
In H. Cohen, editor, Algorithmic Number Theory: Second International Symposium,
ANTS-II Talence, France, May 18–23, 1996 Proceedings, volume 1122 of Lecture Notes
in Computer Science, pages 197–212. Springer Berlin / Heidelberg, May 1996.

Computing isogenies in F2n

Reynald LERCIER12

1 Laboratoire d’Informatique de l’École Polytechnique (LIX),
Route de Saclay, 91128 Palaiseau cedex, France

Email: lercier@lix.polytechnique.fr
2 CELAR/SSIG, Route de Laillé, F-35170 Bruz, France

Abstract. Contrary to what happens over prime fields of large characteristic, the main cost when
counting the number of points of an elliptic curve E over F2n is the computation of isogenies of
prime degree `. The best method so far is due to Couveignes and needs asymptotically O(`3) field
operations. We outline in this article some nice properties satisfied by these isogenies and show how
we can get from them a new algorithm that seems to perform better in practice than Couveignes’s
though of the same complexity. On a representative problem, we gain a speed-up of 5 for the whole
computation.

1 Introduction

Many number theoretic algorithms are based on elliptic curves, among which integer factorization [5] or
primality testing [1]. More directly, counting the number of points on these curves is essential to design
secure cryptographical public schemes [8].

Algorithms to compute the cardinality of elliptic curves defined over finite fields of large character-
istic give now satisfying results with the works of Schoof, Elkies, Atkin, Couveignes-Morain, Müller,
Dewaghe . . . ; a precise bibliography can be found for instance in [7]. In finite fields of characteristic two
(used to implement cryptographical schemes in hardware), most of the ideas developed in the case of the
large characteristic can be used except the necessary computation of isogenies between elliptic curves.

Couveignes developed in his thesis [4] an algorithm to overcome this difficulty which was implemented
in [7]. It consists of working in the formal group defined by the elliptic curve. However, this algorithm
requires computations with huge series and unlike the finite fields of large characteristic, computing
isogenies still remains the main cost while counting the number of points.

We describe in this paper a new algorithm to compute isogenies in F2n . Instead of working in the
formal group, we work on the curve itself. It is based on identities satisfied by isogenies as, for instance,
commutativity with multiplication by two. Its complexity is similar to Couveignes’s algorithm but it
is conceptually simpler and much more efficient in practice. For instance, while counting points on
elliptic curves over F2300 , computing isogenies takes 80% of the time in [7] and only 1% by our method.
Section 2 recalls basic facts on elliptic curves and section 3 describes nice properties satisfied by these
isogenies. We explain in section 4 how this algorithm works and finally give accurate benchmarks of our
C implementation in section 5.

2 Elliptic curves over fields of characteristic 2

As explained in [8], we consider elliptic curves defined over F2n by

Ea : y2 + xy = x3 + a, a ∈ F∗2n . (1)

The invariant of Ea is j = 1/a, its discriminant is a and its set of points noted Ea(F2n), is the union of
OE with the set

{
(x, y) ∈ F2

2n , y2 + xy = x3 + a
}

. The formulae of the addition law on Ea are:

– ∀P = (xP , yP) ∈ Ea(F2n), P + OE = OE + P = P , −P = (xP , yP + xP);

1

2

– if P = (xP , yP), Q = (xQ, yQ), P 6= −Q, then if P = Q, let λ = xP + yP /xP otherwise, let
λ = (yQ + yP)/(xQ + xP) and R = P + Q = (xP+Q, yP+Q) is obtained by{

xP+Q = λ2 + λ + xP + xQ,
yP+Q = λ(xP + xP+Q) + xP+Q + yP .

We easily deduce from these equations the formulae of the multiplication by two,

[2]a : P = (x, y) 7→ 2P =
(
x2 +

a

x2
,
(
x +

y

x

)(
x2 +

a

x2

)
+

a

x2

)
. (2)

Since a point P = (x, y) is equal to −P = (x, y + x) if and only if x = 0, the only point of order two is
Pa = (0,

√
a) (remember that in characteristic two, every element has a unique square root). We will be

specially interested in the translation by Pa in section 3. The formulae are

TPa : P = (x, y) 7→ P + Pa =
(√

a

x
,
√

a +
√

a

x
+

a

x2
+
√

a
y

x2

)
. (3)

3 Isogenies

Once given general results about isogenies in section 3.1, we describe the isogenies we are interested in
and give necessary conditions satisfied by this description in section 3.2.

In what follows, F̄2n is the algebraic closure of F2n .

3.1 Classical results

The results given here can be found in [11] or [2]. First of all, an isogeny I between two elliptic curves
Ea and Eb is classically defined as a map of algebraic curves from Ea to Eb satisfying I(OEa) = OEb

.
It turns out that isogenies are also map of algebraic groups or in other words, I is a morphism from
Ea(F2n) to Eb(F2n).

For instance, the multiplication by m (noted [m]a) is an isogeny. There exists a sequence of polyno-
mials fk (called division polynomials) of degree at most bk2

2 c such that if m > 2, P = (X, Y) ∈ Ea(F2n)
and mP 6= OEa , then mP = (XmP , YmP) is given by

XmP = X +
fm−1fm+1

f2
m

,

YmP = X + Y +
fm−1fm+1

f2
m

+
fm−2f

2
m+1

Xf3
m

+ (X2 + Y)
fm−1fm+1

Xf2
m

.

(4)

Division polynomials can be computed easily by induction [8, pp. 102].
For our purposes, the degree of an isogeny I can be defined as follows.

Theorem 1. Let I be a non constant separable isogeny from Ea and Eb. Then

1. I
(
Ea(F̄2n)

)
= Eb(F̄2n).

2. For every S in Eb(F̄2n), we note I−1(S) the set of points of Ea(F̄2n) whose image is S. The cardinal
of I−1(S) is finite and does not depend of S. We call it the degree of I and note it deg(I).

3. If m is a positive integer, [m]a is an isogeny of degree m2.
4. There exists a unique isogeny Î from Eb to Ea such that Î◦I = [deg(I)]a. Moreover deg(Î) = deg(I).

Finally, it is easy to find an isogeny whose kernel is given using Vélu’s formulae [12] adapted to the case
of the characteristic 2.

Theorem 2. Let F be a subgroup (of odd order) of an elliptic curve Ea. If b = a+
∑

(XS ,YS)∈F∗ YS +Y 2
S ,

then there exists isogenies between Ea and Eb of kernel F . One of these isogenies is given by

(X, Y) 7→

(
X +

∑
S∈F∗

XP+S , Y +
∑

S∈F∗

YP+S

)
. (5)

3

3.2 Properties

The improvements of Schoof’s original algorithm [9] to count the number of points on an elliptic curve
can be seen as computing isogenies between this curve and other elliptic curves easily found by solving
“modular equations” [10].

Theorem 3 shows examples of such isogenies.

Theorem 3. Let ` be an odd integer and d = (` − 1)/2. Let Ea be an elliptic curve defined over F2n

such that isogenies of degree ` defined from it can be found. There exists a factor Q(X) of degree d of
f`(X) on Ea such that one of these isogenies sends (X, Y) to(

XP 2(X)
Q2(X)

, (Y + X2)
P 2(X)
Q2(X)

+ X2 +
X2Q2

1(X)
Q2(X)

+X3

(
Q3

1(X)
Q3(X)

+
Q2(X)Q1(X) + Q3(X)Q(X)

Q2(X)

))
, (6)

where, if we let Q(X) = E2(X) + XO2(X),

P (X) = Q(X) + O(X)E(X), (7)

and Q1(X) = Q′(X) = O2(X), Q2(X) = E′2(X) + XO′2(X), Q3(X) = Q′
2(X) = O′2(X).

Proof. Since by hypothesis, there exists isogenies of degree ` from Ea(F̄2n) to an other curve Eb(F̄2n),
we call I ′ one of these isogenies. The only point Pa of order two of Ea(F̄2n) is not in Ker(I ′) because `
is odd and we can write that Ker(I ′) is equal to {OEa} ∪S ∪−S with S ∩−S = OEa . Therefore from
theorem 2 and from the formulae of the addition law, an isogeny I of kernel Ker(I ′) is given by

I(X, Y) =

(
X

(
1 +

∑
S∈S

XS

(X −XS)2

)
,

Y +
∑
S∈S

XS

(
Y + X2

(X −XS)2
+

X2

(X −XS)3

))
. (8)

Let now Q(X) be the polynomial
∏

S∈S(X − XS). It remains to check by a simple calculation that
equations (8) and (6) are the same. Finally, from theorem 1, there exists an isogeny Î such that Î◦I = [`]a
and therefore Ker(I) ⊂ Ker([`]a), which implies that Q(X) divides f`(X).

�

On the other hand, isogenies must satisfy necessary conditions given in theorem 4.

Theorem 4. Let Ea and Eb be two elliptic curves defined over F2n , let ` be an odd integer and d =
(`− 1)/2. Let I be an isogeny of degree ` between Ea and Eb given by (X, Y) 7→

(
G(X)
Q2(X) ,

H(X)+Y K(X)
Q3(X)

)
where (Q(X), G(X),H(X),K(X)) ∈ F2n [X]4 with degrees at most d, `, 3d and 2d, then

1. G(X) = XP 2(X) where P (X) is a polynomial of degree d such that
gcd(P (X), Q(X)) = 1 and XdQ(

√
a/X) =

8√a
8√

b
(4
√

a)d
P (X), or equivalently via X →

√
a/X,

XdP (
√

a/X) =
8
√

b
8
√

a

(
4
√

a
)d

Q(X); (9)

2. K(X) = P 2(X)Q(X);
3. H(X) = XR(X)P (X) +

√
bQ3(X) +

√
aP 2(X)Q(X) with

R(X) = X(PQ)′(X) or R(X) = (XPQ)′(X).

4

Proof. Since [2](I(Pa)) = I([2](Pa)) = 0 and Pb is the only point of order 2 in Eb, I(Pa) = Pb. So

∀S ∈ Ea, I(S + Pa) = I(S) + Pb. (10)

With the formulas of the addition law between points of Ea, we obtain for S = OEa , G(0)/Q2(0) = 0,
and consequently X divides G(X). Let Γ (X) = G(X)/X. For S = (X, Y) 6= OEa , equation (10) becomes(√

aΓ (
√

a/X)
XQ2(

√
a/X)

,
H(
√

a/X) +
√

a(1 + 1/X + (Y +
√

a)/X2)K(
√

a/X)
Q3(

√
a/X)

)
=(√

bQ2(X)
XΓ (X)

,
√

b +

√
bQ2(X)

XΓ (X)
+

√
bQ4(X)

X2Γ 2(X)

(
H(X) + Y K(X)

Q3(X)
+
√

b

))
.

(11)

After simplification, the abscissae of equation (11) lead to
√

aΓ (
√

a/X) Γ (X) =
√

b Q2(
√

a/X) Q2(X).
The quantities Γ̃ (X) = X2dΓ (

√
a/X) and

Q̃(X) = XdQ(
√

a/X) are in fact polynomials and the previous equation can be rewritten as
√

a Γ̃ (X) Γ (X) =
√

b Q̃2(X) Q2(X). (12)

Since gcd(Γ (X), Q2(X)) = 1, Γ (X) divides Q̃2(X). But Γ (X) has the same degree as Q̃2(X), therefore
there exists a constant γ ∈ F2n such that Γ (X) = γ2Q̃2(X) (remember that every element in F2n is
a square). So, Γ (X) is a square. Let P (X) =

√
Γ (X), then P (X) = γQ̃(X) or, equivalently Q(X) =

√
ad

γ P̃ (X). Substituting these expressions in (12) gives γ = (4
√

a)d 8√
b

8√a
, which proves relation (9).

Since ∀S ∈ Ea, I(−S) = −I(S), we have H(X)+(Y +X)K(X)
Q3(X) = H(X)+Y K(X)

Q3(X) +X P 2(X)
Q2(X) , and conse-

quently point 2 of the theorem is proved.
Moreover, from I(Pa) = Pb, we obtain H(0) =

√
aP 2(0)Q(0) +

√
bQ3(0). Therefore, we can write

H(X) =
√

aP 2(X)Q(X) +
√

bQ3(X) + XL(X) where L(X) is a polynomial of degree at most 3d.
Furthermore, the ordinates of equation (11) lead to

√
aL(

√
a/X)

XQ3(
√

a/X)
+
(√

a

X
+

a

X2
+
√

aY

X2

)
P 2(

√
a/X)

Q2(
√

a/X)
=

√
bQ2(X)

XP 2(X)
+

√
bQ4(X)

X2P 4(X)

(
XL(X)
Q3(X)

+ (Y +
√

a)
P 2(X)
Q2(X)

)
. (13)

Taking advantage of equation (9), this equation can be simplified as follows,

√
aX3dL(

√
a/X)P (X) =

√
b

(
8
√

a
8
√

b

)3 (
4
√

a
)3d

Q(X)L(X). (14)

Since gcd(P (X), Q(X)) = 1, we deduce that P (X) divides L(X). The polynomial R(X) = L(X)/P (X)
has degree at most 2d.

As for all S ∈ Ea, I(S) ∈ Eb, we have

(
X

R(X)P (X)
Q3(X)

+
√

b + (Y +
√

a)
P 2(X)
Q2(X)

)2

+
(

XP 2(X)
Q2(X)

)3

=(
X

R(X)P (X)
Q3(X)

+
√

b + (Y +
√

a)
P 2(X)
Q2(X)

)
XP 2(X)
Q2(X)

+ b.

So,

XR(X) (R(X) + P (X)Q(X)) = (
(X + 4

√
a)P (X)Q(X) + 4

√
bQ2(X) + XP 2(X)

)2

. (15)

5

Let R1 be a polynomial solution of equation (15) and R2(X) = R1(X)+P (X)Q(X). Since the left hand
side of (15) is XR1(X)R2(X) and the right hand side is a square, X must divide R1(X) or R2(X). As
R2(X) is a solution of equation (15) too, R1(X) and R2(X) play a symmetric part and we can assume
that X divides R1(X).

Let us prove that R1(X)/X and R2(X) are both squares. We already know that R1(X)R2(X)/X is
a square. Let us assume now that an irreducible polynomial ρ(X) divides both R1(X)/X and R2(X)
(ρ(X) 6= X). The polynomial ρ(X) divides R1(X) + R2(X) = P (X)Q(X) and divides P (X) or Q(X)
but not both since gcd(P (X), Q(X)) = 1. Furthermore, ρ(X) divides the square root of the right hand
side of (15), that is to say it divides (X + 4

√
a)P (X)Q(X) + 4

√
bQ2(X) + XP 2(X). Consequently, if we

assume that ρ(X) divides P (X), ρ(X) divides Q(X) and we reach a contradiction. As we obtain the
same conclusion if we assume at first that ρ(X) divides Q(X), we proved that gcd(R1(X), R2(X)) = 1.
Moreover, since R1(X)R2(X)/X is a square, R1(X)/X and R2(X) are squares. Let R1(X) = XO2(X)
and R2(X) = E2(X), then

XO2(X) + E2(X) = P (X)Q(X). (16)

The derivation of (16) gives R1 = X(PQ)′ and the derivation of (16) multiplied by X gives R2 = (XPQ)′,
which finally proves point 3 of the theorem.

�

According to theorem 3 or 4, it turns out that isogenies are completely determined by their polynomial
P (X) or equivalently by Q(X).

Corollary 1. With the notations of theorem 4, polynomials P (X) and Q(X) must satisfy

XdQ̂(X +
√

a/X) = Q(X)P (X), (17)

and (
X + 4

√
a
)
XdP̂

(
X +

√
a/X

)
= XP 2(X) + 4

√
bQ2(X), (18)

where P̂ (X) =
√

P (X2) and Q̂(X) =
√

Q(X2) (polynomials whose coefficients are square roots of
coefficients of P (X) and Q(X)).

Proof. Using the fact that ∀S ∈ Ea, I([2](S)) = [2](I(S)), we get
(

XP 2(X)
Q2(X)

)
◦
(
X2 + a

X2

)
=
(
X2 + b

X2

)
◦(

XP 2(X)
Q2(X)

)
. Taking the square root of this equation twice leads to

(
X + 4

√
a
) XdP̂ (X +

√
a/X)

XdQ̂ (X +
√

a/X)
=

XP 2(X) + 4
√

bQ2(X)
P (X)Q(X)

. (19)

Since gcd(XP 2(X), Q2(X)) = 1, the right hand side of this equation is an irreducible fraction. So,
numerators and denominators of both sides of equation (19) are equal, which finally proves (17) and
(18).

�

From theorem 4 and corollary 1, we deduce the following relations.

Corollary 2. Let P (X) =
∑d

i=0 p2
i X

i, Q(X) = Xd +
∑d−1

i=0 q2
i Xi, α = 4

√
a and β = 4

√
b. We have

qi =
4
√

α
4
√

β

√
α

d−2i
pd−i, ∀i ∈ {0, . . . , d}, (20)

and

p0 = 4
√

α2d + α2d−1pd−1, pd = 1, pd−1 = α + β,

pd−2 =
{

p4
d−1 + αpd−1 + α2 if d is odd,

p4
d−1 + αpd−1 if d is even.

6

Proof. Equation (20) is a direct application of equation (9). The coefficient of X2d in equation (17) is
p2

d+pd, which yields pd = 1. Then, the coefficient of X2d in equation (18) is pd−1+α+β, which gives pd−1.
The coefficient of X2d−1 in equation (18) is pd−2 +p4

d−1 +αpd−1 +α2 if d is odd, and pd−2 +p4
d−1 +αpd−1

if d is even, which yields pd−2. Finally the coefficient of X in equation (18) which is p4
0 +α2d +α2d−1pd−1

gives p0.
�

What was done for two in corollary 1 can be done in the same way for the multiplication by any odd
positive integer m.

Corollary 3. With the notations of theorem 4, the polynomials P (X) and Q(X) must satisfy

f `
m,a(X)Q

(
hm,a(X)
f2

m,a(X)

)
= Qm2

(X)fm,b

(
X

P 2(X)
Q2(X)

)
, (21)

where m is any odd positive integer, fm,a (resp. fm,b) is the m-division polynomial on Ea (resp. Eb) and
hm,a(X) = Xf2

m,a(X) + fm−1,a(X)fm+1,a(X).

4 Computing isogenies

We describe in this section how we take advantage of the previous results to explicitly compute the
polynomials P (X) or Q(X). Precisely, we show in section 4.1 how we use equation (18) to compute
them. Unfortunately the complexity of this method is too high, and we describe in section 4.2 how we
speed it up using equation (17). Finally in section 4.3, we describe how we further improve this algorithm
using equation (7) and equation (21).

4.1 Solving a linear system over F2n

This first method is based on equation (18). With the notations of corollary 2, this equation yields

∀k = 0, . . . ,

⌊
d− 1

2

⌋
, p4

k =α2d−4k−1
k∑

i=0

pd−2k−1+2iεd−2k−1+2i,iα
2i

+ α2d−4k
k∑

i=0

pd−2k+2iεd−2k+2i,iα
2i,

(22)

∀k = 1, . . . ,

⌊
d

2

⌋
, p4

d−k =α

k−1∑
i=0

pd+1−2k+2iεd+1−2k+2i,iα
2i

+
k∑

i=0

pd−2k+2iεd−2k+2i,iα
2i.

(23)

where for all integers i, j such that 0 ≤ j ≤ i, εi,j = i!
j!(i−j)! mod 2.

A first way to solve system (22, 23) is to write each pi as a linear combination in a polynomial basis
1, T, T 2, . . . , Tn−1 of F2n , pi = pi,0 + pi,1T + . . . + pi,n−1T

n−1 with ∀j ∈ {0, . . . , n − 1}, pi.j ∈ {0, 1}.
Rewriting the system (22, 23) with these notations gives us a linear system of n(d − 2) equations in
n(d− 3) variables pi,j , once substituted pd, pd−1, pd−2, and p0 as functions of α and β (corollary 2).

Unfortunately, such a method costs asymptotically O(`3n3) elementary operations (or O(`3n) field
operations) with classical algorithms. Furthermore, in practice the huge size of the matrix is a serious
drawback. For instance, finding an isogeny of degree ` ' 500, in F21000 (as what was done in [7] with
Couveignes’s algorithm) yields a matrix of size one gigabyte.

7

We suggest two improvements. Rather than solving system (22, 23) in F2, we first write [p2n

1 , . . .,
p2n

d−3] from [p2n−2

1 , . . ., p2n−2

d−3], and then write in the same way [p2n−2

1 , . . ., p2n−2

d−3] from [p2n−4

2 , . . ., p2n−4

d−3].
After O(n) such iterations we finally get a linear equation for [p1, . . ., pd−3] because p2n

j = pj in F2n .
The main cost of solving this system in such a way is the computation of O(n) (or may be O(log n) as
suggested by F. Morain) product of matrices of size d, that is O(`3) multiplications in F2n . So we finally
need O(`3n3) operations (or maybe O(`3n2 log n)).

Another solution takes advantage of the shape of system (22, 23). We notice that we easily get pd−3

as a function of p1 by setting k = 2 in equation (22) and once substituted it in the other equations,
pd−3 as a function of p1 by setting k = 1 in equation (23). Then by induction, we easily get pd−2i−1

as a function of p1, . . . , pi by setting k = i in equation (22) and once substituted it in the remaining
equations, pd−2i−2 as a function of p1, . . . , pi by setting k = i + 1 in equation (23). We iterate this
process until i = d− 2i− 1 or i = d− 2i− 2. So, at the end of this process, we express pd−3, . . ., pi+1 as
a function of pi, . . . , p1 where i ' d/3. Furthermore, the i+1 remaining equations (22, 23) for k ≥ i, are
polynomials whose monomials are pi raised to the power 2j . So these equations still are linear equations
when considered over F2 and we can use the method given at first with a matrix whose size is divided
by 3.

4.2 Solving a non linear system over F2

The information obtained with equation (17) enables us to replace a linear system with unknowns in F2n

by a non linear system with unknowns in F2. Equation (17) leads to the following d + 1 equations,

∀k = 0, . . . , d, 4
√

α

k∑
i=0

p2
i p

2
d−k+iα

2i = 4
√

β
√

α
d+2k

b k
2 c∑

i=0

pk−2iεd−k+2i,i. (24)

From equation (24), each pi is solution of an equation of degree 2. Consequently, pi = ai +πibi, where
bi ∈ F2n , ai depends on p1, . . . , pi−1 and πi ∈ F2. So combined with the ideas expressed at the end of
section 4.1, each pk for k = 0..d can be written as a multivariate polynomial in binary variables πi. This
is an important simplification in relation to the computations we did in the last section. Furthermore, pi

satisfies an equation of degree 2 whose coefficients are linked by a “compatibility” relation; this has the
surprising effect of keeping the number of these variables πi almost stationary when ` increases.

The following algorithm is based on these two facts. Once the initialization done (step 1), it consists
of two phases. The first phase is a loop in which we compute each pk for k = 1, . . . , d− 3 as a a function
of binary variables πi. In fact, for K from 0 to d/3, we get pK with equation (24) as a function of the
binary variables π0, . . . , πK−1 (step 2) and then we extract pd−2K+1 (step 3) and pd−2K (step 4) also as
functions of π0, . . . , πK−1. In the second phase (step 5), we solve the equations satisfied by the binary
variables πi and finally get the pk’s.

Algorithm:
1. Initialization: K = 1, K1 = 0, K2 = 1 and p0, pd−2, pd−1, pd are initialized as in corollary 2.
2.Phase 1: At the beginning of this step, we already have p0, . . . pK−1 and pd−2K+2, . . . , pd known as functions

of the binary variables π0, . . . , πK−2. We rewrite equation (24) for k = K as

p2
K + bKpK + cK = 0 (25)

where cK =
(∑K−1

i=0 p2
i p

2
d−K+iα

2i + 4
√

β
√

α
d+2K ∑bK

2 c
i=1 pK−2iεd−K+2i,i

)
/
(
α2K 4

√
α
)

and bK = 4
√

β
√

α
d+2K

/(α2K 4
√

α). So, cK is a multivariate polynomial in the unknowns
π0, . . ., πK−2.
Let cK/b2

K =
∑

(µ0,...,µK−2)∈{0,1}K−1 Cµπµ0
0 . . . π

µK−2
K−2 . Equation (25) has a solution if and only if

TrF2n /F2(cK/b2
K) = 0, that is to say, ∑

(µ0,...,µK−2)∈{0,1}K−1

TrF2n /F2 (Cµ)=1

πµ0
0 . . . π

µK−2
K−2 = 0. (26)

8

The left hand side of equation (26) can be
(a) 1: Then Ea and Eb are not isogenous and we return FAIL.
(b) 0: We set pK = bKπK−1 + bK

∑
(µ0,...,µK−2)∈{0,1}K−1 Pµπµ0

0 . . . π
µK−2
K−2 where πK−1 ∈ F2 and Pµ

is any solution of X2 + X + Cµ = 0 (we easily check that this formula gives us the two solutions
of equation (25)).

(c) a multivariate polynomial with coefficients in F2: We get a monomial from equation (26) as a
function of the others and substitute it in cK/b2

K to obtain pK as in step 2b. Whenever it is
possible, we choose for this monomial a single variable πk (this is always the case in practice)
and substitute it in p0, . . . pK−1 and pd−2K+2, . . . , pd in order to decrease the number of binary
variables to handle.

Finally, we increment K. If K > d− 2K + 1 then we go to step 5.
3. We set K1 = K and we extract pd−2K+1 as a function of π0, . . ., πK−2 from equation (22) for k = K1.

If K > d− 2K then we go to step 5.
4. We set K2 = K − 1 and we extract pd−2K as a function of π0, . . ., πK−2 from equation (23) for

k = K2. Then we return to step 2 if K 6= d− 2K.
5.Phase2: At this step, each pi, i = 0, . . . , d, is a multivariate polynomial in at most K − 1 binary variables,

π0, . . ., πK−2. Furthermore, we have K = (d + 2)/3 (resp. (d + 1)/3, d/3), K1 = (d − 1)/3 (resp.
(d + 1)/3, d/3) and K2 = (d− 4)/3 (resp. (d− 5)/3, d/3− 1) according to d mod 3. So, in any case,
it remains d− 1−K1 −K2 = K equations obtained from (22) and (23).
We substitute the pi’s in these K equations. It is then easy to get a variable πK−2 as a fraction of
π0, . . ., πK−3 from one of these equations, to substitute it in the K other equations and iterate until
π0. If the last two equations do not give the same value for π0, Ea and Eb are not isogenous and we
return FAIL. Otherwise we only have to go back to get step by step π1, . . ., πK−2 and p1, . . ., pd−3.

Example: In F210 ' F2[T]/(T 10 +T 3 +1) with the notation τ0 + τ12 + . . . + τ929 = τ0 + τ1T + . . .+ τ9T
9,

we are going to show how we can compute an isogeny of degree ` = 37 between E6 and E272. Here,
d = 18, α = 794 and β = 6.

First we get at step 1 of the algorithm p0 = 153, p16 = 334, p17 = 796, p18 = 1. Then the first phase
of the algorithm consists of these 5 iterations:

K 1 2 3 4 5
bK 253 212 536 575 470

cK 151 590π0 +451 847+58π0+
453π1

374 + 574π0 +
804π1 + 387π2

669 + 353π0 +
141π1 + 492π0π1 +
487π2 + 418π3

pK
253π0 +
581

212π2 +
609π1 +444

536π2 +
182π1 +
412π0 +329

575π3 +77π2 +
24π1 +574π0 +
94

470π4 + 741π3 +
86π2 + 849π0π1 +
656π1 +449π0 +724

pd−2K−1
6π0 +
364

6π1 +
529π0 +121

6π2 +
529π1 +
268π0 +611

6π3 + 529π2 +
570π1 +
822π0 + 853

6π4 + 529π3 +
566π2 + 521π0π1 +
187π1 + 23π0 + 434

pd−2K−2
590π0 +
451

590π1 +
811π0 +391

590π2 +
571π1 +
802π0 +450

590π3 +
571π2 +
320π1 +53π0 +
575

590π4 + 571π3 +
197π2 + 514π0π1 +
647π1 + 23π0 + 240

In the second phase (step 5), equation (22) for k = 7, 8 and equation (23) for k = 6, 7, 8, 9 yield

331 + 615π0 + 438π1 + 436π2 + 331π3 = 0 (27)

168 + 125π0 + 867π1 + 384π0π1 + 350π2 + 795π3 + 947π4 = 0 (28)

444 + 399π0 + 238π1 + 849π0π1 + 523π2 + 991π3 + 611π4 = 0 (29)

611 + 217π0 + 245π1 + 654π0π1 + 268π2 + 522π3 + 105π4 = 0 (30)

214 + 574π0 + 666π1 + 848π0π1 + 255π2 + 2π3 + 212π4 = 0 (31)

127 + 163π0 + 111π1 + 394π0π1 + 704π2 + 851π3 + 812π4 = 0 (32)

9

With equation (29), we obtain π4 = 843 + 935π0 + 255π1 + 256π0π1 + 470π2 + 842π3. Once substituted
π4, equation (28) yields π3 = 1 + 876π0 + 103π1 + 796π2. Then π4 and π3 substituted in equation (27)
yields π2 = 979π0 + 144π1 + 194π0π1. Afterwards, π4, π3 and π2 substituted in equation (30) yields
π1 = π0/(176 + 795π0) and once substituted π4, π3, π2 and π1 , equation (31) gives π0 = 0, and we only
have to check that equation (32) is trivial, which is the case. Therefore, π1 = 0, π2 = 0, π3 = 1, π4 = 1,
and

P (X) =X18 + 514 X17 + 560 X16 + 573 X15 + 753 X14 + 364 X13 + 709 X12+

314 X11 + 752 X10 + 627 X9 + 300 X8 + 986 X7 + 129 X6 + 744 X5+

318 X4 + 549 X3 + 905 X2 + 295 X + 465.

Remark: When Ea and Eb are isogenous of degree `, most of the time there are only two isogenies from
Ea and Eb defined over F2n (an isogeny and its opposite) and in this case, the algorithm always produced
only one solution in our experiments. If by chance, the system of equations had several solutions, we would
have to compute all of them and test if each solution is an isogeny or not. When there are more than two
isogenies from Ea to Eb, these systems have several solutions. When Ea and Eb are not isogenous, these
systems have in practice no solution and this fact can be detected quickly because at step 2, equation
(26) is most of the time false (typically 1 = 0) for a small index K.

At step 5 of the algorithm, the K equations obtained from (22) and (23) lead in fact to nK equations
between the binary unknowns πi once rewritten in a polynomial basis 1,. . . , Tn−1 of F2n . Firstly, that
means this system is very constrained, secondly, we can use this to speed up the computations. For
instance, in the previous example, the equation π1(176+795π0) = π0 leads to π1π0T

9 +π1π0T
8 +π1T

7 +
π1T

5 + π1(π0 + 1)T 4 + π1π0T
3 + π1π0T + π1π0 + π0 = 0 and we immediately find π0 = 0 and π1 = 0.

Complexity: The complexity of this algorithm is hard to estimate. As sketched at the beginning of
this section, the number of variables remains more or less the same during the computation because
of equation (26). For K > 10, each time we write pK as a function of a new binary variable πK−1,
we observed we are able to get πk (k < K − 1) as a polynomial function of the other πi’s except
a logarithmic number of times. Therefore, asymptotically, we assume that the number of variables πi

grows heurististically as O(log `).
With this hypothesis, the maximal number of terms in the multivariate polynomials computed in this

algorithm is at most O(2log(`)) = O(`) and so we estimate that the cost of this algorithm is probably at
most O(`3) multiplications in F2n .

With regard to the storage, we have to write in phase 1 each pK as a multivariate polynomial of
O(log `) binary variables, that is to say a storage of at most O(`2) elements of F2n . In phase 2, we have
to write d/3 equations as a function of O(log `) binary variables, which yields a storage of at most O(`2)
too.

4.3 Practical improvements

The improvements described here are based on equation (7) and on equation (4). They are practical in
the sense that they probably do not change the asymptotic complexity of the algorithm described in
section 4.2, but decrease in practice its computation time.

10

Vélu’s equation. Equation (7) enables us to decrease the number of binary variables πi needed in the
algorithm by half. This equation leads to the following d + 1 equations,

α2k−d
√

αβp2
k + αp2

d−k =

k∑
i=0

pd−2i−1pd−2k+2i, if k = 0, . . . ,

⌊
d− 1

2

⌋
,

d/2−1∑
i=0

pd−2i−1p2i, if d is even and k =
d

2
,

b d−1
2 c∑

i=k−b d
2 c

pd−2i−1pd−2k+2i, if k =
⌊

d + 3
2

⌋
, . . . , d.

(33)

Using this equation is straightforward. At step 2 of the algorithm when K = 1 mod 2 (K ≥ 3), we replace
the computation of pK with equation (24) by the computation of pK with equation (33) for k = K. In
this way we directly get pK as a function of p1, . . ., pK−1 and we do not have to introduce a new binary
variable πK . So, we are able to express p0, . . ., pd as functions of at most d/6 binary variables instead of
at most d/3. Unfortunately, in this case, equation (26) becomes useful later in practice (K ≤ 22, which is
twice larger than initially) and so for a “large” degree ` (` > 200), the number of variables πi to handle
is more or less the same as above.

Multiplication by three. Our last improvement is a heuristic improvement based on equation (21)
with m = 3. It enables us to express a variable πi as a function of π0,. . . πi−1 much earlier than with
equation (26). This system is

b i−4
8 c,d∑′

k
0,d i−4−d

8 e

p8
kqi−4−8k + β2

b i
8 c,d∑′

k
0,d i−d

8 e

q8
kqi−8k =

8d+4,i∑′

j
0,i−d

qi−jTi,j +

b i−3
2 c,4d∑′

j

0,d i−3−d
2 e

qi−2j−3

j,3d∑′

k
0,j−d

q2
j−k

d,b k
2 c∑′

l
0,d k−d

2 e

p4
l p

2
k−2l.

(34)

where i = 4, .., 9d, Ti,j is a constant which depends on α and
m,n∑′

j
k,l

must be read as
∑min(m,n)

j=max(k,l).

From this expression, we deduce that at step 2 of the algorithm, we can compute this equation for
i ≤ 2K. So, we obtain new relations between the binary variables πi. In practice, we observed that it
is enough before computing pK at step 2 of the algorithm to compute equation (34) for i = 2K − 1
when K = 1 mod 2, the other equations giving no new information. In this case, for K large enough, we
can write one variable πi as a function of the others. In practice, this phenomenon happens already for
K = 11. So, at the expense of an additional computation, the number of binary variables we have to
handle is asymptotically smaller compared to the original algorithm.

5 Results

We implemented in C the algorithm described in section 4.2 (called MULTBY2) and its improvements
described in section 4.3 (called VELU) and 4.3 (called MULTBY3). We did not implement the methods of
section 4.1 because we estimate that the resources (space and time) they need are too high. Furthermore,
we compare these algorithms with the implementation of Couveignes’s ideas [4] as done in [7], which we

11

call COUVEIGNES. Notice that the multivariate polynomials we have to manipulate in this case are sparse,
so we implemented them as lists.

We measured the time needed to compute isogenies of prime degrees between ` such that 3 < ` < 500
in F210 ' F2[T]/(T 10 + T 3 + 1) on a DEC Alpha workstation and the number of binary variables π at
the beginning of step 5. The results are given in figure 1 and 2.

As in [6], we did benchmarks to count points of the elliptic curve E91128 defined over F2300 '
F2[T]/(T 300 + T 5 + 1). Time to compute isogenies is now completely negligible as shown in the fol-
lowing table.

COUVEIGNES MULTBY2 VELU MULTBY3
Isogenies (s) 22974 146 59 71
Total (s) 30221 6103 6074 6079

6 Conclusion

We outlined in this paper nice properties of isogenies of degree ` in F2n , and we showed how to take
advantage of these properties to compute them efficiently. In practice, the algorithm we described is, as
far as we know, the best method to solve this problem. Time needed to compute isogenies while counting
the number of points of an elliptic curve is now negligible whereas it used to be the major cost. Moreover,
the storage needed is much smaller than what was necessary before.

In finite fields of small characteristic greater than 2, it remains to be seen if we can (or not) adapt
these ideas, and possibly to compare them with a new algorithm of Couveignes [3]. Lastly, as noticed in
[7], the break even point between methods to compute isogenies in large characteristic and methods for
small characteristic is not clear. This will be the subject of further research.

12

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

t(s)

`

COUVEIGNES
MULTBY2

VELU
MULTBY3

Fig. 1. Time needed to compute isogenies of degree ` in F210

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500

#π

`

MULTBY2
VELU

MULTBY3

Fig. 2. Number of binary variables needed to compute isogenies of degree ` in F210

13

Acknowledgments: The author wants to express its gratitude to F. Morain. His deep knowledge
of isogenies in finite fields of large characteristic was an invaluable help. Moreover, he pointed out
the importance of Vélu’s formulae and read carefully the drafts of this paper. Thanks a lot to J.-M.
Couveignes for its careful reading of first versions of this paper and to have outlined the central role
played by points of order 2 in elliptic curves over F2n . Many thanks to J.-M. Steyaert too for his advice
to solve the systems described in the second part of this paper.

References

[1] A. O. L. Atkin and François Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29–68,
July 1993.

[2] Henri Cohen. A course in algorithmic algebraic number theory, volume 138 of Graduate Texts in Mathematics.
Springer–Verlag, 1993.

[3] J. M. Couveignes. Computing l-isogenies with the p-torsion. In H. Cohen, editor, ANTS-II, volume 1122 of
Lecture Notes in Comput. Sci., pages 59–65. Springer-Verlag, 1996.

[4] Jean-Marc Couveignes. Quelques calculs en théorie des nombres. Thèse, Université de Bordeaux I, July
1994.

[5] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Math., 126:649–673, 1987.
[6] R. Lercier and F. Morain. Counting the number of points on elliptic curves over finite fields: strategies and

performances. In L. C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology – EUROCRYPT ’95,
number 921 in Lecture Notes in Comput. Sci., pages 79–94, 1995. International Conference on the Theory
and Application of Cryptographic Techniques, Saint-Malo, France, May 1995, Proceedings.

[7] R. Lercier and F. Morain. Counting the number of points on elliptic curves over Fpn using Couveignes’s
algorithm. Rapport de Recherche LIX/RR/95/09, Laboratoire d’Informatique de l’École polytechnique
(LIX), 1995. Available at http://lix.polytechnique.fr/~morain/Articles.

[8] Alfred J. Menezes. Elliptic curve public key cryptosystems. Kluwer Academic Publishers, 1993.
[9] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp.,

44:483–494, 1985.
[10] René Schoof. Counting points on elliptic curves over finite fields. To appear in Proc. Journées Arithmétiques

93, January 1995.
[11] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer,

1986.
[12] J. Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de Paris, 273:238–

241, 1971. Série A.

