ALGORITHMS FOR COMPUTING ISOGENIES BETWEEN ELLIPTIC
CURVES

R. LERCIER AND F. MORAIN

ABSTRACT. The efficient implementation of Schoof’s algorithm for computing the cardinality of
elliptic curves over finite fields requires the computation of isogenies between elliptic curves. We
make a survey of algorithms used for accomplishing this task. When the characteristic of the field
is large, Weierstrass’s p functions can be used. When the characteristic of the field is small, we
now have three algorithms at our disposal, two due to Couveignes and one to the first author. We
treat the same example using these three algorithms and make some comparisons between them.

1. INTRODUCTION

The motivation for this article is the so-called Schoof-Elkies-Atkin algorithm that computes the
cardinality of an elliptic curve over any finite field. The improvements due to Elkies and Atkin
require the ability to compute isogenies of prime degree ¢ between elliptic curves. The first method
for doing this uses the Weierstrass’s parametrization of elliptic curves and cannot work when the
characteristic p of the field is smaller than . Couveignes developed a particular algorithm for
the case p < £ in his thesis [7]. Following the implementation of Couveignes’s algorithm for the
case p = 2 (cf. [17, 16]), the first author worked out a new algorithm for this case [14]. Very
recently, Couveignes [8], building on some of the ideas of [16] and [14], gave a new method using
the properties of the p-torsion points.

One of the purposes of this paper is to compare these last three methods on a particular example.
Before doing this, we need to recall some basic facts about elliptic curves, Schoof’s algorithm and
isogenies. We take the opportunity of this paper to present a new record for computing the number
of points in characteristic 2, namely the cardinality of a curve defined over Fyi301 .

2. BACKGROUND ON ELLIPTIC CURVES

The reference for what follows is [22]. Let K be a field and E/K be an elliptic curve of equation
Y2+ a1 XY + a3y = X3+ agX2 + a4 X + ag
and let as usual
b2 = a% + 4a2, b4 = 2(14 + ajas, bG = ag + 4a6, bg = a%as + 4a2a6 — a1a3a4 + agag - ai,
cq = b3 — 24by, cg = b3 + 36byby — 216bg.
A = —bibg — 8b3 — 27b3 + bobabg.

Since E is an elliptic curve, one has A # 0 and the j-invariant of the curve is j(E) = ¢3/A. We
will note Of the neutral element of the group law on E. See the reference for the precise equations
of the law.

Let m be any integer and let 1,,,(X,Y") denote the m-th division polynomial, which satisfies the

following formulas:
Yo = 0,91 = 1,92 =2Y + a1.X + as;
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3 = 3X* 4+ by X3 + 46, X? + 3bg X + bg:
1 = 1P (2X° 4+ by X® + 5by X* + 1066 X3 + 10bs X2 + (bobg — babg) X + (babg — b3)) ;

PYothom = Y (Pm2¥e_1 — P2 i1),m > 2;

¢2m+1 = 1/’m+27wb7?;z - ¢m—1¢?n+1am > 2.
We let 9!, (X) denote ¥, (X,Y) reduced in K[X,Y]/(F(X, Y,1)). When m is even we let f,, =
P! /(2Y + a1 X + a3) and if m is odd, then f,, = v/ . If m is even, f,, has degree (m? —4)/2 and
leading coefficient m/2; if m is odd, f,, has degree (m? — 1)/2 and leading coefficient m.
Define E[m] = {P € E(K), mP = Og}. The principal property of E[m] is the following.

Theorem 2.1. Let P = (X,Y) € E(K) such that 2P # Og. Then P € E[m| if and only if
fm(X) =0.

3. COUNTING POINTS ON ELLIPTIC CURVES OVER FINITE FIELDS

We concentrate here on Schoof’s algorithm, which runs in polynomial time. For other algorithms
that are not polynomial time, but are useful in some cases, see for instance [6].

3.1. Schoof’s algorithm. Let K a finite field of characteristic p and cardinality ¢ = p”. We begin
with the following well known result.

Theorem 3.1. Let ¢ denote the Frobenius of E/K, i.e., the map sending (X,Y) to (X9,Y9). The
characteristic equation of ¢ is
(1) ™ —cr+q=0
where ¢ is an integer |c| < 2,/q. Moreover #E(K) =g+ 1 —c.
Schoof’s algorithm for computing #F(K) consists in using equation (1) on the £-torsion points
of E, for sufficiently many primes £. More precisely, for fixed £, he looks for v, 0 < v < £ such that
(X7, Y") @ [g)(X,Y) = [](X°,Y)

in E[{] ~ K[X,Y]/(E, fr). Once 7 is found, we have ¢ = v mod ¢. If we do this for all primes ¢
such that [, £ > 4,/q, then we can recover ¢ using the Chinese Remainder Theorem.

It is clear that this algorithm has polynomial running time. However, the size of the polynomials
is too large for computations, since f; has degree O(¢£?). The main improvement of Elkies to this
algorithm is to replace fy, which is the denominator of an isogeny of degree £2, by a polynomial g,
coming from an isogeny of degree £.

3.2. The role of isogenies. Let £ # p be a prime number. Let F be any of the £ + 1 cyclic
subgroups of E[f] and denote by E* the elliptic curve E/F. There is an isogeny I of degree £
between E and E* and we note I* the dual isogeny:

[£]
E E
I\‘ B 4

The invariant of E* satisfies
D(§(E"),j(E)) =0
in K, where ®,(X,Y) is the £-th modular polynomial (see for instance [13]). In turn, if this equation
has a rational root, then there is an F' such E/F (as well as I) is defined over K. The denominator
of I will give us a factor of f, since [¢/] = I* o I.
Elkies remarked that if t — 4q is a square modulo #, then the restriction of ¢ to E[{] has two
rational eigenspaces, which are rational cyclic subgroups of E[f]. In that case, we can build an
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isogeny as indicated above. This phenomenon happens probabilistically for half the prime numbers
£. This turns Schoof’s algorithm in a probabilistic polynomial time algorithm. More important,
this makes it efficient in practice.

We will explain how to build the pair (E*,I) in the following sections.

4. VELU’S FORMULAS

Given E and F, computing an isogeny I of kernel F' can be done using Vélu's formulas [24].
After recalling these, we will rewrite them in a more useful form as Dewaghe did [9].
Suppose that £ is an odd integer and put d = (£ —1)/2. Then, we can write F'— {0} = RU(—R)
with RN —R = 0. For Q € R, let
gé = 335%2 + 2a27¢ + as — a1yQ,
90 —2yQ — a1zQ — a3,
ug = 415‘2’2 + b2x2Q + 2bsz ) + be,
tg = 656?2 + bQ.TQ + by.

Theorem 4.1 (Vélu). An isogeny I : E — E* = E/F sending (X,Y) to (X*,Y™) is given by

tQ uQ
X*:X+Z< + 2),
Ocr X—LEQ (X—:EQ)

yr oy - Y ug taX tas , aX ~ 1) v Y~y a1uq — g59%

+1 -
St X —w 7Y (X —aq) (X — 2q)?

Letting

t:ZtQa w:Z(uQ+$QtQ),
Q Q
the equation of E* is

Y 4+ afX*Y* +afV* = X*° + a3 X% + af X" +af
with a] = a1, a5 = a2, a3 = a3 and
ay = a4 —5t, ag=ag— bat — Tw.
Our task is to rewrite these equations in term of the polynomial
HX) = [[ (X —2g) = X = X4 4 o X972 — hg X3 4 oo 4 (—1)%ho.
QER
First of all, we have to evaluate:

Sl :Z'TQ;SQ :Zxéas?) :Zx?é’
Q Q Q

1 1 1
=Y e S Y

_ 3°
) ) zQ)

Lemma 4.1. We have
51 = hl, 52 = h% - 2h2, 53 = hi’ — 3h1h2 + 3h3;

H' HI/
S, = ()
1 H72 <H)

1 H, "
Y= (=
=3 (7)

When char(K) # 2,
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and when char(K) = 2, we must use

1 2H(3) . " 3
= =  +HH-—+H
>3 3 (H 2 + 5 +

where the deriwatives of H are taken over Q, divided by 2 and then reduced modulo 2.
(Note that the formula for X3 boils down to extracting some precise coefficients of H.)
From this, it easily follows that

t = 6524 0251 + bad,
w = 1083 + 2bySy + 3b4S1 + bgd

which give us the coefficients of E*.
Decomposing the rational fractions and collecting the terms together, we can rewrite the X*
formula as

X* =X +2dX —2hy — (6X% 4+ b2 X + bg)S1 + (4X3 + b X% + 204X + bg) Zo.

Let us turn our attention to the case of Y*. It is convenient to put f = X3 4+ a9 X? + a4 X + ag
and A = a1 X + a3. Differentiating X* w.r.t. X, we can write

oX* c1 C2 c3
Y =Y —a3 —
0X +2Q:< BTN X e T (X1 | (X — 2l
oxX*
=Y oX —agd—a151+0121+0222+0323

with
¢ = Afll _ Alfl’
o = — (4'(4% —2f) + 34f')
C3 = A(4f + Az)

*

X’

Note that when a; = a3 = 0, one has A = 0 and so Y* is simply Y
An easy consequence of the above formulas is the following:
Proposition 4.1. The isogeny I of degree £ sending (X,Y) to (X*,Y™*) can be written as
1069 = (1 i)
where G(X) is of degree £ and H(X) is of degree (£ —1)/2.

5. USING WEIERSTRASS’S o FUNCTION

Assume for the moment that K = C. In this case, we can use the modular interpretation of elliptic
curves. More precisely, we can use the Weierstrass’s parametrization for £ : Y? = X3 + AX + B
viewing F as C/(w1Z + weZ) where 7 = ws/w; has positive imaginary part. The Weierstrass
function of F is given by

1 %
p(z) = poia ;wk(E)z

where wi(E) € Z[A, B,1/(2k + 4)!]. We have also j(E) = j(1) = 1/q+ Y oo ; cnq", ¢ = exp(2i7T).

Remember that we are looking for one isogeny of degree £. Let F' consist of the point at infinity
and the points of abscissa p(rwi/£), 1 < r < (£ —1)/2. The curve E* is in fact C/(w1 /¢, w2). Tt
can be shown that the coefficients of E* can be deduced in a rational way from that of E (see [21]
for instance). The functions p and p* are related via

0" (2) = I(p(2))-
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At this point, we can find the isogeny I using Stark’s method [23], i.e., developping the Weierstrass’
function of E* as a continued fraction in that of E. Since we know the degree of the fraction, this
works well. Alternatively, we can turn Vélu’s formulas into recurrence relations for the denominator
of I, which is really what we are looking for.

We need about ¢ coefficients of p and p* to be able to perform the computations. Therefore, the
method works as well when char(K) > 0, provided char(K) > 3 and char(K) > /. Computing I
takes O(¢2) operations and uses O(£) memory. We refer to [2, 10, 5, 3, 21, 19, 20] for more details.
The method is very efficient in practice and the record is the computation of the cardinality of a
curve modulo a prime of 500 decimal digits [19].

6. THE SMALL CHARACTERISTIC CASE

6.1. The problems to be solved. We assume from now on that K is a finite field of characteristic
p and cardinality ¢ = p™. We suppose we are given E for which there exists a rational ¢-isogeny and
that p < £, so that will include char(K) = 2,3 in particular. In this case, we have no valid modular
representation, which means that we have no candidate for F'. Still, we can find the invariant of
E* by solving ®,(X,j(E)) =0 in K Once we know j(E*), we need to find the isogeny class of E*
and the equation for I. The first task will be accomplished using the Hasse invariant and for the
second, we will describe three algorithms in the subsequent sections. Note that we already know
the form of I:
_ GX)

where G and H are two polynomials of respective degree £ and (¢ —1)/2.

For solving the first task, we introduce the formal group associated to an elliptic curve. This in
turn will be used in Couveignes’s first algorithm.

6.2. Formal group. The material below is taken from [22, Chap. IV].
Let E be our elliptic curve and let us make the change of variables t = —X/Y and s = —1/Y.
This transforms the equation of F as:

s = A(t,s) = t3 + arts + ast’s + azs® + agts® + ags.

This amounts to sending the point at infinity on the point (0,0). Substituting this equation into
itself, we get s as a power series in ¢, that we will note S, the first coefficients of which are:

[e.e]
(2) S(t) = sit' =2 +art* + (a] + a)t> + O(t9).

i=3
Using this relation, we see that a point in the formal group is completely characterized by its
abscissa. Note also that, given any ¢ on £, we can compute S(¢) by the same iterative process.
From this, we get

1
V=—= —t73 L a1t™? +agt™ + a3 + (a1a3 + as)t + O(t?),
and

t
X =-=—tY =t2—ait7! —ay — ast — (a1a3 + as)t*> + O(¢?),
s

1
Z== 2 + art® + (a2 + a2)t* + O(t9).

Letting t be any formal series in k[[7]], with strictly positive valuation, we can compute a series
s € k[[r]] such that s(7) = A(¢(7), s(7)). In this way, we get formal points (t(7), s(7)) on the formal
curve & of equation s — A(t,s) = 0. Since this is again the equation of a cubic, we see that we can
put a tangent-and-chord law on &, thus building what is called the formal group associated to E.
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Equations for this law are to be found in the reference given. The sum of #; and ¢2 in this group
will give us t3 = Fy(t1,t2). The first terms are:

(3) Fu(ti,t2) =t1 + ta — artita — ag(t%tz + t1t%) - (2a3t§’t2 — (a1a2 — 3a3)t%t% + 2a3t1t§) + -
Iterating this law, we get multiplication by m. A very important particular case is when m = p:

Theorem 6.1. If E is not supersingular, then there ezists a series ¥y, g(t) such that
[p](t) = ¥p,(t)" = ¢ (E)E" + O(").

The number ¢,(E) is called the Hasse invariant of the curve and it has the very important
property that
Normg /g, (¢p(E)) = Tr(¢) mod p
so that two isogenous curves have the same Hasse invariant, up to multiplication by the (p — 1)-
th power of an element of F,. Without loss of generality, we will build our curve E* in such a

way that this element is taken to be 1, so that the isogeny class of E* will be found by imposing
& (E") = cp(E).

7. THE FIRST ALGORITHM OF COUVEIGNES

7.1. Presentation of the algorithm. What follows is part of Couveignes’s thesis [7]. A complete
version of it is given in [16], which also contains the first detailed implementation of it (see also
[17)).

We look at the abscissa of the isogeny I : E — E*, where E* has the same Hasse invariant as
E (see the preceding section). It is equivalent to search for G and H of respective degree ¢ and
(£ —1)/2 such that

. _ _ GX)
I'X—X —I(X)—H(X)2
or for I which sends Z = 1/X to Z* = 1/X*, that is
. . H*(Z
1:Z—~2Z2"=1(Z)=1Z A( )
G(Z)

with G(Z) = Z'G(1/Z) and H(Z) = ZWV/2H(Z). 1t is well known that the coefficients of
the expansion of a rational fraction F'(Z) with denominator of degree ¢ around Z = 0 satisfy a
recurrence relation of depth £. Reciprocally, given the 2£ first coefficients, one can recover F(Z)
exactly using for example the Berlekamp-Massey algorithm [18]. Couveignes’s idea is just this:
finding a series that looks like an isogeny and then check whether it comes from a fraction whose
denominator has degree £. In fact, we compute 2¢+2 terms of the isogeny, thus obtaining in general
a fraction with denominator of degree a priori £+ 1. If this denominator turns out to have degree
£, then we are almost sure to have the right isogeny.

7.1.1. Finding morphisms. We will enumerate the putative isogenies the formal groups £ and £*
associated to E and E*:

E: 3+ aits + agt’s+ a3s® + asts® +ags® —s = 0,
E*: Bt alts+ast’s+ais? +ajts? +afs® —s = 0.

We will write W(t) (resp. U*(t)) for ¥y, g(t) (resp. Uy p+(t)); we put also ¢ = ¢p(E) = cp(E*) (see
the discussion after Theorem 6.1). Our isogeny I is characterized by a series Z

7t =1(Z(t) =Z(t) = ) _ aoit’
i=1

where a; € K
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The series 7 is an example of a morphism of formal groups. Generally speaking, such a morphism
is given by M such that for all formal points (¢1(7), s1(7)) and (t2(7), s2(7)) of &:

M((t1(7), 81(7)) @ (b2(7), 52(7))) = M((t1(7), 51(7))) © M((t2(7), 52(7)))

Associated to M, there is a series
= § uitza
i>1

such that a point (¢(7), s(7)) of £ is sent to the point M (¢(7), s(7)) = U(t()), S*(U(t(T)))) of E*
(S8* is defined by (2)). A fortiori, the series U(t) satisfies

(4) Ut D ta(T)) =U(t1(T)) ® U(t2(T))

from which U o [n] = [n] oU for any integer n. We know also that the set of morphisms from £ to
£* is a Zy-module of rank 1 (see [11]).

The problem is now the following: among all morphims between £ and £*, determine which is
the one coming from Z, or equivalently, among all series satisfying (4), determine which is the one
coming from 1.

Since 2¢ + 2 terms of I(Z) are needed, and since Z = 1/X = s/t = t2 + O(¢3), this means that
we need £ = 44 + 2 terms of the series W associated to Z. In other words, we need to consider a
finite number of series in order to find the good one.

Since the set of morphisms has dimension 1, it is enough to find a generator, and any non-trivial
morphism will do. We will compute the first £ coeflicients of our candidate

w .

i=1
by induction. Starting from u; = 1, we find u; by equating the coefficients of 7% in
(5) U(Td AT) =U(T) DU(AT)
when i is not a power of p and the coefficients of 7P in

U(lplr) = [pIU(7))

otherwise. The first equation is linear in u; and the second has in general p solutions.

7.1.2. Enumerating all morphisms. We now use the fact that the set of morphisms between £ and
&* is a Zy-module of dimension 1. Let ¢ be any non-trivial morphism found as in the preceding
section. There exists a p-adic integer N such that W = [N] oU. Write

o0
N = z:n,pZ
=0

T+l we write

Remembering that p" < L < p

NJoU = EB[m (i7') o t0)) & €D (Inil o ('] o ) -

©>r

But the valuation of the series [p'](t) is p’, which implies that, when i > 7, the terms coming from
[p'] oU do not provide any contribution to the first £ coefficients of [N] o Y. So, it is enough to
check whether one of the series [N] o comes from an isogeny for N < p" 1. Moreover, ng cannot
be 0.
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7.1.3. The algorithm in brief. We summarize Couveignes’s algorithm:
procedure COMPUTEISOGENY(E, £, £*)

1. compute a generator U of the set of morphisms between £ and £*;
2. for N =1 to p"*1/2 and N prime to p do

(a) compute (M(t), §*(M(2))) = [N] o (U(t), SU(1)));

(b) test whether M comes from isogeny; if yes, stop.

7.1.4. Remarks on the implementation. The computations required by the above algorithm deal
with series computations over K. The series involved have a lot of terms (if £ = 300, then the
number of terms is 1200). The algorithm can be made very fast if one uses a fast incremental for
composition of series, as done in [16]. When this is done, we actually get:

Theorem 7.1. Couveignes’s algorithm has running time O(¢£3). The storage is O(£?).
The record obtained with this implementation is for 21909, see [17].

7.2. A numerical example. We will compare all the algorithms on the following example. Let
K =Fou = KR[T])/(T" + T2 + 1),
E:Y?’4+XY=X34+a,E": Y24+ XY =X3+b
witha =T*+T?+T,b=TO +T° + T+ T°+T*+ T3 +T?+ T +1 and we suppose that there
is a rational isogeny of degree £ = 5 between E and E*. Note that for simplification, we will write
any element of K as an overlined number. More precisely, if z = z(7') is an element of K, we will
write z as z(2). For instance
a=T"'+T?+T =22
We know that the isogeny I we are looking for can be written as
(x) = 280
- H(X)?

where G(X) has degree £ =5 and H(X) has degree (£ —1)/2 = 2.

First of all, we choose A = 2. The algorithm consists in building a morphism between the two
formal groups s+t +ts +as® = 0 and s +t3 + ts + bs® = 0. We look for a morphism I as a series
in t. We will find the coefficients of U step by step. We initialize:

U, SU)) = (t+0(?),8* + O(th).

We find ug by solving U([2]t) = [2]*(U(t)), which leads to

\/U22 + /uz = 0.
We take ug = 0.

For ug, we solve U(t & At) = U(t) ® U(At) which yields the unique value ug = 0. The case of uy
ressembles that of us:

Vsl + Jug + 1194 = 0.
and we take us = 1820.
Eventually, we come up with

U(t) =t +1820t* + 1820¢° + 1641+" + 1280¢° + 873t° + 78310 + 17464 + 360¢'2 + 884¢'® + 1082t
+987t'% + 522¢16 + 155647 + 1365418 + 171t + 702¢% + 622! + O(+*?),

and
SU(t)) = * +t* +1° + 1821¢° + 1821¢" + 1821¢* + 1662¢° + 541¢'° +872¢'! 4 678¢'% 4 260¢'% + 193¢
+1407t'5 + 868¢16 + 137047 + 126¢'® + 1244¢'° 4 1295t%° + 606¢% + 1473t%2 + 791¢% + O(t*).
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The use of Berlekamp-Massey on U(t) does not give us the isogeny. We try in sequence [¢]U(t)
for increasing odd integers i. The one that works is

[11]oU(t) = t+t>+4° +1820¢" +1820¢° + 1820¢° + 373¢" + 1140¢° + 1140¢° +260¢'° + 1231¢'' 4 1205¢

+1291¢'3 + 305¢1* + 175¢1° + 480416 + 113¢17 + 1536¢'8 + 1205¢%° + 274t%° + 1337421 4+ O(¢%2),
for which Berlekamp-Massey gives:

and therefore

H(X)=X?+1821X +1958.

8. LERCIER'S APPROACH

The starting point of this is the following. Couveignes’s (first) algorithm is rather intricate,
both in theory and practice. Moreover, space requirement is huge, it is O(£2). Hence the desire to
develop a more efficient approach.

In this section, we suppose p = 2 and E : Y2+ XY = X3 4+ q, E* : Y2 + XY = X3 +b.
The algorithm to be described has been developped in this particular case and it is not clear how
to generalize it to other characteristics. Note that in particular, £ and E* are not supersingular
curves.

8.1. Presentation. First of all, let us look at the example we have just computed. We see that
the numerator of I(X) is of the form X L(X)? for a polynomial L(X). This is actually no accident
and we can actually prove more.

Proposition 8.1. Let I(X) = G(X)/H(X)? be our isogeny. Then G = X(H? + H'(XH)').
Proof: Using Vélu’s formulas with a; = 1, ag = a9 = a4 = 0, we get

X*=X—- X%+ X?%,.
Note that in characteristic 2, for any polynomial Q(X), Q'(X) contains only even powers of X and
Q" = 0. Using this, we end up with the relation for G. O
Corollary 8.1. With the above notations, one has G(X) = XL(X)? for some polynomial L(X) of
degree d = (£ —1)/2.

Proof: The polynomial H' contains even powers, as well as (X H)', and therefore H? + H'(XH)'
also, and this means it is a square in characteristic 2. O
We can go further. To simplify notations, we put @ = /a and § = v/b.

Proposition 8.2. The polynomials L and H satisfy
L(X) = AX%H(/a/X)
where A = \/B/aa"¢.

Proof: The only point of order 2 on E (resp. E*) is P = (0,+/a) (resp. P* = (0,v/b)). Note that
for any point M = (X,Y), the abscissa of P ® M = (0,+/a) ® (X,Y) is simply y/a/X. Exploiting
the fact that
I(PeM)=P @I(M),
we get
(Va/X)L(va/X)* _ Vb
H(JaX)??  XLX)/H(XE
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Taking square roots (remember that every element in K has a unique squareroot), we have
©) LX)L(Wa/X) = £ B0 H(aX)

Since L and H have both degree d, L(X) = X%L(y/a/X) and H(X) = Xd{-I(\/c_z/X) are polyno-
mials. Using the fact that L and H are coprime, we deduce that L(X) = yH(X) for some v in K
Plugging this in (6) we get after simplification the value of 7 and the result follows. O

Proposition 8.3. Let L(X) (resp. H(X)) denote the polynomial \/L(X?) (resp. \/H(X2)). Then
(i) XUE(X + \/a/X) = H(X)L(X);
(ii) (X + @)X L(X 4+ a/X) = XL(X)? + SH(X)>.

Proof: We use the fact that for all point M = (X,Y’) on E, we have I([2]M) = [2]I(M) or

Taking square roots twice, we get

(x 4 o) XL+ Va/X) _ XL(X)? + pH(X)?
XX+ a/X) | LOAX)

and the result follows since both fractions are irreducible. O
We can now use these results to find the coefficients of H(X) from those of L(X). We write

L(X) = Zfzo p?Xt H(X) = E?:o ¢?X*. We can normalize H(X) so that gz = 1.

Corollary 8.2. The coefficients p;’s and q;’s satisfy:
(i) pa = qu = 1. ,
(ii) For all i, one has ¢; = A" pg—;.

Proof:
(i) It is an an application of Proposition 8.1:
(ii) It follows from Proposition 8.2. O

We can go further:

Proposition 8.4. One has

Pa1=0a+B,pg2 =Py +apa1+da’,ps =+ py .
Proof: This is done using the second relation of Proposition 8.3 and identifying both side. O

The second relation of Proposition 8.3 yields a polynomial system which gives the p;-l’s as linear
functions of the p;’s. However, solving this system is too time consuming. The idea is to use the
first relation of Proposition 8.3. This gives an equation of degree 2 for p; in terms of p1, po, ..., Pi—1.
Combining with a clever ordre of elimination of the variables, one can solve the system. Details
are to be found in [14] where more elaborate strategies are given. The running time is heuristically
O(£3) and space is O(£?).

Though of same complexity as Couveignes’s first algorithm, the constants are much smaller in
practice. For instance, the most elaborate version of Lercier’s algorithm is almost 400 times faster
for computing isogenies for K = Fys00, resulting in a speed-up of 5 on the total running time for
the complete SEA algorithm.
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8.2. A new record. The record obtained (as of April 18, 1996) with our implementation is for
K = Fy1301. We represent K as Fp[T]/(T3% + T + T + T + 1) and put

a=T8 +TH+TB + T+ T+ T" + IO+ T° + T* + T3
which is our zip code, 91128, written in binary. Then the curve E : y?+zy = 23 +a has 2'301+1—¢
points where

c = —125202046604585509943423813474143645809815976025515419374
7525104509168246709051658766500392503700122375282160301165479283724082
5761437453092925430162137172566628268880767876046805121177132601520639.

The computation was done on several DEC alpha’s. The time needed on a single DEC alpha would
have been 206 days among which, 7 days were spent computing isogenies. This is much smaller
than what we had for Fyio0e: 243 days for the whole computation, and 155 days for computing
isogenies with Couveignes’s algorithm [16]. Note that we had to use all £’s up to 673.

8.3. The same example again. We will find the isogeny I as
G(X) XIL2(X)
H(X)?  H(X)?’

I(X) =

with deg(L(X)) = 2 and deg(H (X)) = 2.

For ¢ =5, it is enough to use Proposition 8.4. Put d = (¢ —1)/2 = 2. With the above notations:
o = Ya =571 and § = Vb = 859. Writing as above L(X) = 3% ,p?X* where the p;’s are the
unknown coefficients of L, we get

We have found L(X) = X? + 1194X + 1746.
We now recover the coefficients of H(X) using Corollary 8.2:

H(X) = X?+1821X +1958.

Very important remark: The ease with which we have computed the isogeny in this case is
rather misleading. When ¢ grows, the equations giving the p;’s and the ¢;’s become more intricate,
exhibiting non linear behaviour. The reader is urged to look at [14] for the details.

9. THE SECOND ALGORITHM OF COUVEIGNES
This algorithm works in any characteristic p. Again, we suppose that E is not supersingular.
9.1. Presentation. We begin this presentation with a fundamental result.
Proposition 9.1. Multiplication by p on E is given by
(7) [PI(X,Y) = (Fp(X)?, Gp(X,Y)P)
where Fp(X) and G,(X,Y) are two rational fractions.
Proof: Let us look at the following picture

. [p] -

P

ErT @
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Here, w is the purely inseparable isogeny sending (X,Y) to (X?,YP?). By composition, we get
Pl(X,Y) =w* ow(X,Y) = w*(XP,Y?) = (w*(X,Y))? and the claim follows. O
As a useful corollary, we note

Corollary 9.1. There exists fpk (X) € K[X] such that fux(X) = (fpk (X))pk. The degree dy, of fpk
is (p* —1)/2 if p is odd and 2% — 1 if p = 2.

Remember also that the group E[p*] is cyclic, isomorphic to Z/p*Z. To make things easier, we
suppose that E[pF] C E(K), that is fpk has all its roots over K.

The new idea of Couveignes is simple. Let k be any integer. The isogeny I we are looking for
sends E[p*] to E*[p*]. Suppose we know that P is sent to P*. For all m, 1 < m < p*, we have
I(mP) = mP*. Let =, (resp. z},) denote the abscissa of mP (resp. mP*). We can compute the
polynomial A(X) of degree dj, — 1 such that

A(zm) = zp,
for all m, 1 < m < di. This polynomial has the property that
G(X) 7
=——>=AX d X).
() = g5 = AX) mod fe(X)
To recover H and G from this identity, we need that dy, > 2¢. If this is the case, then one computes
G via the euclidean algorithm:

Fr(X) = ai(X)A(X) +71(X),deg(r1) < deg(A),
A(X) q2(X)r1(X) + ro(X), deg(rz) < deg(r1)

ri(X) = qiro(X)rip1(X) +rip2(X),deg(rit2) < deg(rit1)
for 4 > 1. Let us introduce
u_1 =1,v_1 =0,u9 =0,y =1
and
Ui2(X) = ui(X) — gia2(X)uir1 (X),
Vit2(X) = v;(X) — gir2(X)vip1(X)
for all 7. It is well known that
ri(X) = fo (X)us(X) + A(X)v;(X)
for all . When deg(v;) = £ — 1, one has
A(X)vi(X) = ri(X) mod for(X)

and if v; is a square, we let H denote a square root and we are done.

Note that we can compute r; very rapidly using the EMGCD algorithm of [1] or [12, 4].

In general of course, E[p¥] is not rational and the interpolation part must be done with some
care. We refer to [8] for the theory and to [15] for the implementation and examples. According to
Couveignes, his algorithm should run in time O(£2*¢) and space O(¥).

Remarks.

1. In order for this method to work properly, P and P* must be primitive points of pk-division.

2. We need the factorization of fx (X), which can be considered as a one time job. However,
we will need the factorization of f;k for any curve E*. The best and most efficient way of doing
requires some care. See [8] for this.

3. We do not really need the full polynomial of p*-division. Any factor of it of degree > 2¢ will
do.

4. Note that if P* does not work, —P* will not work either.
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9.2. Again, the same example. We look for the 5-isogeny between F : Y2+ XY = X3 422 and
E*: YE—E/_: X3 +1663. We take k = 2 + [log, £] = 5. We select as primitive 2¥-division point
P = [355,735,1] and give the values of z,, for all m, 1 < m < 16:

m | 1 2 3 4 ) 6 7 8 9 10 11 12 13 14 15 |16
Tm | 355 | 498 | 1954 | 1182 | 59 | 1210 | 1059 | 571 | 471 | 1735 | 1491 | 2011 | 1734 | 1943 | 1980 | 0

After trial and error, we find that P* = [632,974,1] is the image of P by I. First, we have

m | 1 2 3 4 5 6 7 8 9 10 11 12 | 13 (14| 15 | 16
x| 632 759 | 1151 | 1769 | 1898 | 1949 | 828 | 859 | 882 | 1370 | 1814 | 695 | 459 | 94 | 183 | 0

m

Using Lagrange’s formulas, we find that
A(X) = T488X " + 1726 X ™ + T429X '3 + 326 X 2 + 1934 X ! + 607X % + T661X° + 998 X% + 760X’
+1460X° + T070X° + 1580 X * + 768X> + 1530 X2 + 1447 X.

and Euclid’s algorithm gives us

vy = 1207X* +1934X2 + 1396
which is proportional to the square of
X? 4+ 1821X + 1958.

10. CONCLUSION

We have described algorithms for computing isogenies between elliptic curves over fields of any
characteristic. We give below some of their characteristics. The ideal running time for an algorithm
computing isogenies of degree £ in the case p < £ should be comparable to that of the case p > £.
This might be the case of Couveignes’s second algorithm.

Case Method Time | Space
p>4 P O(/?) 0(e)
Couveignes 1 | O(£%) | O(f?)
Pl Lercier o®)? | 0(#?)
Couveignes 2 | O(£27¢)? | O(£)?

The two most recent algorithms are being implemented and more work is needed to make them
really efficient and the complexity of the last one is to be precised. No doubt that they will perform
well in practice, as part of the computations needed in the SEA algorithm. They will probably
replace Couveignes’s first algorithm in this task.
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