
In W. Fumy, editor, Advances in Cryptology - EUROCRYPT ’97: International Confer-
ence on the Theory and Application of Cryptographic Techniques, Konstanz, Germany,
May 1997. Proceedings, volume 1233 of Lecture Notes in Computer Science, pages 379–
392. Springer Berlin / Heidelberg, May 1997.

Finding Good Random Elliptic Curves for Cryptosystems
Defined over IF2n

Reynald Lercier

CELAR/CASSI, Route de Laillé, F-35170 Bruz, FRANCE
email: lercier@lix.polytechnique.fr

Abstract. One of the main difficulties for implementing cryptographic schemes based on elliptic
curves defined over finite fields is the necessary computation of the cardinality of these curves. In
the case of finite fields IF2n , recent theoretical breakthroughs yield a significant speed up of the
computations. Once described some of these ideas in the first part of this paper, we show that our
current implementation runs from 2 up to 10 times faster than what was done previously. In the
second part, we exhibit a slight change of Schoof’s algorithm to choose curves with a number of
points “nearly” prime and so construct cryptosystems based on random elliptic curves instead of
specific curves as it used to be.

1 Introduction

It is well known that the discrete logarithm problem is hard on elliptic curves defined over finite fields
IFq. This is due to the fact that the only known attacks (baby steps giant steps [39], Pollard ρ [35] and
Pohlig-Hellman [34] methods) are still exponential in log q. So, cryptosystems based on this problem can
reach the same level of security as non elliptic versions with slightly higher computation rates and much
smaller keys [38, 11].

The remaining difficulty to design elliptic cryptosystems is the computation of the cardinality of
elliptic curves. Until recently, it was usually admitted that the cost needed to perform this task was too
high for randomly chosen curves. To tackle this difficulty, one used to consider specific curves, for instance,
supersingular curves [27, 14, 13, 1, 24] or curves with complex multiplication [31, 16, 28, 29, 17, 4].
Unfortunately, supersingular curves turned out to be disastrous and so, the use of specific curves seems
to be quite compromised for cryptographical purposes [23].

Thanks to recent theoretical as well as practical developments, the cost of computing the number
of points on a randomly chosen curve is no longer prohibitive. For finite fields of characteristic two
(specially attractive for industrial applications), the improvements of Schoof’s algorithm due to Atkin,
Elkies, Morain, Couveignes, Müller, Dewaghe,. . . [36, 10, 33, 37, 9] were significantly speeded up by
replacing the isogeny computation algorithm of Couveignes [6] with a recent heuristic algorithm of the
author [19].

In this article, once briefly recalled some basic facts about elliptic curves in Section 2, we describe
in Section 3 our current implementation of these ideas and we explain in Section 4 how we can take
advantage of Schoof’s algorithm for speeding up the search of an elliptic curve with a nearly prime
number of points. Among others, it turns out that we are now able to compute the cardinality of any
elliptic curve for sizes of finite fields recommended for cryptographical schemes in only a few seconds,
that is to say a speed up factor from 2 up to 10 compared to our previous implementation [21].

2 Elliptic Curves over IF2n

Following [25], we consider for our purposes elliptic curves over IF2n defined by

Ea : y2 + xy = x3 + a, a ∈ IF∗
2n . (1)

Any non supersingular elliptic curve is isomorphic to a curve or the twist of a curve defined by this
equation. Invariant Ja and discriminant ∆a of Ea are equal to

Ja = 1/a and ∆a = a.
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Let us note that Ea can not be supersingular because, in IF2n , an elliptic curve is supersingular if and
only if its invariant is equal to 0 (on the explicit determination of supersingular curves in finite fields of
odd characteristic, see [32]).

The set of points of Ea over IF2n is

Ea(IF2n) = {OEa
} ∪

{
(x, y) ∈ IF2

2n , y2 + xy = x3 + a
}

.

This set is a finite group and the formulae of the abelian group law are:

– ∀P = (xP , yP ) ∈ Ea(IF2n), P + OEa
= OEa

+ P = P , −P = (xP , yP + xP );
– if P = (xP , yP ), Q = (xQ, yQ), P 6= −Q, then, if P = Q, let λ = xP + yP /xP , otherwise let

λ = (yQ + yP )/(xQ + xP ), and R = P + Q = (xP+Q, yP+Q) is obtained by{
xP+Q = λ2 + λ + xP + xQ,
yP+Q = λ(xP + xP+Q) + xP+Q + yP .

Some endomorphisms will be of special interest in Section 3, namely [m]a, multiplication by any
integer m on Ea and φa, the Frobenius map. These endomorphisms are defined as follows.

[m]a : Ea(IF2n) −→ Ea(IF2n),
(x, y) 7−→ m(x, y), and φa :

Ea(IF2n) −→ Ea(IF2n),
(x, y) 7−→ (x2n

, y2n

).

In particular, multiplication by 2 is given by

[2]a :
Ea(IF2n) −→ Ea(IF2n),

(x, y) 7−→
(
x2 +

a

x2
,
(
x +

y

x

) (
x2 +

a

x2

)
+

a

x2

)
.

(2)

Equation (2) shows that there exists a single point Pa = (0,
√

a) of order 2 on these curves and the
formulae of the translation by Pa are

Ta :
Ea(IF2n) −→ Ea(IF2n),

P = (x, y) 7−→ P + Pa =
(√

a

x
,
√

a +
√

a

x
+

a

x2
+
√

a
y

x2

)
.

3 Counting Points on Elliptic Curves

The number of points of a non supersingular elliptic curve Ea defined over IF2n satisfies Hasse’s inequal-
ity [40],

#Ea(IF2n) = 2n + 1− t, with |t| < 2
√

2n. (3)

Before 1985, the only known methods to compute this number consisted in testing all the possible
integers t in Equation (3) with baby steps giant steps variants [39]. The complexity of these algorithms
is asymptotically O(2n/4). With the work by Schoof [36] and the numerous improvements that followed,
it is now possible to compute this cardinality with a probabilistic complexity asymptotically equal to
O(n6). We briefly describe this method in Section 3.1.

The heart of these algorithms is the computation of isogenies. In practice, the most efficient method to
do that in IF2n seems to be a heuristic algorithm due to the author [19] and we overview it in Section 3.2.
Thanks to this algorithm, first, we were able to speed up our previous implementation [21] by a significant
factor and secondly, compute the cardinality of an elliptic curve defined over IF21301 .

3.1 The Schoof-Elkies-Atkin Algorithm

The characteristic equation satisfied by the Frobenius map φa is

φ2
a − [t]a ◦ φa + [2n]a = 0, (4)
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where 2n + 1 − t is the cardinality of Ea(IF2n). First, Schoof remarked, that once restricted to the `2

points of the kernel Ea[`] of the multiplication [`]a (` an odd prime), Equation (4) yields

φ2
Ea[`] + [2n mod `]Ea[`] = [t mod `]Ea[`] ◦ φEa[`]. (5)

Schoof’s algorithm simply consists in computing left hand side of Equation (5) for a point P of Ea[`]
and then in computing [k]aφa(P ) for k in 0, . . . , `− 1. When Equation (5) is satisfied for such an integer
k, we have t mod ` = k and when t mod ` is known for enough primes `, that is to say∏

` ≥ 4
√

2n,

we deduce t by using the Chinese Remainder Theorem.
The main drawback of this method is that we are virtually forced to work not only with one point P

of Ea[`], but with all the points of Ea[`] because the x-coordinates of these points are basically defined
in an extension of degree (`2 − 1)/2 of IF2n .

Works by Atkin and Elkies improved largely this situation by noticing that, for half the primes `
(called Elkies primes), Ea[`] contains at least one subgroup of ` points. Thus, x-coordinates of these
points are defined in an extension of degree (` − 1)/2 of IF2n . Indeed, this subgroup is the kernel of an
isogeny (morphism) I between the curve Ea and an isogenous curve Eb and, when such an isogeny exists,
there exists another isogeny Î from Eb to Ea (called the dual isogeny) such that Î ◦ I = [`]a. Therefore,
KerI ⊂ Ker[`]a.

Elkies and Atkin gave a construction based on modular equations to obtain Eb for Elkies primes `.
This works in any finite field. Unfortunately, the nice analytical method that they proposed for computing
explicitly the isogeny between Ea and Eb is only valid in finite fields of large characteristic [37].

3.2 Isogenies between Elliptic Curves in IF2n .

Since the original method by Atkin and Elkies for computing isogenies between two elliptic curves Ea

and Eb does not work in finite fields of small characteristic p [37], only Schoof’s algorithm was available
during a while to count points [26]. Fortunately, the situation evolved quickly.

Known Algorithms. The first attempt to fill this gap is due to Couveignes [6]. The computations take
place in the formal group defined by Ea. The algorithm was successfully implemented by Morain and
the author [22] and we do not describe it here.

But the time needed to compute isogenies with this method turned out to be the major cost while
counting points. We recently proposed another algorithm which performs much better in practice. It is
specially designed for the characteristic two case and is only based on algebraic properties [19].

Let us note that Couveignes proposed a third algorithm for finite fields of small characteristic p
based on algebraic properties too. It consists in computing Ea[pk] and Eb[pk] and then, uses the fact
that I(Ea[pk]) = Eb[pk]. But since the computations take place in extension of degree pi(p− 1)/2 ' 2`,
it does not seem obvious to implement it efficiently in practice even if its asymptotical complexity is
attractive [7, 8].

Lercier’s Approach. In finite fields of characteristic two, we exploited that there exists a unique point
Pa of order 2 on Ea. Thus, an isogeny I must satisfy

I ◦ Ta = Tb ◦ I.

From this, we deduced the following characterization.

Theorem 1. Let Ea and Eb be two elliptic curves defined over IF2n . Let ` be an odd integer, and
d = (`−1)/2. Let I be an isogeny of degree ` between Ea and Eb given by (X, Y ) 7→

(
G(X)
Q2(X) ,

H(X)+Y K(X)
Q3(X)

)
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where Q(X), G(X),H(X),K(X) in IF2n [X] with degrees at most d, `, 3d and 2d. Then G(X) = XP 2(X)
where P (X) is a polynomial of degree d such that gcd(P (X), Q(X)) = 1 and

XdQ(
√

a/X) =
8
√

a
8
√

b

(
4
√

a
)d

P (X),

or equivalently via X →
√

a/X,

XdP (
√

a/X) =
8
√

b
8
√

a

(
4
√

a
)d

Q(X). (6)

In order to explicitly compute the isogeny I, it turns out that we have to find conditions satisfied by the
polynomial Q(X). This is achieved from the fact that I ◦ [2]a = [2]b ◦ I.

Corollary 1. With the notations of theorem 1, polynomials P (X) and Q(X) must satisfy

XdQ̂(X +
√

a/X) = Q(X)P (X), (7)

and (
X + 4

√
a
)
XdP̂

(
X +

√
a/X

)
= XP 2(X) + 4

√
bQ2(X), (8)

where P̂ (X) =
√

P (X2) and Q̂(X) =
√

Q(X2) (polynomials whose coefficients are square roots of
coefficients of P (X) and Q(X)).

Even if Equation (8) is a linear equation satisfied by Q(X) over IF2, asymptotic complexity to inverse
this system is O(`3n). This is too high in practice.

To decrease this complexity, we considered Equation (7) and replaced the resolution of this linear
system over IF2n by a quadratic system over IF2. This yields an algorithm (we do not describe here)
whose heurististic complexity is O(`3).

3.3 Results

We had an old implementation of the SEA (Schoof, Elkies, Atkin) algorithm including Couveignes’s first
algorithm to compute isogenies and using an “ad hoc” C arithmetic of IF2n [21]. We completely rewrote
it with our approach and the formalism of ZEN library [2, 3] which enables us to handle any finite field
given recursively by a polynomial basis over a subfield (for instance, IF2). Since we restrict ourselves to
the case of the characteristic two in this article, we only give accurate timings for finite fields IF2n , even
if this implementation allows us to compute the number of points of an elliptic curve defined over other
finite fields [20].

IF265 min max avg

`max 31 31 31
#U 1 3 2
#L 8 10 9
#M 103 106 3·105

X2n

2.8 2.9 2.9

X2nr

0.7 2.4 1.8
Schoof 0 0 0
g 0 0 0
k 0 0 0
M− S 0.3 1.1 0.7

Total 4.2 6.1 5.4

IF289 min max avg

`max 41 43 41
#U 1 5 2
#L 8 12 10
#M 3·103 3·108 3·107

X2n

7.3 9.5 7.5

X2nr

3.5 6.8 5.1
Schoof 0 0 0
g 0 0 0
k 0 0 0
M− S 0.4 5.8 2.2

Total 11.4 18.9 14.9

IF2105 min max avg

`max 47 47 47
#U 1 5 2
#L 10 14 12
#M 6·105 6·109 5·108

X2n

15 16.5 15.7

X2nr

6.4 12.2 8.9
Schoof 0 0 0
g 0 0 0
k 0 0 0
M− S 1.5 30.1 6.5

Total 24.9 53.3 31.1

Table 1. Statistics obtained with our first implementation for small finite fields IF2n .
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All the timings (in seconds) are obtained on a DEC Alpha workstation 250 (266 MHz, 4th generation).
First, we did the same benchmarks as in [21]. That is to say, we measured the running times for 50
random curves y2 + xy = x3 + a where a ∈ IF2[T ] defined over IF265 ' IF2[T ]/(T 65 + T 4 + T 3 + T + 1),
IF289 ' IF2[T ]/(T 89 +T 6 +T 5 +T 3 +1) and IF2105 ' IF2[T ]/(T 105 +T 4 +1) with the so-called “dynamic
strategy”. Results are given in Table 2. For the sake of comparison, we also give statistics obtained with
our previous implementation on this machine in Table 1.

IF265 min max avg

`max 31 31 31
#U 0 5 1
#L 6 11 10
#M 103 3·106 2·105

X2n

2.2 4.2 3.3

X2nr

0, 3 0.9 0.6
Schoof 0 0 0
g 0 0 0
k 0 0 0
M− S 0.6 1.5 1.0

Total 3.8 5.9 4.9

IF289 min max avg

`max 41 41 41
#U 0 4 2
#L 9 13 11
#M 6·103 8·107 6·106

X2n

5.1 7.8 6.4

X2nr

0.8 2.6 1.9
Schoof 0 0.4 0
g 0 0.2 0
k 0.2 0.8 0.6
M− S 1.1 5.2 2.2

Total 9.2 14.6 11.2

IF2105 min max avg

`max 41 47 42
#U 1 6 3
#L 8 13 10
#M 5·103 2·108 107

X2n

6.6 11.5 8.8

X2nr

1.0 3.8 2.6
Schoof 0 3.8 0.3
g 0 1.7 0.5
k 0.8 3.8 2.4
M− S 1.1 9.8 2.9

Total 13.4 24.5 17.3

Table 2. Statistics for small finite fields IF2n .

We give: `max, the maximal prime used; the number of U (resp. L) primes; #M , the number of
combinations; the cumulated time for X2n

, X2nr

, Schoof’s algorithm; computing isogenies (g`) and
t mod ` when ` is Elkies (k); the time for the match and sort program; the total time. For each category,
minimal, maximal and average values are given.

Since for these “small” finite fields, the time needed to compute isogenies is negligible, we only
gain a speed up factor from 1.1 up to 1.8 thanks in part to the arithmetic of ZEN which is faster than
the arithmetic of our old implementation. We did the same experiments for three larger finite fields,
IF2155 ' IF2[T ]/(T 155+T 7+T 5+T 4+1), IF2196 ' IF2[T ]/(T 196+T 3+1) and IF2300 ' IF2[T ]/(T 300+T 5+1)
(note that our previous implementation is really too slow to provide similar statistics). Results are given
in Table 3.

IF2155 min max avg

`max 59 71 60
#U 4 11 7
#L 7 15 10
#M 3·104 7·108 7·107

X2n

30.4 56.1 40.6

X2nr

4.4 13.9 7.8
Schoof 0 14.8 4.3
g 1.5 21.6 7.1
k 7.4 31.9 20.1
M− S 2.9 20.4 6.5

Total 58.8 132 86.5

IF2196 min max avg

`max 73 79 74
#U 7 13 10
#L 8 15 11
#M 105 7·109 8·108

X2n

113 475 147

X2nr

8.8 31.8 21.6
Schoof 0 55.5 17.9
g 9.9 419 40.6
k 29.2 90.1 58.9
M− S 5 86.9 22.9

Total 212 1029 308

IF2300 min max avg

`max 97 157 113
#U 11 19 16
#L 9 20 14
#M 5·106 5·1011 5·1010

X2n

744 1761 996

X2nr

46 387 119
Schoof 0 551 199
g 76 568 287
k 354 961 601
M− S 14 1510 230

Total 1519 3686 2434

Table 3. Statistics for larger finite fields IF2n .
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At this point, the advantage of our approach clearly appears. The time needed to compute isogenies
is (completely) negligible while it used to be the main cost in [21] and we gain a speed up factor from 4
up to 10 on the whole computation.

To compare Couveignes’s and Lercier’s approaches for two huge finite fields, we collected the same
data in Table 4 for the curve

EX : y2 + xy = x3 + T 16 + T 14 + T 13 + T 9 + T 8 + T 7 + T 6 + T 5 + T 4 + T 3.

For the first finite field, IF21009 ' IF2[T ]/(T 1009 + T 11 + T 4 + T 2 + 1), we first used Couveignes’s and
Lercier’s algorithms (respectively noted JMC and RL). For the second field, IF21301 ' IF2[T ]/(T 1301 +
T 11 + T 10 + T + 1), we could only use Lercier’s (the current record, as of February 1997). The results

X2n

X2nr

Schoof g k M− S Total

IF21009(JMC) 15d 3h 2d 21h 10d 14h 77d 21h 23d 3h 1h 121d 15h
IF21009(RL) 9d 16h 1d 9h 2h 1d 2h 7d 7h 2h 19d 11h
IF21301(RL) 51d 7h 8d 12h 2d 8h 3d 17h 36d 14h 2h 103d 5h

`max #U #L #M

IF21009(JMC) 577 57 46 4·109

IF21009(RL) 547 48 47 2·1010

IF21301(RL) 673 88 50 9·1010

Table 4. Timings for huge finite fields (days/hours).

are striking, the time needed to compute isogenies is completely negligible in the case of IF21301 (3 days)
while it was the main cost for IF21009 (77 days).

To improve the SEA algorithm, future implementation should now optimize computations of X2n

mod
Φ .

4 Finding Random Elliptic Curves with Nearly Prime Cardinality
Efficiently.

Since the best known attacks against the discrete logarithm problem on elliptic curves are

1. the Weil pairing reduction for supersingular curves,
2. the baby steps giant steps, Pollard-ρ and Pohlig Helman algorithms for other curves,

“good curves” for cryptographical purposes only have to be defined in a not too small finite field and to
be of “nearly prime” cardinality (to avoid point 2.) different from 2n, 2n + 1±

√
2n, 2n + 1±

√
2n+1 and

2n + 1± 2
√

2n (to avoid point 1.) if defined over IF2n .
In Section 4.1, we describe an early abort strategy suggested by Morain that takes advantage of

the SEA algorithm to quickly throw away most of the curves which do not meet this condition. For
convenience, we explain it only in the case of elliptic curves Ea defined over IF2n . But this strategy
obviously works in any finite field. Then we give timing and examples of “good curves” provided by this
strategy.

4.1 Early Abort Strategy

The Algorithm. An elliptic curve Ea given by Equation (1) is non supersingular and has a point
Qa = ( 4

√
a,
√

a) of order 4. Thus, the previous condition can be reformulated as follows : “A good curve
Ea is a curve defined over IF2n with n ≥ 60 whose cardinality is 4 times a prime”.

To find such “good curves”, we proceed as follows:
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1. Choose an element a ∈ IF∗
2n at random.

2. As explained in Section 3, compute t mod ` with the SEA algorithm checking during the computation
that, for each Elkies prime ` 6= 2,

2n + 1− t mod ` 6= 0.

Otherwise, this means that the number of points of the curve is divisible by `. In this case, go to
step 1.

3. Check that the cardinality of the curve is 4 times a prime, otherwise go to step 1.

First of all, let us note that when 2n + 1 − t mod ` = 0 for a prime `, this means there is a point
of order ` in Ea. Therefore, there exists an isogeny of degree ` defined from Ea, and ` is necessarily an
Elkies prime.

Let us observe too that it is better to test the primality of the cardinality at step 3., first, by a pseudo
primality test, and then by an exact primality prover (for instance ECPP [30]). But for practical reasons,
we used MAPLE system [5].

In practice, this algorithm works well because most of the time a curve does not have a prime
cardinality, we will see in Section 4.1 that this cardinality is divided by a small integer. Since we choose
primes ` as small as possible in the SEA algorithm, we detect such a curve quickly.

Analysis. A theorem by Howe [12], which extends works by Lenstra [18] (see also [15]), gives the
asymptotic behavior of the probability that a random elliptic curve over a finite field IFq has `k (k ∈ IN∗)
dividing the number M of its points when q →∞.

Theorem 2. There is a constant C ≤ 1/12 + 5
√

2/6 ' 1.262 such that the following statement is true.
Given a prime power q, let r be the multiplicative arithmetic function such that for all primes ` and
positive integers k

rq(`k) =


1

`k−1(`− 1)
if q 6= 1 mod `µ,

`ν+1 + `ν − 1
`ν+µ−1(`2 − 1)

if q = 1 mod `µ,

where µ = dk/2e and ν = bk/2c. Then for all positive integers N , the probability πq,N that a random
elliptic curve over IFq has N dividing the number of its IFq-defined points satisfies

|πq,N − rq(N)| ≤ CNχ(N)2σ(N)

√
q

,

where χ(N) =
∏

λ|N (λ + 1)/(λ− 1) and σ(N) denotes the number of prime divisors of N .

Let gq(`) be the probability that the smallest prime factor of M is `. This probability is equal to

gq(`) = rq(`)
∏

primes λ<`

(1− rq(λ)).

In our particular case, we test random curves Ea defined over IF2n with cardinalities always divisible by
4, so, we make the strong assumption that Howe’s theorem applies, except for ` = 2, and the probabilities
r2n(`k) become

ρn(`k) =


1 for ` = 2 and k = 1,

1
2k−2 for ` = 2 and k > 1,
r2n(`k) for ` > 2.

Consequently, the probability γn(`) we detect at step 2. of the algorithm that an odd prime ` divides
the cardinality of Ea is equal to

γn(`) = ρn(`)(1− ρn(23))
∏

odd primes λ<`

(1− ρn(λ)).
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This quantity can be easily computed for n fixed but for any n, one can only state that

ρn(23) =
1
2

and
`

`2 − 1
≤ ρn(`) ≤ 1

`− 1
,

and therefore, 3/16 ≤ γn(3) ≤ 1/4, 5/96 ≤ γn(5) ≤ 5/64, 7/256 ≤ γn(7) ≤ 95/2304. . .

4.2 Results

The implementation described in Section 3.3 allows to compute a lot of such “good curves” defined
over IF265 , IF289 , IF2105 , IF2155 and IF2196 in a reasonable amount of time. Accurate statistics are given in
Table 5.

IF265 IF289 IF2105 IF2155 IF2196

# curves tested 1000 1000 1000 1000 1000

1000γn(8) 500 500 500 500 500
# cardinalities divisible by 8 491 507 500 509 490

1000γn(3) 250 250 250 250 187.5
# cardinalities divisible by 3 255 253 256 236 177

1000γn(5) 62.5 62.5 62.5 62.5 65.1
# cardinalities divisible by 5 63 73 74 68 150

1000γn(7) 31.2 31.2 27.4 31.2 41.2
# cardinalities divisible by 7 28 28 59 25 34

# cardinalities divisible by ` ≥ 11 and
detected at step 2. of the algorithm 29 52 43 61 57

# cardinalities divisible by ` ≥ 11 and
detected at step 3. of the algorithm 116 77 62 96 90

Number of “good curves” 18 10 6 5 2

Total time needed (s) 1277 1733 2231 14112 30254

Table 5. Statistics of the “early abort strategy”.

In this table, it turns out that the theoretical estimations of Section 4.1 are in practice satisfied
most of the time, except maybe for the number of cardinalities divisible by 5 in IF2196 (150 instead
of 1000 · 25/394 ' 65). In any case, the probability that an elliptic curve has its number of points
divisible by a small prime ` is quite high and thus we need to compute the cardinality of a curve
completely in only a few case. Some of these “good curves” are given in Table 6 with the notation
a0 + a12 + · · ·+ an−12n−1 = a0 + a1T + · · ·+ an−1T

n−1.

5 Conclusion

Thanks to the contribution of many people in this field of research, computing the number of points
of an elliptic curve defined over IF2n can be performed quickly in practice. From this, we derived an
efficient way for finding elliptic curves with nearly prime cardinality. Even if it is harder to obtain such
curves when n increases (only 2 among 1000 for n = 196), we think this method is of special interest for
cryptographic purposes.

Performances we obtained for IF2n are now similar to the performances we already had for the case
IFp with p, a large prime, and this, even when the size of the finite field increases. The only problem
which remains in practice is the case p odd and small. But, as what was foreseen at the end of [21] for
p = 2, we hope that the situation might evolve very soon for these fields too.

Acknowledgments. I would like to thank François Morain for fruitful discussions. I also thank the
referees for careful comments and for suggesting a title corresponding closer to the content of this article.
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a Cardinality

IF265 2108463510029530717 22 · 9223372038308612213

IF265 15004298573160993787 22 · 9223372035176356667

IF289 362244896591784868971148794 22 · 154742504910673945144969913

IF289 57852959336296070429241468 22 · 154742504910669983358163303

IF2105 6543935405400478025717290432415
22 · 101412048018258375221758412\
06867

IF2105
229598971637660130735605103979\
54

22 · 101412048018258342875266703\
03267

IF2155
838795043588789173323661086541\
2790131341725747

22 · 114179815416476790484662819\
27805319915233345669

IF2155
110027220687791685841747180597\
77371906785324958

22 · 114179815416476790484662992\
30130487707830550127

IF2196
250334701759594235393108283794\
64907961567696239688511281965

22 · 251084069415467230553431576\
92759220570140916154347737377983

IF2196
404284818812143036331788043458\
37154824320382480200588296980

22 · 251084069415467230553431576\
92813473113492187155697729606263

Table 6. Curves with a nearly prime cardinality.
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