)
, C2

n(Rn, τy,n) = βC1
n

Rn + τy,n

and finally

C3
n(Rn, τy,n) = HiC

1
n

Rn + τy,n

.

The algorithm is stigmatised in Table 2 (where (ζ 1
n , ζ 2

n , ζ 3
n ) = (σ s,n,χn,pn)). This last one being quite complex for

sand, we have compared the results given by the previous integration law and strategy with the one developed in the
Cast3M software where a Drucker–Prager model is available. Since we got a good agreement with both implementa-
tions, we focus our attention on the coupled sand/wire model of TexSol involving a unilateral behaviour. A consistent
tangent matrix can be used to increase the convergence rate (Simo and Hugues, 1998).

4.2. Patch test

In a first step, the simple patch test considered is a single Q1-Lagrange hexahedron finite element submitted to
a traction/compression loading (cf. Fig. 6). More precisely, a confinement pressure is prescribed via a cohesion be-
haviour on the material (Radjaï et al., 2001) depending on a single coefficient C0. A displacement is imposed on the
upperside. Four models are compared to emphasise the relevance of the two unilateral behaviour laws. Two of them
are considered to obtain some limit behaviours; the first one denoted Sand, is free of wire; the second one denoted
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Table 2
Solution algorithm

Fig. 6. Patch test.

Reinforced sand, is a superposition of a sand model and an elastic “bilateral” model of the reinforcement. The “unilat-
eral” TexSol model introduced in Section 3.3 is denoted Texsol. A particular model is added denoted Spherical Texsol
corresponding to the previous one with μw = 0.

• Elasticity: Es = 200 MPa, νs = 0.4, Ew = 100 MPa, νw = 0.3,
• Plasticity: C0 = 50 kPa, θf = 0.1, Hk = 1 MPa, Hi = 1 MPa.

Sand and Reinforced sand appear clearly as two elastic bounds for TexSol models (cf. Fig. 7). At this stage, Spherical
Texsol does not differ from Sand. On the contrary, the Texsol is close to Sand in compression and close to Reinforced
sand in traction. For the two loadings the limit models appear to be the upper bounds. For a loading-unloading
traction process, the Texsol model behaves almost like Reinforced sand as expected (cf. Fig. 8). Spherical Texsol does
not improve significantly Sand (cf. Figs. 8 and 9). Consequently, Spherical Texsol does not account for the numerical
results given in Fig. 3 for the same kind of experiment – even roughly.

4.3. Cyclic loading

TexSol embankments may be submitted to vibrational solicitations. A cyclic test based on the test represented in
Fig. 10 (where the displacements are fixed on the lower side and the solicitation controlled by force) is performed
to highlight the contribution of the “unilateral” reinforcement due to the wire network. The friction angle is changed
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Fig. 7. Zoom on the elastic range of the models.

Fig. 8. Different material behaviours on a traction patch test.

Fig. 9. Different material behaviours on a compression patch test.
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Fig. 10. Force managed traction/compression test.

Fig. 11. Reinforced sand, TexSol and Sand behaviours on a cyclic test (20 compression traction load loops).

to apply a greater amplitude of loading on it: θf = 0.02. Reinforced sand, Texsol and Sand cyclic behaviours are
compared in Fig. 11. For the three models, the response tends to be stabilised after 20 cycles. But for Reinforced
sand and Texsol the stabilisation is reached before 10 cycles. Moreover, the residual displacement of Texsol is close
to that of Reinforced sand and five times smaller than that of Sand. This last result highlights the advantages of
TexSol reinforcement. Another effect of the “unilateral” wire in the Texsol model is clearly illustrated by the curvature
changes when the displacement switches sign from positive to negative.

4.4. Compression test

In soil mechanics, it is usual to carry out a triaxial test with a prescribed confinement pressure (cf. Fig. 12).
Considering the previous numerical results of Section 4.2, the Spherical Texsol model is no more studied. Only the
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Fig. 12. Compression test.

Fig. 13. Deviatoric stress.

Fig. 14. Wire deviatoric stress.

three other cases are compared in a compression test (0.1 mm of vertical displacement computed in 100 iterations).
The mesh is composed of 400 elements as described in (Laniel, 2004). We consider Q1-Lagrange hexahedron finite
elements except for the central part which is meshed with R1-Lagrange pentahedron finite elements. The contribution
of the wire in TexSol to the strength is illustrated by the spatial distribution of two stresses: the full stress σ and the wire
stress σw . The distribution of the full stress is identical in the three models with a level for Texsol which lies between
the two others. The main part of stress is located at the center of the bulk except a localised concentration at the right
lower corner. The contribution of the wire to the stress tensor (σw) is split into its deviatoric and spherical (pressure)
part. Both parts are identically zero for Sand (cf. Figs. 14(c) and 15(c)). The elasticity of the reinforcement is activated
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Fig. 15. Wire pressure.

only in tensile directions for Texsol and in all directions for Reinforced sand; this explains the difference in the levels
of deviatoric stress for the total stress (Fig. 13) and for the wire stress (Fig. 14). The nature of the reinforcement due
to wire is clearly illustrated in Fig. 15. Obviously, the wire pressure in the Sand sample vanishes. It is negative in the
Texsol wire (traction behaviour) according to the unilaterality condition expressed in Eq. (21) whereas the pressure in
the reinforcement of Reinforced sand is almost everywhere positive.

5. Conclusion and perspectives

In this paper a consistent thermodynamic model was proposed to account for numerical experiments (because of
the absence of exploitable real experiments on TexSol). The key-point was the introduction of a “unilateral” elasticity
which models the wire network. An elastic plastic model was superposed on the previous model to obtain both strain
and stress formulations when it was possible. Using a finite element method, we validated qualitatively the expected
behaviour.

The main perspective of this work is the identification of the mechanical parameters of the two-component model
by numerical experiments which are currently underway. In a more general framework, it is useful to employ an or-
thotropic model for the wire network.

Acknowledgement

Thanks to Dr. Keryvin from the LARMAUR (Rennes) for his theoretic and logistics supports.

References

Cambou, B., Jean, M., 2001. Micromécanique des matériaux granulaires. Hermès Science, Paris.
Clarke, F.H., 1983. Optimization and Nonsmooth Analysis. Wiley-Interscience, New York;

Republished as Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, vol. 5. SIAM, New York, 1990.
De Buhan, P., Sudret, B., 1999. A two-phase elastoplastic model for unidirectionally reinforced materials. Eur. J. Mech. A Solids 18, 995–1012.
Desrues, J., 2002. Limitations du choix de l’angle de frottement pour le critère de plasticité de Drucker–Prager. Rev. Fra. Gen. Civ. 6 (1), 853–862.
Drucker, D., Prager, W., 1952. Soil mechanics and plastic analysis of limit design. Quart. Appl. Math. 10, 157–165.
Dubois, F., Jean, M., 2003. LMGC90 une plateforme de développement dédiée à la modélisation des problèmes d’interaction. In: 6th CNCS

Giens 1, pp. 111–118.
Fremond, M., 2002. Non-Smooth Thermo-Mechanics. Springer-Verlag, Berlin.
Halphen, B., Nguyen, Q.S., 1975. Sur les matériaux standards généralisés. J. Mécanique 14, 39–63.
Jean, M., 1999. The non smooth contact dynamics method. Computer Methods Appl. Mech. Engrg. 177, 235–257 (special issue).
Keryvin, V., 1999. Contribution à la modélisation de l’endommagement localisé. PhD Thesis, Université de Poitier, LMPM/LMA.
Khay, M., Gigan, J.-P., 1990. TEXSOL – Ouvrage de soutènement. LCPC.
Kichenin, J., Charras, T., 2003. CAST3M – Implantation d’une nouvelle loi d’évolution/loi de comportement mécanique. SEMT/LM2S, 2003.
Laniel, R., 2004. Simulation des procédés d’indentation et de rayage par éléments finis et éléments distincts. DEA, Université de Rennes I & INSA.
Laniel, R., Mouraille, O., Pagano, S., Dubois, F., Alart, P., 2005. Numerical modelling of reinforced geomaterials by wires using the non smooth

contact dynamics. In: 4th CMIS, Hannover.
Leflaive, E., Khay, M., Blivet, J.-C., 1985. Un nouveau matériaux : le TEXSOL. Travaux, 602, pp. 1–3.



R. Laniel et al. / European Journal of Mechanics A/Solids 26 (2007) 854–871 871
Lemaitre, J., Chaboche, J.-L., 1990. Mechanics of Solid Materials. Cambridge University Press, Cambridge.
Lucchesi, M., Pandovani, C., Pasquinelli, G., 2000. Thermodynamics of no-tension materials. Int. J. Solids Struct. 37, 6581–6604.
Moreau, J.-J., 1966. Fonctionnelles convexes. Séminaire Equations aux dérivés partielle, Collège de France.
Moreau, J.-J., 1999. Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Engrg. 177, 329–349.
Mouraille, O., 2004. Etude sur le comportement d’un matériau à longueur interne : le TexSol. DEA, Université de Montpellier II.
Radjaï, F., Preechawuttipong, I., Peyroux, R., 2001. Cohesive granular texture. In: Continuous and Discontinuous Modelling of Cohesive Frictional

Materials, Vermeer, P.A., et al. (Eds.), pp. 149–162.
Simo, J.-C., Hugues, T.J.R., 1998. Computational Inelasticity. Springer-Verlag.
Suquet, P., 1982. Plasticité et homogénéisation. PhD Thesis, Université Pierre et Marie Curie, 1982.
Villard, P., 1988. Etude du renforcement des sables par des fils continus. PhD Thesis, Université de Nantes, ENSM.
Villard, P., Jouve, P., 1989. Behavior of granular materials reinforced by continuous threads. Computers and Geothechnics 7 (1–2), 83–98.
Wood, D.M., 1990. Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge.
Yang, W.H., 1980. A generalized Von Mises criterion for yield and fracture. J. Appl. Mech. 47, 297–300.


