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ABSTRACT. We study new families of curves that are suitable for efficiently parametrizing
their moduli spaces. We explicitly construct such families for smooth plane quartics in order
to determine unique representatives for the isomorphism classes of smooth plane quartics
over finite fields. In this way, we can visualize the distributions of their traces of Frobenius.
This leads to new observations on fluctuations with respect to the limiting symmetry imposed
by the theory of Katz and Sarnak.

1. INTRODUCTION

One of the central notions in arithmetic geometry is the (coarse) moduli space of curves
of a given genus g, denoted M,. These are algebraic varieties whose geometric points classify
these curves up to isomorphism. The main difficulty when dealing with moduli spaces —
without extra structure — is the non-existence of universal families, whose construction would
allow one to explicitly write down the curve corresponding to a point of this space. Over
finite fields, the existence of a universal family would lead to optimal algorithms to write
down isomorphism classes of curves. Having these classes at one’s disposal is useful in many
applications. For instance, it serves for constructing curves with many points using class
field theory [31] or for enlarging the set of curves useful for pairing-based cryptography as
illustrated in genus 2 by [9, 14, 32]. More theoretically, it was used in [5] to compute the
cohomology of moduli spaces. We were ourselves drawn to this subject by the study of Serre’s
obstruction for smooth plane quartics (see Section 5.4).

The purpose of this paper is to introduce three substitutes for the notion of a universal
family. The best replacement for a universal family seems to be that of a representative
family, which we define in Section 2. This is a family of curves C — S whose points are in
natural bijection with those of a given subvariety S of the moduli space. Often the scheme
S turns out to be isomorphic to .S, but the notion is flexible enough to still give worthwhile
results when this is not the case. Another interesting feature of these families is that they
can be made explicit in many cases when .S is a stratum of curves with a given automorphism
group. We focus here on the case of non-hyperelliptic genus 3 curves, canonically realized as
smooth plane quartics.
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The overview of this paper is as follows. In Section 2 we introduce and study three new
notions of families of curves. We indicate the connections with known constructions from the
literature. In Proposition 2.3 and Proposition 2.4, we also uncover a link between the existence
of a representative family and the question of whether the field of moduli of a curve is a field
of definition. In Section 3 we restrict our considerations to the moduli space of smooth plane
quartics. After a review of the stratification of this moduli space by automorphism groups,
our main result in this section is Theorem 3.3. There we construct representative families
for all but the two largest of these strata by applying the technique of Galois descent. For
the remaining strata we improve on the results in the literature by constructing families with
fewer parameters, but here much room for improvement remains. In particular, it would be
nice to see an explicit representative (and in this case universal) family over the stratum of
smooth plane quartics with trivial automorphism group.

Parametrizing by using our families, we get one representative curve per k-isomorphism
class. Section 4 refines these into k-isomorphism classes by constructing the twists of the
corresponding curves over finite fields k. Finally, Section 5 concludes the paper by describing
the implementation of our enumeration of smooth plane quartics over finite fields, along with
the experimental results obtained on distributions of traces of Frobenius for these curves over
F, with 11 < p < 53. In order to obtain exactly one representative for every isomorphism
class of curves, we use the previous results combined with an iterative strategy that constructs
a complete database of such representatives by ascending up the automorphism stratal.

Notations. Throughout, we denote by k an arbitrary field of characteristic p > 0, with
algebraic closure k. We use K to denote a general algebraically closed field. By (,, we denote
a fixed choice of n-th root of unity in k or K; these roots are chosen in such a way to respect
the standard compatibility conditions when raising to powers. Given k, a curve over k will
be a smooth and proper absolutely irreducible variety of dimension 1 and genus g > 1 over k.

In agreement with [23], we keep the notation C,, (resp. Da,, resp. A, resp. S,,) for the
cyclic group of order n (resp. the dihedral group of order 2n, resp. the alternating group of
order n! /2, resp. the symmetric group of order n!). We will also encounter Gig, a group of
16 elements that is a direct product C4 x Dy, Gyg, a group of 48 elements that is a central
extension of Ay by Cy, Ggg, a group of 96 elements that is a semidirect product (Cyqx Cy) X S3
and Gigg, which is a group of 168 elements isomorphic to PSLy(F7).

ACKNOWLEDGMENTS. We would like to thank Jonas Bergstrom, Bas Edixhoven, Everett
Howe, Frans Oort and Matthieu Romagny for their generous help during the writing of this
paper. Also, we warmly thank the anonymous referees for carefully reading this work and for
suggestions.

2. FAMILIES OF CURVES

Let g > 1 be an integer, and let k£ be a field of characteristic p=0or p > 29+ 1. For S a
scheme over k, we define a curve of genus g over § to be a morphism of schemes C — S that
is proper and smooth with geometrically irreducible fibers of dimension 1 and genus g. Let
My be the coarse moduli space of curves of genus g whose geometric points over algebraically
closed extensions K of k correspond with the K-isomorphism classes of curves C over K.

IDatabases and statistics summarizing our results can be found at http://perso.univ-rennesl.fr/
christophe.ritzenthaler/programme/qdbstats-v3_0.tgz.
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We are interested in studying the subvarieties of My where the corresponding curves have
an automorphism group isomorphic with a given group. The subtlety then arises that these
subvarieties are not necessarily irreducible. This problem was also mentioned and studied
in [25], and resolved by using Hurwitz schemes; but in this section we prefer another way
around the problem, due to Lgnsted in [24].

In [24, Sec.6] the moduli space My is stratified in a finer way, namely by using ‘rigidified ac-
tions’ of automorphism groups. Given an automorphism group G, Lgnsted defines subschemes
of My that we shall call strata. Let £ be a prime different from p, and let I'y = Spy (F¢). Then
the points of a given stratum S correspond to those curves C for which the induced embed-
ding of G into the group (= I'y) of polarized automorphisms of Jac(C')[¢] is I';-conjugate to a
given group. Combining [17, Th.1] with [24, Th.6.5] now shows that under our hypotheses on
D, such a stratum is a locally closed, connected and smooth subscheme of M. If k is perfect,
such a connected stratum is therefore defined over k if only one rigidification is possible for
a given abstract automorphism group. As was also observed in [25], this is not always the
case; and as we will see in Remark 3.2, in the case of plane quartics these subtleties are only
narrowly avoided.

We return to the general theory. Over the strata S of M, with non-trivial automorphism
group, the usual notion of a universal family (as in [27, p.25]) is of little use. Indeed, no
universal family can exist on the non-trivial strata; by [1, Sec.14], S is a fine moduli space
(and hence admits a universal family) if and only if the automorphism group is trivial. In the
definition that follows, we weaken this notion to that of a representative family. While such
families coincide with the usual universal family on the trivial stratum, it will turn out (see
Theorem 3.3) that they can also be constructed for the strata with non-trivial automorphism
group. Moreover, they still have sufficiently strong properties to enable us to effectively
parametrize the moduli space.

Definition 2.1. Let S C My be a subvariety of My that is defined over k. Let C — S be
a family of curves whose geometric fibers correspond to points of the subvariety S, and let
fc: S — S be the associated morphism.
(1) The family C — S is geometrically surjective (for S) if the map fc is surjective on
K-points for every algebraically closed extension K of k.
(2) The family C — S is arithmetically surjective (for S) if the map fc is surjective on
k' -points for every finite extension k' of k.
(3) The family C — S is quasifinite (for S) if it is geometrically surjective and fc is
quasifinite.
(4) The family C — S is representative (for S) if fc is bijective on K-points for every
algebraically closed extension K of k.

Remark 2.2. A family C — S is geometrically surjective if and only if the corresponding
morphism of schemes S — S is surjective.

Due to inseparability issues, the morphism fc associated to a representative family need
not induce bijections on points over arbitrary extensions of k.

Note that if a representative family S is absolutely irreducible, then since S is normal, we
actually get that fe is an isomorphism by Zariski’s Main Theorem. However, there are cases
where we were unable to find such an S given a stratum S (see Remark 3.4).

The notions of being geometrically surjective, quasifinite and representative are stable under
extension of the base field k. On the other hand, being arithmetically surjective can strongly
depend on the base field, as for example in Proposition 3.5.
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To prove that quasifinite families exist, one typically considers the universal family over M(ge)
(the moduli space of curves of genus g with full level-¢ structure, for a prime ¢ > 2 different
from p, see [1, Th.13.2]). This gives a quasifinite family over M, by the forgetful (and in fact

quotient) map My) — My that we will denote m, when using it in our constructions below.

Let K be an algebraically closed extension of k. Given a curve C over K, recall that an
intermediate field k C L C K is a field of definition of C' if there exists a curve Cy/L such that
Cy is K-isomorphic to C'. The concept of representative families is related with the question
of whether the field of moduli M¢ of the curve C, which is by definition the intersection of
the fields of definition of C), is itself a field of definition. Since we assumed that p > 2g+ 1 or
p = 0, the field M then can be recovered more classically as the residue field of the moduli
space My at the point [C] corresponding to C' by [33, Cor.1.11]. This allows us to prove the
following.

Proposition 2.3. Let S be a subvariety of My defined over k that admits a representative
family C — S. Let C be a curve over an algebraically closed extension K of k such that the
point [C] of My(K) belongs to S. Then C descends to its field of moduli Mc. In case k is

perfect and K = k, then C' even corresponds to an element of S(M¢).

Proof. First we consider the case where &k = Mg and K is a Galois extension of k. Let
r € S(K) be the preimage of [C] under fc. For every o € Gal(K/k) it makes sense to
consider 27 € S(K), since the family C is defined over k. Now since f¢ is defined over k, we
get fe(x) = fe(x?) = s. By uniqueness of the representative in the family, we get z = 7.
Since o was arbitrary and K/k is Galois, we therefore have x € S(k), which gives a model
for C over k by taking the corresponding fiber for the family C — S. This already proves the
final statement of the proposition.

Since the notion of being representative is stable under changing the base field k, the
argument in the Galois case gives us enough leverage to treat the general case (where K /k is
possibly transcendental or inseparable) by appealing to [19, Th.1.6.9]. O

Conversely, we have the following result. A construction similar to it will be used in the
proof of Theorem 3.3.

Proposition 2.4. Let S be a stratum defined over a field k. Suppose that for every finite
Galois extension F O FE of field extensions of k, the field of moduli of the curve corresponding
to a point in S(E) equals E. Then there exists a representative family Cyy — U over a dense
open subset of S. If k is perfect, this family extends to a possibly disconnected representative
family C — S for the stratum S.

Proof. Let n be the generic point of S and again let mp : I\/Iy) — M, be the forgetful map
obtained by adding level structure at a prime £ > 2 different from p. Note that as a quotient
by a finite group, 7, is a finite Galois cover. Let v be a generic point in the preimage of n by 7,
and C — v be the universal family defined over k(v). By definition the field of moduli M is
equal to k(v) and as k(v) is a field of definition there exists a family Cy — k(v) geometrically
isomorphic to C. Since k(r) D k(n) is a Galois extension, we can argue as in the proof of
Proposition 2.3 to descend to k(n), and hence by a spreading-out argument we can conclude
that Cy is a representative family on a dense open subset U of S. Proceeding by induction
over the (finite) union of the Galois conjugates of the finitely many irreducible components
of the complement of U, which is again defined over k, one obtains the second part of the
proposition. ]
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Whereas the universal family C — Mgg is sometimes easy to construct, it seems hard to

work out Cy directly by explicit Galois descent; the Galois group of the covering Mgg) — My is

Spay(F¢), which is a group of large cardinality 0’ 9_,(£** —1) whose quotient by its center is
simple. Moreover, for enumeration purposes, it is necessary for the scheme S to be as simple
as possible. Typically one would wish for it to be rational, as fortunately turns out always
to be the case for plane quartics. On the other hand, for moduli spaces of general type that
admit no rational curves, such as My with g > 23, there does not even exist a rational family
of curves with a single parameter [15].

3. FAMILIES OF SMOOTH PLANE QUARTICS

3.1. Review : automorphism groups. Let C' be a smooth plane quartic over an alge-
braically closed field K of characteristic p > 0. Then since C' coincides up to a choice of basis
with its canonical embedding, the automorphism Aut(C') can be considered as a conjugacy
class of subgroups PGL3(K) (and in fact of GL3(K)) by using the action on its non-zero
differentials.

The classification of the possible automorphism groups of C' as subgroup of PGL3(K),
as well as the construction of some geometrically complete families, can be found in several
articles, such as [16, 2.88], [38, p.62], [25], [3] and [8] (in chronological order), in which it
is often assumed that p = 0. We have verified these results independently, essentially by
checking which finite subgroups of PGL3(K) (as classified in [19, Lem.2.3.7]) can occur for
plane quartics. It turns out that the classification in characteristic 0 extends to algebraically
closed fields K of prime characteristic p > 5. In the following theorem, we do not indicate
the open non-degeneracy conditions on the affine parameters, since we shall not have need of
them.

Theorem 3.1. Let K be an algebraically closed field whose characteristic p satisfies p = 0
orp>5. Let C be a genus 3 non-hyperelliptic curve over K. The following are the possible
automorphism groups of C, along with geometrically surjective families for the corresponding
strata:

(1) {1}, with family qa(x,y, z) = 0, where q4 is a homogeneous polynomial of degree 4;

(2) Ca, with family z* + 22q2(y,2) + qa(y,2) = 0, where qo and g4 are homogeneous
polynomials in y and z of degree 2 and 4;

3) Dy, with family z* + y* + 2* 4+ ra2y? + sy?2? + t2222 = 0;
4) Cs, with family 23z +y(y — 2)(y — rz)(y — sz) = 0;

Dg, with family z* + y* + 2* + rayz + sy?2? = 0;

Ss, with family x(y® + 23) + y?22 + ra?yz + szt = 0;

)

)

)

)

) Cs, with family 3z + yt+ 2+ 24 =0;

) Gig, with family * +y* + 24 + ry?22 = 0;

) Sy, with family x* + y* + 24 + r(z?y? + y?2% + 2%2%) = 0;

) Cy, represented by the quartic 23y + 3z + 2* = 0;

) Gug, represented by the quartic zt + (y3 — 23)2 =0;

) Gog, represented by the Fermat quartic z* + y* + 2* = 0;

) (if p # 7) Gigs, represented by the Klein quartic x3y + y3z + 232 = 0.
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The families in Theorem 3.1 are geometrically surjective. Moreover, they are irreducible
and quasifinite (as we will see in the proof of Theorem 3.3) for all groups except the trivial
group and Cj. The embeddings of the automorphism group of these curves into PGL3(K) can
be found in Theorem A.1 in Appendix A. Because of the irreducibility properties mentioned
in the previous paragraph, each of the corresponding subvarieties serendipitously describes an
actual stratum in the moduli space Mgh C M3 of genus 3 non-hyperelliptic curves as defined
in Section 2 (see Remark 3.2 below). From the descriptions in A.1, one derives the inclusions
between the strata indicated in Figure 1, as also obtained in [38, p.65].

dim 6 {1}

\
dim 4 C,

\
dim 3 Dy

\
dim 2 Cs Ds S3

\ / \ /

dim 1 Cs (&1 S4
dim 0 Cy Gys Gos Gi6s

FIGURE 1. Automorphism groups

Remark 3.2. As promised at the beginning of Section 2, we now indicate two different possible
rigidifications of an action of a finite group on plane quartics. Consider the group Cs. Up
to conjugation, this group can be embedded into PGL3(K) in exactly two ways; as a diagonal
matriz with entries proportional to (C3,1,1) or (¢3,(3,1). This gives rise to two rigidifications
in the sense of Lonsted.

While for plane curves of sufficiently high degree, this indeed leads to two families with
generic automorphism group Cs, the plane quartics admitting the latter rigidification always
admit an extra involution, so that the full automorphism group contains Ss3. It is this fortunate
phenomenon that still makes a naive stratification by automorphism groups possible for plane
quartics. For the same reason, the stratum for the group S3 is not included in that for Cs,
as is claimed incorrectly in [3].

3.2. Construction of representative families. We now describe how to apply Galois
descent to extensions of function fields to determine representative families for the strata in
Theorem 3.1 with |G| > 2. By Proposition 2.3, this shows that the descent obstruction always
vanishes for these strata.

Our constructions lead to families that parametrize the strata much more efficiently; for
the case Dy, the family in Theorem 3.1 contains as much as 24 distinct fibers isomorphic with
a given curve. Moreover, by Proposition 2.3, in order to write down a complete list of the
k-isomorphism classes of smooth plane quartics defined over a perfect field k we need only
consider the k-rational fibers of the new families.

As in Theorem 3.1, we do not specify the condition on the parameters that avoid degener-
ations (i.e. singular curves or a larger automorphism group), but such degenerations will be
taken into account in our enumeration strategy in Section 5.

Theorem 3.3. Let k be a field whose characteristic p satisfies p =10 or p > 7. The following

are representative families for the strata of smooth plane quartics with |G| > 2.
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o G ~Dy:
(a+3)z" + (40 — 8b + 4a)x’y + (12¢ + 4b)z>z + (6a° — 18ab + 18¢ + 2a°)z’y>
+ (12ac + 4ab)z’yz + (6bc + 20*)z°2° + (4a* — 16a°b + 8b° + 16ac + 2ab — 6¢)xy®
+ (12a%c — 24bc + 2a”b — 4b° 4 6ac)zy’z + (36¢° + 2ab” — 4a’c + 6bc)zyz”
+ (4b%c — 8ac® + 2abc — 6¢°)x2° + (a° — 5a°b + 5ab® + 5a’c — 5be 4+ b° — 2ac)y’
+ (4a°c — 12abc + 12¢° + 4a”c — 8be)y®z + (6ac® + a®b* — 20° — 2a°c + 4abe + 9¢°)y° =
+ (4b¢® 4 4b*c — 8ac®)y2® + (b*c — 3abc® + 3¢® + a*¢® — 2bc%)2" = 0

2

along with

zt + 2277 + 2a2’yz + (o — 20)2° 2% + ay® + 4(a® — 2b)y° 2
+6(a® — 3ab)y®2” + 4(a” — 4a°b + 20%)y2® + (a® — 5a°b + 5ab)z* = 0.

G~ Cz: 232 +y* + ay?2? + ayz® + bz* = 0 along with 3z + y* + ayz® + az* = 0;
G ~ Dg: o' + 2%yz + y* + ay®2* + bz* = 0;
G ~ S3: 232 + y32 + 2%y? + axyz® 4+ bzt = 0;

G~ Cq: 232 +ay* + ay?22 + 22 = 0;

G~ Gg: 2+ (v° + ay2? + az’)z = 0;

G~ Sy x4yt + 24+ a(x®y? + y?22 + 222%) = 0;
G ~Cy: 23y + 132+ 24 =0;

G~Gyg: 2t + (v — 232 =0;

G ~ G%: x4 _|_y4 —|—Z4 — 0;

(if p#7) G~ Gieg: 23y + 32 + 232 = 0.

We do not give the full proof of this theorem, but content ourselves with some families that
illustrate the most important ideas therein. Let K be an algebraically closed extension of k.
The key fact that we use, which can be observed from the description in Theorem A.1, is
that the fibers of the families in Theorem 3.1 all have the same automorphism group G as a
subgroup of PGL3(K). Except for the zero-dimensional cases, which are a one-off verification,
one then proceeds as follows.

(1) The key fact above implies that any isomorphism between two curves in the family
is necessarily induced by an element of the normalizer N of G in PGL3(K). So one
considers the action of this group on the family given in Theorem 3.1.

(2) One determines the subgroup N’ of N that sends the family to itself again. The
action of N’ factors through a faithful action of @ = N’/G. By explicit calculation,
it turns out that @ is finite for the families in Theorem 3.1 with |G| > 2. This shows
in particular that these families are already quasifinite on these strata.

(3) One then takes the quotient by the finite action of ), which is done one the level
of function fields over K by using Galois descent. By construction, the resulting
family will be representative. For the general theory of Galois descent, we refer to [40]
and [37, App.A].

We now treat some representative cases to illustrate this procedure. In what follows, we
use the notation from Theorem A.1 to denote elements and subgroups of the normalizers
involved.

Proof. The case G ~ S3. Here N = T(K )§3 contains the group of diagonal matrices T'(K).

Transforming, one verifies that the subgroup N’ C N equals S3; indeed, since gg fixes the

family pointwise, we can restrict to the elements T'(K). But then preserving the trivial

proportionality of the coefficients in front of 23z, y3z, and x?y? forces such a diagonal matrix
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to be scalar. This implies the result; the group @ is trivial in PGL3(K), so we need not adapt
our old family since it is geometrically surjective and contains no geometrically isomorphic
fibers. A similar argument works for the case G = Sy.

The case G ~ Cg. This time we have to consider the action of the group D(K) on the
family 232 4+ y* + ry?22 + 2* = 0 from Theorem 3.1. After the action of a diagonal matrix
with entries A, u1, 1, one obtains the curve A3z3z + pty* + p?ry?22 + 2* = 0. We see that we
get a new curve in the family if A> = 1 and p* = 1, in which case the new value for r equals
pr. But this equals 7 since (u?)? = 1. The degree of the morphism to M3 induced by this
family therefore equals 2. This also follows from the fact that the subgroup N’ that we just
described contains G as a subgroup of index 2, so that Q = C,.

We have a family over L = K(r) whose fibers over r and —r are isomorphic, and we
want to descend this family to K(a), where a = r? generates the invariant subfield under
the automorphism » — —r. This is a problem of Galois descent for the group @ = Cy and
the field extension M D L, with M = K(r) and L = K(a). The curve C' over M that we
wish to descend to L is given by z3z + y* 4+ ry?22 + 2* = 0. Consider the conjugate curve
Co : 232 +y* —ry?22 + 2* = 0 and the isomorphism ¢ : C' — C7 given by (z,vy,2) — (z, iy, 2).
Then we do not have ¢%¢ = id. To trivialize the cocycle, we need a larger extension of our
function field L.

Take M’ D M tobe M’ = M(p), with p> = r. Let 7 be a generator of the cyclic Galois group
of order 4 of the extension M’ D L. Then T restricts to o in the extension M D L, and for
M’ D L one now indeed obtains a Weil cocycle determined by the isomorphism C' +— CT = C°
sending (x,y, z) to (x,iy, z). The corresponding coboundary is given by (z,y, z) — (z, py, 2).
Transforming, we end up with 23z + (py)* + r(py)?2? + 2* = 232 + ay* + ay?2? + 2* = 0,
which is what we wanted to show. The case G = Dg can be dealt with in a similar way.

The case G ~ Dy. We start with the usual Ciani family from Theorem 3.1, given
by x* + y4~—i— 24+ ra?y? + sy?2% + tz%2? = 0. Using the Sz-elements from the normalizer
N = D(K)Ss3 induces the corresponding permutation group on (r, s,t). The diagonal matrices
in D(K) then remain, and they give rise to the transformations (r, s,t) — (%r,+s, £¢t) with
an even number of minus signs. This is slightly awkward, so we try to eliminate the latter
transformations. This can be accomplished by moving the parameters in front of the factors
z*, y*, 2% So we instead split up S into a disjoint union of two irreducible subvarieties by
considering the family

rat + syt +t2* + 2%y 4+ 7% + 2%? =0,
and its lower-dimensional complement
rat + syt + 2t + 2%y? + 22 = 0.

Here the trivial coefficient in front of z* is obtained by scaling z, y, z by an appropriate factor
in the family rz* + sy + t2* + 2%y? 4+ y?2? = 0. Note that because of our description of the
normalizer, the number of non-zero coefficients in front of the terms with quadratic factors
depends only on the isomorphism class of the curve, and not on the given equation for it in
the geometrically surjective Ciani family. This implies that the two families above do not
have isomorphic fibers. Moreover, the a priori remaining family rz? + y* 4+ 2* + y?22 = 0 has
larger automorphism group, so we can discard it.

We only consider the first family, which is the most difficult case. As in the previous
example, after our modification the elements of N'ND(K) are in fact already in G. Therefore
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Q = N'/G c DK )gg is a quotient of the remaining factor S5, which clearly acts freely
and is therefore isomorphic with (). We obtain the invariant subfield L = K(a,b,c) of
M = K(r,s,t), witha = r+s+t, b =rs+st+tr and ¢ = rst the usual elementary symmetric
functions. The cocycle for this extension is given by sending a permutation of (r,s,t) to
its associated permutation matrix on (x,y,z). A coboundary is given by the isomorphism
(x,y,2) = (x4+y+z,re+sy+tz, stex+try+rsz). Note that this isomorphism is invertible
as long as r, s,t are distinct, which we may assume since otherwise the automorphism group
of the curve would be larger. Transforming by this coboundary, we get our result.

The case G ~ Cs. This case needs a slightly different argument. Consider the eigenspace
decomposition of the space of quartic monomials in z,y, z under the action of the diagonal
generator ((3,1,1) of C3. The curves with this automorphism correspond to those quartic
forms that are eigenforms for this automorphism, which is the case if and only if it is contained
in one of the aforementioned eigenspaces. We only need consider the eigenspace spanned
by the monomials 2%y, 3z, y?, 132, y222, ¥z, 2*; indeed, the quartic forms in the other
eigenspaces are all multiples of x and hence give rise to reducible curves.

Using a linear transformation, one eliminates the term with z3y, and a non-singularity
argument shows that we can scale to the case 3z + y* + ry22z + sy?22 + ty23 + uz* = 0. We
can set 7 = 0 by another linear transformation, which then reduces N’ to D(K). Depending
on whether s = 0 or not, one can then scale by these scalar matrices to an equation as in
the theorem, which one verifies to be unique by using the same methods as above. The case
G ~ G1g can be proved in a completely similar way. ]

Remark 3.4. As mentioned in Remark 2.2, these constructions give rise to isomorphisms
S — S in all cases except Dy, and Cs. In these remaining cases, we have constructed a
morphism S& — S that is bijective on points but not an isomorphism. It is possible that no
family C — S inducing such an isomorphism exists; see [12] for results in this direction for
hyperelliptic curves.

3.3. Remaining cases. We have seen in Proposition 2.3 that if there exist a representative
family over k over a given stratum, then the field of moduli needs to be a field of definition
for all the curves in this stratum. In [2], it is shown that there exist R-points in the stratum
C,, for which the corresponding curve cannot be defined over R. In fact we suspect that this
argument can be adapted to show that representative families for this stratum fail to exist
even if k is a finite field. However, we can still find arithmetically surjective families over
finite fields.

Proposition 3.5. Let C' be a smooth plane quartic with automorphism group Co over a
finite field k of characteristic different from 2. Let o be a non-square element in k. Then C
is k-isomorphic to a curve of one of the following forms:

ot rex?y? fayt + plr byt ey +d2t =0 withe =1 ora and p =10 or1,
o+ atyz Fayt ety by?t b eyt +dt =0 withe = 0,1 or a,
ot 22y —a2®) Fayt + bt ey’ + dyd + et = 0.

Proof. The involution on the quartic, being unique, is defined over k. Hence by choosing
a basis in which this involution is a diagonal matrix, we can assume that it is given by
(z,y,2) — (—x,y,2). This shows that the family 2* + 22¢(y, 2) +q4(y, z) = 0 of Theorem 3.1
is arithmetically surjective. We have ga2(y, z) # 0 since otherwise more automorphisms would
exist over K. We now distinguish cases depending on the factorization of g» over k.
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(1) If g2 has a multiple root, then we may assume that go(y, z) = ry? where r equals 1 or
«. Then either the coefficient b of 432 in ¢4 is 0, in which case we are done, or we can
normalize it to 1 using the change of variable z +— z/b.

(2) If g splits over k, then we may assume that ¢a(y, z) = yz. Then either the coefficient
b of 4z in ¢4 is 0, in which case we are done, or we attempt to normalize it by a
change of variables y — Ay and z — z/\. This transforms by3z into bA%y3z. Hence
we can assume b equals 1 or a.

(3) If go is irreducible over k, then we can normalize g2(y,2) as y*> — az? where « is a
non-square in k. This gives us the final family with 5 coefficients.

0

Remark 3.6. The same proof shows the existence of a quasifinite family for the stratum in
Proposition 3.5, since over algebraically fields we can always reduce to the first or second case.

We have seen in Section 2 that a universal family exists for the stratum with trivial automor-
phism group. Moreover, as M3 is rational [20], this family depends on 6 rational parameters.
However, no representative (hence in this case universal) family seems to have been written
down so far.

Classically, when the characteristic p is different from 2 or 3, there are at least two ways
to construct quasifinite families for the generic stratum. The first method fixes bitangents of
the quartic and leads to the so-called Riemann model; see [13, 29, 39| for relations between
this construction, the moduli of 7 points in the projective plane and the moduli space MéQ).
The other method uses flex points, as in [35, Prop.1]. In neither case can we get such models
over the base field k, since for a general quartic, neither its bitangents nor its flex points are
defined over k. We therefore content ourselves with the following result which was kindly
provided to us by J. Bergstrom.

Proposition 3.7 ((Bergstrom)). Let C be a smooth plane quartic over a field k admitting a
rational point over a field of characteristic # 2. Then C is isomorphic to a curve of one of
the following forms:

myzt + m2x3y + m49102y2 + mex®2? + m7xy3 + J;yzz + m11y4 + m12y3z + y222 + yz3 =0,
m1x4 + mgxgy + m4x2y2 + m6x222 + xyg + m11y4 + m12y32’ + y222 + y23 =0,

m1x4 + mgxgy + m4x2y2 + m6x2z2 + m11y4 + m12y32’ + y222 + y23 =0,

m1x4 + mgxgy + m4x2y2 + m6m222 + xyg + a:sz + m11y4 + m12y32’ + y23 =0,

m1x4 + m2m3y + m4x2y2 + m6x222 + nyz + m11y4 + m12y32’ + y23 =0,

z* + mzx‘n’y + m4x2y2 + m6x222 + m7wy3 + m11y4 + m12y3z + yz3 =0,

max®y + maz®y® + mea®2® + mrxy® + muy* + migy’z +y2® =0,

222 + max®y® + mozy® + mezy’z + 2y + mayt + magy’z + masy®2 +y2° =0,

2?2 + maz®y® + mray® + meay®z + muyt + masy®z + masy®2® +y2® =0,

x? + m49L‘2y2 + m5x2yz + m7xy3 + mgxyzz + m11y4 + m12y3z + yz3 =0.

Proof. We denote by my, ..., m5 the coefficients of the quartic C', with its monomials ordered
as

As there is a rational point on the curve, we can transform this point to be (0 : 0 : 1)
with tangent equal to y = 0. We then have mi5 = mig = 0, and we can scale to ensure that

m14 = 1. The proof now divides into cases.
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Case 1: mg # 0. Consider the terms mgz?(2% 4+ m3/mgrz). Then by a further change
of variables z — z + mgx/(2mg) we can assume mg = 0 without perturbing the previous
conditions. Starting with this new equation, we can now cancel ms in the same way, and
finally mg (note that the order in which we cancel the coefficients mg, ms, mg is important,
so as to avoid re-introducing non-zero coefficients).

(1) If mg and mi3 are non-zero, then we can ensure that mg = mj3 = 1 by changing
variables (z : y : z) — (rx : sy : tz) such that mgrs?t = a, mi3s’t? = a, st =a
for a given a # 0 and then divide the whole equation by «. One calculates that it is
indeed possible to find a solution (r, s, ¢, «) to these equations in k2.

(2) If mg = 0,my3 # 0, my # 0, then we can transform to mi3 = m7 = 1 as above;

(3) If mg = 0,mq3 # 0, my = 0, then we can transform to my3 = 1;

(4) If mg # 0,my3 = 0, my # 0, then we can transform to mg = my = 1;

(5) If mg # 0,m7 = m13 = 0, then we can transform to mg = 1;

(6) If miz = mg = 0,my1 # 0, then we can transform to m; = 1;

(7) If miz = mg = my = 0, then we need not do anything.

Case 2: mg = 0,m3 # 0. As before, working in the correct order we can ensure that
m1 = mg = ms = 0 by using the non-zero coefficient ms.

(8) If mg # 0, we can transform to ms = mg = 1;
(9) If mg = 0, we can transform to ms = 1.

Case 3: mg =mg =0.

(10) If my # 0, then put m; = 1. Using my4, we can transform to mg = mjz3 = 0 and
using my, we can transform to msy = 0.

The proof is now concluded by noting that if m; = ms = mg = mig = m15 = 0, then the
quartic is reducible. O

Bergstrom has also found models when rational points are not available, but these depend
on as many as 9 coefficients. Using the Hasse-Weil-Serre bound, one shows that when k is a
finite field with #k > 29, the models in Proposition 3.7 constitute an arithmetically surjective
family of dimension 7, one more than the dimension of the moduli space.

Over finite fields k of characteristic > 7 and with #k < 29 there are always pointless
curves [18]. Our experiments showed that except for one single example, these curves all have
non-trivial automorphism group. As such, they already appear in the non-generic family. The
exceptional pointless curve, defined over Fy1, is

T2t + 323y + 1022 + 102%y? + 102%yz + 6222 + Tay’z
+ 2yz? + a2 + 9yt + 5032 + 8222 +9y23 + 924 = 0.

4. COMPUTATION OF TWISTS

Let C be a smooth plane quartic defined over a finite field & = I, of characteristic p. In
this section we will explain how to compute the twists of C, i.e. the k-isomorphism classes

of the curves isomorphic with C' over k.
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Let Twist(C') be the set of twists of C. This set is in bijection with the cohomology
set H'(Gal(k/k), Aut(C)), (see [36, Chap.X.2]). More precisely, if 3 : C' — C is any k-
isomorphism, the corresponding element in H!(Gal(k/k), Aut(C)) is given by o — 573871
Using the fact that Gal(k/k) is pro-cyclic generated by the Frobenius morphism ¢ : x +— 29,
computing H'(Gal(k/k), Aut(C)) boils down to computing the equivalence classes of Aut(C)
for the relation

g~h < Ja € Aut(C), ga = a¥h,

as in [26, Prop.9]. For a representative « of such a Frobenius conjugacy class, there will then
exist a curve C, and an isomorphism 3 : C,, — C such that ¢3! = a.

As isomorphisms between smooth plane quartics are linear [8, 6.5.1], 5 lifts to an automor-
phism of P2, represented by an element B of GL3(k), and we will then have that C,, = B~1(C)
as subvarieties of P2. This is the curve defined by the equation obtained by substituting
B(z,y,2)! for the transposed vector (z,v, )" in the quartic relations defining C.

4.1. Algorithm to compute the twists of a smooth plane quartic. We first introduce
a probabilistic algorithm to calculate the twists of C'. It is based on the explicit form of
Hilbert 90 (see [34] and [11]).

Let a € Aut(C) defined over a minimal extension Fy» of k = F, for some n > 1, and
let C'y be the twist of C' corresponding to a. We construct the transformation B from the
previous section by solving the equation B¥ = AB for a suitable matrix representation A of
. Since the curve is canonically embedded in P2, the representation of the action of Aut(C)
on the regular differentials gives a natural embedding of Aut(C') in GL3(F4»). We let A be
the corresponding lift of o in this representation. As Gal(F,/F,) is topologically generated by
¢ and « is defined over a finite extension of I, there exists an integer m such that the cocycle

relation a,r = aZa, reduces to the equality AP AP A = 1d, Using the multiplicative
form of Hilbert’s Theorem 90, we let
m—1 ) )
B=P+ ZpsolAsO”l...AwA
i=1

with P a random matrix 3 x 3 with coefficients in Fym chosen in such a way that at the end B
is invertible. We will then have BY = BA™!, the inverse of the relation above, so that we can
apply B directly to the defining equation of the quartic. Note that the probability of success
of the algorithm is bigger than 1/4 (see [11, Prop.1.3]).

To estimate the complexity, we need to show that m is not too large compared with n. We
have the following estimate.

Lemma 4.1. Let e be the exponent of Aut(C). Then m < ne.

Proof. By definition of n we have o¥" = a. Let v = a? -a¥a, and let N be the order of ~
in Autg_, (C). Since " =~ and Id = 4N = """ ... 0P, we can take m < nN < ne. 0O

In practice we compute m as the smallest integer such that a?" ! a®a s the identity.

4.2. How to compute the twists by hand when # Aut(C) is small. When the auto-
morphism group is not too complicated, it is often possible to obtain representatives of the
classes in H'(Gal(F,/F,), Aut(C)) and then to compute the twists by hand, a method used
in genus 2 in [6]. We did this for Aut(C) = Ca,Dy4, C3,Ds, Ss.

12



Let us illustrate this in the case of Dg. As we have seen in Theorem 3.3, any curve C'/F,
with Aut(C) ~ Dy is F -isomorphic with some curve % + z2yz + y* + ay?2? + bz? with
a,b € Fy. The problem splits up into several cases according to congruences of ¢ —1 (mod 4)
and the class of b € F;;/(IF;)‘*. We will assume that 4| (¢ — 1) and b is a fourth power, say
b=r%in F,. The 8 automorphisms are then defined over Fg: if i is a square root of —1, the
automorphism group is generated by

100 100
S:[Oi 0} and T:[o 0 r}.
00 —1i 0r-1o0

Representatives of the Frobenius conjugacy classes (which in this case reduce to the usual
conjugacy classes) are then Id, S, S?, T and ST. So there are 5 twists.

Let us give details for the computation of the twist corresponding to the class of T. We
are looking for a matrix B such that TB = BY¥ up to scalars. We choose B such that
B(x,y,2)! = (z,ay + 82,7y + 62)t. Then we need to solve the following system:

of =ry,B° =18,y =rta,6f =r 1.

The first equation already determines 7 in terms of . So we need only satisfy the compat-
ibility condition given by the second equation. Applying ¢, we get o’ = (ry)? = ry% =
r(a/r) = a. Reasoning similarly for 8 and §, we see that it suffices to find o and 8 in Fpe

such that det <a3 Ir ﬁf /T) # 0. We can take « = /7 and 8 = 1, with 7 a primitive element
of Fy. Transforming, we get the twist

a2t 4 ra?y? —rra?2? + (ar® 4+ 2yt + (<20t 4+ 12007222 + (ar?r? + 27 72) 2t = 0.

5. IMPLEMENTATION AND EXPERIMENTS

We combine the results obtained in Sections 3 and 4 to compute a database of represen-
tatives of k-isomorphism classes of genus 3 non-hyperelliptic curves when k = F,, is a prime
field of small characteristic p > 7.

5.1. The general strategy. We proceed in two steps. The hardest one is to compute one
representative defined over k for each k-isomorphism class, keeping track of its automorphism
group. Once this is done, one can apply the techniques of Section 4 to get one representative
for each isomorphism class.

In order to work out the computation of representatives for the k-isomorphism classes, the
naive approach would start by enumerating all plane quartics over k by using the 15 monomial
coefficients my, ..., mi5 ordered as in Equation (3.1) and for each new curve to check whether
it is smooth and not k-isomorphic to the curves we already kept as representatives. This would
have to be done for up to p*® curves. For p > 29, a better option is to use Proposition 3.7 to
reduce to a family with 7 parameters.

In both cases, checking for k-isomorphism is relatively fast as we make use of the so-called
13  Dixmier-Ohno invariants. These are generators for the algebra of invariants of ternary
quartics forms under the action of SL3(C). Among them 7 are denoted I3, Is, Iy, 112, I15, I1s
and Io7 (of respective degree 3, 6, ..., 27 in the m;’s) and are due to Dixmier [7]; one also
needs 6 additional invariants that are denoted Jo, Ji2, Jis, Jis, Io1 and Ja1 (of respective
degree 9, 12, ..., 21 in the m;’s) and that are due to Ohno [28, 10]. These invariants behave
well after reduction to I, for p > 7 and the discriminant 57 is 0 if and only if the quartic
is singular. Moreover, if two quartics have different Dixmier-Ohno invariants (seen as points
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in the corresponding weighted projective space, see for instance [22]) then they are not k-
isomorphic. We suspect that the converse is also true (as it is over C). This is at least
confirmed for our values of p since at the end we obtain p® + 1 F,-isomorphism classes, as
predicted by [4].

The real drawback of this approach is that we cannot keep track of the automorphism
groups of the curves, which we need in order to compute the twists. Unlike the hyperelliptic
curves of genus 3 [22], for which one can read off the automorphism group from the invariants
of the curve, we lack such a dictionary for the larger strata of plane smooth quartics.

We therefore proceed by ascending up the strata, as summarized in Algorithm 1. In light
of Proposition 2.3, we first determine the k-isomorphism classes for quartics in the small
strata by using the representative families of Theorem 3.3. In this case, the parametrizing is
done in an optimal way and the automorphism group is explicitly known. Once a stratum is
enumerated, we consider a higher one and keep a curve in this new stratum if and only if its
Dixmier-Ohno invariants have not already appeared. As mentioned at the end of Section 3,
this approach still finds all pointless curves (except one for F;;) for p < 29. We can then use
the generic families in Proposition 3.5 and Proposition 3.7.

Algorithm 1: Database of representatives for Fy-isomorphism classes of smooth plane
quartics

Input : A prime characteristic p > 7.
Output: A list £, of mutually non-IF-isomorphic quartics representing all isomorphism
classes of smooth plane quartics over [F),.

1 L,:=0
2 for G :=
G1gs, Gog, Gas, Co, // Dim. O strata (fI'I’St)
Cé,54,Gis, // Dim. 1 strata (then)
S3,C3, Ds, // Dim. 2 strata (then)
Dy, Co, {1} // Dim. 3, 4 and 5 strata (finally)
do

3 forall quartics Q defined by the families of

Theorem 3.3 if G defines a stratum of dim. < 3,
Proposition 3.5 if G = Cs,

Proposition 3.7 if G = {1}

do
4 (Is: Ig: ...: Jo1: Iz7) := Dixmier-Ohno invariants of Q;
5 if L,(I3: Ig: ...: Jo1: Ia7) is not defined then
6 Lo(Is: Ig: ...: Jop:Ia7) :={Q and its twists} // cf. Section 4
7 L if £, contains p® + 1 entries then return £,

5.2. Implementation details. We split our implementation of Algorithm 1 into two parts.

The first one, developed with the MAGMA computer algebra software, handles quartics in

the strata of dimension 0, 1, 2 and 3. These strata have many fewer points than the ones

with geometric automorphism group Cg and {1} but need linear algebra routines to compute

twists. The second part has been developed in the C-language for two reasons: to efficiently
14



compute the Dixmier-Ohno invariants in the corresponding strata and to decrease the memory
needed. We now discuss these two issues.

5.2.1. Data structures. We decided to encode elements of F, in bytes. This limits us to
p < 256, but this is not a real constraint since larger p seem as yet infeasible (even considering
the storage issue). As most of the time is spent computing Dixmier-Ohno invariants, we group
the multiplications and additions that occur in these calculations as much as possible in 64-bit
microprocessor words before reducing modulo p. This decreases the number of divisions as
much as possible.

To deal with storage issues in Step 6 of Algorithm 1, only the 13 Dixmier-Ohno invariants
of the quartics are made fully accessible in memory; we store the full entries in a compressed
file. These entries are sorted by these invariants and additionally list the automorphism
group, the number of twists, and for each twist, the coefficients of a representative quartic,
its automorphism group and its number of points.

5.2.2. Size of the hash table. We make use of an open addressing hash table to store the list
L, from Algorithm 1. This hash table indexes p°> buckets, all of equal size (14 ¢) x p for some
overhead e. Given a Dixmier-Ohno 13-tuple of invariants, its first five elements (eventually
modified by a bijective linear combination of the others to get a more uniform distribution)
give us the address of one bucket of the table of invariants. We then store the last eight
elements of the Dixmier-Ohno 13-tuple at the first free slot in this bucket. The total size of
the table is thus 8 (1 +¢) x p% bytes.

All the buckets do not contain the same number of invariants at the end of the enumeration,
and we need to fix € such that it is very unlikely that one bucket in the hash table goes
over its allocated room. To this end, we assume that Dixmier-Ohno invariants behave like
random 13-tuples, i.e. each of them has probability 1/p® to address a bucket. Experimentally,
this assumption seems to be true. Therefore the probability that one bucket B contains n
invariants after k trials follows a binomial distribution,

=) () () <)

Now let k& ~ p%. Then k x (1/p®) ~ p, which is a
fixed small parameter. In this setting, Poisson approx-
imation yields P(B = n) ~ p"e™?/n!, so the average
number of buckets that contain n entries at the end is . ...

about p° P(B = n) ~ p>* e P/n! and it remains to : .
choose n = (1+¢) p, and thus ¢, such that this proba- s
bility is negligible. We draw ¢ as a function of p when e e

this probability is smaller than 1073 in Figure 2. For

p = 53, this yields a hash table of 340 gigabytes. FIGURE 2. Overhead e

5.3. Results and first observations. We have used

our implementation of Algorithm 1 to compute the qylist £, for primes p between 11 and
53. Table 1 gives the corresponding timings and database sizes (once stored in a compressed
file). Because of their size, only the databases £, for p = 11 or p = 13, and a program to use
them, are available online?.

2 http://perso.univ-rennesi.fr/christophe.ritzenthaler/programme/qdbstats-v3_0.tgz.
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TABLE 1. Calculation of £, on a 32 AMD-Opteron 6272 based server

P ‘ 11 13 17 19 23 29 31 37 41 43 47 53

Time 42s 1m 48s 10m 20m 30s 1h 7m 4h36m 6h48m 22h48m 1d23h 2d7h 5d22h 7d 19
Db size | 27Mb ~ 68Mb  377Mb  748Mb  2.5Gb 11.5 Gb 16Gb 51Gb 97Gb  128Gb  224Gb  460Gb

As a first use of our database, and sanity check, we can try to interpolate formulas for
the number of F,- or F,-isomorphism classes of genus 3 plane quartics over F, with given
automorphism group. The resulting polynomials in p are given in Table 2. The ‘+[a] condition’
notation means that a should be added if the ‘condition’ holds.

TABLE 2. Number of isomorphism classes of plane quartics with given auto-
morphism group

G ‘#Fp—isomorphism classes #IF -isomorphism classes
Gies |1 + [2]p=1,2,4 mod 7
Gog |1 + [4]p=1 mod 4
Gy |1 + [10]p=1 mod 12 + [2]p=5 mod 12 + [4]p=7 mod 12
Cy |1 + [8lp=1 mod 9 + [2]p=4 mod 9 + [6]p=7 mod 9
Cé |p—2 2 X (14 [2]p=1 mod 3) X #Fp-iso.
Sa |P—4-[2p=124mod7 5 X #Fp-iso.
Gis |p—2 2x(2(P—3)+[P—2]p=1mod 4)
S3 [p?2-3p+4+ [2]p=1,2,4 mod 7 3 x #Fp-iso.
Cs |p?2-p (1 + [2]p=1 mod 3) X #Fp-iso.
Ds |p2—4p+6+[2 lp=1,2,4 mod 7 4 x #Fp-iso.—3p + 8
Dy |[p>-3p%2+5p—5 2p3 - 8p2+17p—19
Co [p*—2p°+2p>—-3p+1-— 2]p=12.4mod 7 2 X #Fp-iso.
{1y pb—p*+p®—2p*+3p—1 #Fp-iso.
Total|p® + 1 pS 4+ pt —pP +2p? —4p—1+2(pmod 4)
+2[p* +p+2— (p mod 4)]—1,4,7 mod 9 + [6]p=1 mod 9
+[2p + 6]p=1 mod 4 + [2]p=1,2,4 mod 7

Most of these formulas can actually be proved (we emphasize the ones we are able to
prove in Table 2). In particular, it is possible to derive the number of most of the #Fp—
isomorphic classes from the representative families given in Theorem 3.3; one merely needs
to consider the degeneration conditions between the strata. For example, for the strata of
dimension 1, the singularities at the boundaries of the strata of dimension 1 corresponding
to strata with larger automorphism group are given by F)-points, except for the stratum Sy.
The latter stratum corresponds to singular curves for a € {—2,—1,2}, and the Klein quartic
corresponds to a = 0. But the Fermat quartic corresponds to both roots of the equation
a®? + 3a + 18 (note that the family for the stratum S, is no longer representative at that
boundary point). The number of roots of this equation in F,, depends on the congruence class
of p modulo 7
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One proceeds similarly for the other strata of small dimension; the above degeneration turns
out to be the only one that gives a dependence on p. To our knowledge, the point counts
for the strata Cq and {1} are still unproved. Note that the total number of F,-isomorphism
classes is known to be p® + 1 by [4], so the number of points on one determines the one on
the other.

Determining the number of twists is a much more cumbersome task, but can still be done
by hand by making explicit the cohomology classes of Section 4. For the automorphism groups
Gies, Gog, Gag and Sy, we have recovered the results published by Meagher and Top in [26]
(a small subset of the curves defined over F,, with automorphism group G was studied there
as well).

5.4. Distribution according to the number of points. Once the lists £, are determined,
the most obvious invariant function on this set of isomorphism classes is the number of rational
points of a representative of the class. To observe the distributions of these classes according to
their number of points was the main motivation of our extensive computation. In Appendix B,
we give some graphical interpretations of the results for prime field F,, with 11 <p < 533.

Although we are still at an early stage of exploiting the data, we can make the following
remarks:

(1) Among the curves whose number of points is maximal or minimal, there are only
curves with non-trivial automorphism group, except for a pointless curve over Fi
mentioned at the end of Section 3.3. While this phenomenon is not true in general
(see for instance [30, Tab.2] using the form 43, #1 over Fig7), it shows that the usual
recipe to construct maximal curves, namely by looking in families with large non-
trivial automorphism groups, makes sense over small finite fields. It also shows that
to observe the behavior of our distribution at the borders of the Hasse-Weil interval,
we have to deal with curves with many automorphisms, which justifies the exhaustive
search we made.

(2) Defining the trace ¢ of a curve C/FF; by the usual formula ¢t = ¢+1—#C(F,), one sees
in Fig. 3a that the “normalized trace” 7 = t/,/q accurately follows the asymptotic
distribution predicted by the general theory of Katz-Sarnak [21]. For instance, the
theory predicts that the mean normalized trace should converge to zero when ¢ tends
to infinity. We found the following estimates for ¢ = 11,17, 23,29, 37, 53:

4-1073, 1-107%, 4-107%, 2-107%, 6-107°, 3-107°.

(3) Our extensive computations enable us to spot possible fluctuations with respect to the
symmetry of the limit distribution of the trace, a phenomenon that to our knowledge
has not been encountered before (see Fig. 3b). These fluctuations are related to the
Serre’s obstruction for genus 3 [30] and do not appear for genus < 2 curves. Indeed, for
these curves (and more generally for hyperelliptic curves of any genus), the existence
of a quadratic twist makes the distribution completely symmetric. The fluctuations
also cannot be predicted by the general theory of Katz and Sarnak, since this theory
depends only on the monodromy group, which is the same for curves, hyperelliptic
curves or abelian varieties of a given genus or dimension. Trying to understand this
new phenomenon is a challenging task and indeed the initial purpose of constructing
our database.

3The numerical values we exploited can be found at http://perso.univ-rennesl.fr/christophe.
ritzenthaler/programme/qdbstats-v3_0.tgz.
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APPENDIX A. GENERATORS AND NORMALIZERS

As mentioned in Remark 3.2, the automorphism groups in Theorem 3.1 have the property
that their isomorphism class determines their conjugacy class in PGL3(K). Accordingly, the
families of curves in Theorem 3.1 have been chosen in such a way that they allow a common
automorphism group as subgroup of PGL3(K). We proceed to describe the generators and
normalizers of these subgroups, that can be computed directly or by using [19, Lem.2.3.8].

In what follows, we consider GLy(K) as a subgroup of PGL3(K) via the map A — [} ]
The group D(K) is the group of diagonal matrices in PGL3(K), and T'(K) is its subgroup
consisting of those matrices in D(K) that are non-trivial only in the upper left corner. We
consider S3 as a subgroup gg of GL3(K) by the permutation action that it induces on the

coordinate functions, and we denote by Sy the degree 2 lift of S4 to GL3(K) generated by
the matrices
1 0 0 .
0 0

1 0 0
0 @+ —1
0 1 1

Theorem A.1. The following are generators for the automorphism groups G in Theorem 3.1,
along with the isomorphism classes and generators of their normalizers N in PGL3(K).
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(1) {1} is generated by the unit element. N = PGL3(K).

(2) Cy = (o), where a(x,y,z) = (—z,y,2). N = GLy(K).

(3) Dy = (a, B), where a(z,y,2) = (—a,y,2) and B(x,y,2) = (z,—y,z). N = D(K)Ss.

(4) C3 = (o), where a(x,y, z) = ((37,y,2). N = GLa(K). N

(5) Dg = (a, B), where a(x,y,z) = (z,(4y, (' 2) and B(x,y,2) = (z,2,y). N = T(K)’S\é.

(6) Sz = (a, B), where a(z,y,2) = (x,(3y,(3 ' 2) and B(x,y,2) = (x,2,y). N = T(K)S;.

(7) Cs = (o), where a(x,y,z) = (32, —y,2). N =D(K).

(8) Gig = <Oé,ﬂ,’}/>, where a(x,y, Z) = (C4:C7y7 Z)7 B(‘Tvya Z) = (.CU, —y,z), and ’y(ﬂ:,y, Z) =
(x,z,y). N=T(K)Sy.

(9) Sa = (., B,7), where a(z,y,2) = (Gx,y,2), B(@,y,2) = (2, (3y,2), and y(z,y,2) =
(x,y + 22,y — z). N is PGL3(K)-conjugate to N = T(K)Sy.

(10) Co = (a), where a(z,y,z) = (Coz, 3y, ¢ °2). N = D(K).

@
|

(11) = <a767775>7 where a(x7y72> = (_mvyvz)f 5(%977«') = (xa _y7z)7 7(x7y72> =
(y,2,2), and §(x,y,2) = (y,z,2). N =G.

(12) Gog = <O‘76777 5>; where a(:):,y,z) - <C4x7y7z): 5(%97 Z) = (x7C4yvz)7 V(xvyaz) -
(y,2,x), and §(x,y,2) = (y,z,2). N =G.

(13) G168 = <Oé,6,"}’>, where a(xay7 Z) = (C?xag’?y7 C’Z?lz): 5(%3/7 Z) = (y7z7x)7 and

Y(@,y,2) = (&7 =z + (G — Gy + (& — D)z,
(=) + (G -y + (¢ - )z,
(G =B+ (- Ey+ (G- E)z).

N =G@G.

For lack of space, we do not give the mutual automorphism inclusions or the degenerations
between the strata. Most of these can be found in [25].

APPENDIX B. NUMERICAL RESULTS

Given a prime number p, we let N, 3(¢) denote the number of Fp-isomorphism classes of
non-hyperelliptic curves of genus 3 over I, whose trace equals ¢. Define

_ P _
ps () = gty Mool t=1vporl Te[-6.6]

which is the normalization of the distribution of the trace as in [21]. Our numerical results
are summarized on Fig. 3.
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FiGure 3. Trace distribution
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