

So�ware Development: Introduction to GIT
SysNum • 1A

robin.gerzaguet@enssat.fr

robin.gerzaguet@enssat.fr

Outline

1 From Version Control Systems to GIT
VCS
GIT
Decentralized architecture

2 GIT in Local repository
Repository overview
Commits
Navigating in history
Branches

2021 - 2022 3 / 67

Outline

3 GIT in remote repository
Architecture
Push and pull
Manage remotes
Git stash
GIT repository hosts

4 How to use Git in practice ?
Github and Gitlab
Markdown, the langage to doc them all
Use Git in day to day life

2021 - 2022 4 / 67

Objectives

A small introduction to GIT
I What is a versioning tool ?
I Why it is useful
I And why GIT is a must

But also more than that
I Why versioning can help to be more e�icient in workflow (continuous integration)
I and a way to document your contributions with markdown

Enhanced lecture (?)
Klaxoon for �izz and feedback

2021 - 2022 5 / 67

Partitioning

1 lecture of 2 hours (very dense !)
6 practice lab under Linux with Github classes
I Introduction to GIT

(https://lab.github.com/githubtraining/introduction-to-github)
I Managing merge conflicts

(https://lab.github.com/githubtraining/managing-merge-conflicts)
I Github actions

(https://lab.github.com/githubtraining/github-actions:-hello-world)
I And why markdown is good and you should use it

(https://lab.github.com/githubtraining/communicating-using-markdown)

Evaluation
English report on open source code, one page to be pushed in a common repo !

More information here: https://gitlab.enssat.fr/rgerzagu/gitandmarkdown)

2021 - 2022 6 / 67

https://lab.github.com/githubtraining/introduction-to-github
https://lab.github.com/githubtraining/managing-merge-conflicts
https://lab.github.com/githubtraining/github-actions:-hello-world
https://lab.github.com/githubtraining/communicating-using-markdown
https://gitlab.enssat.fr/rgerzagu/gitandmarkdown

Gratitude

These slides and the lecture structure have been inherited from the work of several (awesome) persons:

Anthony Baire: https://people.irisa.fr/Anthony.Baire/
Karol Desnos:https://kdesnos.fr
I Checkout his videos on youtube: https://www.youtube.com/watch?v=4AdO4VfbsVw

A very classic cheat sheet from Atlassian

https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

2021 - 2022 7 / 67

https://people.irisa.fr/Anthony.Baire/
https://kdesnos.fr
https://www.youtube.com/watch?v=4AdO4VfbsVw
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Version Control Systems

From Version Control Systems to GIT 2021 - 2022 8 / 67

A Version Control System

How to e�iciently manage di�erent code versions ?
Code (or any material) may vary from time to time with di�erent objectives
Code can be collaborative with several persons working on same pool of files
Manual numbering is not the solution !

Figure: Which is the first ? The last ? Di�erent number forma�ing ? And disk space management ?

From Version Control Systems to GIT VCS 2021 - 2022 9 / 67

A Version Control System

This is where Version Control System (VCS) comes into play

Manage your code and its evolutions,

Keep an history to go backwards.

For what ?

Mostly for code, but also for latex and any text file!

Not adapted to big data, media files... [there are specific tools for that]

Key features

Saving code and its history

Possibility to restore at a specific time/state

Merge works from di�erent persons or di�erent workflows

From Version Control Systems to GIT VCS 2021 - 2022 10 / 67

Centralized versus decentralized VCS

Centralized VCS
The code base is stored only at one place

CVS (Concurrent Versioning System, old and not very used right now)

SVN (Subversion)

Decentralized VCS
GIT

Mercurial (Hg)

Bazaar (bzr)

I Lot of di�erent solution and GIT is the most popular at the moment

From Version Control Systems to GIT VCS 2021 - 2022 11 / 67

GIT

GIT is a decentralized open source VCS

Available on all platform (i386 // ARM) and all Operating Systems

Creating in 2005 by Linus Torvald to host Linux code source

Git history
The development of Git began on 3 April 2005. Torvalds announced the project on 6 April and became
self-hosting the next day. The first merge of multiple branches took place on 18 April. Torvalds achieved
his performance goals; on 29 April, the nascent Git was benchmarked recording patches to the Linux
kernel tree at the rate of 6.7 patches per second. On 16 June, Git managed the kernel 2.6.12 release.

" Do not confuse GIT (the powerful tool) with Github or Gitlab (the host // environment based on GIT +
extras)

From Version Control Systems to GIT GIT 2021 - 2022 12 / 67

Repository overview

Source code is placed in a centralized
repository

All users have local copy of the code

Users get modifications from the
repo and works locally

A�er doing all modifications,
repository is updated through a
publication

Centralized repository

User 1 - Local copy User 2 - Local copy

Get updates Publish modifications

	
Local work and modifications

From Version Control Systems to GIT Decentralized architecture 2021 - 2022 13 / 67

Repository overview

Repo can be duplicated and source
code is copied at every user place:
decentralized system !

Asynchronous works are permi�ed
(not lock // unlocked system)

I Need to monitor conflicts (code modi-
fied at several places)

Centralized repository

User 1 - Local copy User 2 - Local copy

Get updates Publish modifications

	
Local work and modifications

From Version Control Systems to GIT Decentralized architecture 2021 - 2022 14 / 67

GIT with local repository

GIT in Local repository 2021 - 2022 15 / 67

File repository

You should store all files that are not generated by a tool:

source files (.c .cpp .java .y .l .tex .jl...)

build scripts / project files (Makefile, CMakefile.txt . . .)

documentation files (.txt README ...)

resource files (images, audio, . . .)

You should not store generated files (or you will experience many unneccessary conflicts)

.o .a .so .dll .class .jar .exe .dvi .ps .pdf

source files / build scripts when generated by a tool (like autoconf, cmake, lex, yacc)

GIT in Local repository Repository overview 2021 - 2022 16 / 67

Repository overview

Repository definition
It corresponds to a special folder (.git) working folder that will be used that will describe each commit
(history) and branches (see later)

To transform a folder into a GIT repository run the command� �
gerzaguet@llamrei:~/ git init� �

I Repository is local at the moment !
GIT in Local repository Repository overview 2021 - 2022 17 / 67

Repository overview

Release 0

Release 1

Release 2

Release 3

Release 4

Release 5

Release 6

Release 7

Release 8

Newer releases

master Current revision (HEAD)

All history is stored (di�erential)

Revision corresponds to code variations (minor or majors)

Possibility to tag some of the releases

GIT in Local repository Repository overview 2021 - 2022 18 / 67

GIT - Commit

Definition
A commit is a

Set of modifications grouped into one global modification

These modifications are identified by Hash code SHA-1� �
commit 4d3b51e0eae6e32da84ba030a706e1d4dee452d6� �

The commit will be created jointly with a message (important for code monitoring)

The commit will lead to a new revision of the code when published to the repository

Possibility to see the history of the commit with a tree view

GIT in Local repository Commits 2021 - 2022 19 / 67

GIT - Commit

Usual version control systems provide two spaces:

the repository
(the whole history of your project)

the working tree (or local copy)
(the files you are editing and that will be in the next commit)

Git introduces an intermediate space : the staging area (also called index)
The index stores the files scheduled for the next commit:

git add files → copy files into the index

git commit → commits the content of the index

GIT in Local repository Commits 2021 - 2022 20 / 67

GIT - Commit

Working copy is the local folder
where you work

Index aggregates all the
modifications

Master is the name of the default
branch (see later)

A very usefull glance here:
https://ndpsoftware.com/
git-cheatsheet.html

Repository

master
Index Working copy

git add file1
git commit

Figure: Di�erence between working copy, index and
repository

GIT in Local repository Commits 2021 - 2022 21 / 67

https://ndpsoftware.com/git-cheatsheet.html
https://ndpsoftware.com/git-cheatsheet.html

GIT - Commit

How we do in practice [Terminal mode] ?

1 You have a local working repository and you do some modifications on one or several files

2 Modifications are OK, you add the files to be monitored� �
gerzaguet@llamrei:~/ git add myFile1 myFile2� �

3 and the commit can be registered in the index� �
gerzaguet@llamrei:~/ git commit -m "Adding myFile1 and myFile2"� �

"Message shall be clear for easy repo monitoring !

Possibility to use editor based IDE (VSCode, Atom . . .) for easier commits (part of files,...)

GIT in Local repository Commits 2021 - 2022 22 / 67

Navigating in Git Index

Files are added with git add. But what files have been modified ?
The Git index lists
I all modified files
I all untracked files (files that have never been added)

� �
gerzaguet@llamrei : git status
On branch master
Your branch is up to date with 'github/master'.
Changes not staged for commit:

modified: myFile1
modified: myFile2

Untracked files:
myFile3� �

GIT in Local repository Navigating in history 2021 - 2022 23 / 67

Navigating in Git Index

From this, easy to add or remove the desired files� �
gerzaguet@llamrei:~/ git add myFile1 myFile3
gerzaguet@llamrei:~/ git rm myFile2� �

Always have a look on the git status to monitor which file is in, which file is out !

GIT in Local repository Navigating in history 2021 - 2022 24 / 67

Navigating in Git Index

git status but what is modified in the file ?

You can use git diff myFile1 to see the di�erence between the staged file and the last
modifications.

Di� view shows the removed lines in red and added lines in green.

GIT in Local repository Navigating in history 2021 - 2022 25 / 67

Navigating in Git Index

Git di�
Complete syntax is� �

gerzaguet@llamrei:~/ git diff
[rev a [rev b]] [--path...]� �

by default rev a is the index

by default rev b is the working copy

� �
gerzaguet@llamrei:~/ git diff
--staged [rev a] [-- path ...]� �

shows the di�erences between rev a and index

Repository

master

Index

Working copy
git diff

git diff --staged

GIT in Local repository Navigating in history 2021 - 2022 26 / 67

Navigating in git history

Each time you commit, you will store the added file states
Possibility to retrieve the state of the commit
I All files at their states
I Untracked files will not be shown

Possibility to switch to a di�erent repository index with the commit identifier� �
gerzaguet@llamrei:~/ git checkout 4d3b51e0eae6e32da84ba030a706e1d4dee452d6� �

Need to find the appropriate key based on commit index.

Clearer commit messages helps to find the desired release.

Alternatively tags can be used to mark some important releases.

GIT in Local repository Navigating in history 2021 - 2022 27 / 67

Navigating in git history

Commit messages is the best tool to find modifications in history
Use short and clear commit messages.

GIT in Local repository Navigating in history 2021 - 2022 28 / 67

Navigating in git history

Alternative possibility to navigate in history is to use gitk� �
gerzaguet@llamrei:~/ gitk� �

It opens a GUI with the history, the branches, the commit names and dates

GIT in Local repository Navigating in history 2021 - 2022 29 / 67

Navigating in git history

Alternative possibility to navigate in history is to use gitk� �
gerzaguet@llamrei:~/ gitk� �

It opens a GUI with the history, the branches, the commit names and dates

GIT in Local repository Navigating in history 2021 - 2022 29 / 67

Rese�ing changes

Want to remove something done in a specific file ?� �
gerzaguet@llamrei:~/ git reset [--hard] [-- path ...]� �

git reset cancels the changes in the index (and possibly in the working copy)

git reset drops the changes staged into the index, but the working copy is le� intact

git reset –hard drops all the changes in the index and in the working copy

GIT in Local repository Navigating in history 2021 - 2022 30 / 67

Other useful local commands

� �
gerzaguet@llamrei:~/ git show� �

Information of the last commit (or arbitrary commit with associate ID)� �
gerzaguet@llamrei:~/ git log� �

Show the history� �
gerzaguet@llamrei:~/ git mv myFile myNewLoc� �

Move file to other place. Equivalent to cp myFile myNewLoc &&
git rm myFile && git add myNewLoc� �

gerzaguet@llamrei:~/ git tag -a myTag� �
Add a tag (see -h for full documentation)

GIT in Local repository Navigating in history 2021 - 2022 31 / 67

Branches

Each commit object has a list of parent
commits:

0 parents→ initial commit

1 parent→ ordinary commit

2+ parents→ result of a merge

I This is a Direct Acyclic Graph

Branches
Develop new feature on a separate branch

Develop without impact the master
branch

When it is ready, merge the develop
branch into the master branch

Repository

O parents
Initial commit

1 parent

2 parents
Merge

master

develop

GIT in Local repository Branches 2021 - 2022 32 / 67

Branches

Create a new branch� �
gerzaguet@llamrei:~/ git checkout -b new branch [
starting point]� �

starting point is the starting location of the branch (possibly a commit id, a tag, a branch, . . .). If not
present, git will use the current location.

Switch between branches� �
gerzaguet@llamrei:~/ git checkout [-m] branch name� �

With -m to request merging local changes into the destination branch.

GIT in Local repository Branches 2021 - 2022 33 / 67

Merge: where the fun begins

List all branches� �
gerzaguet@llamrei:~/ git branch [-a]� �

With -a for listing remote branches (see a�er)

GIT in Local repository Branches 2021 - 2022 34 / 67

Merge: where the fun begins

Merging branches

To merge specific branchA in current branch

� �
gerzaguet@llamrei:~/ git merge branchA� �

The merging automatically creates a commit (if no conflict)

Conflicts may occur if the same file was independently modified in the two branches

Delete a branch
A�er merging branchA into branchB, one can remove branchA� �
gerzaguet@llamrei:~/ git branch -d branchA� �

GIT in Local repository Branches 2021 - 2022 35 / 67

Merge managing

Merge conflict
Happens where one file is modified on both branches.

The operation will not succeed and additional operations are necessary depending on the file type

Text files
lines changed in only one branch are automatically merged

if a line was modified in the two branches, then conflict

Materialized within <<<<<<< MERGE AREA>>>>>>>

Binary files

Need a manual merge (remove, add)

GIT in Local repository Branches 2021 - 2022 36 / 67

Merge managing

Example of file a�er a merge conflict� �
gerzaguet@llamrei:~/ testDir git merge feature
Auto-merging hello.txt
CONFLICT (content): Merge conflict in hello.txt
Automatic merge failed; fix conflicts and then commit.� �

The content of the file is as follows� �
gerzaguet@llamrei:~/ vim hello.txt
<<<<<<< HEAD
This file has been modified in master branch
=======
This file has been modified in release branch a second time
>>>>>>> feature� �

GIT in Local repository Branches 2021 - 2022 37 / 67

Merge managing

To solve the merge

Edit the file and remove the non necessary parts

Or use a direct merge conflict manager (xxdi�, kdi�3, emerge, ...))

then run

� �
gerzaguet@llamrei:~/ git add mergedFiled� �

or� �
gerzaguet@llamrei:~/ git rm corruptedFile� �

GIT in Local repository Branches 2021 - 2022 38 / 67

GIT with remote repository

GIT in remote repository 2021 - 2022 39 / 67

Remote repository

For the moment, GIT has been used in local repository

Versioning code for one location

Backup, tracking and branching for new features

But real power of GIT is for collaborative work

Team that updates same code base with various features (branches)

Necessity to manage merge conflicts (more frequents !) and keep a common code base

Remote repository
It requires

A remote repository where code base will lies

Possibility to synchronise each local code base with the one of the remote repository

GIT in remote repository Architecture 2021 - 2022 40 / 67

Remote repository

Centralized repository

User 1 - Local copy User 2 - Local copy

Get updates Publish modifications

	
Local work and modifications

All local work is done the same way as with local repository

Need to get data from centralized repository

Need to push data to centralized repository
GIT in remote repository Architecture 2021 - 2022 41 / 67

Get the image of the repo

First step is to get the code base exactly as it is.� �
gerzaguet@llamrei:~/ git clone https://git.remote.url.repo� �

Get a clone of the centralized repository

Get all the previous commit, branches, and so on

Example to get the Linux kernel which is on GitHub� �
gerzaguet@llamrei:~/ git clone https://github.com/torvalds/linux� �

GIT in remote repository Push and pull 2021 - 2022 42 / 67

Ge�ing code from remote repository

updates the local mirror of the remote repository:� �
gerzaguet@llamrei:~/ git fetch� �

It gets the change but it does not apply them !

Application must be done a�erwards with an explicit merge

� �
gerzaguet@llamrei:~/ git merge� �

The modifications can be done in one command with pull command� �
gerzaguet@llamrei:~/ git pull� �

GIT in remote repository Push and pull 2021 - 2022 43 / 67

Ge�ing code from remote repository

To get content of a remote branch� �
gerzaguet@llamrei:~/ git checkout branch� �

If branch does not exist locally, then GIT looks for it in the remote repositories

If it finds it, then it creates the local branch and configures it to track the remote branch.

To list all branches (both remotes and locals) use� �
gerzaguet@llamrei:~/ git branch -a� �

GIT in remote repository Push and pull 2021 - 2022 44 / 67

Sending code to centralized repository

A�er code modifications, code can be sent to remote repository using push command

This requires remote to be initialized (i.e centralized repository address)

A repository can have several remotes (push can be used for a specific remote)

� �
gerzaguet@llamrei:~/ git push� �

if the branch is tracking an upstream branch, then the local changes (commits) are propagated to the
remote branch

if on local branch, nothing happens (new local branches are private by default). In this case, do� �
gerzaguet@llamrei:~/ git push -u remote branch� �

In case of conflict git push will fail and require to run git pull first

GIT in remote repository Push and pull 2021 - 2022 45 / 67

Manage remotes

A centralized repository is characterized by its remote
Remote repositories are mirrored within the local repository
It is possible to work with multiple remote repositories
Each remote repository is identified with a local alias. When working with a unique remote
repository, it is usually named origin

To add a remote repository� �
gerzaguet@llamrei:~/ git remote add name url� �

name is a local alias identifying the remote repository
url is the location of the remote repository

To list all remotes of the current repository� �
gerzaguet@llamrei:~/ git remote -v� �

GIT in remote repository Manage remotes 2021 - 2022 46 / 67

Git stash

A very usefull Git command

1 Take your uncommi�ed changes (both staged and unstaged)

2 Save them away for later use in ths stash area

3 Revert them from your working copy

Advantages
When you are in the middle of something, being able to sync with the remote folder and then apply your
modification on the top.

Changes a classic pull order (your local change will be applied a�er the pull)

The stash is stored locally (nothing is pushed to the remote)

Untracked files will not be stashed by default (not an issue with pull anyway). Use -a to stash them
also.

Ignored files (with .gitignore will not be stashed by default. Use -a to stash them also.

GIT in remote repository Git stash 2021 - 2022 47 / 67

Example

A simple folder with the following git index� �
gerzaguet@llamrei : ls
main.c processing.c readme.md
gerzaguet@llamrei : git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes
in working directory)

modified: readme.md

Untracked files:
(use "git add <file>..." to include in what will be committed)

main.c

no changes added to commit (use "git add" and/or "git commit -a")� �
GIT in remote repository Git stash 2021 - 2022 48 / 67

Example

� �
gerzaguet@llamrei : git stash
Saved working directory and index state WIP on master:
0ffea1d first commit� �

� �
gerzaguet@llamrei : git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)

main.c� �
We can no work (and pull) in peace

GIT in remote repository Git stash 2021 - 2022 49 / 67

Reverting the stash

Ge�ing the stash list

� �
gerzaguet@llamrei : git stash list
stash@{0}: WIP on master: 0ffea1d first commit� �

Apply the stash

git stash pop to apply the stash (and remove the stash copy from the stash index)

git stash apply to apply the stash and keep the stash copy

GIT in remote repository Git stash 2021 - 2022 50 / 67

Reverting the stash

In case of multiple stashes

You can revert one specific stash with its index� �
gerzaguet@llamrei : git stash pop stash@{2}� �

And give stash more convenient names� �
gerzaguet@llamrei : git stash save "New hello world WIP"� �

GIT in remote repository Git stash 2021 - 2022 51 / 67

GIT repository hosts

Several way to host a GIT Repository

Local server
External dedicated tools
I Github is the most famous of them
I Gitlab

These solutions o�ers more than just GIT repo:

Easy member management

Code integration, merge conflict through graphical interface

Pull request (PR) (external users wants to add something on a repo on which he has no
rights)

Github pages for documentation, markdown support

Github actions (for Continuous integration, automatic testing, . . .)

GIT in remote repository GIT repository hosts 2021 - 2022 52 / 67

GIT in practice

How to use Git in practice ? 2021 - 2022 53 / 67

Gitlab and Github

These are websites to host Git repositories and collaborate

Figure: Overwiew of GitHub project mainpage (here https://github.com/JuliaLang/julia)

How to use Git in practice ? Github and Gitlab 2021 - 2022 54 / 67

https://github.com/JuliaLang/julia

Navigation in files

You can access to the code base with� �
gerzaguet@llamrei : git glone github.com/myProject� �

But you can inspect and find lot of information directly on the GitHub webpage

Documentation and readme with fancy printing

Badges with actions and coverage (see later)

Issues and PR

How to use Git in practice ? Github and Gitlab 2021 - 2022 55 / 67

Graphical Pull Request

A pull request can be done with graphic interface

Figure: Pull Request in Github

Between 2 active branches (and o�en master/main)

Require reviews from collaborators, and test coverage !

Only maintainer can finally do the merge

How to use Git in practice ? Github and Gitlab 2021 - 2022 56 / 67

GitHub actions

A very powerful tool to deploy applications in di�erent languages

Task automatization (doc building)

Test a�er commits

Project management (automatic pull requests based on dependencies. . .)

GitHub action principle
A workflow (succession of
operations) is triggered when a
specific event occur (push, merge,
new issue, . . .)

A workflow has one or more
sequential jobs that will be run in a
virtual machine (runner)

Each jobs can have one or more steps

How to use Git in practice ? Github and Gitlab 2021 - 2022 57 / 67

GitHub actions

The workflow is defined in YAML (YAML Ain’t Markup Language) language.
Example to automatize test with Python

Top of file for the trigger

Bo�om for the workflow itself

How to use Git in practice ? Github and Gitlab 2021 - 2022 58 / 67

GitHub actions

The workflow is defined in YAML (YAML Ain’t Markup Language) language.
Example to automatize test with Python

Top of file for the trigger
Bo�om for the workflow itself

How to use Git in practice ? Github and Gitlab 2021 - 2022 58 / 67

GitHub actions

The actions can be tracked in the action pane in GitHub

Check that tests are OK or action terminate successfully

Tracks bugs and regressions

Figure: Panel of successful and failed GitHub actions

How to use Git in practice ? Github and Gitlab 2021 - 2022 59 / 67

GitHub actions

In case of fail, don’t panic (yet) and have a look on where the runner fails

Figure: Description of failed action

I More on GitHub actions in the lab

How to use Git in practice ? Github and Gitlab 2021 - 2022 60 / 67

Markdown language

Collaboration requires discussion and explanation

Need to have text with rich format to ease readability

But without strong verbosity (Latex) or heavy format (docx). Text should be text !

I Here comes Markdown

Almost only text

Can be read as it is

Can be exported in various format
(PDF, HTML)

How to use Git in practice ? Markdown, the langage to doc them all 2021 - 2022 61 / 67

Markdown syntax

This is only text with tags ...

Figure: Example of markdown syntax

How to use Git in practice ? Markdown, the langage to doc them all 2021 - 2022 62 / 67

Markdown syntax

With convenient rendering

Figure: Example of markdown rendering

I Syntax is easy to learn, see for instance
5https://www.markdownguide.org/cheat-sheet/

How to use Git in practice ? Markdown, the langage to doc them all 2021 - 2022 63 / 67

5https://www.markdownguide.org/cheat-sheet/

VSCode extension

A simple way to use GIT is to use third party tools

Git Kraken (https://www.gitkraken.com) not open source but free

VSCode plugin, open source, free, and seamless interaction with VSCode

Vim and Emacs plugin for those who know

How to use Git in practice ? Use Git in day to day life 2021 - 2022 64 / 67

https://www.gitkraken.com

VSCode extension

In the github pane, possibility to see the changes in the file

To do all GIT commands

To commit only part of a file !

Figure: Di� view in VSCode

How to use Git in practice ? Use Git in day to day life 2021 - 2022 65 / 67

Conclusion

Conclusion 2021 - 2022 66 / 67

Conclusion

GIT is a decentralized Version Control System

Powerful, easy to use

Handle local and remote repositories

Manage di�erent branches that can be merged

Command that can be used in terminal or with third party tools

This is just a basic introduction and GIT is more complicated and powerful that you might think

Combination of di�erent commit

git stash to save and restore the index

Commit amending, code rebase, git submodules

. . .

Conclusion 2021 - 2022 67 / 67

	From Version Control Systems to GIT
	VCS
	GIT
	Decentralized architecture

	GIT in Local repository
	Repository overview
	Commits
	Navigating in history
	Branches

	GIT in remote repository
	Architecture
	Push and pull
	Manage remotes
	Git stash
	GIT repository hosts

	How to use Git in practice ?
	Github and Gitlab
	Markdown, the langage to doc them all
	Use Git in day to day life

	Conclusion

