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Abstract. This paper is devoted to the study of the Galois descent obstruction for hyper-
elliptic curves of arbitrary genus whose reduced automorphism groups are cyclic of order
coprime to the characteristic of their ground field. We give an explicit and effectively com-
putable description of this obstruction. Along the way, we obtain an arithmetic criterion for
the existence of a so-called hyperelliptic descent.

We define homogeneous dihedral invariants for general hyperelliptic curves, and show how
the obstruction can be expressed in terms of these invariants. If this obstruction vanishes,
then the homogeneous dihedral invariants can also be used to explicitly construct a model
over the field of moduli of the curve; if not, then one still obtains a hyperelliptic model over
a degree 2 extension of the field of moduli.

Introduction

The classical problem of Galois descent, as first considered by Weil in [19], is the following:
Let X be a variety over the algebraically closure K of a perfect base field k. Suppose that
X is isomorphic with all its Galois conjugates Xσ under the action of Gal(K|k), or in other
words that k is the (Galois) field of moduli of X for the extension K|k. Does there then exist
a model of X over k?

If such a model exists, then it is called a descent of X. Generically, or more precisely, when
the geometric automorphism group of X is trivial, there is no obstruction to descent [19],
but this partial answer is unsatisfactory, as there are many interesting classes of varieties
with nontrivial automorphism group. This paper considers one such class, namely that of
hyperelliptic curves. The explicit form of their defining equations makes hyperelliptic curves
the simplest class of curves after conics and elliptic curves (for which the answer to the
descent question is well-known to be affirmative). Due to the presence of the hyperelliptic
involution, hyperelliptic curves never have a trivial automorphism group. This makes them
a fundamental example in the study of the descent problem.

The problem in fact allows a further refinement for hyperelliptic curves; instead of merely
asking for some model over k, one can ask for a model that is again given by a hyperellip-
tic equation y2 = p(x). Let us call such a model a hyperelliptic descent. Considering the
homogenization of p links the study of hyperelliptic descent with the study of homogeneous
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binary forms. This is a great benefit, since not only was the invariant theory of these forms
extensively studied in the nineteenth century, but one can often also apply the method of
covariants, as in [12].

The answer to the descent question for hyperelliptic curves depends on the reduced auto-
morphism group G of X, which is the quotient of the automorphism group G = Aut(X) of
X by the hyperelliptic involution. We assume that the characteristic of k does not equal 2
throughout this paper in order to describe hyperelliptic curves as separable covers of a conic
over k. Under this running assumption, let us say that G is tamely cyclic if it is cyclic of
order coprime to the characteristic of K. Then Huggins’ seminal work [10] shows that if G
is not tamely cyclic, then the curve X allows a hyperelliptic descent. For tamely cyclic G,
explicit counterexamples for descent were first constructed by Earle [6] and Shimura [16].
More recently, the full classification of the hyperelliptic curves that do not allow a hyperel-
liptic descent for the extension C|R was initiated by Bujalance-Turbek [3] and completed by
Huggins [9].

In Section 3, we give a complete answer to the descent problem in the case where X is a
hyperelliptic curve with tamely cyclic reduced automorphism group, for any extension K|k.
The problem is naturally stratified by our notion of the type of X, which contains information
on the automorphism group and the Weierstrass points of X. We refer to Theorems 3.14
and 3.19 for precise statements, but essentially, once the type is given, then either all the
curves of that type descend or the obstruction is classified by the solvability of a certain norm
equation.

If the descent obstruction vanishes, then Section 3 also shows how a descent can be effec-
tively constructed if G is nontrivial. In Section 3.4, we consider the slightly more involved
case when G is trivial. In this case, efficient algorithms are constructed by using the co-
variant method from [12]. Finally, in Section 3.5, we show how to construct essentially all
counterexamples to descent, which recovers the aforementioned results on the extension C|R
as a special case. More precisely, given any quadratic extension of fields L|k, Theorem 3.26
gives a completely explicit description of the K-isomorphism classes of the curves which are
defined over L and K-isomorphic with their conjugate, but that do not descend to k.

The norm equation mentioned above is in fact determined purely by the homogeneous
dihedral invariants of the curve X. These invariants, which will be discussed in Section 2, are
closely related with and indeed named after the dihedral invariants defined by Gutierrez and
Shaska [7]. Like these invariants, they can be calculated quickly once the curve X is given in
standard form, a transformation to which can be determined effectively by using the methods
in [12, Sec.2]. However, there are a few important differences between our dihedral invariants
and the original ones in [7].

First of all, the models from which we derive our homogeneous dihedral invariants are
normalized in a weaker way than in [7]. Second, the homogeneous dihedral invariants give an
effective approach to the reconstruction and parametrization of forms with given invariants,
also in the non-generic cases where many of the coefficients in these normal forms are zero.
Third, and contrary to what is suggested in Lemma 3.2 and Theorem 4.5 in [7], such non-
generic reconstruction is in fact more involved than that in the generic case. Finally, the
claimed reconstruction over the field of moduli k in [7, Thm.4.5] actually takes place over
a quadratic extension of k, as was already pointed out in [11, Rem.4.17]. In particular, [7,
Cor.4.6] is incorrect, as can also be seen from the results in [10, Sec.6] and our complete
classification of the counterexamples in Theorem 3.14.
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To describe our invariants, consider the subgroup D of GL2 consisting of diagonal and
anti-diagonal matrices. Then the homogeneous dihedral invariants are the invariants of binary
forms under the action of the group D∩SL2(K) that are moreover homogeneous as a function
in the defining coefficients of these forms. Alternatively, they are those D∩SL2(K)-invariant
polynomials in the defining coefficients for which the action by the diagonal subgroup of GL2

is described by a character. All invariants for D ∩ SL2(K) (hence in particular the invariants
for D itself) can be expressed as a rational function in the homogeneous dihedral invariants.

Before defining the homogeneous dihedral invariants and proving the main theorem, we
need a result relating the existence of a general descent with that of a hyperelliptic descent.
This theme is explored in Section 1. Building on results by Mestre [13] and Huggins [10],
we shall show in Theorem 1.6 that these two variants of the descent problems are in fact
equivalent, except possibly when the genus g of X is odd and its reduced automorphism group
is tamely cyclic of odd order. In this latter case, Theorem 3.19 shows that a descent always
exists. Furthermore, we completely classify the counterexamples to this equivalence in this
remaining case in Theorem 3.26.

Even more surprising is that the existence of a hyperelliptic descent of X turns out to allow
an arithmetic characterization. To formulate this result, consider the quotient B = X/G of
X by its full automorphism group. The curve B has a canonical descent B0 to k, and it is
well-known (see for example [5, Cor.2.3]) that the presence of a point of B0 over the field of
moduli is a sufficient condition for some descent of X to exist. In Theorem 1.13, we show that
in fact the existence of such a rational point is equivalent with the existence of a hyperelliptic
descent of X. In particular, we see that X always admits a hyperelliptic equation over a degree
2 extension of k.

These results simplify matters from a theoretical point of view. The more general obstruc-
tion criterion in [5, Sec.4] describes the descent obstruction in terms of the triviality of one
of infinitely many element of H2-cohomology groups. For hyperelliptic curves, the descent
obstruction turns out to be equivalent to the triviality of a single twist (namely B0) of P1k.
Alternatively, this amounts to the triviality of a single element of an H1-cohomology group.
It is this pleasant surprise that makes the theory of Galois descent for hyperelliptic curves
both conceptually simple and effectively computable.

After the proof of the main Theorems 3.14 and 3.19, we turn to algorithmic considerations
and the implementation of our results in Section 4. Our Magma [1] functionality is available
online1. We also discuss how this implementation can be combined with the results of [11].
This concludes the exploration of the arithmetic aspects of the moduli space of hyperelliptic
genus 3 curves started in that article; it shows how to reconstruct any given genus 3 curve from
its invariants over an extension of the field of moduli of minimal degree (which we now know
to be at most 2). This additional functionality has been added to the package g3twists2,
and is included in the current versions of Magma. Section 5 concludes the paper and briefly
discusses the remaining open questions on the descent of hyperelliptic curves.

Table 1 gathers our state of knowledge (we emphasize what is proved in the present
paper).

Notation. We let k be a perfect field of odd characteristic, and we let K denote its algebraic
closure. We denote Γ = Gal(K|k). The curves over K and its subfields that are considered
in this paper will be smooth, proper and geometrically irreducible throughout. We define

1http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/hyp-desc.tgz
2http://perso.univ-rennes1.fr/christophe.ritzenthaler/programme/g3twists_v1.1.tgz
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G Condition

Descent ⇔
Hyperelliptic

descent

Obstruction

to descent

Effective

Method

Not tamely

cyclic
-

Yes

[9]

No

[9]
?

Tamely cyclic

and #G > 1

g odd and

#G odd

No

Ex. 4.6

No

Thm. 3.19

Yes

Alg. 3.20

g even or

#G even

Yes

Thm. 1.6

Yes

Thm. 3.14

Yes

Alg. 3.18

#G > 1
g odd

No

[11]

No

[11]

Generic if g ≤ 27

Rem. 3.23

g even
Yes

[13]

Yes

[13]

Generic if g ≤ 27

Rem. 3.23

Table 1. Issues addressed in the present paper.

a hyperelliptic curve over k as in [11, Sec.1.2]; that is, a curve C over k is hyperelliptic if
and only if it admits a degree 2 morphism to P1K over K. In this case, C admits a unique
corresponding hyperelliptic involution ι for which the quotient C/ι is a conic over k.

In what follows, X denotes a hyperelliptic curve over K of genus g whose field of moduli
with respect to the extension K|k equals k. We denote the group Aut(X) of automorphisms
of X defined over K by G. The reduced automorphism group G = G/ι is the quotient of G
by the central element ι. In the second half of this paper, we will additionally suppose that
G is tamely cyclic, i.e., cyclic of order coprime to the characteristic of K. Finally, given a
curve X and a divisor D, we denote the group of automorphisms α of X over K such that the
pushforward α∗(D) equals D by Aut(X,D).

We will occasionally construct a model of X over an intermediate field k ⊆ L ⊆ K. When
considering such curves over intermediate fields, we restrict our consideration of morphisms
to those defined over L, unless explicitly specified otherwise. We denote the corresponding
automorphism groups by AutL(X), et cetera.

If ϕ : X → Y is a morphism between algebraic curves, then the ramification divisor of ϕ
is the divisor of the points on X that ramify under ϕ. The branch divisor of ϕ is the image
of this divisor under ϕ∗. Note that we use these divisors without multiplicities throughout.

We adopt the usual notation of denoting the Galois action by a superscript, e.g. fσ for the
conjugation on a binary form. We consider this as a left action, which leads to the somewhat
counterintuitive equality fστ = (f τ )σ.

We use the notation Cn (resp. D2n) for the cyclic group with n elements (resp. the dihedral
group with 2n elements. Given two homogeneous binary forms f1 and f2 over a subfield L
of K, we say that f1 ∼ f2 if there exists a λ in L∗ such that f1 = λ · f2. Given a matrix
A =

(
a b
c d

)
over K, we let A.f be the polynomial given by (A.f)(x, z) = f(A−1(x, z)). Finally,

given a binary form f over K, we denote by Aut(f) the group of matrices A up to scalar in
PGL2(K) such that A.f ∼ f .

By ζn, we denote a fixed choice of n-th root of unity in K; these roots are chosen in such
a way to respect the standard compatibility conditions when raising to powers. The cyclic
groups Cn = Z/nZ are always considered as being embedded in PGL2(K), by sending the
generator 1 of Cn to the automorphism acting by (x : z) 7→ (ζnx : z).
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Throughout, we usually denote objects that are defined over the ground field k by a zero-
subscript, so that for example X0 is typically a hyperelliptic curve over k.

1. Descent and hyperelliptic descent

Consider a perfect field k of odd characteristic, and let K be the algebraic closure of k.
Let Γ = Gal(K|k), and let C be a curve over K.

Definition 1.1. The (Galois) field of moduli of C with respect to the extension K|k is the
fixed field of the group {σ ∈ Γ : C is isomorphic to Cσ over K}.
Remark 1.2. For more general extensions K|k, one usually defines the field of moduli of C
with respect to K|k as the intersection of all fields of definition of C that are contained in K.
The Galois field of moduli in the previous definition is then a purely inseparable extension
of this more general field of moduli by [14]. We refer to Section 5 for some open questions
concerning these matters.

Definition 1.3. Let L ⊂ K be a subfield of K containing k. A model of C over L is a
curve C0 over L such that C is isomorphic to C0 over K. The field L is then called a field of
definition for C.

A model of C over its field of moduli is called a descent of C. If such a model exists, then C
is said to descend (to its field of moduli). If not, then we say that there is descent obstruction
for C.

For hyperelliptic curves, one can ask for a more specific form of descent.

Definition 1.4. Let X be a hyperelliptic curve over K of genus g whose field of moduli for
the extension K|k equals k. A hyperelliptic descent of X is a model X0 of X over k that is
defined by a homogeneous polynomial f0(x, z) of degree 2g+2 over k without repeated roots.
More precisely, this is to say that X0 is the desingularization of the curve y2 = f0(x, z) in the
(1, 1, g + 1)-weighted projective (x, z, y)-space over k.

Remark 1.5. There is a slight ambiguity to be noted. According to Definition 1.4, any descent
X0 of a hyperelliptic curve X is in fact hyperelliptic as a curve over k. However, such a descent
is not always a hyperelliptic descent; this is the case if and only if the quotient Q0 of X0 by
its hyperelliptic involution ι0 is isomorphic to P1 over k.

1.1. Equivalence between descent and hyperelliptic descent. A fundamental result
of Mestre [13] tells us that if g is even, then the curve X descends if and only if it descends
hyperelliptically. However, when g ≥ 3 is odd, this need not be the case. A counterexample is
given in the discussion after [11, Prop.4.13]. Due to the simpler nature of hyperelliptic descent,
we now first study in which other cases the equivalence indicated by Mestre continues to hold.

It turns out that the answer to this question depends on the reduced automorphism group
G = Aut(X)/ι. To get an idea of the problem, we first consider the case of trivial G. As
in [11, Sec.4.3], one shows that degree 2 covers of pointless conics over k whose branch locus
is Galois stable give rise to curves over K that have trivial reduced automorphism group and
nontrivial descent obstruction. Therefore in this case there exist curves that descend but do
not descend hyperelliptically. Number fields are an important and naturally occurring class
of fields over which such covers of conics exist.

This previous paragraph can be seen as one of the few exceptions to the main statement
of the following Theorem, which we will prove in this Section, and which we will later use to
give an arithmetic criterion for the existence of a hyperelliptic descent in Theorem 1.13.
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Theorem 1.6. Let X be a hyperelliptic curve over K of genus g whose field of moduli for the
extension K|k equals k. Let G be the reduced automorphism group of X. Then the existence
of a descent of X is equivalent to the existence of a hyperelliptic descent, except possibly when
g is odd and G is tamely cyclic of odd cardinality.

Remark 1.7. In the remaining case where g and #G are both odd, we refer the reader to
Theorem 3.19 for a proof that X always descends. Moreover, in Example 4.6 we will explicitly
construct a hyperelliptic curve with nontrivial reduced automorphism group and field of
moduli Q that descends, but does not descend hyperelliptically.

Remark 1.8. An arithmetic criterion for the existence of a hyperelliptic descent is given in
Theorem 1.13.

In order to prove Theorem 1.6, we will first need a few technical lemmata to deal with the
case where the reduced automorphism group contains an element of order 2. The first such
lemma is Lemma 3.1 from [20], there attributed to Poonen and to Witt before him. Here we
give a stronger version of this result.

Lemma 1.9. Let f : Q0 → B0 be a nonconstant morphism between genus 0 curves over k of
degree n.

(1) If n is even, then B0 is isomorphic with P1 over k.
(2) If n is odd, then B0 is isomorphic with Q0 over k.

Proof. As in the proof of [20, Lem.3.1], one shows that the class of Q0 in the Brauer group of
k is n times that of B0. The result then follows from the fact that these classes are 2-torsion
elements. �

We will now apply Lemma 1.9 in the situation of interest to us. In what follows, our
frequent hypothesis that Q0 not be isomorphic with P1 is not always necessary, but we will
only need the lemmata in this case. Moreover, our current exposition allows for a more unified
treatment of finite and infinite base fields k.

Lemma 1.10. Let Q0 be a genus 0 curve over k that is not isomorphic with P1 over k, and
let α0 ∈ Autk(Q0) be an automorphism of order 2 of Q0 that is defined over k. Then there
exists a k-rational divisor R0 of degree 6 on Q0 such that AutK(Q0,R0) is generated by α0.

Proof. Consider the morphism from the affine space A3 to the moduli space M2 of genus
2 curves that sends a triple (λ, µ, ν) to the curve Xλ,µ,ν given by the hyperelliptic equation
y2 = (x2 − λ)(x2 − µ)(x2 − ν). The results in [4] show that the locus L of A3 for which the
reduced automorphism group of Xλ,µ,ν is strictly larger than C2 is of codimension 1 in A3.

Now let π0 : Q0 → Q0/α0 be the quotient morphism. We choose coordinates over K, that
is to say, K-isomorphisms ϕ : Q0 → P1 and ψ : Q0/α0 → P1. Using the three-transitivity of
AutK(P1), we see that we can do this in such a way that the coordinatization ψπ0ϕ

−1 of the
projection π is given by the degree 2 map (x : z) 7→ (x2 : z2). Let q, r, s be three points on
Q0/α0 that are not branch points of π0. Then under our coordinatization, and considering
A1 as a subvariety of P1 via the coordinate t = x/z, the divisor R = π−10 (r + s + t) on
Q0 is isomorphic over K to the divisor ψ∗(r) + ψ∗(s) + ψ∗(t). Therefore the hyperelliptic
curve defined by taking a degree 2 cover of Q0 ramified over R is isomorphic to the curve
Xψ(r),ψ(s),ψ(t).

The transformation ψ−1(L) of the exceptional locus L ⊂ A3 is a codimension 1 locus in
(Q0/α0)

3. Note that k is infinite by the existence of Q0. This implies that the set of k-rational
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points is dense in Q0/α0, which is isomorphic with P1k by Lemma 1.9(i). Therefore we can
find a rational point (r0, s0, t0) of (Q0/α0)

3 outside the exceptional locus. By construction,
the divisor R0 = π−1(r0 + s0 + t0) now satisfies our requirements. �

Lemma 1.11. Let Q0 be a genus 0 curve over k that is not isomorphic with P1 over k,
and let α0 be an automorphism of order 2 of Q0 that is defined over k. Then there exists a
quadratic extension L of k and an isomorphism ϕ : Q0 → P1 over L such that ϕσ = ϕα for
the generator σ of Gal(L|k).

Proof. Choose R0 as in Lemma 1.10 and consider the pair (Q0,R0), which is defined over k.
Over K, there exists a degree 2 cover X of Q0 branched in R0, which has reduced geometric
automorphism group C2. We emphasize that a priori the cover X need not be defined over
k, even though (Q0,R0) is.

Regardless, the field of moduli of X with respect to the extension K|k equals k. Indeed, the
configuration (Q0,R0), which determines the isomorphism class of X over K, is Galois stable.
Alternatively, if we choose some K-isomorphism i : Q0 → P1, then we have (i∗(R0))

σ =
iσ∗ (Rσ0 ) = iσ∗ (R0) for σ ∈ Γ. This shows that i∗(R0), which is the branch locus of X, and
(i∗(R0))

σ, which is the branch locus of Xσ0 , differ by the K-automorphism iσ∗ i
−1
∗ of P1. We

see that the branch loci of X0 and Xσ0 , considered as degree 2 covers, can be transformed into
one another over K. The hyperelliptic curves X0 and Xσ0 are therefore K-isomorphic.

By [4, Thm.6], this implies that the genus 2 curve X is hyperelliptically defined over k. The
descent morphism X→ X0 to a model X0 over k then yields an isomorphism

ϕ : (Q0,R0) −→ (P1,S0)
over some Galois extension M of k. Then the map Gal(M |k) → AutK(Q0,R0) = 〈α〉 that
sends τ to ϕ−1ϕτ is a homomorphism because AutK(Q0,R0) = Autk(Q0,R0). Indeed, we
have ϕ−1ϕτ1τ2 = ϕ−1ϕτ1(ϕ−1)τ1ϕτ1τ2 = ϕ−1ϕτ1ϕ−1ϕτ2 .

The kernel of this homomorphism is not all of Gal(M |k), because that would imply that
Q0 is isomorphic to P1 over k. So this kernel cuts out a quadratic extension L of k. By
construction, ϕ is then defined over L, and we have that ϕσ = ϕα0. �

Proposition 1.12. Let X0 be a hyperelliptic curve over k. Suppose that the reduced auto-
morphism group G of X contains an element α0 of order 2 that is defined over k. Then X0,
considered as a curve over K, descends hyperelliptically to k.

Proof. Let ι0 be the hyperelliptic involution of X0. Then ι0 is defined over k, because it is
the unique involution of X0 for which the quotient Q0 = X0/ι0 is of genus 0. Consider Q0 as
a curve over k. If Q0 is isomorphic to P1 over k, then we are done. So assume the contrary.

Let R0 be the branch locus of the quotient morphism X0 → Q0. Let α0 be the nontrivial
geometric automorphism of (Q0,R0); it is unique by hypothesis. By uniqueness, α0 is defined
over k, as are Q0 and R0. Choose L and ϕ as in Lemma 1.11. The divisor S0 = ϕ∗(R0) is
L-rational, but it is even k-rational since

Sσ0 = (ϕ∗(R0))
σ = ϕσ∗ (Rσ0 ) = (ϕα)∗(R0) = ϕ∗(α∗(R0)) = ϕ∗(R0) = S0.

Now the degree 2 cover of P1 with branch locus S0 is K-isomorphic to X. So since X is
K-isomorphic to a degree 2 cover of P1 branching over a k-rational divisor, it admits a
hyperelliptic equation over k. �

Proof of Theorem 1.6. The case of even g is due to Mestre in [13], and Huggins proved the
result in the case where G is not tamely cyclic in [10, Thm.5.4]. As for the case where G
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is tamely cyclic of even order, this yields a pair (Q0,R0) as in the proof of Proposition 1.12
whose reduced automorphism group is cyclic of even cardinality. Such a subgroup has a
unique element α0 of order 2, which is then defined over k by uniqueness. It now suffices to
invoke Proposition 1.12. �

1.2. An arithmetic criterion for hyperelliptic descent. We can now characterize arith-
metically whether a hyperelliptic curve X allows a hyperelliptic descent. Denote the quotient
X/G by B. By construction, B has a canonical Weil descent datum. Let B0 be the corre-
sponding model over k; its k-isomorphism class depends only on the K-isomorphism class of
X. It is well-known (cf. the discussion in [5, Cor.2.3]) that the existence of a k-rational point
on B0 implies that X descends.

Theorem 1.13. Let X be a hyperelliptic curve over K of genus g whose field of moduli for
the extension K|k equals k. Let G be the reduced automorphism group of X. Then X descends
hyperelliptically if and only if the canonical model B0 of the quotient B = X/G has a k-rational
point.

Proof. If X admits a hyperelliptic descent X0, then B0 has a rational point. Indeed, the curve
B0 can then be obtained as the quotient of Q0 = X0/ι0 ∼= P1 by the reduced automorphism
group G0 of X0. Note that G0 is defined over k, though its individual elements might not be.

Conversely, if B0 has a k-rational point, then a descent X0 of X exists by [5]. In light
of Theorem 1.6, it then only remains to consider the case where the reduced automorphism
group of X0 is tamely cyclic of odd order. So again let Q0 be the quotient of X0 by its
hyperelliptic involution. We get a map Q0 → B0 of odd degree, so that Lemma 1.9(ii) allows
us to conclude that Q0 is isomorphic with P1 over k as well. Therefore X0 is a degree 2 cover
of P1 over k, so that X indeed descends hyperelliptically. �

The next proposition gives a concrete criterion for the presence of a rational point on B0,
which we will use in Section 3. As usual, we define the twist of a curve C over k to be a
curve C′ over k that is isomorphic with C over K; we refer to [15, Ch.III.1] for a correspon-
dence between the set of isomorphism classes of twists of C and the Galois cohomology set
H1(Gal(K|k),AutK(C)).

Proposition 1.14. Let L be a quadratic extension of k, and let σ be the nontrivial element
of Gal(L|k). Let α0 ∈ Autk(P1) be a k-automorphism of P1 of order two defined over k,
represented by an element M0 of GL2(k). Let cK be the element of H1(Gal(K|k),AutK(P1))
obtained by inflating the cocycle cL ∈ H1(Gal(L|k),AutL(P1)) = Hom(Gal(L|k),AutL(P1))
that sends σ to α0. Then the twist of P1 over k determined by cK is isomorphic to P1 over k
if and only if −det(M0) is a norm for the extension L|k.

Proof. Since the characteristic polynomial of M0 is x2 − ν0 for some ν ∈ k, its Frobenius
companion matrix equals

(
0 ν0
1 0

)
. The twist corresponding to cK is isomorphic to P1 over k

if and only if cK is a coboundary. This is the case if and only if there exists an invertible
matrix N over L such that we have the equality NσM0 = N in PGL2(L), or more explicitly,
if there exists some scalar λ ∈ L such that

Nσ = λN
(
0 ν0
1 0

)−1
. (1.1)

Writing out (1.1) and eliminating, we get that λ ∈ L and λσλ = ν0, which shows that our
condition is necessary. Conversely, if such a λ exists, then we can take

N =
(
1 λσ
β λσβσ

)
,
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where β is any generator of L over k. �

2. Invariants

Let X be a hyperelliptic curve of genus g over K, defined by a homogeneous binary form
f over K of degree 2g + 2. Suppose that the reduced automorphism group G of X over
K is tamely cyclic of order n > 1. In this section we will construct invariants of f that
can be used to determine the descent obstruction (general or hyperelliptic) for X, as well
as a corresponding descent of X if one of these obstructions vanishes. To this end, we first
construct geometric normal forms for f . Modulo a normalization that we do not make, the
discussion at the beginning of this section is completely analogous to that in [7, Sec.2].

Since we assumed that the reduced automorphism group of X is tame, we can diagonalize
one of its generators α over K. Making the corresponding change of basis if necessary, we
may therefore suppose that, using the notation in the introduction,

G = Cn = 〈α〉 . (2.1)

The elements of G then only have fixed points at (0 : 1) and (1 : 0). Since we know that the
binary form f defining X is of even degree without repeated roots, this implies that f has one
of the normal forms over K figuring in the following definition.

Definition 2.1. Let n,m be positive integers. A binary form f of even degree is said to be
of type (0, n,m), resp. (1, n,m), resp. (2, n,m), if it is of the form

f = amx
mn + am−1x

(m−1)nzn + . . .+ a1x
nz(m−1)n + a0z

mn, resp. (2.2)

f = z(amx
mn + am−1x

(m−1)nzn + . . .+ a1x
nz(m−1)n + a0z

mn), resp. (2.3)

f = xz(amx
mn + am−1x

(m−1)nzn + . . .+ a1x
nz(m−1)n + a0z

mn). (2.4)

for some m and n, while also satisfying the following properties:

(i) Aut(f) coincides with the group Cn from (2.1), and
(ii) f has no repeated linear factors.

Remark 2.2. We impose condition (ii) in Definition 2.1 to ensure that the forms f under
consideration define non-singular hyperelliptic curves. Condition (i) will hold for generic
forms f as in (2.2)-(2.4). It is important that we restrict ourselves to this generic case by
imposing (i), since the statement of our Theorem 3.14 essentially depends on the value of m,
which in turn depends on that of n once the degree of f is fixed.

As in [7] or [2, Stz.5.2], a calculation shows the following.

Proposition 2.3. The automorphism groups Aut(X) of the hyperelliptic curves X : y2 =
f(x, z) defined by the forms in Definition 2.1 are as follows.

(i) If f is of type (0, n,m), then Aut(X) is isomorphic to the group C2 ×Cn, generated by
(x : z : y) 7→ (ζnx : z : y) and (x : z : y) 7→ (x : z : −y).

(ii) If f is of type (1, n,m), then Aut(X) is isomorphic to the group C2n, generated by
(x : z : y) 7→ (ζnx : z : −y).

(iii) If f is of type (2, n,m), then Aut(X) is isomorphic to the group C2n, generated by
(x : z : y) 7→ (ζnx : z : ζ2ny).

Our methods now diverge from those of [7]; we do not further normalize to suppose am =
a0 = 1 so as to avoid breaking symmetry. This will make it easy to transform f to a normal
form over an at worst quadratic extension of the base field k, as we shall see Proposition 3.4.
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2.1. Restricting isomorphisms. We start by determining the possible isomorphisms be-
tween two binary forms of type (i, n,m). Let T ⊂ GL2(K) be the subgroup of diagonal
matrices and define

D = 〈T, ( 0 1
1 0 )〉 , (2.5)

which is an extension of Z/2Z by T .

Proposition 2.4. Consider two binary forms f, f ′ of type (i, n,m) with n > 1. Suppose that
A ∈ GL2(K) is such that f ′ ∼ A.f . Then A ∈ D, and moreover A ∈ T if i = 1.

Proof. Under the hypotheses of the Proposition, we have that AgA−1f ′ ∼ AgA−1Af ∼ Agf ∼
Af ∼ f ′ for all g ∈ Aut(f), or in other words AAut(f)A−1 ⊂ Aut(f ′). Since hypothesis (i) in
Definition 2.1 is verified for both f and f ′, we therefore see that ACnA

−1 = Cn, showing that
A is indeed in the normalizer of Cn. The inclusion A ∈ D then results from the description
of this normalizer in [10, Lem.3.3].

In the case i = 1 we can conclude that A ∈ T because the matrix ( 0 1
1 0 ) sends z to x,

which is impossible since f being of type (1, n,m) implies that the coefficients in (2.3) satisfy
ama0 6= 0. �

In the following exposition, we will first focus on the normal form (2.2) with m = 2` even.
The other cases are discussed in the final Section 2.4.

2.2. Homogeneous diagonal invariants. We want to develop the invariant theory of bi-
nary forms of type (0, n, 2`) under the action of the group D. We first consider the action of
the simpler index 2 subgroup T of D. On the coefficients in (2.2), the action of an element(
λ 0
0 µ

)
of T is given by

(am, am−1, . . . , a1, a0) 7−→ (λmnam, λ
(m−1)nµnam−1, . . . , λ

nµ(m−1)na1, µ
mna0). (2.6)

We now wish to consider the homogeneous invariants under this action, that is, those
polynomial expressions that are actually invariant under the action of the proper subgroup
T ∩ SL2(K) of T . The ring of these invariants admits a weight decomposition under the
action of the full group T ; an element I is of weight w if A ∈ T sends I to det(I)w`I. More
intuitively, this simply means that I has degree w as a homogeneous polynomial.

We will construct small systems of invariants that allow us to distinguish the orbits of binary
forms of type (0, n,m) under the action of T . First we consider the following homogeneous
invariants for the action of T , which will turn out to suffice for distinguishing most of these
binary forms:

Degree 1 : J1 = a`,

Degree 2 : J2,0 = a2`a0, J2,1 = a2`−1a1, . . . , J2,`−1 = a`+1a`−1,

Degree 3 : J3 = a`+2a
2
`−1

Degree 4 : J4 = a`+3a
3
`−1

...
Degree `+ 1 : J`+1 = a2`a

`
`−1.

The first index for these invariants indicates their homogeneous degree.

Definition 2.5. We call the invariants J1, J2,0, . . . , J2,`−1, J3, . . . J`+1 defined above the generic
homogeneous diagonal invariants (for binary forms of type (0, n,m)).

10



Example 2.6. For forms f of type (0, n, 4) given by f = a4x
4n+a3x

3nzn+a2x
2nz2n+a1x

nz3n+
a0z

4n, the generic homogeneous diagonal invariants are given by J1 = a2, J2,0 = a4a0, J2,1 =
a3a1 and J3 = a4a

2
1. Note that the case n = 2 yields a class of hyperelliptic genus 3 curves

with extra involutions.

Using the generic homogeneous dihedral invariants already suffices to deal with most binary
forms of type (0,m, n):

Proposition 2.7. Suppose that f and f ′ are binary forms of type (0, n,m) such that

a2`, a2`−1, . . . a`+2, a`−1 6= 0

and

a′2`, a
′
2`−1, . . . a

′
`+2, a

′
`−1 6= 0.

If the generic homogeneous diagonal invariants J and J ′ of f and f ′ define the same point in
the corresponding weighted projective space, then there exists an A ∈ T such that f ′ ∼ A.f .

Proof. Scaling if necessary, we may suppose that J and J ′ are equal. Then a suitable modifi-
cation by a matrix of the form

(
λ 0
0 λ−1

)
can be used to ensure that a`−1 = a′`−1. This does not

affect the equality of J and J ′ since this matrix has trivial determinant. Our result is now
clear, since the other ai can be read off from the values of the generic homogeneous diagonal
invariants once a`−1 6= 0 is known. �

In the non-generic case (i.e., when one of the conditions of Proposition 2.7 is not satisfied),
the construction of the appropriate homogeneous diagonal invariants is slightly more compli-
cated. To proceed in these cases, we first note that the set of indices of the coefficients aj of
f that are nonzero do not change under the action of T , and also that a0 and a2` are never
zero. Considering these indices allows us to determine which small set of modified invariants
we need to use.

Definition 2.8. Let f be a binary form of type (0, n,m) as in (2.2). Given an integer
r ≤ m + 1 and a tuple S = (s1, . . . , sr) of distinct integers in {0, . . . ,m}, we say that f is
S-admissible if

(S1) as 6= 0 for all s ∈ S and
(S2) if one of ai, a2`−i is nonzero, then exactly one element of {i, 2`− i} is in S.

Clearly every binary form f of type (0, n,m) is S-admissible for some S. We now construct
the homogeneous invariants of T that are monomials in the {as : s ∈ S}.

Proposition 2.9. Under the hypotheses (S1)-(S2), associate with S the single-row matrix
MS = (s1 − `, . . . , sr − `) over Q. Then the elements of ker(MS) ∩ Nr are in one-to-one
correspondence with the homogeneous invariants of T for the family of S-admissible binary
forms that are monomials in {as : s ∈ S}, by the association v ↔

∏r
i=1 a

vi
si .

Proof. This follows from the transformation behavior of the exponents of the coefficients ai,
which is given in (2.6). �

Generalizing Proposition 2.7, it turns out that together with the invariants J1, J2,0, . . . J2,`−1
these new homogeneous diagonal invariants allow one to reconstruct an S-admissible binary
form f , as the following proposition shows.
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Proposition 2.10. Let f and f ′ be two S-admissible binary forms of type (0, n,m). There
exists a finite subset R of the invariants constructed in Proposition 2.9 with the property that
there exists an A ∈ T such that f ′ ∼ A.f if and only if the values of the invariants of f and
f ′ at R ∪ {J2,0, . . . J2,`−1} determine the same point in the corresponding weighted projective
space.

Proof. We will assume that #S > 1, since the case S = 1 is easy. Before starting our
construction, we modify S; if MS consists completely of either only strictly positive or only
strictly negative elements, then we change the entry 2` of S to 0 or inversely. Note that f
and f ′ will still be S-admissible after this change since a0a2` 6= 0.

We first construct a Z-basis of the Z-module KS = ker(MS) ∩ ZS used in Proposition 2.9.
The module KS is torsion-free, since it is a submodule of a torsion-free Z-module. Further-
more, the quotient ZS/KS is torsion-free as well. Indeed, suppose that nx ∈ KS for some
n ∈ Z and x ∈ ZS . Then MS(nx) = 0, so MS(x) = 0 and x ∈ ker(MS) ∩ ZS = KS . We thus
have an exact sequence of finitely generated free Z-modules

0 −→ KS −→ ZS −→ ZS/KS −→ 0. (2.7)

Choose a basis {vi}#S−1i=1 of KS . Then since sequence (2.7) is split, there exists a vector

w ∈ ZS such that ZS has basis {vi}#S−1i=1 ∪ {w}.
We will now construct an element v ∈ KS such that all the entries of v are strictly positive.

To accomplish this, we note that not all the entries of MS have the same sign, since in this case
f would have repeated roots. Therefore, given an index i of MS , we can find another index
j such that (MS)i and (MS)j have the opposite sign. We can now construct an elements of
KS whose only nontrivial entries are at i and j, with values (MS)j and −(MS)i. Multiplying
by −1 if necessary, we get an element of NS ∩KS that is nontrivial at the index i. Summing
over the indices i now gives the requested element v of KS .

We now claim that there exists a basis {vi}#S−1i=1 ∪ {w} of ZS all of whose elements are in

NS . To see this, consider the element v constructed in the previous paragraph and choose
v1 such that Nv1 = Qv ∩ NS . Then v1 also has all of its entries strictly positive. Moreover,

v1 can again be completed to a basis {vi}#S−1i=1 of KS because the same argument used to
produce the sequence (2.7) shows the existence of a split exact sequence of free Z-modules

0 −→ Zv1 −→ KS −→ KS/Zv1 −→ 0.

It then only remain to add sufficiently large multiples of v1 to the other elements of the

resulting basis. This yields the requested basis {vi}#S−1i=1 of KS , which we can augment to a

basis {vi}#S−1i=1 ∪ {w} of ZS as before. Moreover, by adding multiples of the vi to w, we can

insure that w is in NS as well, which implies our claim.
After these preparations, the proof of the proposition is straightforward. The monomials

corresponding to the basis elements vi under the correspondence in Proposition 2.9 will now
play the role of the generic homogeneous diagonal invariants; they will turn out to distinguish

the orbits under T of S-admissible binary forms. We let t =
∏#S
i=1 a

wi
Si

be the monomial

corresponding to w. Since w is not in KS , we can use matrices of the form
(
λ 0
0 λ−1

)
as in the

proof of Proposition 2.7 to suppose that the value of t is the same for f and f ′ without affecting
the value of the invariants corresponding to the vi. And as in that same proof, knowing t
and the value of these invariants along with the invariants J1, J2,0, . . . J2,`−1 determines the

coefficients of the binary forms involved. Indeed, because ZS has basis {vi}#S−1i=1 ∪ {w}, we
12



can reconstruct the nonzero coefficients {as : s ∈ S}. The invariants J2,0, . . . J2,`−1 then
determine the other coefficients by property (S2) in Definition 2.8. �

Definition 2.11. Given a binary form f of type (0, n,m) and any tuple S for which f is
S-admissible, we call any of the finite sets R∪{J2,0, . . . J2,`−1} constructed in Proposition 2.9
the homogeneous diagonal invariants of f .

Remark 2.12. It may seem unnatural to modify invariants depending on the vanishing behav-
ior of the coefficients of f , but in practice this is very useful, since the parametrization from
Corollary 2.13 is crucial for our reconstruction purposes. We again emphasize that once an
initial binary form f of type (0, n,m) is given, one sees immediately which invariants should
be used; indeed, the set S that one can take in Definition 2.8 are purely determined by the
vanishing behavior of the coefficients of f .

Corollary 2.13. The set of S-admissible binary forms with given S-homogeneous diagonal
invariants is a rational space of dimension 1.

Proof. This is clear from the proof of Proposition 2.10. Indeed, the given set is parametrized
by the monomial corresponding to the complementary vector w. �

Example 2.14. The generic homogeneous diagonal invariants from Definition 2.5 correspond
to the case where S = (2`, 2`− 1, . . . , `+ 2, `− 1), so MS = (`, `− 1, . . . , 2,−1). The resulting
kernel KS has an ordered basis consisting of the positive elements

(1, 0, 0, . . . , 0, 0, `),
(0, 1, 0, . . . , 0, 0, `− 1),

. . .
(0, 0, 0, . . . , 0, 1, 2).

corresponding to the generic invariants J`+1, J`, . . . , J3, respectively. The complementary
element (0, 0, . . . , 0, 1) corresponds to a`−1, which can indeed be used to parametrize the
corresponding rational spaces, as we have seen in the proof of Proposition 2.7.

Example 2.15. Let ` = 6 and take S = (12, 8, 3, 1). A basis for KS in N4 is given by
{(3, 0, 1, 3), (3, 1, 0, 4), (5, 0, 0, 6)}, and a complementary element w is furnished by (1, 0, 0, 1).
This shows that for binary forms f of type (0, n,m) such that

a10 = a7 = a5 = a2 = 0

and a8, a3, a1 6= 0, a set of S-homogeneous diagonal invariants is furnished by

J1 = a6,

J2,0 = a12a0, J2,1 = a11a1, J2,3 = a9a3, J2,4 = a8a4,

J7 = a312a3a
3
1,

J8 = a312a8a
4
1,

J11 = a512a
6
1.

Moreover, we can use w = a12a1 to parametrize the corresponding rational spaces of binary
forms with given S-homogeneous invariants.

Remark 2.16. A uniform approach to the problem is also available, namely by constructing
the full invariant algebra of the action of T on the general binary form (2.2) in Definition 2.1.
This can be done by writing down the invariant monomials of given weight, adding the result
to the set of generator if it is not an expression in the monomials already found. By a result
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of Wehlau [18], this process always terminates at degree m − 1. A script to generate this
invariant algebra is available online1. For the case m = 8, it is generated by the expressions

Degree 1 : a4,

Degree 2 : a7a1, a6a2, a5a3, a8a0,

Degree 3 : a8a3a1, a7a5a0, a7a3a2, a6a5a1,

a8a
2
2, a

2
6a0, a6a

2
3, a

2
5a2,

Degree 4 : a8a6a
2
1, a

2
7a2a0, a8a5a2a1, a7a6a3a0,

a7a5a
2
2, a

2
6a3a1, a7a

3
3, a

3
5a1,

a8a
2
3a2, a6a

2
5a0,

Degree 5 : a28a2a
2
1, a

2
7a6a

2
0, a8a

2
5a

2
1, a

2
7a

2
3a0,

a27a
3
2, a

3
6a

2
1, a8a

4
3, a

4
5a0,

Degree 6 : a28a5a
3
1, a

3
7a3a

2
0,

Degree 7 : a38a
4
1, a

4
7a

3
0 .

The non-generic invariants constructed in Proposition 2.9 are of course expressions in these
monomials. Theoretically, this uniform approach is much more satisfying, but the results get
unwieldy for bigger m; the number of invariants runs into the hundreds for m ≥ 12, whereas
by contrast, the number of homogeneous invariants constructed above is always at most `+1,
no matter which subset S of coefficients is considered.

2.3. Homogeneous dihedral invariants. We resume the main thread of our argument.
Now that we have determined useful small sets of invariants for the action of the normal
subgroup T ⊂ D of index 2, we can construct the invariants for D itself by a symmetrization.
Before starting, we need an elementary result.

Lemma 2.17. Let n ≥ 1, and let X be the affine space with coordinates (s1, . . . , sn, t1, . . . tn).
Define an action of the cyclic group C2 on X by si ↔ ti. Consider the invariants {si +
ti}ni=1 ∪ {sitj + sjti}ni,j=1 of this action. Then the orbit under the action of C2 of a point
x ∈ X is determined by these invariants.

Proof. Certainly the subset of invariants {si+ti}ni=1∪{2siti}ni=1 determines x = (s1, . . . , sn, t1, . . . tn)
up to some sequence of exchanges si ↔ ti. We have to show that the additional invariants
suffice to tell apart a sequence of such exchanges, except when either none or all of the si and
ti are exchanged. So suppose that we have two indices i and j where si 6= ti and sj 6= tj , and
we exchange si and ti while leaving the coordinates with index j fixed. Then equality of the
invariants yields sitj + sjti = titj + sjsi, hence (si− ti)(sj − tj) = 0, a contradiction with our
hypothesis. �

By using Lemma 2.17, we can now find small sets of homogeneous invariants that can be
used to distinguish orbits of binary forms f of type (0, n,m). First we consider the generic
case. Let J ′i denote the transformation of the invariant Ji under the involution ai 7→ am−i on
the coefficients, and let

I1 = J1,

I2,0 = J2,0, I2,1 = J2,1, . . . , I2,`−1 = J2,`−1,
14



I3,3,1 = J3 + J ′3, I3,3,2 = J3J
′
3,

...
...

I`+1,`+1,1 = J`+1 + J ′`+1, I`+1,`+1,2 = J`+1J
′
`+1,

I3,4 = J3J
′
4 + J ′3J4, I3,5 = J3J

′
5 + J ′3J5, . . . , I3,`+1 = J3J

′
`+1 + J ′3J`+1,

I4,5 = J4J
′
5 + J ′4J5, I4,6 = J4J

′
6 + J ′4J6, . . . , I4,`+1 = J4J

′
`+1 + J ′4J`+1,

...

I`,`+1 = J`J
′
`+1 + J ′`J`+1.

These expressions are homogeneous invariants under the action of D. Though D is not a
dihedral group, we still employ the following terminology, which was introduced in [7].

Definition 2.18. We call the symmetrized invariants I· defined above the generic homoge-
neous dihedral invariants (for binary forms of type (0, n,m)).

Example 2.19. For the forms f of type (0, n, 4) considered in Example 2.19, the generic
homogeneous diagonal invariants are given by I1 = J1 = a2, I2,0 = J2,0 = a4a0, I2,1 = J2,1 =
a3a1, I3,3,1 = J3 + J ′3 = a4a

2
1 + a23a0 and I3 = J3J

′
3 = a4a

2
3a

2
1a0.

Remark 2.20. As long as J3 6= J ′3 the invertible linear systems in Ji and J ′i given by consid-
ering two of the invariants Ii,i,1 = Ji + J ′i and I3,i = J3J

′
i + J ′3J

′
i are invertible. Therefore, we

can usually even get by with a further subset of these generic homogeneous dihedral invari-
ants in our calculations, namely I1, I2,0 . . . I2,`+1, I3,3,1, . . . I`+1,`+1,1, I3,3,2, I3,4, . . . I3,`+1. In
Example 4.1, we take this approach.

The symmetrization process is similarly straightforward for the S-homogeneous diagonal
invariants, so we can also construct homogeneous dihedral invariants in the non-generic cases.

Definition 2.21. Given a binary form f of type (0, n,m) with m = 2` even and any tuple
S for which f is S-admissible, we call the symmetrization of any of the finite sets R ∪
{J2,0, . . . J2,`−1} constructed in Proposition 2.9 the homogeneous dihedral invariants of f .

Proposition 2.22. Let T = (0, n,m) be a type with m = 2` even.

(1) Suppose that f and f ′ in (2.2) of type T are such that
(i) either a2`, a2`−1, . . . a`+1, a`−1 6= 0 or a`+1, a`−1, . . . a1, a0 6= 0 and

(ii) either a′2`, a
′
2`−1, . . . a

′
`+1, a

′
`−1 6= 0 or a′`+1, a

′
`−1, . . . a

′
1, a
′
0 6= 0.

If the generic homogeneous dihedral invariants I and I ′ of f and f ′ define the same
point in the corresponding weighted projective space, then there exists an A ∈ D such
that f ′ ∼ A.f .

(2) For general S-admissible f and f ′ whose invariants define the same point in the cor-
responding weighted projective space, the same conclusion holds.

Proof. Note that the conditions of part (i) of the proposition are indeed invariant under the
action of D. Using Lemma 2.17, we see that replacing f ′ by its transformation by ( 0 1

1 0 ) if
necessary, we may assume that f and f ′ have the same homogeneous diagonal invariants.
Then the parametrization by a`−1 in Proposition 2.7 allows us to conclude.

For general forms, the argument is essentially the same, replacing the parametrizing element
a`−1 by the monomial corresponding to w in Proposition 2.10. Note that forms in the same
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D-orbit are indeed S-admissible for the same S, so that the same set of homogeneous dihedral
invariants can be used. �

The construction of general homogeneous dihedral invariants is perhaps best illustrated by
an example.

Example 2.23. Consider the binary forms f of type (0, n, 12) such that both a2 = a5 = a7 =
a10 = 0 and either a11, a9, a4 6= 0 or a8, a3, a1 6= 0. The symmetrization of the invariants in
Example 2.23 yields the following S-homogeneous dihedral invariants for this family:

I1 = a6,

I2,0 = a12a0, I2,1 = a11a1, I2,3 = a9a3, I2,4 = a8a4,

I7,7,1 = a611a
5
0 + a512a

6
1, I7,7,2 = a512a

6
11a

6
1a

5
12,

I8,8,1 = a311a9a
3
0 + a312a3a

3
1, I8,8,2 = a312a

3
11a9a3a

3
1a

3
0,

I11,11,1 = a411a4a
3
0 + a312a8a

4
1, I11,11,2 = a312a

4
11a8a4a

4
1a

3
0,

I7,8 = a312a
6
11a3a

3
1a

5
0 + a512a

3
11a9a

6
1a

3
0, I7,11 = a312a

6
11a8a

4
1a

5
0 + a512a

4
11a4a

6
1a

3
0,

I8,11 = a312a
3
11a9a8a

4
1a

3
0 + a312a

4
11a4a3a

3
1a

3
0.

Remark 2.24. The homogeneous dihedral invariants of a general binary octavic form

f = a8x
8 + a7x

7z + . . .+ a1xz
7 + a0z

8

are the following:

Degree 1 : i1 = a4,

Degree 2 : i2 = a0 a8, j2 = a1 a7, k2 = a2 a6, l2, = a3 a5,

Degree 3 : i3 = a0 a5 a7 + a1 a3 a8, j3 = a0 a6
2 + a2

2a8,
k3 = a1 a5 a6 + a2 a3 a7, l3 = a2 a5

2 + a3
2a6,

Degree 4 : i4 = a0 a5
2a6 + a2 a3

2a8, j4 = a0 a3 a6 a7 + a1 a2 a5 a8,
k4 = a0 a2 a7

2 + a1
2a6 a8, l4 = a1 a5

3 + a3
3a7,

m4 = a1 a3 a6
2 + a2

2a5 a7,

Degree 5 : i5 = a0
2a6 a7

2 + a1
2a2 a8

2, j5 = a0 a5
4 + a3

4a8,
k5 = a0 a3

2a7
2 + a1

2a5
2a8, l5 = a1

2a6
3 + a2

3a7
2,

Degree 6 : i6 = a0
2a3 a7

3 + a1
3a5 a8

2,

Degree 7 : i7 = a0
3a7

4 + a1
4a8

3.

Since there is an inclusion of invariant rings

k[a0, a1, . . . , a8]
SL2(K) ⊂ k[a0, a1, . . . , a8]

D∩SL2(K),

the Shioda invariants [17] can be expressed as polynomials in the generic homogeneous dihe-
dral invariants. For example, the degree 2 Shioda invariant can be written as

1

70
i1

2 + 2 i2 −
1

4
j2 +

1

14
k2 −

1

28
l2,

whereas the degree 3 invariant equals

9

34300
i1

3 +
3

35
i1 i2 +

9

560
i1 j2 −

33

13720
i1 k2 −

27

27440
i1 l2 −

3

56
i3 +

9

392
j3 −

3

784
k3 +

9

5488
l3.

These formulas, as well as formulas expressing the dihedral invariants in terms of the Shioda
invariants, are available online 1.
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2.4. Homogeneous dihedral invariants in the remaining cases. We now discuss the
invariants that have to be used in the remaining cases. First we treat binary forms of type
(0, n,m) for odd m (recall that in the previous subsections we assumed m to be even). Only
small modifications are needed; the generic homogeneous diagonal invariants are given by

J2,0 = a2`−1a0,
J2,1 = a2`−2a1, . . . , J2,`−1 = a`a`−1,
J4 = a`+1a

3
`−1

...

J2` = a2`−1a
2`−1
`−1 .

These invariants suffice as long as a2`−1, a2`−2, . . . , a`+1, a`−1 6= 0. Symmetrizing with respect
to the involution ai ↔ am−i, one again obtains the generic homogeneous dihedral invariants
for odd m. Homogeneous invariants for the non-generic cases can be also constructed as
for even m as well; the only difference is that the matrix MS is now given by (2(s1 − `) +
1, . . . , 2(sr − `) + 1).

The homogeneous dihedral (and diagonal) invariants for binary forms of type (2, n,m) are
exactly the same as expressions in the ai as for those of type (0, n,m). Finally, for the binary
forms of type (1, n,m), such, we only need to consider the action of T when constructing our
invariants in light of the second part of Proposition 2.4. But we know that the (identical)
homogeneous diagonal invariants considered for the types (0, n,m) and (2, n,m) already suffice
to distinguish the orbits under this group. So we also know how to construct a finite (and
small) set of invariants for these curves.

3. Explicit obstruction and descent

In this section, we will use the homogeneous dihedral invariants from Section 2 to obtain an
explicit arithmetic description of the descent obstruction for hyperelliptic curves with tamely
cyclic reduced automorphism group. If this obstruction vanishes, then we also indicate how
an explicit descent can be obtained. To phrase our results in a concise way, we first define
the type of a hyperelliptic curve with tamely cyclic reduced automorphism group.

Definition 3.1. Let X be a hyperelliptic curve over K. If X is isomorphic to a hyperelliptic
curve associated with a binary form of type (i, n,m) over K (as in Definition 2.1), then X will
be said to be of type (i, n,m).

Remark 3.2. Let X be a hyperelliptic curve of type (i, n,m), Then i equals the number of
Weierstrass points fixed by G = Aut(X). The quantity n equals the cardinality of the reduced
automorphism group of X, since as in [11, Sec.1.2], one can use the fact that the hyperelliptic
involution is central to prove that the group G is canonically isomorphic with Aut(f). Finally,
if n > 1, then m equals the cardinality of the divisor of branch points of X → X/G of order
2. Conversely, any binary form of type (i, n,m) determines a hyperelliptic curve with these
geometric properties.

Note that the genus g of a hyperelliptic curve X of type (i, n,m) is determined by the
equality 2g + 2 = mn+ i.

In what follows, we let X denote a hyperelliptic curve over K of type (i, n,m) whose field
of moduli for the extension K|k equals k. In Theorem 1.6, we have proved that the existence
of a descent implies the existence of a hyperelliptic descent except possibly if both n and g
are odd. We now accordingly divide the issue of explicit descent into three cases.
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(i) In the case where n > 1, Section 3.1 shows how to express the hyperelliptic descent
obstruction in terms of the homogeneous dihedral invariants. Moreover, we discuss in
Section 3.2 how to calculate a hyperelliptic descent explicitly if this obstruction vanishes.

(ii) In the case where n and g are both odd, Section 3.3 shows that the curve always descends,
though perhaps not hyperelliptically. Moreover, we discuss how to calculate such a
descent explicitly.

(iii) In the case where n = 1, Section 3.4 gives a generic method to calculate the (hyperel-
liptic) descent obstruction, and a corresponding descent if this obstruction vanishes. Its
main approach is based on the covariant method developed in [12].

To conclude these considerations, we show in Section 3.5 how essentially all counterexam-
ples to (hyperelliptic) descent can be constructed.

3.1. Explicit hyperelliptic descent obstruction. In what follows, we will let f be a binary
form of type (i, n,m) with n > 1. We denote homogeneous diagonal (resp. dihedral) invariants
of f by J(f) (resp. I(f)). We will often consider these tuples J(f), I(f) invariants as points in
the corresponding weighted projective spaces. As in [11, Sec.1.3], one can associate a unique
representative with such a point p, which we shall here call a normalized representative. This
normalized representative is a tuple of coordinates that represents p whose entries are defined
over the same field as the point p when the latter is considered as an element of a weighted
projective space.

Example 3.3. Let p = (3 : 6
√

3), considered as a point in the weighted projective (2, 3)-
space. Then p is defined over Q, since its conjugate (3 : −6

√
3) can be obtained from p by

multiplying with the scalar −1. While the tuple (3, 6
√

3) representing p is not defined over
Q, its normalized representative from [11, Sec.1.3] is; this representative is given by (14 ,

1
4).

Conversely, note that once a curve X over K with tamely cyclic reduced automorphism
group is given explicitly, it is possible to quickly determine a binary form of the corresponding
type (as in (2.2)), (2.3) or (2.4)) that defines X over K by using the methods from [12, Sec.2].
Indeed, using the methods in loc. cit. one diagonalizes the cyclic reduced automorphism group
Cn of X into our standard embedding of the group Cn.

Proposition 3.4. (i) The normalized representative of the homogeneous dihedral invari-
ants I(f) of f is defined over k.

(ii) The normalized representative of the homogeneous diagonal invariants J(f) of f is de-

fined over a quadratic extension L = k(
√
d) of k.

(iii) The binary form f is isomorphic over K to a binary form fL of the same type that is
defined over L.

Proof. (i) By Proposition 2.4 the homogeneous dihedral invariants of f and its conjugates all
define the same point in the corresponding weighted projective space, since by construction
these invariants transform by suitable powers of a scalar under the action of D. It therefore
suffices to invoke the uniqueness of the canonical representative from [11, Sec.1.4].

(ii) By Lemma 2.17, given a tuple of homogeneous dihedral invariants, there are at most
2 tuples of homogeneous diagonal invariants of which these can be the symmetrization. As
such, the Galois group fixing these tuples defines an at worst quadratic extension of k.

(iii) One uses the rational parametrization in Corollary 2.13. �

Definition 3.5. We call the field extension L of k in Proposition 3.4 the invariant extension
defined by f .
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Corollary 3.6. The curve X defined by f descends to the at most quadratic invariant exten-
sion L of k.

Proposition 3.7. Generically, the invariant extension L is given by k(
√
d), where d =

I23,3,1 − 4I3,3,2 if m is even and d = I24,4,1 − 4I4,4,2 if m is odd.

Proof. This follows because when m is even (resp. odd) the field extension L|k is already
incurred when reconstructing the first pair of non-dihedral diagonal invariants J3, J

′
3 from

I3,3,1, I3,3,2 (resp. J4, J
′
4 from I4,4,1, I4,4,2). �

We now consider some examples in order to get an idea of what the extension L|k looks
like.

Example 3.8. Consider the binary forms

f = a4x
8 + a3x

6z2 + a2x
4z4 + a1x

2z6 + a0

of type (0, 2, 4). Then the generic homogeneous dihedral invariants are symmetrizations of
the generic diagonal invariants J1 = a2, J2,0 = a4a0, J2,1 = a3a1 and J3 = a4a

2
1.

In this case the only new dihedral invariants obtained by symmetrizing the diagonal invari-
ants are I3,3,1 = J3 + J ′3 and I3,3,2 = J3J

′
3. For the generic forms f in Proposition 2.7 of type

(0, 2, 4), the quadratic extension L is therefore always the one incurred by passing from J3+J ′3
and J3J

′
3 to J3, J

′
3. As we have seen, this means that L = k(

√
d), where d = I23,3,1 − 4I3,3,2.

Example 3.9. Consider the binary forms

f = a5x
10 + a4x

8z2 + a3x
6z4 + a2x

4z6 + a1x
2z8 + a0z

10

of type (0, 2, 5). Then the generic homogeneous dihedral invariants are symmetrizations of
J2,0 = a6a0, J2,1 = a5a1, J2,2 = a4a2, J4 = a5a

3
2 and J6 = a6a

5
2.

This time the quadratic extension L is a bit more complicated to determine. Indeed, we
get two pairs of new dihedral invariants, namely I4,4,1, I4,4,2 and I6,6,1, I6,6,2. Generically, the

extension L is already incurred by passing from I4,4,1, I4,4,2 to J4, J
′
4, which gives L = k(

√
d)

where d = I24,4,1− 4I4,4,2. But it is possible that this does not give an extension of the ground

field, while passing from I6,6,1, I6,6,2 to J6, J
′
6 does. In the latter case we have L = k(

√
d) with

d = I26,6,1 − 4I6,6,2 instead.

Now let L be the invariant extension defined by f , and let fL be the partial descent from
Proposition 3.4. We may suppose that X defined by fL. As at the beginning of Section 1.2,
the isomorphisms between X and its conjugates induce a canonical descent datum on the
quotient B = X/Aut(X), which yields a model B0 of B over k. Now Theorem 1.13 shows that
X descends hyperelliptically if and only if B0 has a k-rational point.

To study the twist B0, we construct the corresponding Weil cocycle c. Let σ be the generator
Gal(L|k). By our running hypotheses, fσL has the same homogeneous dihedral invariants as
fL. Let S be the matrix ( 0 1

1 0 ). Then either

fσL ∼ D.fL (3.1)

or
fσL ∼ DS.fL (3.2)

for some D =
(
λ 0
0 µ

)
∈ T . Note that by Proposition 2.4, the latter case does not occur if fL

has type (1, n,m). Regardless, we now either have

(aσm, a
σ
m−1, . . . , a

σ
1 , a

σ
0 ) 7−→ (λmnam, λ

(m−1)nµnam−1, . . . , λ
nµ(m−1)na1, µ

mna0) (3.3)
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or
(aσm, a

σ
m−1, . . . , a

σ
1 , a

σ
0 ) 7−→ (λmna0, λ

(m−1)nµna1, . . . , λ
nµ(m−1)nam−1, µ

mnam). (3.4)

depending on whether (3.1) or (3.2) holds.

Lemma 3.10. Choose isomorphisms gσ : X → Xσ for all σ ∈ Γ. Then the induced Weil
cocycle c on B given by σ 7→ hσ : B→ Bσ is trivial on the index 2 subgroup of Γ that fixes the
invariant extension L of k.

Proof. Indeed, since we divide out by the automorphisms of X, the induced maps hσ are
independent of the choice of the gσ. Since X is defined over L, we may just take gσ to be the
identity if σ fixed L. The result follows. �

Using the inflation-restriction exact sequence, Lemma 3.10 implies that c ∈ H1(Gal(K|k),PGL2(K))
is the inflation of a Weil cocycle cL ∈ H1(Gal(L|k),PGL2(L)). In the case (3.1), the cocycle
cL is given by

σ 7−→
(
λn 0
0 µn

)
(3.5)

and in the case (3.2) by

σ 7−→
(

0 µn

λn 0

)
. (3.6)

Suppose that cL is given by (3.5). Then by dividing by the scalar λn, we can normalize cL
to

σ 7−→ ( 1 0
0 r ) . (3.7)

The Weil cocycle condition translates into the equality rσr = 1, so by Hilbert 90 the cocy-
cle (3.7) is a coboundary. More precisely, the descent morphism is then given by a diagonal
matrix, so there exists a hyperelliptic descent defined by a binary form fk of the same type as
fL. But in that case the normalized representative of I(fL) would be defined over k already;
so L was already the trivial extension of k. Since we are always in the case (3.5) if fL is of
type (1, n,m), we get the following result.

Lemma 3.11. If X is of type (1, n,m), then X can be defined over k by a binary form f of
the given type.

In the second case that cL is given by (3.6), let r = µn/λn. Now cL normalizes to

σ 7−→ ( 0 r
1 0 ) . (3.8)

The fact that (3.6) indeed defines a cocycle shows that rσ = r, so r ∈ k.

Definition 3.12. We call the image of r in the quotient group k∗/NmL|k(L
∗) the norm

obstruction for X.

Lemma 3.13. Let fL be a form of type (0, n,m) or (2, n,m).

(i) If m = 2` is even, then if we suppose additionally that fL is generic, then the norm
obstruction for X is trivial if and only if the generic homogeneous dihedral invariant
I2,`−1(f) is a norm from L.

(ii) If m is odd, then the norm obstruction is always trivial.

Proof. (i) If a`−1, a` and a`+1 are all nonzero, the transformation formula (3.4) shows that
we have

r = (aσ` a`−1)/(a
σ
`+1a`) = a`−1/a

σ
`+1

(note that a` = aσ` by the k-rationality of the homogeneous dihedral invariants). The demand
that this be a norm is satisfied if and only if a`+1a`−1 = I2,`−1 is a norm.
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(ii) Let m = 2` − 1 be odd. We first suppose that a` and a`+1 are nonzero. Then r =
(aσ`+1a`+1)/(a

σ
` a`) is a norm. In the general case, the same argument shows that r2i−1 is a

norm for all i such that a`+i (and hence a`+1−i, since we are in case (3.6)) is nonzero. The set
of exponents of r thus obtained has greatest common divisor equal to one, since one observes
that otherwise the binary form f that we started with would have more automorphisms than
Cn and would therefore not be of the given type. �

We can now prove our main theorem of this section.

Theorem 3.14. Let X denote a hyperelliptic curve over K of genus g and type (i, n,m)
with n > 1 whose field of moduli for the extension K|k equals k, represented by a binary
form f over K of the given type. Let L|k be the invariant extension defined by f . Then the
hyperelliptic descent obstruction is as follows, depending on the type of X.

• If X is of type (0, n,m) or (2, n,m), then a hyperelliptic descent always exists if m is
odd. If m is even, then X descends hyperelliptically if and only if its norm obstruction
is trivial. In either of the two cases, X always admits a hyperelliptic model of the given
type over the at most quadratic extension L of k.
• If X is of type (1, n,m), then a hyperelliptic descent always exists. Moreover, this

descent can be defined by a hyperelliptic model of the given type over k.

Proof. By Proposition 3.4(ii), we can always construct a hyperelliptic model of X over the
quadratic extension L of k. By Lemma 3.11, this extension L in fact coincides with k if f is
of type (1, n,m), which proves the theorem for this case.

It remains to see when the descent obstruction to k vanishes in the other cases. By Theo-
rem 1.13, this is the case if and only if the canonical descent B0 of B = X/Aut(X) admits a
point over k. The twist B0 of the projective line B is determined by the cocycle σ in (3.8).
Proposition 1.14 now shows that B0 is isomorphic to P1 if and only if the norm obstruction
for X vanishes. It now suffices to invoke Lemma 3.13(ii) to show that the extension L|k is
always trivial if m is odd. �

Remark 3.15. The existence of a descent can sometimes also be proved by using [2] and a
signature argument as in [11, Prop.4.3] to show that B0 has a k-rational point. That there exist
a hyperelliptic descent then follows from Theorem 1.13. However, our explicit construction of
f0 in the following section uses the homogeneous diagonal invariants and the parametrization
from Corollary 2.13 in an essential way.

3.2. Explicit hyperelliptic descent. We will now show how to construct a descent of X to k
if the obstruction in Theorem 3.14 vanishes. For this, we first prove the following proposition.

Proposition 3.16. Let D0 be a k-rational effective divisor of degree 2 on P1. Then for every
n > 1 prime to the characteristic of k there exists a tamely cyclic cover P1 → P1 of degree n
that is defined over k and whose branch divisor has support in D0.

Proof. The case where D0 = [p1] + [p2] with p1, p2 ∈ k is trivial. In the case where p1 and p2
are Galois conjugate, we can change coordinates in P1 to suppose that D0 = [

√
d] + [−

√
d],

where d is non-square in k. In that case, consider the expansion of the expression (x+
√
dz)n

as p+ q
√
d, with p, q ∈ k[x, z]. Then we claim that we can take (x : z) 7→ (p : q) as our cover.

To see this, first note that p and q do not contain a common factor. Indeed, this would
be a factor of (x+

√
dz)n as well, hence it would equal (x+

√
dz). But because p and q are

defined over k, they would then both be divisible by (x2 − dz2). Hence the same would be
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true for (x+
√
dz)n, which is absurd. So (p : q) does indeed define a degree n cover of P1 over

k.
To see that (p : q) is (tamely) cyclic, note that by construction, the equation p(t, 1)/q(t, 1) =

−
√
d has t = −

√
d as an n-fold solution. Therefore (−

√
d : 1) is in the branch locus of (p : q),

and hence
√
d as well since (p : q) is defined over k. The Riemann-Hurwitz formula excludes

the possibility of other points occurring in the branch locus of (p : q), which is therefore
indeed given by D0. �

We consider the first case of Theorem 3.14. In order to descend effectively, we first construct
some special divisors on the canonical model B0 of B = X/Aut(X).

We let R be the support of the branch divisor of the quotient map π : X → B. Given
σ ∈ Gal(K|k), the divisor R is mapped to its conjugate Rσ under the well-determined
isomorphisms B → Bσ induced by a choice of isomorphism X → Xσ. We let R0 be the
image of R under the canonical descent morphism ϕ : B→ B0.

The branch divisor R naturally admits a decomposition R = S + T into effective subdivi-
sors, S and T . Here T is the branch divisor of the tamely cyclic cover q : Q = X/ι→ B, and
S is contained in the image of the branch divisor of the quotient morphism πι : X→ Q under
q. We let S0 (resp. T0) be the image of S (resp. T ) under ϕ.

We summarize the situation, as well as indicating some additional divisors which we will
obtain later in our argument, in the diagram below.

D
⊂

R = S + T

⊂

X
πι // Q = X/ι

q //

��

B = X/Aut(X)

��
Q0

q0 // B0

D0

⊂

R0 = S0 + T0

⊂

Proposition 3.17. (i) The divisors R0, S0 and T0 are defined over k.
(ii) The support of T0 is of degree 2.

Proof. (i) This follows because the action of an element σ ∈ Γ transforms the branch divisor
of π : X → B (resp. q : X/ιX → B) into the branch divisor of πσ : Xσ → Bσ (resp.
qσ : Xσ/ισX → Bσ). Note that for X/ι→ B this uses the fact that the involution ι is canonical
to obtain the equality ισX = ιXσ .

(ii) Taking a normal form (2.2)-(2.4) over the algebraic closure K transforms the quotient
map q into the map (x : z) 7→ (xn, zn), for which T becomes the divisor (n − 1)[0] + (n −
1)[∞]. �

We first consider the curves X defined by a form f of type (0, n,m) or (2, n,m). The
quotient B has natural coordinates (s : t) = (xn : zn), in terms of which T is given by the zero
locus of ams

m + am−1s
m−1t+ . . .+ a1st

m−1 + a0t
m. If the hyperelliptic descent obstruction

vanishes, then B0 is isomorphic with P1 over k, and we can apply the explicit matrix N from
the proof of Proposition 1.14 to T to get the k-rational divisor T0 on B0

∼= P1. The divisor
S, which corresponds to (n− 1)[(1 : 0)] + (n− 1)[(0 : 1)] in our normalization, is transformed
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under N to the k-rational divisor S0 = (n− 1)[(1 : β)] + (n− 1)[(1 : βσ)]. We can now apply
Proposition 3.16 with D equal to the support U0 of T0 to get a model q0 : Q0 := P1 → P1 = B0

defined over k of the quotient map q. We now distinguish three cases:

(1) If X has type (0, n,m), then the branch divisor D of πι equals the pullback q∗(S).
Pulling back S0 by q0, we therefore get a k-rational model D0 = q∗0(S0) on Q0

∼= P1
of this branch divisor. We can then construct a model X0 of X over k by taking the
degree 2 cover of Q0

∼= P1 ramified over D0.
(2) If X has type (2, n,m), the pullback q∗(S) is properly contained in D; we have to

add the two points (1 : 0) and (0 : 1) in the ramification locus of q that constitute
the support U of T . This support transforms into the ramification divisor U0 = [(1 :
β)] + [(1 : βσ)] of q0, which is k-rational. So by ramifying over D0 = q∗0(S0) + U0
instead, we again get a hyperelliptic descent.

(3) If X has type (1, n,m), then Lemma 3.11 shows that the construction of the binary
form fL from the normalized diagonal invariants of X in fact automatically gives rise
to a form f0 = fL defined over k.

Combining these three cases, we get the following algorithm to construct a hyperelliptic
descent if the obstruction vanishes.

Algorithm 3.18. Let X denote a hyperelliptic curve over K of genus g and type (i, n,m) with
n > 1 whose field of moduli for the extension K|k equals k. Suppose that the hyperellip-
tic descent obstruction vanishes for X. Then a binary form f0 defined over k that gives a
hyperelliptic descent X0 : y2 = f0 of X can be constructed as follows.

(i) Using the methods in [12, Sec.2], construct a binary form f of type (i, n,m) that repre-
sents X.

(ii) Compute the normalized homogeneous dihedral invariants I(f).
(iii) Construct a descent fL to the invariant extension L of k defined by f by using Corol-

lary 2.13.
(iv) If i = 1, then set f0 = fL and terminate.
(v) Determine the quantity r in (3.8) for fL, either by using Lemma 3.13 in the generic case,

or alternatively by using the methods in [12, Sec.2].
(vi) Determine a coboundary matrix N =

(
1 λσ
β λσβσ

)
as in Proposition 1.14.

(vii) Let U0 = [(1 : β)] + [(1 : βσ)]. Construct the k-rational morphism q : P1 → P1 ramifying
over U0 as in Proposition 3.16.

(viii) Let D0 = q∗0(T0) (resp. D0 = q∗0(S0) + U0) if i = 0 (resp. i = 2).
(ix) Let f0 be the monic polynomial in k[x] whose zero divisor equals D0. Return f0 and

terminate.

We refer to Example 4.5 for a concrete calculation with this algorithm.

3.3. Explicit non-hyperelliptic descent. In the case where asking for a hyperelliptic de-
scent and a general descent is not equivalent, it turns out that one can always descend.

Theorem 3.19. Let X denote a hyperelliptic curve over K of genus g and type (i, n,m) with
n > 1 whose field of moduli for the extension K|k equals k. If n and g are odd, then X
descends.

Proof. Let f be a binary form representing X of the given type. As in Proposition 3.4, we first
construct a descent fL of f to the invariant extension L of k. And once more, as in Section 3.1
the study of the cocycle cL ∈ H1(Gal(L|k),PGL2(L)) given by (3.8) will be crucial.
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Let us first explicitly construct a conic Q corresponding to the cocycle cL. We take Q to
be given by the equation x2 + λy2 + µz2 = 0, where λ = −1/r and where µ ∈ k is such
that L = k(

√
−µ). Consider the L-rational morphism ϕ : P1 → Q given by the rational

parametrization from the point (
√
−µ : 0 : 1) ∈ Q(L). Then one verifies that ϕσ = ϕα for the

automorphism α : x 7→ r/x of P1 corresponding to (3.8).
So Q is isomorphic to the canonical model B0 of B = X/Aut(X) over k. Moreover ϕ

can be used as a descent morphism B → B0. This morphism transforms the branch divisor
T = [(1 : 0)] + [(0 : 1)] of the quotient morphism q : Q = X/ι → X/Aut(X) = B into a
k-rational divisor T0. Indeed, we have

T σ0 = (ϕ∗([0] + [∞]))σ = ϕσ∗ ([0] + [∞]) = ϕ∗(α∗([0] + [∞])) = ϕ∗([∞] + [0]) = T0.
This allows us to once more construct a cyclic cover q0 : Q→ Q ramifying over T0 that is a

k-rational model of the cyclic cover q : Q → B ramifying over T . Indeed, let f : P1 → P1 be
the K-rational morphism given by x → xn/r(n−1)/2, and let f0 = ϕfϕ−1. One verifies that
f = αfα−1, which implies that f0 = ϕfϕ−1 = ϕαfα−1ϕ−1 = ϕσf(ϕσ)−1 = fσ0 . Therefore we
can take q0 = f0.

If X has type (0, n,m), then we once again get a k-rational model D0 = q∗0(S0) of the branch
divisor D of πι, this time on the conic Q, which is not necessarily isomorphic with P1 over k.
If X has type (2, n,m), then we again have to throw in the ramification divisor U0 of q0 with
q∗0(S0) to get D0. Note that this ramification divisor is again k-rational; in fact it is given by
the zero divisor (y)0 of the function y on Q.

Regardless, one can now construct a k-rational degree 2 cover X0 of Q that ramifies over
D0 as in the proof [11, Prop.4.13], since g is odd. This X0 is the desired descent. �

In this case, the algorithm to obtain a descent is as follows.

Algorithm 3.20. Let X denote a hyperelliptic curve over K of genus g and type (i, n,m) with
n > 1 whose field of moduli for the extension K|k equals k. Suppose that n and g are both
odd. Then a descent X0 of X can be constructed as follows.

(i) Using the methods in [12, Sec.2], construct a binary form f of type (i, n,m) that repre-
sents X.

(ii) Compute the normalized homogeneous dihedral invariants I(f).
(iii) Construct a descent fL to the invariant extension L of k defined by f by using Corol-

lary 2.13.
(iv) If i = 1, then set f0 = fL and terminate.
(v) Determine the quantity r in (3.8) for fL, either by using Lemma 3.13 in the generic case,

or alternatively by using the methods in [12, Sec.2].
(vi) Let λ = −1/r and let µ ∈ k be such that L = k(

√
µ). Construct the conic Q :

x2 + λy2 + µz2 = 0 over k, and let ϕ : P1 → Q be the rational parametrization from the
point (

√
−µ : 0 : 1) ∈ Q(L).

(vii) Let f : P1 → P1 be the K-rational morphism given by x → xn/r(n−1)/2, and let f0 =
ϕfϕ−1.

(viii) Let D0 = f∗0 (S0) (resp. D0 = f∗0 (S0) + (y)0) if i = 0 (resp. i = 2).
(ix) As in [11, Prop.4.13], let X0 be the k-rational degree 2 cover of Q ramifying in D0.

A calculation involving this algorithm can be found in Example 4.6.

3.4. The case of trivial reduced automorphism group. We conclude our discussion of
explicit descent by considering the case where the hyperelliptic curve X over K is of type
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(i, 1,m), or more straightforwardly expressed, the reduced automorphism group X is trivial.
Our descent obstruction results in the previous sections generalize to this case. If g is even,
then our Theorem 1.6 recovers a classical result by Mestre [13] which states that in even
genus a curve X with trivial reduced automorphism group descends if and only if it descends
hyperelliptically [13]. On the other hand, if g is odd, then [11, Prop.4.13] shows that a descent
always exists, completely in line with our Theorem 3.19.

Still, to construct an explicit descent X0 of X in these cases is actually more complicated,
due to the absence of homogeneous dihedral invariants. We briefly discuss two ways to get
around this problem.

3.4.1. The covariant method. The first and most effective way is to use the covariant method [12].
We now apply it to the case under consideration.

Proposition 3.21. Let X be a hyperelliptic curve with trivial reduced automorphism group,
defined by a binary form f . Let c be a covariant of f with single roots whose automorphism
group is trivial as well, and let Y : y2 = c be the hyperelliptic curve defined by c.

(i) The field of moduli of the curve Y with respect to the extension K|k again equals k.
(ii) X admits an hyperelliptic descent if and only if Y does. Moreover, if Y does not allow

a hyperelliptic descent, then neither does X allow a general descent if the genus of X is
even.

(iii) Suppose that Y admits a hyperelliptic descent Y0 defined by a homogeneous polynomial
c0. Then if A ∈ GL2(K) transforms c into c0, the transformation A.f of f also yields a
descent of f (after possibly dividing out a scalar).

(iv) Suppose that the genus of X is odd. Let R = Y/ιY = Y/Aut(Y), and let R0 be the
canonical model of R. Let ϕ : R→ R0 be the canonical descent morphism. Let D be the
branch locus of π : X → X/ιX = X/Aut(X). Then the image D0 = ϕ(D) is a k-rational
divisor on B0. There exists a degree 2 cover X0 of R0 over k whose branch locus equals
D0. The curve X0 is then a descent of X.

Proof. (i) By definition of covariance, the isomorphisms X → Xσ give rise to isomorphisms
Y → Yσ.

(ii) The first part follows from [12, Thm.3.8], and the second part from [13].
(iii) This again follows from [12, Thm.3.8].
(iv) The canonical descent datum on the quotient R gives rise to the conic R0, which is a

k-rational model for both Y/ιY and X/ιX. By covariance, the morphism ϕ is also the Weil
coboundary (X/ιX,D) → (R0,D0) for the pair (X/ιX,D). Therefore the image D0 is indeed
k-rational. One then again invokes [11, Prop.4.13]. �

Remark 3.22. Proposition 3.21 is especially useful for sextic and octavic covariants c, since
for these, the results from [13] and [12, Sec.2] allow us to test effectively whether it has
trivial automorphism group. Moreover, in these cases effective methods to determine the
descent obstruction are available, as well as methods to determine an explicit descent if this
obstruction vanishes.

Remark 3.23. At least in characteristic 0 and genus g ≤ 27, a covariant c with the properties
in Proposition 3.21 exists. More precisely, if we let f be a generic binary form defining X, then
the covariant form c = (f, f)2g−2 is a nonsingular binary octavic with trivial automorphism
group.
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Given a genus g, this statement is easy to verify with a computer algebra package; by the
proof of [12, Prop.2.9], it suffices to produce a single example of such an f . Usually the first
randomly chosen f already works, in line with our expectations that a covariant c should
generically always exist. On the other hand, to prove the existence of such a covariant in
the generic case for arbitrary genus, let alone for all hyperelliptic curves with trivial reduced
automorphism group, seems to be more involved.

3.4.2. Explicit cocycle construction. We mention a second approach, which could be used
in the unlikely event that no suitable covariant is available. If X is defined by a binary
form f over a finite Galois extension M of k, then one can construct a suitable cocycle
for B = X/Aut(X) = X/ι over M by using the fast methods from [12, Sec.2]. One then
calculates canonical model B0 of B along with the descent morphism B→ B0 as in [8]. If the
descent obstruction is trivial, then one proceeds as before; one constructs a descent X0 of X
by ramifying over the image of the branch locus of X→ B under the morphism B→ B0.

3.5. Counterexamples. To finish this section, we will show how to obtain explicit coun-
terexamples to descent. We first treat some classical counterexamples to hyperelliptic descent,
where K = C and k = R. In this case, the classification of the curves that do not descend is
known. These curves were essentially first constructed by [3], but the final correct statement
is due to Huggins in [9]. The following proposition is a slight improvement of their results.

Proposition 3.24. Let Q0 be the pointless conic over R defined by the homogeneous equation
x2+y2+z2 = 0. Let (P1,R) be one of the divisors over C defined in [9, Prop.5.0.5]. Consider
the C-morphism ϕ : P1 → Q0 given by

(s : t)→ (i(s2 + t2) : s2 − t2 : 2st).

Then R0 = ϕ∗(R) is an R-rational divisor on Q0 that defines a hyperelliptic curve X over C
whose field of moduli for the extension C|R is R but which does not descend hyperelliptically.

Up to isomorphism over C, all counterexamples to hyperelliptic descent from C to R are of
the form X considered above. Such a curve X still descends to R if and only if its genus and
the cardinality of its reduced automorphism group G of X are both odd.

Proof. Let σ be the generator of Gal(C|R). Then Rσ = α∗(R), where α : P1 → P1 is the
R-rational morphism given by (s : t)→ (−t : s). Now we have ϕσ = ϕα. Therefore

Rσ0 = ϕσ∗ (Rσ) = (ϕα)∗(R) = ϕ∗(α∗(R)) = ϕ∗(R) = R0

and hence R0 is indeed R-rational. All is now clear from [9, Prop.5.0.5], except for our
sharpening of the result (the final line of the proposition). But this follows from Theorem 3.19.

�

Remark 3.25. A signature argument as in [11, Prop.4.3] can also be used to prove Proposi-
tion 3.24, except if G ∼= Cn with n odd and either g/n is odd or (g+1)/n is even. Theorem 3.19
shows that in these cases, a descent is always possible, and Algorithm 3.20 shows how this
descent can be obtained explicitly.

Having precisely analyzed the obstruction to descent in the previous subsections, it is now
straightforward to give a complete classification of those hyperelliptic curves with tamely
cyclic and nontrivial reduced automorphism group whose field of moduli is not a field of
definition.
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Theorem 3.26. Let L = k(
√
d1) be a quadratic extension of k defined by an element d1 of

k, and choose d2 ∈ k such that d2 is not a norm from L. Let u ∈ L be such that NmL
k (u) = 1.

Let m = 2` be an even number, and choose am, . . . , a0 in L such that

aσ` = ua`, a`−1 = ud2a
σ
`+1, . . . , a0 = ud`2a

σ
m

for the nontrivial element σ of Gal(L|k). Consider the binary forms

f = amx
mn + am−1x

(m−1)nzn + . . .+ a1x
nz(m−1)n + a0z

mn,

g = xzf.

Suppose that f is of type (0, n,m), so that g is of type (2, n,m), and that the geometric au-
tomorphism group AutK(f) is generated by (x, z) 7→ (ζnx, z). Then the curves corresponding
to f and g have field of moduli k for the extension K|k and do not descend hyperelliptically
to k.

Up to isomorphism over K, all counterexamples to hyperelliptic descent from K to k are
of the form X considered above. Such a curve X still descends to k if and only if its genus
and n are both odd.

Proof. The forms under consideration are already in normal form. Therefore their invariant
extension equals the quadratic extension L itself. This makes it straightforward to calculate
the matrix (3.8) for these examples, which is simply given by

(
0 d2
1 0

)
. Combining Theorem 1.13

with Proposition 1.14 then shows that we indeed get counterexamples.
The universality statement needs a bit more work. Note first that indeed any counterex-

ample is determined by a normal form (2.2)-(2.4) in light of Proposition 3.4(ii). We only have
to cull those normal forms for which the element r in the matrix (3.8) is not a norm from
L = k(

√
d1). We can do this by inverting the procedure in Section 3; one chooses d2 = r not

to be a norm, constructs the matrix A =
(
0 d2
1 0

)
, and finally determines those forms f over L

for which there exists a scalar u such that Af = ufσ. This gives the requested forms, with
the demand that NmL

k (u) = 1 coming from the compatibility condition (fσ)σ = f .
The final statement of the Theorem is again a consequence of Theorem 3.19. �

Remark 3.27. Phrased differently, we have shown that the curves constructed in Theorem 3.26
descend if and only if the quaternion algebra defined by d1 and d2 splits. This gives some
unexpected symmetry properties for the obstruction, since for example exchanging d1 and d2
yields the same quaternion algebra.

Remark 3.28. For genus 3, the explicit stratum equations in [11, Sec.3] can be used to quickly
determine whether a given curve X is of a given type (i, n,m). For general genus, it is usually
easy to verify this once the coefficients of the polynomial f defining X are given, by using the
methods of [12, Sec.2].

This construction gives counterexamples for many more quadratic field extensions than the
usual C|R. Moreover, the cases where d2 is a norm from L yield a host of examples for which
it is anything but obvious that the resulting curves descend, and which we will consider in
the next section.

4. Implementation and examples

We have used the generic homogeneous dihedral invariants of Proposition 2.7 in Magma to
give an implementation of Algorithms 3.18 and 3.20 for the curves for which these invariants
suffice. Our code is available online1.
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The implementation is straightforward considering the constructive methods that were
used. First one determines a generator α0 of the reduced automorphism group, which can be
done effectively by using the methods in [12, Sec.2]. Subsequently, one diagonalizes α0 over
an at most quadratic extension of the base field of K. The remaining steps in Algorithms 3.18
and 3.20 (determining and normalizing the homogeneous invariants, parametrizing to deter-
mine a partial descent, solving a norm equation and if necessary constructing the necessary
cover to define X over k) are effective and efficient for ‘natural’ fields such as number fields
and finite fields.

We now give some examples of these computations. Throughout, we will have k = Q and
K = Q. To begin with, we mention that we usually do not need the full set of generic homo-
geneous dihedral invariants in our computations, and our algorithms take this into account.
The following example of a hyperelliptic curve of type (0, 2, 6) illustrates this.

Example 4.1. In Theorem 3.14, let d1 = 2, d2 = 3, let σ be an automorphism of K restricting
to a generator of k(

√
d1), and take

a6 = 7 +
√
d1, a5 = 3− 2

√
d1, a4 = (1 +

√
d1), a3 = 12

√
d1,

a2 = −d2aσ4 = −d2(1−
√
d1), a1 = −d22aσ5 = −d22(3 + 2

√
d1), a0 = −d32aσ6 = −d32(7−

√
d1).

Let

f = a6x
12 + a5x

10z2 + a4x
8z4 + a3x

6z6 + a2x
4z8 + a1x

2z10 + a0z
12.

As in Remark 2.20, the corresponding hyperelliptic curve is determined by the following subset
of the homogeneous dihedral invariants:

(I1, I2,0, I2,1, I2,2, I3,3,1, I3,3,2, I3,4).

Indeed, one shows by direct calculation that J3 6= J ′3 for f , hence also for all its transfor-
mations. Having chosen the ordering of the roots J3 and J ′3 of the corresponding quadratic
equation, the linear system

Ji + J ′i = Ii,i,1,

J ′3Ji + J3J
′
i = I3,i

is always invertible for i > 3, determining Ji and J ′i in terms of the choice of the order of J3 and
J ′3 and the invariants (I1, I2,0, I2,1, I2,2, I3,3,1, I3,3,2, I3,4). In particular, we need only normalize
these latter invariants to determine the field of moduli of our curve. This normalization is(

1,
−3 · 47

25
,
−1

25
,

1

25 · 3
,
−1

24
,
−1

215 · 32
,
−1

213 · 32

)
,

so the field of moduli is indeed the rational field k. Calculating the norm obstruction r
and L = Q(

√
d1) in Theorem 3.14 and using the norm criterion now shows that the curve

corresponding to f does not descend to k. This is as expected, because this example was
constructed by using Theorem 3.26.

Now we will consider a hyperelliptic curve of type (2, 2, 3).

Example 4.2. Consider the genus 3 hyperelliptic curve X over K corresponding to the binary
form

(20456
√

5 + 43640)x8 + (−17772
√

5− 56716)x7z + (28984
√

5 + 3584)x6z2

+(25862
√

5− 95522)x5z3 + (67320
√

5− 136740)x4z4 + (84995
√

5− 193217)x3z5

+(75097
√

5− 167611)x2z6 + (38764
√

5− 86676)xz7 + (7942
√

5− 17762)z8
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over L = Q(
√

5) ⊂ K. This curve has an automorphism of order 2, and it allows a normal
form (2.4) over L given by

xz((11270829
√

5− 25242007)x6 + (1408299
√

5− 5284449)x4z2

+(−5642070
√

5− 12929374)x2z4 + (−204992252
√

5− 458411532)z6).

The normalized homogeneous dihedral invariants of this form now generate the field of moduli
k. They are given by

(I2,0, I2,1, I4,4,1, I4,4,2) =

(
2

3
, 1,

29

32
,
2

3

)
.

Lemma 3.13 shows that the norm obstruction is trivial becausem = 3 is odd. In this particular
case, this reflects itself in the fact that the homogeneous diagonal invariants are themselves
already rational. They are given by

(J2,0, J2,1, J4) =

(
2

3
, 1, 3

)
.

Reconstructing as in Corollary 2.13, we get the descent

y2 = xz

(
3x6 + x4z2 + x2z4 +

2

9
z6
)
.

Finally, we descend a hyperelliptic curve of type (1, 3, 3).

Example 4.3. Consider the genus 4 hyperelliptic curve X corresponding to the binary form

(138076
√

5 + 291100)x10 + (−120728
√

5− 370816)x9z

+(243042
√

5 + 208878)x8z2 + (48987
√

5− 760529)x7z3

+(515947
√

5− 751581)x6z4 + (754227
√

5− 1880505)x5z5

+(1243617
√

5− 2713183)x4z6 + (1462433
√

5− 3287139)x3z7

+(1243263
√

5− 2777109)x2z8 + (625402
√

5− 1398734)xz9

+(124654
√

5− 278722)z10.

over L = Q(
√

5). This curve has an automorphism of order 3, and it allows a normal form
(2.3) over the ground field given by

z((91955817
√

5− 213442907)x9 + (268416746
√

5 + 589172042)x6z3

+(−30323641593
√

5− 67805941509)x3z6 + (3073332514916
√

5 + 6872180416996)z9).

Lemma 3.11 shows that the normalized homogeneous diagonal invariants for this case will
generate the field of moduli k = Q. In this case, these invariants are up to scalar given by

(J2,0, J2,1, J4) =

(
2

3
, 1,

8

32

)
.

Using the parametrization of Corollary 2.13 for the generic case, we obtain the following
hyperelliptic descent of X:

y2 = z

(
8

32
x9 + x6z3 + x3z6 +

3

4
z9
)
.

As Lemma 3.11 predicts, this normal form is already defined over the field of moduli k itself
(rather than over a quadratic extension).
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We now discuss some examples of curves of genus 3. Indeed, this was our initial motivation
for this paper, the cases of genus 2 having been completely resolved already in [13] and [4].

The invariant theory of binary octavics was completely determined by Shioda in [17],
and can be applied to solve the descent problem for genus 3 hyperelliptic curves with great
efficiency. The steps for this are as follows.

• Using the stratum equations from [11, Sec.3], determine the geometric automorphism
group G of X from its Shioda invariants;
• If G � D4, then use either the parametrizations or reconstruction methods from [11,

Sec.3] or (in the case G ∼= C3
2) the covariant descent method in [12, Sec.3B2];

• If G ∼= D4, then determine the homogeneous dihedral invariants of f , directly or from
its Shioda invariants 2, and apply the methods of this paper.

Example 4.4. As in Example 4.1, let d1 = 2, d2 = 3. This time, take

a4 = 7 +
√
d1, a3 = 3− 2

√
d1, a2 = 12

√
d1,

a1 = −d2aσ3 = −d2(3 + 2
√
d1), a0 = −d22aσ4 = −d22(7−

√
d1).

Construct the binary octavic

f = a4x
8 + a3x

6z2 + a2x
4z4 + a1x

2z6 + a0z
8.

The normalized Shioda invariants of this octavic (and of its transformations under GL2(K))
are given by

−5 · 7 · 4013/(33 · 132 · 232 · 16672),
−5 · 7 · 4013/(33 · 132 · 232 · 16672),

24 · 54 · 713 · 4014 · 3435911/(37 · 134 · 234 · 16674),
23 · 54 · 716 · 4015 · 1663 · 29947/(37 · 135 · 235 · 16675),

23 · 57 · 718 · 47 · 59 · 4016 · 3271 · 14653/(311 · 136 · 236 · 16676),
23 · 57 · 722 · 4017 · 166150639393/(311 · 137 · 237 · 16677),

−2 · 57 · 725 · 4018 · 25309 · 148913 · 395201/(313 · 138 · 238 · 16678),
26 · 58 · 727 · 17 · 4019 · 4278649 · 127546933/(315 · 139 · 239 · 16679),

−22 · 58 · 730 · 11 · 61 · 40110 · 537787278082528849/(317 · 1310 · 2310 · 166710).

This gives the normalized homogeneous dihedral invariants

(I1, I2,0, I2,1, I3,3,1, I3,3,2) =

(
1,
−47

25
,
−1

25 · 3
,

101

26 · 3
,
−47

215 · 32

)
,

which are somewhat simpler. We have I23,3,1 − 4I3,3,2 = 112132/21332. This defines the

quadratic extension L = Q(
√

2) of the rational field, which therefore equals the invariant field
of f over the field of moduli k = Q. The invariant I2,1 is not a norm from this extension, so
we see by Lemma 3.13 that no hyperelliptic descent exists, and hence no descent at all by
Theorem 1.6.

We can still use the normalized homogeneous diagonal invariants to get a hyperelliptic
descent over invariant extension L. Up to switching J3 and J ′3 we have

(J1, J2,0, J2,1, J3) =

(
1,
−47

32
,
−1

96
,
−143

√
2 + 202

768

)
,
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Using Corollary 2.13 in the generic case where the parameter is a1, we get the following
hyperelliptic descent over L:

y2 = (−143/768
√

2 + 101/384)x8 − 1/96x6z2 + x4z4 + x2z6 + (1716
√

2 + 2424)z8.

Example 4.5. Modifying d1 = 3, d2 = 13 in Example 4.4 so that the obstruction vanishes, we
do get a descent to the rationals. Explicitly, this descent can be constructed as follows, using
Algorithm 3.18. This time the norm obstruction r in (3.8) equals 144/13. We then apply
Proposition 1.14, taking λ = (−60 − 24

√
3)/13 and β = 1/

√
3 in the proof. Transforming

the quotient B = X/G ∼= P1K into B0
∼= P1k by the N from Proposition 1.14, the ramification

divisor T of q : Q → B transforms to T0 = [(
√

3 : 1)] + [(−
√

3 : 1)]. Using Proposition 3.16,
we get the k-rational cover q0 : Q0 = P1 → P1 = B0 given by

(x : z) 7−→ (x2 + 3z2 : 2xz).

Under N , the divisor S on B that is the image on B of branch divisor of πι : X → Q is
mapped from the zero locus of

1/5184(10309
√

3 + 17745)x4 + 13/144x3z + x2z2 + xz3 + (−244
√

3 + 420)z4

into that of

38x4 + 320x3z + 657x2z2 + 924xz3 + 387z4

on the canonical model B0 = P1k of B. Taking a suitable k-rational binary form vanishing on
the pullback of this divisor by q0, we obtain the hyperelliptic descent

y2 = 19x8 + 320x7z + 1542x6z2 + 6576x5z3 + 12006x4z4

+19728x3z5 + 13878x2z6 + 8640xz7 + 1539z8.

Example 4.6. Finally, by modifying Example 4.4 to

f = a4x
12 + a3x

9z3 + a2x
6z6 + a1x

3z9 + a0z
12

we get a curve that does not descend hyperelliptically but which does descend as the cover of a
conic. Our implementation of Algorithm 3.20 returns a divisor on the conic X2−2Y 2+96Z2 =
0 over which we have to branch. The result, whose expression is slightly unwieldy, can be
found online1 too; here we just mention that over the finite field with 43 elements, where
the hyperelliptic descent obstruction vanishes (as over all finite fields by Theorem 1.13), we
obtain the descended equation

y2 = x12 + 25x11z + 6x10z2 + 30x9z3 + 21x8z4 + 9x7z5 + 21x6z6+

37x5z7 + 42x4z8 + 22x3z9 + 5x2z10 + 37xz11 + 3z12.

5. Conclusions and remaining questions

In [11] and [12], effective parametrizations of the automorphism strata in genus 3 were de-
termined, which return a model over the field of moduli as long as the reduced automorphism
group is not C2. These methods can also be used to obtain equations for the curves with
reduced automorphism group C2. However, these equations can be of degree up to 8 over
the field of moduli, which is far from optimal. The present work shows how one calculates
whether such a curve admits a (hyperelliptic) descent to the field of moduli, and how such a
descent can be determined explicitly if it exists. Even if the curve does not descend all the
way to the field of moduli, a model over the quadratic invariant extension of this field can
still be constructed efficiently.
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This concludes our explicit arithmetic exploration of the moduli space of hyperelliptic genus
3 curves, at least when the characteristic of the ground field is 0 or bigger than 7. Given any
tuple of Shioda invariants of a genus 3 curve, one can now determine

• the automorphism group of the curve,
• whether or not the curve descends to the field of moduli, and
• a model of the curve over its field of moduli, if it exists.

When the characteristic of the ground field is positive and less than or equal to 7, a nontrivial
effort is already needed to find the appropriate analogues of the Shioda invariants.

There are some open questions remaining. First of all, though we have given a complete set
of effective methods for determining when the field of moduli is a field of definition, it remains
to descend effectively if the reduced automorphism group is either not tamely cyclic or trivial.
Second, our methods should apply to the superelliptic curves yn = f(x, z) as well. Third, it
seems likely that the case of hyperelliptic curves in characteristic 2 will require completely
new methods altogether.

Finally, and most intriguingly, while our perfectness hypothesis on k enables us to resolve
the descent problem for most interesting ground fields (such as number fields and finite fields),
it remain to deal with imperfect base fields k, as mentioned in Remark 1.2. Dealing with
general ground fields by further studying the inseparable extension in [14] seems to merit a
study of its own, not least towards studying the geometric nature of this extension, which we
hope to undertake in the future. Here we merely remark that by [9, Th.1.6.9], our methods
can at least be used to determine whether or not a descent exists in these more general cases,
while a method to explicitly determine a descent still seems to be out of reach.
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[5] P. Dèbes and M. Emsalem. On fields of moduli of curves. J. Algebra, 211(1):42–56, 1999.
[6] C. Earle. On the moduli of closed Riemann surfaces with symmetry. Ann. of Math. Studies, 66:119–130,

1971.
[7] J. Gutierrez and T. Shaska. Hyperelliptic curves with extra involutions. LMS J. Comput. Math., 8:102–115,

2005.
[8] R. A. Hidalgo and S. Reyes. A constructive proof of Weil’s Galois descent theorem. Preprint at http:

//arxiv.org/abs/1203.6294.
[9] B. Huggins. Fields of moduli and fields of definition of curves. PhD thesis, University of California,

Berkeley, Berkeley, California, 2005. http://arxiv.org/abs/math.NT/0610247.
[10] B. Huggins. Fields of moduli of hyperelliptic curves. Math. Res. Lett., 14(2):249–262, 2007.
[11] R. Lercier and C. Ritzenthaler. Hyperelliptic curves and their invariants: geometric, arithmetic and

algorithmic aspects. Journal of Algebra, 372:595–636, Dec. 2012.
[12] R. Lercier, C. Ritzenthaler, and J. Sijsling. Fast computation of isomorphisms of hyperelliptic curves and

explicit descent. In ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, pages
463–486. Mathematical Science Publishers, 2013.

[13] J.-F. Mestre. Construction de courbes de genre 2 à partir de leurs modules. In Effective methods in
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