Fast p-adic arithmetic for (hyper)elliptic AGM point counting algorithms

R. Lercier

DGA & University of Rennes — France

email: reynald.lercier(at)m4x.org
www: http://perso.univ-rennes1.fr/reynald.lercier/

Counting Points: Theory, Algorithms and Practice

Montréal, April 2010
Motivation

- In 2000, Satoh and Mestre independently proposed very efficient p-adic methods for counting points on elliptic and hyperelliptic curves in \mathbb{F}_{p^n}.

- Numerous improvements finally made decrease the complexity in time from $O(n^{3+o(1)})$ to $O(n^{2+o(1)})$.

- We focus on the choice of good basis for p-adic unramified extensions, especially we consider p-adic analogues of the normal elliptic basis introduced by Couveignes and L. in 2009 for \mathbb{F}_{p^n}.
Outline

1 Point counting over \mathbb{F}_{p^n}, p small
 - Elliptic Curve
 - Hyperelliptic Curve

2 Fast Point Counting Algorithms
 - Notations
 - AGM
 - Fast canonical lift
 - Fields with Normal Basis
 - Fields without Normal Basis

3 p-adic Elliptic Periods
 - Normal basis
 - Multiplication Tensor
Outline

1. **Point counting over \mathbb{F}_{p^n}, p small**
 - Elliptic Curve
 - Hyperelliptic Curve

2. **Fast Point Counting Algorithms**
 - Notations
 - AGM
 - Fast canonical lift
 - Fields with Normal Basis
 - Fields without Normal Basis

3. **p-adic Elliptic Periods**
 - Normal basis
 - Multiplication Tensor
Elliptic curves

\(O(n^3+o(1))\) in time, \(O(n^3)\) in space:

\(O(n^3+o(1))\) in time, \(O(n^2)\) in space:

Elliptic curves

\(O(n^{2.5+\alpha(1)})\) time, \(O(n^2)\) in space:

Elliptic curves

$O(n^{2+o(1)})$ in time, $O(n^2)$ in space:

Hyperelliptic curves of small genus

Genus 2, $O(n^{3+o(1)})$ in time, $O(n^2)$ in space:

$O(n^{2+o(1)})$ in time, $O(n^2)$ in space:

Outline

1. Point counting over \mathbb{F}_{p^n}, p small
 - Elliptic Curve
 - Hyperelliptic Curve

2. Fast Point Counting Algorithms
 - Notations
 - AGM
 - Fast canonical lift
 - Fields with Normal Basis
 - Fields without Normal Basis

3. p-adic Elliptic Periods
 - Normal basis
 - Multiplication Tensor
Notations

1. **p-adic numbers**
 - p-adic norm $|\cdot|_p$ of $r \in \mathbb{Q}^*$ is $|r|_p = p^{-\rho}$ ($r = p^\rho u/v$, $p \nmid u$, $p \nmid v$).

2. **Field of p-adic numbers** \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. $|\cdot|_p$,

 $$\sum_{i=\rho}^{\infty} a_i p^i, \quad a_i \in \{0, 1, \ldots, p-1\}, \quad \rho \in \mathbb{Z}.$$

3. **p-adic integers** \mathbb{Z}_p is the ring with $|\cdot|_p \leq 1$ or $\rho \geq 0$.

4. $\mathbb{F}_p \cong \mathbb{Z}_p/M$ where M is the unique maximal ideal

 $$M = \{x \in \mathbb{Q}_p \mid |x|_p < 1\} = p\mathbb{Z}_p.$$

Def. Let π_m be the projection from $\mathbb{Z}/p^{m+1}\mathbb{Z}$ onto $\mathbb{Z}/p^m\mathbb{Z}$, then a **p-adic integer** is a sequence $x = (x_1, x_2, \ldots, x_m, \ldots)$ with $x_m \in \mathbb{Z}/p^m\mathbb{Z}$ and such that $\pi_m(x_{m+1}) = x_m$.
p-adic field extensions

K extension of \mathbb{Q}_p of degree n with valuation ring \mathbb{Z}_q and maximal ideal $M_{\mathbb{Z}_q} = \{ x \in K \mid |x|_K < 1 \}$.

Def. The Teichmuller Lift is the map $\omega : \mathbb{F}_q \rightarrow \mathbb{Z}_q$ defined by $\omega(0) = 0$ and for $x \neq 0$, $\omega(x)$ is the unique $q-1$-th root of one in \mathbb{Z}_q such that $\pi(\omega(x)) = x$ with π the canonical projection of \mathbb{Z}_q to \mathbb{F}_q.

Def. The semi-Witt decomposition of $x \in \mathbb{Z}_q$ is the unique sequence $(x_i)_{i \geq 0}$ of \mathbb{F}_q such that $x = \sum_{i \geq 0} \omega(x_i)p^i$.

The Galois group of (unramified) K/\mathbb{Q}_p is cyclic with generator Frobenius substitution σ and σ modulo $M_{\mathbb{Z}_q}$ equals to the small Frobenius on \mathbb{F}_q.

Prop. Let $(x_i)_{i \geq 0}$ be the semi-Witt decomposition of a p-adic x, then $x^{\sigma} = \sum_{i \geq 0} \omega(x_i)p^i$.

Bibliography

Notations

Basis

Polynomial Basis. Let $\mathbb{F}_q \cong \mathbb{F}_p[t]/(\overline{F}(t))$, let $F(t)$ be any lift of $\overline{F}(t)$ to $\mathbb{Z}_p[t]$, then K can be constructed as

$$K \cong \mathbb{Q}_p[t]/(F(t)).$$

Such a choice yields a basis $\{1, t, \ldots, t^{n-1}\}$.

Multiplication, at precision m, costs $T_{m,n} = O((nm)^{1+o(1)})$.

Gaussian Normal Basis (GNB). For cyclic Galois extension K/\mathbb{Q}_p, there exists elements α which yields basis of the form $\{\alpha, \alpha^\sigma, \ldots, \alpha^{\sigma^{n-1}}\}$.

Def. For some r such that \exists a primitive r-th root of unity γ in $\mathbb{Z}/(nr + 1)\mathbb{Z}$ and such that $\alpha = \sum_{i=0}^{r-1} \zeta^i$ (where $\zeta^{nr+1} = 1$) generates a gaussian normal basis over \mathbb{Q}_p of type r.

In this case, $T_{m,n} = O((r nm)^{1+o(1)})$.
$O(n^{3+o(1)})$ time complexity

A first algorithm by Satoh, improved by Vercauteran to obtain a $O(n^2)$ in space. Another algorithm by Mestre for \mathbb{F}_{2^n}, based on AGM.

Algorithm 1: AGM

input: An (ordinary) elliptic curve $E/\mathbb{F}_{2^n} : y^2 + xy = x^3 + \alpha$

output: The trace c of E

// Lift phase
1 $a := 1 + 8\alpha \in \mathbb{Z}_q$; $b := 1 \in \mathbb{Z}_q$;
2 for $i := 1$ to $\lceil \frac{n}{2} \rceil + 2$ do
3 \[a, b := \frac{a+b}{2}, \sqrt{ab} \]

// Norm phase
4 $A := a$; $B := b$;
5 for $i := 1$ to n do
6 \[a, b := \frac{a+b}{2}, \sqrt{ab} \]
7 return $\frac{A}{a} \mod 2^n$ as a signed integer in $[-2\sqrt{2^n}, 2\sqrt{2^n}]$.

AGM iterations

- An AGM step is an isogeny of degree 2 between elliptic curves.

- Repeatedly, we get the following sequence

\[J_{K_q}^1 \xrightarrow{\sigma^1} \cdots \xrightarrow{\sigma^{m-1}} J_{K_q}^m \xrightarrow{\sigma^m} \cdots \xrightarrow{\sigma^{m+n-1}} J_{K_q}^{m+n} \].

- Then, \((J_{K_q}^{m+i})_i\) converges to \(J_{\text{can}}^m\), the canonical lift of \(J_0^m\).
Fast canonical lift

\[O(n^{2+o(1)}) \] time complexity

Lift phase. First,

\[
\begin{align*}
 a_{i+1} &= \frac{a_i + b_i}{2}, \\
 b_{i+1} &= \sqrt{a_i b_i},
\end{align*}
\]

can be replaced via \(c_i = \frac{a_i}{b_i} \) by \(c_{i+1} = \frac{2 + c_i}{2 \sqrt{c_i}} \).

Second,

\[c_{i+1} = c_i^\sigma. \]

Consequently, one must solve at precision \(n/2 + O(1) \),

\[4x(x^\sigma)^2 = (1 + x)^2. \]

This equation is an equation of the form \(\phi(x, x^\sigma) \) where \(\phi(x, y) \) is a polynomial.

Norm phase. We simply have,

\[c = N_{\mathbb{Z}_{2^n}/\mathbb{Z}_2} \left(\frac{2c_{\lceil n/2 \rceil} + 3}{1 + c_{\lceil n/2 \rceil} + 3} \right). \]
Fast “lift” and “norm” algorithms

\[\mathbb{Z}_q : \left[t^{n-1} + \ldots + t^0 \right] \quad \text{Lift} \]

\[\mathbb{F}_q : \left[\bigcirc t^{n-1} + \ldots + \bigcirc t^0 \right] \]

\[\text{Norm} \quad \mathbb{Z}_p : \left[\right] \]
Newton iteration

To compute the root of a polynomial $f(x)$ from

$$f(x + p^w \delta) = f(x) + p^w \delta \frac{\partial f}{\partial x}(x) + O(p^{2w}).$$

Algorithm 2: Newton

```
input : $x_0$ s.t. $f(x_0) \equiv 0 \mod p^{2k+1}$ where $k = \nu(\partial f/\partial x(x_0))$ and $m \in \mathbb{N}.$
output: $x$ a solution of $f(x) \mod p^m.$

1 if $m \leq 2k + 1$ then
2     return $x_0$
3 $x := \text{Newton}(x_0, \lceil \frac{m}{2} \rceil + k);$
4 $V := f(x) \mod p^m;$ $\Delta_x := \partial f/\partial x(x) \mod p^{w-k};$
5 return $x - V/\Delta_x$
```

Remark. Very fast in practice. For polynomials with $O(1)$ terms of degree $O(1)$, time complexity is $O(T_{m,n})$.
Generalized Newton iterations

One generalizes Newton alg. to eq. of the form $\phi(x, x^\sigma) = 0$. Based on

$$\phi(x + p^w \delta, (x + p^w \delta)^\sigma) = \phi(x, x^\sigma) + p^w \delta \frac{\partial \phi}{\partial x} (x, x^\sigma) + p^w \delta^\sigma \frac{\partial \phi}{\partial y} (x, x^\sigma) + O(p^{2w}).$$

Algorithm 3: NewtonLift

input : x_0 s.t. $\phi(x_0, x_0^\sigma) \equiv 0 \mod p^{2k+1}$ where $k = v(\partial \phi/\partial y(x_0))$ and $m \in \mathbb{N}$.

output: x a solution of $\phi(x, x^\sigma) \mod p^m$.

1. if $m \leq 2k + 1$ then
2. \hspace{1em} return x_0
3. \hspace{1em} $w := \lceil m/2 \rceil + k$; $x := \text{NewtonLift}(x_0, w)$;
4. \hspace{1em} Lift x to $\mathbb{Z}_q/p^m\mathbb{Z}_q$; $y := x^\sigma \mod p^m$;
5. \hspace{1em} $\Delta_x := \partial_x \phi(x, y) \mod p^{w-k}$; $\Delta_y := \partial_y \phi(x, y) \mod p^{w-k}$;
6. \hspace{1em} $V := \phi(x, y) \mod p^m$;
7. \hspace{1em} $a, b := \text{ArtinSchreierRoot}(-V/(p^{w-k} \Delta_y), -\Delta_x/\Delta_y, w - k, n)$;
8. \hspace{1em} return $x + p^{w-k} (1 - a)^{-1} b$

Remark. ArtinSchreierRoot is a “black box” which solves equations of the form $x^\sigma = ax + b$, a and b in \mathbb{Z}_q.
Artin-Schreier equations with Normal Basis

- For all \(k \in \mathbb{N} \), \(x^{\sigma^k} \equiv a_k x + b_k \mod p^w \).
- \(x^{\sigma^n} = x \), which means that \((1 - a_n)x = b_n\).
- A classical “square and multiply” composition formula, \(\forall k, k' \in \mathbb{Z}^2 \),
 \[x^{\sigma^{k+k'}} = a_k^{\sigma^{k'}} a_{k'} x + a_k^{\sigma^k} b_{k'} + b_k^{\sigma^{k'}}. \]

Algorithm 4: ArtinSchreierRoot

<table>
<thead>
<tr>
<th>line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>if (\nu = 1) then [return (a, b \mod p^m)]</td>
</tr>
<tr>
<td>2</td>
<td>[return (a, b \mod p^m)]</td>
</tr>
<tr>
<td>3</td>
<td>(w := \lfloor \nu/2 \rfloor); (A, B := ArtinSchreierRoot(a, b, w));</td>
</tr>
<tr>
<td>4</td>
<td>(A, B := AA^{\sigma^w}, BA^{\sigma^w} + B^{\sigma^w} \mod p^m);</td>
</tr>
<tr>
<td>5</td>
<td>if (\nu \equiv 1 \mod 2) then [A, B := Aa^\sigma, bA^\sigma + B^\sigma \mod p^m]</td>
</tr>
<tr>
<td>6</td>
<td>return (A, B);</td>
</tr>
<tr>
<td>7</td>
<td>[return (A, B);]</td>
</tr>
</tbody>
</table>

Complexity is \(O(T_{m,n} \log n) \).
Norm computation with Normal Basis

A square and multiply approach suggested by Kedlaya.

Combine, from $a_0 = a$, quantities of the form

$$a_{i+1} := a_i^{\sigma^2} a_i \text{ for } i = 0, \ldots, \lfloor \log_2 n \rfloor.$$

Algorithm 5: Norm

input: a in \mathbb{Z}_q and a precision m in \mathbb{N}.

output: $N_{K/\mathbb{Q}_p}(a) \mod p^m$.

1. $i := n$; $j := 0$, $r := 1$, $s := a$;
2. while $i > 0$ do
 3. if $i \equiv 1 \bmod 2$ then $r := s r^{\sigma^2 j}$;
 4. if $i > 1$ then $s := s s^{\sigma^2 j}$;
 5. $j := j + 1$; $i := \lfloor i/2 \rfloor$;
3. return r;

Complexity is $O(T_{m,n} \log n)$.
Timings for counting points on elliptic curves defined over \mathbb{F}_{2^n} (GNB)

On a 731 MHz Alpha EV6 CPU (2002 timings).

<table>
<thead>
<tr>
<th>n</th>
<th>GNB type 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lift</td>
</tr>
<tr>
<td>1018</td>
<td>2.5s</td>
</tr>
<tr>
<td>2052</td>
<td>10s</td>
</tr>
<tr>
<td>4098</td>
<td>1mn</td>
</tr>
<tr>
<td>8218</td>
<td>6mn 30</td>
</tr>
<tr>
<td>16420</td>
<td>34mn</td>
</tr>
<tr>
<td>32770</td>
<td>3h 17</td>
</tr>
<tr>
<td>65538</td>
<td>15h 45</td>
</tr>
<tr>
<td>100002</td>
<td>1d 18</td>
</tr>
</tbody>
</table>
Lifting the Frobenius at precision m [Satoh-Harley]

Computing x^σ in a polynomial basis is a costly task.

One lifts $\overline{F}(t)$ at precision m to the minimal polynomial F of $\omega(t)$ with

$$F(t^p) = \prod_{i=0}^{p-1} F(t\zeta^i) \text{ with } \zeta^p = 1.$$

This can be done by Newton iterations in $O(pT_{m,n} \log n)$.

It follows that $t^\sigma = t^p$ and

$$x^\sigma = \sum_{i=0}^{n-1} x_i t^{ip} = \sum_{j=0}^{p-1} \left(\sum_{0 \leq pk+j < n} x_{pk+j} t^k \right) C_j(t) \mod F(t).$$

With $C_j(t) = t^{jp} \mod F(t)$ precomputed, a $O(p T_{m,n})$ complexity.
A two-fold recursive algorithms to doubling the precision.

Algorithm 6: ArtinSchreierRoot

input : Eq. $x^\sigma = ax + b$ in $\mathbb{Z}_q/p^m\mathbb{Z}_q$ with $|b|_K < 1$, m in \mathbb{N}.
output: A $x \in \mathbb{Z}_q$ s.t. $x^\sigma = ax + b \mod p^m$.

1. if $m = 1$ then
2. \hspace{1em} return $b^{\bar{\sigma}}$
3. $N := \lfloor m/2 \rfloor$; $M := m - N$;
4. $x_0 := \text{ArtinSchreierRoot}(a, b, N)$;
5. \hspace{1em} $\beta := (x_0^\sigma - ax_0 - b)/p^N \mod p^M$;
6. $x_1 := \text{ArtinSchreierRoot}(a, \beta, M)$;
7. return $x_0 + p^N x_1 \mod p^m$

Let $T(n)$ be the running time for precision m, then

$$T(m) \leq 2T(m/2) + (pnm)^{1+o(1)} \Rightarrow T(m) = O(pT_{m,n} \log m).$$
Norm computation without Normal Basis

For $\alpha \in \mathbb{Q}_p$,

$$N_{K/\mathbb{Q}_p}(\alpha) = p^{n \text{ord}_p(\alpha)} N_{K/\mathbb{Q}_p}(\alpha/p^{\text{ord}_p(\alpha)}) .$$

For α a unit, let $\alpha = \sum_{i=0}^{n-1} a_i t^i$, then

$$N_{K/\mathbb{Q}_p}(\alpha) = \text{Res}(F(t), \sum_{i=0}^{n-1} a_i t^i) .$$

The resultant $\text{Res}(F(t), \sum_{i=0}^{n-1} a_i t^i)$ can be computed in softly linear time using a variant of Moenck’s fast extended GCD algorithm.

Complexity is $O(T_{m,n} \log n)$, mostly due to multiplications of 2×2 matrices with (polynomial) coefficients in $\mathbb{Z}_p[t]$, at precision m.
Harley’s timings

Measured on a 750 MHz Alpha EV6 (Nov. 2002, NMBRTHRY mailing list).

<table>
<thead>
<tr>
<th>Bits</th>
<th>Point counting</th>
<th>Precomputation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lift</td>
<td>Norm</td>
</tr>
<tr>
<td>197</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>409</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>571</td>
<td>0.76</td>
<td>0.61</td>
</tr>
<tr>
<td>1000</td>
<td>2.46</td>
<td>1.43</td>
</tr>
<tr>
<td>2003</td>
<td>15.2</td>
<td>7.71</td>
</tr>
<tr>
<td>4001</td>
<td>1m 33</td>
<td>52</td>
</tr>
<tr>
<td>8009</td>
<td>9m 30</td>
<td>6m 20</td>
</tr>
<tr>
<td>16001</td>
<td>59m</td>
<td>48m 56</td>
</tr>
<tr>
<td>32003</td>
<td>6h 9m</td>
<td>6h 41m</td>
</tr>
<tr>
<td>130020</td>
<td>?</td>
<td>67h 17m</td>
</tr>
</tbody>
</table>

Remark. Asymptotically fast lifts, but still a $O(n^{2+1/3} \log n \log \log n)$ norm computation (after Satoh).
Outline

1. Point counting over \mathbb{F}_{p^n}, p small
 - Elliptic Curve
 - Hyperelliptic Curve

2. Fast Point Counting Algorithms
 - Notations
 - AGM
 - Fast canonical lift
 - Fields with Normal Basis
 - Fields without Normal Basis

3. p-adic Elliptic Periods
 - Normal basis
 - Multiplication Tensor
Some remarks

It is expected that normal basis (with fast multiplication tensors), even if it does not change the asymptotic complexity, yield faster point counting algorithms:

- it suppresses the computation of the lift F in $\mathbb{Q}_p[t]$ of the definition polynomial $\overline{F}(t)$ for \mathbb{F}_q,
- it suppresses the p factor in the complexity of some parts of the algorithm, especially the ArtinSchreierRoot routine,
- it is expected that $\mathbb{Z}_q/\mathbb{Z}_p$ norms can be computed faster.

Maybe more important, we may hope that memory requirements are slightly lowered too.

But, it is hopeless to expect that a Gaussian normal basis of small type r exists for many degree n : in general $r \approx n^3 \log^2(np)$ [Adleman-Lenstra 1986].
Elliptic Normal Basis (Finite Fields)

For F_q, we made use of torsion points on elliptic curves instead of roots of unity to obtain analogues of Gaussian normal basis.

Theorem (Couveignes-L.)

To every couple (q, n) with q a prime power and $n \geq 2$ an integer s.t. $n_q \leq \sqrt{q}$, one can associate a normal basis $\Theta(q, n)$ of the degree n extension of F_q such that the following holds:

- There exists an algorithm that multiplies two elements given in $\Theta(q, n)$ at the expense of $\tilde{O}(n \log q)$ elementary operations.

This can be easily extend to a result without any restriction on q and n.

Remark: Here n_q is such that

- $v_\ell(n_q) = v_\ell(n)$ if ℓ is prime to $q - 1$, $v_\ell(n_q) = 0$ if $v_\ell(n) = 0$,
- $v_\ell(n_q) = \max(2v_\ell(q - 1) + 1, 2v_\ell(n))$ if ℓ divides both $q - 1$ and n.
A \textit{p}-adic generalisation

- Let E/\mathbb{Q}_p be an elliptic curve given by
 \[Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3. \]

- If A, B and C are three pairwise distinct points in $E(\mathbb{Q}_p)$, we define
 \[\Gamma(A, B, C) = \frac{y(C - A) - y(A - B)}{x(C - A) - x(A - B)}. \]

- We define a function $u_{A, B} \in \mathbb{Q}_p(E)$ by $u_{A, B}(C) = \Gamma(A, B, C)$.
 It has degree two with two simple poles, at A and B.
Ingredient 1: Residue fields of divisors on elliptic curves

Let E be an elliptic curve defined over \mathbb{Q}_p.

- Assume $E(\mathbb{Q}_p)$ contains a cyclic subgroup T of order n
 (find such a curve mod p and lift it, with T, to \mathbb{Q}_p).
- Let $I: E \to E'$ be the degree n cyclic isogeny with kernel T.
- Take a in $E'(\mathbb{Q}_p)$ s.t. $\hat{I}(a) \neq O_E$.
- Let \mathcal{P} be the fibre $I^{-1}(a) = \sum_{t \in T} [b + t]$, a simple divisor over \mathbb{Q}_p.
- Then, $\phi(b) - b \in T$ (where ϕ is the Frobenius map).

Under some mild condition, $\phi(b) - b$ is a generator of T and the n geometric points above a are defined on a degree n extension K of \mathbb{Q}_p (and permuted by Galois action).

K is the residue extension of $\mathbb{Q}_p(E)$ at \mathcal{P}.
Coming back to the functions u_{AB}, we choose for A and B consecutive points in \mathcal{T}.

For $k \in \mathbb{Z}/d\mathbb{Z}$, we more precisely set

$$u_k = a u_{kt, (k+1)t} + b$$

(a and b, constants chosen such that $\sum u_k = 1$), and we evaluate the u_k's at b.

Lemma (A normal basis)

The system $\Theta = (u_k(b))_{k \in \mathbb{Z}/d\mathbb{Z}}$ is a \mathbb{Q}_p normal basis of K.
Ingredient 2: Relations among elliptic functions

We can prove the following identities (with Taylor expansions at poles)

\[\Gamma(A, B, C) = \Gamma(B, C, A) = -\Gamma(B, A, C) - a_1 = -\Gamma(-A, -B, -C) - a_1, \]

\[u_{A,B} + u_{B,C} + u_{C,A} = \Gamma(A, B, C) - a_1, \]

and

\[u_{A,B}u_{A,C} = x_A + \Gamma(A, B, C)u_{A,C} + \Gamma(A, C, B)u_{A,B} + a_2 + x_A(B) + x_A(C), \]

\[u^2_{A,B} = x_A + x_B - a_1 u_{A,B} + x_A(B) + a_2, \]

where

- \(\tau_A : E \rightarrow E \) denotes the translation by \(A \),
- and in \(\mathbb{Q}_p(E) \), \(x_A = x \circ \tau_{-A} \) and \(y_A = y \circ \tau_{-A} \).
A fast multiplication algorithm

\[u_{A,B} u_{A,C} = x_A + \Gamma(A, B, C) u_{A,C} + \Gamma(A, C, B) u_{A,B} + a_2 + x_A(B) + x_A(C), \]
\[u_{A,B}^2 = x_A + x_B - a_1 u_{A,B} + x_A(B) + a_2. \]

This yields a multiplication tensor for \(\Theta \) with quasi-linear complexity,

\[\bar{\alpha} \times \bar{\beta} = (a^2 \vec{i}) \star \left((\bar{\alpha} - \sigma(\bar{\alpha})) \circ (\bar{\beta} - \sigma(\bar{\beta})) \right) + \]
\[\overrightarrow{u_{R}}(-1) \star\left((\overrightarrow{u_{R}} \star \bar{\alpha}) \circ (\overrightarrow{u_{R}} \star \bar{\beta}) - (a^2 \vec{x}_{R}) \star \left((\bar{\alpha} - \sigma(\bar{\alpha})) \circ (\bar{\beta} - \sigma(\bar{\beta})) \right) \right). \]

Notations:

- \(\bar{\alpha} \star \bar{\beta} \), the convolution product \((\bar{\alpha} \star_j \bar{\beta})_j \), with \(\bar{\alpha} \star_j \bar{\beta} = \sum_i \alpha_i \beta_{j-i} \).
- \(\sigma(\bar{\alpha}) = (\alpha_{i-1})_i \), the cyclic shift of \(\bar{\alpha} \).
- \(\bar{\alpha} \circ \bar{\beta} = (\alpha_i \beta_i)_i \), the component-wise product.
Evaluations/interpolations

It consists in evaluations and interpolations at n points $r + kt$, where

$$r \in E(\mathbb{Q}_p) - E[d].$$

Constants are

$$\vec{l} = (\nu_i)_{0 \leq i \leq d - 1} \text{ s.t. } x(b) = \sum_{0 \leq k \leq d - 1} \nu_k \theta_k,$$

$$\vec{x}_R = (x(r + kt))_{0 \leq k \leq d - 1},$$

$$\vec{u}_R = (u_0(r + kt))_{0 \leq k \leq d - 1}.$$
Fast convolutions

Convolution and polynomial multiplication:

\[F(X) = \sum_{i=0}^{n-1} f_i X^i, \quad G(X) = \sum_{i=0}^{n-1} g_i X^i \]

Then:

\[\vec{h} = \vec{f} \ast \vec{g} \iff H(X) \equiv F(X)G(X) \mod (X^n - 1) \]

FFT’s speedup:

\[\vec{f} \ast \vec{g} = \hat{f} \odot \hat{g}^{(-1)} \]
Application to normal elliptic basis

\[(a^2 \iota) \ast \left((\tilde{\alpha} - \sigma(\tilde{\alpha})) \diamond (\tilde{\beta} - \sigma(\tilde{\beta})) \right) + \]
\[\overrightarrow{u}_R^{(-1)} \ast \left((\tilde{u}_R \ast \tilde{\alpha}) \diamond (\tilde{u}_R \ast \tilde{\beta}) - (a^2 \bar{x}_R) \ast \left((\tilde{\alpha} - \sigma(\tilde{\alpha})) \diamond (\tilde{\beta} - \sigma(\tilde{\beta})) \right) \right)\]

<table>
<thead>
<tr>
<th>Product</th>
<th>“Dense” Polynomial Basis</th>
<th>Normal Elliptic Basis</th>
<th>“Sparse” Polynomial Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4+3= 7 FFTs of lg. 2n</td>
<td>3+5= 8 FFTs of lg. n</td>
<td>2+1= 3 FFTs of lg. 2n</td>
</tr>
<tr>
<td></td>
<td>(\simeq 14) FFTs of lg. n</td>
<td></td>
<td>(\simeq 6) FFTs of lg. n</td>
</tr>
<tr>
<td>Squaring</td>
<td>3+3= 6 FFTs of lg. 2n</td>
<td>2+4= 6 FFTs of lg. n</td>
<td>1+1= 2 FFTs of lg. 2n</td>
</tr>
<tr>
<td></td>
<td>(\simeq 12) FFTs of lg. n</td>
<td></td>
<td>(\simeq 4) FFTs of lg. n</td>
</tr>
</tbody>
</table>

- Precompute FFTs for \(\iota, \overrightarrow{u}_R^{(-1)}, \tilde{u}_R\) \& \(\bar{x}_R\),
- 3 direct FFTs, for \(\tilde{\alpha}, \tilde{\beta}\) \& \((\tilde{\alpha} - \sigma(\tilde{\alpha})) \diamond (\tilde{\beta} - \sigma(\tilde{\beta}))\),
- 5 inverse FFTs.
To conclude

It is expected that elliptic normal basis yields faster practical implementations of Satoh/Mestre’s algorithms.

Especially, for p large enough such that the Hasse’s bound $n \leq p + 1 + 2\sqrt{p}$ is satisfied.

For p very small, typ. $p = 2$, it is not clear that the extra $\log n$ penalty to pay for the existence of an elliptic normal basis will be too large.