Counting points on elliptic curves over F» using Couveignes’s
algorithm

Reynald Lercier* & Francois Morain'™

September 8, 1995

Abstract

The heart of the improvements of Elkies to Schoof’s algorithm for computing the cardinality
of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies’
approach was well suited for the case where the characteristic of the field is large. Couveignes
showed how to compute isogenies in small characteristic. The aim of this paper is to describe the
first successful implementation of Couveignes’s algorithm and to give numerous computational
examples. In particular, we describe the use of fast algorithms for performing incremental
operations on series. We will also insist on the particular case of the characteristic 2.

1 Introduction

Elliptic curves have been used successfully to factor integers [25, 34], and prove the primality of
large integers [4, 18, 3]. Moreover they turned out to be an interesting alternative to the use of
Z/NZ in cryptographical schemes. The first schemes were presented in [33, 23] and followed by
many more (see for instance [31] and the survey in [27]).

One of the main algorithmic problems to be solved is the efficient computation of the cardinality
of elliptic curves over finite fields. It was not until recently that Schoof’s polynomial time algorithm
for solving this problem could be efficiently used, due to the work of Atkin [1, 2] and [15] (see also
[41, 36] and the results of the implementation given in [36, 27, 38]). It gave satisfactory results in
the large characteristic case, and only very recently was it possible to make it work as well in the
small characteristic case, using Couveignes’s thesis [10].

The aim of this paper is to explain how Couveignes’s algorithm can be implemented in an
efficient way.

The structure of this paper is as follows. Section 2 recalls basic facts on elliptic curves, division
polynomials and formal groups. Section 3 gives additional results concerning elliptic curves over
finite fields; in particular, we study the properties of the multiplication by p on elliptic curves
in characteristic p, and insist on the role of the Hasse invariant; also, we give an algorithm for
computing a factor of the pf-division polynomial in characteristic p. Section 4 describes Schoof’s
algorithm in a synthetic way using the contributions of Atkin and Elkies. Elkies’ method can be
seen as computing isogenies between curves; using his ideas requires two tasks: given an elliptic
curve F and an integer ¢, find a curve E* that is f-isogenous over K and compute the isogeny.

*CELAR/SSIG, Route de Laill¢, F-35170 Bruz
TLIX Ecole Polytechnique, F-91128 Palaiscau CEDEX, FRANCE

{On leave from the French Department of Defense, Délégation Générale pour I’Armement.

Elkies and Atkin have explained how to do this in the case of large characteristic. We explain
how to solve the first task in small characteristic and section 5 will explain the decisive ideas of
Couveignes for the computation of isogenies in small characteristic. Section 6 is concerned with
fast algorithms for incremental computations on series. Section 7 details the algorithms we need
to implement Couveignes’s ideas. The complexity of Couveignes’s approach is then derived. Then
section 8 will be devoted to numerial examples and section 9 to the implementation in the special
case of the characteristic 2.

Notations. Throughout the paper, we let K = GF(q) = GF(p") be a finite field of characteristic
p. The field K will be given as GF(p)[T]/(f(T)) for some irreducible polynomial f(7T') of degree n.
An element of K can be written as a polynomial in 7.

We will encounter many p-th roots in characteristic p and it will be convenient to write them as
@ = ¥/a (note that every element @ in GF(p™) has exactly one p-th root given by apn_l). Moreover,
if A(X) is a series (or a polynomial) in K[X]:

A(X) = Zaixi

we will write

AX) =) aXt,

K3

2 Elliptic curves and formal groups

We recall well known properties of elliptic curves. All these can be found in [42]. In this section,
we let k be any field and denote by k its Galois closure.

2.1 Definition
We follow [42, Chap. III]. Let
FIX,Y,2)=Y*Z+ a1 XYZ + azY Z? — (X° + a3 X*Z + ay X Z* + as Z°)
where the a;’s are in k. Put
by = a% + 4as,by = 2a4 + ayas, bg = a% + 4ag, bg = a%ag + dagae — arazay + agag — ai,
¢y = b3 — 24by, cg = b + 36byby — 216,
A = —blbg — 8b5 — 27b2 + 9bybybs.

If A is invertible in k, then F(X,Y,Z) = 0 defines an elliptic curve F, that we will note [a1, as,
ay, ay, ag for short. Then the j-invariant of the curve is j(E) = c3/A.
It is possible to define on the set of points F(k) of £

E(k) ={(X,Y) € ¥*, F(X,Y,1) =0} U {0Og}

an Abelian law using the so-called tangent-and-chord method, O being the neutral element (0, 1, 0).
We refer to the references given above for the precise equations of the law.

22V Division polynomials and torsion points

Let m be any integer. Then

L Om (X,Y) wn(X,Y)
) = (BT S)

where ¢,,,, ¥, and w,, are in Z[ay, as, as, a4, ag, X,Y]. The polynomial ?,,, called the m-th division
polynomial, is defined by the following formulas:
Yo =0,¢1 = 1,92 =2Y + a1 X + as,
Y3 = 3X* + by X° + 404 X? + 3b6 X + bs,
Y= (2Y + a1 X + a3) (2X°® + b2 X7 + 504X * + 1006 X° + 10bs X > + (babs — babe) X + (babs — b3)) ;
oam = Cm (Yma2¥i_) = bm2¥ipr),m > 2;
Vamt1 = Vg2 — Um0 1y, m > 2.

The polynomials w,, and ¢, satisfy:

(bm =)(1#7%1 - wm—lfq‘)m—l—lv

and if p # 2:

_ Yam

29
A particular role is played by the polynomial ¢,,. We let ¢/ (X) denote ,,(X,Y) reduced in

EX,Y]/(F(X, Y,1)). When m is even we let f,, = ¢/ /(2Y 4+ a; X + a3) and if m is odd, then

Jm =¥l If m is even, f,, has degree (m? — 4)/2 and leading coefficient m/2; if m is odd, f,, has

degree (m? — 1)/2 and leading coefficient m.

Define E[m] = {P € E(k), mP = Og}. The principal property of E[m]is the following.

1
3 Yo (@1, + a3¢72n)-

m

Theorem 2.1 Let P = (X,Y) € E(k). Then P € E[m] if and only if f,,(X)=0.

2.3 The formal group associated to an elliptic curve

The material below is taken from [42, Chap. TV]!.

2.3.1 Definition

Let £ : Y24+ a1 XY 4+ a3y = X2+ a2 X%+ a4 X + ag be an elliptic curve. Let t = —X/Y and
s = —1/Y. We transform the equation of ¥ to get:

s=A(t,s) = 2+ aqts + agt?s + ass® + aqts® + ags®.

This amounts to sending the point at infinity on the point (0,0). Substituting this equation into
itself, we get s as a power series in ¢{. Letting ¢ be any formal series in k[[7]], we can compute a
series s € k[[7]] such that s(7) = A(¢(7),s(7)). In this way, we get formal points (t(7),s(7)) on the
formal curve & of equation s — A(¢,s) = 0. Since this is again the equation of a cubic, we see that
we can put a tangent-and-chord law on £, thus building what is called the formal group associated
to E. More details will be given in the following subsections.

'Be careful that there are some typos and missing equations in [21, Chap. 12].

2.3.2 Computing S(¢)

From the equation s = A(t, s), it is easy to compute the first L coefficients of s as a formal series
in ¢, by an iterative process in O(L?) operations. We can do better using standard techniques
from combinatorics [9, 39]. In particular, S satisfies a second order linear differential equation with
polynomial coefficients in ¢, from which we can easily deduce recurrence relations between the coeffi-
cients of S. Hence, these coefficients can be computed in O(L) operations modulo precomputations.
See section 9.1 for the computations in characteristic 2.

The first coeflicients of S are:

[o.e]

s=8(t) =) _sit' =t°+ ay t* + (af + az)t* + O(1°). (1)

1=3

Using this relation, we see that a point in the formal group is completely characterized by its
abscissa. Note also that, given any ¢ on &, we can compute S(¢) by the same iterative process.
We deduce also that

1
Y = g = —t_3 + (th_2 + (th_l + as + ((1103 + (L4)t + O(tQ),
and

X =—-=—-1Y = t_2 — alt_l — ag — ast — ((1103 + (L4)t2 + O(tS),

1
Z7=<= 2+ art® + (af + ax)t* + O(t°).

2.3.3 Group law

Let us work out the addition law on &, that we will note . The neutral element is Og = (0,0)
and the equation of £ is F(t,s) := A(t,s) — s = 0. We start from two points P, = ({1,51) and
P, = (tg, s3), different from Og, and we want to compute the sum (t3, s3) = (¢1,51) @ (t2,52). This
is done as follows: we first draw the line passing through P and P,, which intersects £ in a third
point P, = (¢;,s;). Then we draw the line passing through P; and (0,0), which intersects £ in a
third point Ps = (t3, s3).

More precisely, let y = At + v be the line passing through the two points P, and P,. If
(tl, 81) 7£ (tg, 52) then

Sy — S
/\:tz_tll:t§+t1t2+t§+---. (2)
If the two points are equal, then
oF
9 —|—3t2—}—2a2t151—|—a452
A= 9L — _ o Bt A L =32 +4a,3+0(th. (3
a_F —1—|—(th1+2(L381+(12t%—|—204t181—}-3&68% 1+ a11+ (1) ()
Js

In all cases, one has:
V=85 — Atl.

Let (¢;,s;) be the third point of intersection of this line with £. Then ¢; satisfies

F(ti,/\ti—l—l/) =0

or

(a4/\2—|—a2/\—}—1—|—a6A3)t3—|— (a1/\—|—2a4E —|—a21/—|—3a61//\2—|—a3/\2)t2—}—---:O.
It follows that

A+ 2a3v X+ asv+3agr A% 4 az A2

b4ty +t; = — 4
1Hizt (L4A2+(12A+1+(16A3 ()

From this, we deduce s; = At; + v.

If t; = 0, then P, is the opposite of P; and we are done, Ps = Og. Otherwise, we have to
compute the addition of (¢;,s;) and the origin point (0,0) to get (3,s3). It is easy to see that the
equation of the line we are interested in is \; = s;/t; and v; = 0. Using (4), one gets:

si (a1 t; +azs;)t;
asg si%; + ag si it + 43 + ag 83

Using the fact that F(¢;, s;) = 0, the denominator simplifies as

a3+ 0+t =—

S; — a1t;8; — (13822

and finally we obtain
L

- —1+4ait;+azs;

l3

For s3, one gets:
S5
83 = — t3.
z

We will write t3 = F,(t1,t2). The first terms are:
Fa (th tg) = tl + tg — altltg — a3 (t%tg + tlt%) - (Q(thil))tg - ((11(12 - 3(13)t%t% + 2@3t1t§)) + - (6)

It is now easy to compute the opposite of P, simply noting that this opposite is the third point of
intersection of the line joining P and Og with £. Precisely, if —P = (¢, s’), one has

t

A S—
—1+4 ayt + ass

(7)
When ¢ = t3, we get
Fy(t) =[2]t1 =2t — a1t} — 2agts 4 (a1 ag — Tas) ti 4+ ---. (8)
More generally, one can show the following [42, Corollary 4.4, pp. 120]:

Theorem 2.2 For P prime, one has
[PI(t) = Pf(t) +9(t")
where f and g are elements of k[[t]].

3 Elliptic curves over finite fields

3.1 Summary of the theory

The most interesting object associated with an elliptic curve over a finite field K = GF(q) is the
Frobenius ¢, which maps E(K) onto itself and which sends a point (X,Y, 1) to (X% Y9, 1). It is
known that this endomorphism has characteristic equation:

™ —er4+q=0 (9)

with ¢ in Z such that ¢ — 4¢g < 0. The trace of ¢p satisfies Tr(¢g) = ¢ and the cardinality of
E(GF(q))is #E(K) =g+ 1 — c. In this way, we recover Hasse’s theorem [42, Chap. V].

3.1.1 Supersingular curves

A curve FE is said to be supersingular if and only if ¢ = 0 mod p. Many results are known for these
curves. We refer to [42] and [21] for this. For instance, it is known that j(E) € GF(p*) and it is a
root of a fixed polynomial S,(X) that will be described below.

Let E be a supersingular curve of cardinality #F = ¢+ 1 — ¢. From [43, Theorem (4.1)], we
deduce the following.

Proposition 3.1 1. If the degree [GF(q) : GF(p)] is odd, then one of the following holds:

(a) c=0;
(b) ¢ =+2q and p = 2;
(¢) c==+/3q and p = 3.
2. If the degree [GF(q) : GF(p)] is even, then one of the following holds:

(a) ¢ =0 and p # 1 mod 4;
(b) c==%2,/q;
(¢) c=+/q and p# 1 mod 3.

3.1.2 Torsion points
Let us now give a description of the torsion group E[m] (see [42, Corollary 6.4, pp. 89]:

Theorem 3.1 When m is prime to p, then E[m] is isomorphic to (Z/mZ) x (Z/mZ) and when
m = p°, E[m] is isomorphic to {Og} if F is supersingular and (Z/p°Z) otherwise.

3.2 Canonical curves

All the algorithms that we present in this paper work with a curve given by its five parameters.
However, we can simplify greatly the exposition by considering “canonical curves” obtained by some
change of variable. The parametrization given for p = 2 and p = 3 correspond to non supersingular
curves.

When p = 2, we follow [32]. The most general equation of a non supersingular elliptic curve
corresponds to a; = 1, a3 = a4 = 0. Moreover, £ : Y?4+ XY = X34 a,X?+agand B/ : Y2+ XY =
X3+ ah,X?+ ag are K-isomorphic if and only if Tr(ay) = Tr(a)); if Tr(ay) # Tr(a}), E' is a twist of
E,and thus #E+#E' = 2(¢+1). From what precedes, it is enough to consider curves of equation
Y24+ XY = X2+ ag with ag € K*, whose invariant is j(E) = 1/as. We will note E = [ag].

When p = 3, we can take ay = a3 = a4 = 0. So the general case is

Y2 = X34 ay,X?%+ ag

with j(F) = —a3/ae and we write £ = [a2, ag].
When p > 3, we can take a; = a3 = a; = 0. One gets

Y2 = X2+ a4 X + ag
with
4a3

(E) = 1728——4
J(B) =17 4a3 + 27a2

and we will note F = [ay4, ag].

3.3 Multiplication by p
3.3.1 Multiplication by p on F

We begin with a precise characterization.
Proposition 3.2 Multiplication by p on E is given by

[PI(X,Y) = (Fp(X)7, Gp(X, Y)P) (10)
where F,(X) and Gp(X,Y) are two rational fractions.

Proof: (We are indebted to J.-M. Couveignes for the following elegant proof.) Let E? denote the
curve of coefficients [a], a, ab, af, ag]. There is an isogeny I of degree p between E and E? given
by (X,Y) — (XP,Y?). Let I* denote the dual isogeny:

IF(X,Y) = (F,(X), Gp(X, Y))

with Fj, and GG}, two rational fractions. Using I* o I = [p], the result follows. O
We can precise things by looking at the division polynomials f,(X).

Corollary 3.1 There exists fy- € K[X] such that fye(X) = (fpe(X))?".
Proof: From (10), it follows that
P, Y) = (Fpe (X)7, Gpe(X, Y)P)

for all e > 1. In particular, this implies that v¥,e and a fortiori f,- are p°-th powers. From this it
follows that the degree of f,e is in fact at most (p*® — p©)/2. O

Corollary 3.2 With the same conditions as above, fpe (X) is divisible by fpe_l(X), and thus we
can find a primitive factor of fue(X) of degree at most p>~1(p —1)/2.

We can precise the properties of I, and G, as follows:
Proposition 3.3 When p =2 and F = [ag], one has

] X)
Ba(X) = X + 2, Ga(X,Y) = e (1+?) + 55 HY (1+%).

When p = 3 and E = [aq, ag], one finds that
_ X?+2Xadas + ag

F3(X
3(X) (d2X+d2d6)2

3 535 1 53 _ 7322
X° 4+ Xasag + ag — asag

(ay X + ay ag)®

G3(X,Y)=Y

When p > 3 and E = [aq, ag],

Fp(X)

where A, is a polynomial of degree p and C,, a polynomial of degree 3(p — 1)/2.

-~

Proof: In the case p = 2, for the canonical curve [ag], we find:
Ve (x4 (x g X (x2qfe) 4 G
2oy = (s (v k) (X) +)

_ ((X+%)2,(Y+%+@6(byt)>2)

which yields the result.
The same reasonning can be made for p = 3. As for the general case, note that the degree of
the polynomials A, and C), can be deduced from the fact that they come fron an isogeny of degree

p. O

Remark. It is possible to give an elementary proof that f,(X) is a p-th power, using Fricke’s
equation [16, vol 11, pp. 191], that degenerates modp as:

J*F oF

% —(=3/2X* - 1/2a4) == = 0.

(X°+ a4 X + ag) 5—5 X

Then it is enough to prove that any polynomial solution of this must satisfy 2 dX =0or F(X) =
F(XP) for some F.

Computing f,-(X). From a practical point of view, one uses the algorithm given in [32] for
p = 2. For p > 3, one can use the work of McKee [30] who derived recurrence relations for the
coefficients of f,, from Fricke’s differential equation. This enables us to compute only the non-zero
coefficients of fpe, that is coefficients of index multiple of p®.

When p = 3 and E = [as, ag], we can generalize the work of McKee by using the fact that f,,,
m odd, satisfies the differential equation

02(X% + 02 X? + ag) L ((m? 24 (m? oF
2 +a6)aX ((m* = 3/2)az X? + (m* — 2)/2a3X + 3m? /2(16)a
2 3 or m2
+m*/2(a; + 9(16)(9 /2(12a6a + m*(m* = 1)/4a; X F = 0.0
az

Example. Let K = GF(5°%) = GF(5)[T]/(T?+ T +1) and E: Y? = X3+ X +T. We first find
that)
(X)) =2X? 4+ (4T* + 2T + D)X + T.

Then
fie =4X2 4 (3T? 42T +)X 4 (4T 4 21) X0 (T? + 27) X° + 472 X7 + (377 + 3) X®
H(T?*+TH)X (T* 4+ 3T+ 2)X° + (T* + 4T + 2)X* 4+ 2T* + 3T + 1) X?
H(T? 4+ 4T +3)X? + T? + (3T + 4T + 4) X + 3T
from which
925(X) = foo/ f5s = 2X 04 AT X4 BT+ T43) X3+ (T* 4T+ 1) X 4+ (2T*+ T +3) X4 (274 3) X°
+2T? +3) X+ I + 3T+)X+ B3T* +4T)X* + AT+ D)X +T+3

is a primitive factor of fa5(X).

Remark. When F is supersingular, then f,c(X) is a constant (if p° < ¢). For example, for p =3
and E = [0,0,0, a4, ag] for which j(F) = 0, one finds that

f3(X) = —ai, f32(X) = ai’, fa: (X) = —a;™.
For a less trivial example, consider p = 13, for which S;3(X) = X — 5. A supersingular curve in
characteristic 13 has equation F = [4,7]. We find fi5(X) =12 and fi3:(X) = 1.
3.3.2 Multiplication by p on £
We can precise the result of Theorem 2.2 as follows.

Theorem 3.2 Multiplication by p on E can be expressed as a series in "

ple(t) = e, (B3 o™ ™)

where h(E) is an integer — called the height — which is equal to 2 if E is supersingular and 1
otherwise. The coefficient c,(E) of 7" is called the (relative) Hasse invariant of F.

One of the important property of this invariant is the following [42, Chap. V, §4]:

Theorem 3.3 The Hasse invariant salisfies: Ni/gr(p)(cp(F)) = Tr(¢g) mod p.

3.3.3 Computing the Hasse invariant

In characteristic 2, one has ¢,(E) = aq; in characteristic 3, for [ag, ag], it is az. When p > 3, for
E = [a4, ag], one can compute the Hasse invariant using the work of Deuring [13] or any other
method (see [37] for a survey of these methods). For our purposes, this invariant appears naturally
as the first coefficient of [p|g(t). The first few values of ¢, are:

P Cp(a47 a6)
5 2(14
7 3(16
11 9(14(16
13 | 7a3 + 2ad
17 | 2a} + 15a4a?

3.3.4 Computing [p|g(t)

It will be useful to write
ple(t) = @, 5(t)" (11)
where @, i € K[[t]], so that ®, g = {/c,(E)t + O(t?).

Of course, one can use the addition formulae and compute the series to any desired order. In
this way, the computation of ¢,(E) is easy and does not require a formal formula.

There is an alternative way, that is of some interest. It consists in computing the multiplication
by p on the original curve £ and then make the change of variables (X,Y) — (¢,s).

The fractions F, and GG, can be computed using the recurrence relations of section 2.2 in time

O(p?logp). Then £/9) ,
0150 =~ (i)

9

We see that this is equal to R, g(¢, s)P with

Rpp(t,s) = (_1)pGp F,(t/s) (12)

(t/S, _1/5)'

We can recover ®, g by computing the expansion of R, g(t, s(t)). For instance, when p = 2, one
finds

(2 + ags?) t
3+ (14 aps) t? + (aps® + s) t + ags® + s

We will see the interest of such computations in section 7.2.2.

Rar(t,s) = (13)

4 Counting the number of points

4.1 Schoof’s algorithm

Schoof’s algorithm [40] uses the properties of the Frobenius. More precisely, let £ be a prime
number. Equation (9) is still valid when ¢g is restricted to the group F[{], and equivalently

™ —en 4 ¢=0mod /. (14)
We can find ¢, = ¢ mod £ by finding which value of v, 0 < v < £, satisfies
(X7, Y7) 4+ ¢(X,Y) = 7(X,Y7)

in K[X,Y]/(F(X,Y,1), fu(X)). If we know ¢ mod ¢ for enough £’s such that

I1¢>4va

then we can determine ¢ using the Chinese remaindering theorem.

4.2 An overview of the improvements of Atkin and Elkies

Though Schoof’s algorithm has polynomial running time, its implementation was rather inefficient,
due to the size of the polynomials involved. However, Atkin first and then Elkies devised theoretical
and practical improvements. We suppose from now on that we want to compute ¢, = cmod £, £ a
prime number different from p (see below for the particular case £ = p).

Firstly, Atkin [1] explained how to use the properties of the modular polynomial ®,(X,Y)
modulo p to get a list of possible values of t;. The polynomial ®;(X,Y) is symmetric in X and Y
and has degree £ 4 1. The polynomial ®(X) = ®,(X, j(E£)) describes the cyclic subgroups of E[¢].
It can have basically two splittings in K: (11r...r) with £—1 =rsor (r...r) with {41 = rs (there
are two particular cases described in the paper which are rare and we omit the relevant details for
the sake of simplicity). In the first case, £ is said to be an Elkies prime and an Atkin prime in the
second. In both cases, r is the order of /3 where a and [are the roots of

772—C7T—|—q50m0d€
and lie in GF(£) if £ is an Elkies prime (and thus ¢* —4¢ must be a square modulo ¢) and in GF((?)
otherwise (implying that ¢ —4¢ is not a square modulo £). Once r is known, there are ¢(r) possible
values of ¢; and in many cases, this value is much less than £. It remains to combine these values
in a clever way, using a match and sort technique described in [1]. (The referred work contains also

10

many ideas concerning the alternative use of other modular equations, that turn out to be essential
in practice, but that we do not want to describe here (for this see also [36]).

Elkies [15] remarked that when ¢? — 4q is a square modulo ¢, then f;(X) has a factor g,(X) of
degree (¢ — 1)/2. Moreover, ¢ has an eigenspace V associated with gy, that is a cyclic group of
E. This in turn is equivalent to saying that £ and E* = E/V are two elliptic curves connected by
an isogeny I of degree . The kernel of this isogeny yields the factor g,(X).

Once we have gy, we now look for some k£, 1 < k < £ such that

(X7,Y?) = k(X,Y)

in K[X,Y]/(F(X,Y,1),g:/(X)); then we recover ¢, = (k* 4+ ¢)/k mod £. This change was crucial,
because it was then possible to use polynomials of degree (£ —1)/2 rather than of degree (£2 —1)/2.
Elkies gave an algorithm to compute g; using further properties of modular equations. Another
approach was given in [8].

Atkin [2] gave his own solution to the problem of computing g¢(X') using more modular equations
and modular forms. Though rather tricky to implement, his approach is very fast in practice.

Recently, Couveignes and Morain showed how to use powers of small Elkies primes [12].

All these ideas are also described in [41] and were implemented [2, 24, 36, 35]. The results are
striking, the record being that of the computation of the cardinality of a curve modulo a prime p
of 500 digits (see [27]).

The only remaining problem was that these ideas could not work when p = 2 (and more generally
p < £). As a matter of fact, the theory of Atkin and Elkies remains valid, but one could no longer
use the ordinary parameterization of elliptic curves via Weierstrass’ p-functions to get a suitable
way of computing g,. Couveignes solved this problem in his thesis [10], using formal groups as a
powerful tool.

4.3 Remark on supersingular curves

Suppose one wants to check whether F is supersingular or not. First of all, it is easy to check for
some random points P if (¢4 1 — ¢)P = Og for one of the ¢’s above. If not, we can proceed to
compute the number of points as described in section 4. If this condition is met, then we can prove
that F is supersingular as described in [41]. We just have to verify that all modular equations
(X, j(F)) have factors of degree 1 and 2 only for enough ’s such that []£ > 4,/q.

4.4 Finding the isogenous curve in small characteristic

We suppose from now on that F is not supersingular.

The problem we face is the following. We know that F is {-isogenous to a curve E* whose
invariant j* is known. As a matter of fact, we select one of the roots F* of ®,(X,j(F)) in K
and then j* is a root of ®,(F™*,Y) (see the references already given for more precisions). It can
happen that this polynomial has several roots. One must try all of them to get the right one (see
the remark at the end of section 7.1.2). The invariant j* does not characterize completely £*, as
is well known. The problem is to find the equation of this curve E*.

In the case of large characteristic, Elkies and Atkin gave very powerful algorithms to compute
the equation of £*. In the small characteristic case, we now show how to do this using the Hasse
invariant.

Since E and E* are isogenous, one has by Theorem 3.3

Nk /ar@)(ep(E)) = Nk/ar@p) (¢p(E7)) mod p

11

or
Ni/crp)(cp(E¥)/ep(E)) = 1 mod p,
that is
(B = 7 ey () (15

where ¢ is any element of GF(p)*.
We now give some details for the different characteristics. When p = 2, one has ¢,(E) = a; = 1.
In the case where we consider E = [ag], we deduce that the curve E* we are looking for is simply

[1/57]-
When p = 3, we look for E* = [a}, a] such that j(E*) = j*. The curve E* is given by [Avy, A,
where 7 is the unique cubic root of —j* and X is such that ¢,(Ay, A?) = €?c,(F) or A = €ay /7.
For the remaining case where p > 3, we look for F* = [3k* A%, 2k*A\3] where k* = 5*/(1728 — j*)
and) satisfies ¢, (3k*A\%, 2k*A%) = ¢,(F). 1t follows from Theorem 3.3 that

ep(3K*N2 2k*A3) = AP=D/2¢ (3E* 2k)

and thus we have to solve (B)
Ap—1)/2 — p—1 p 1
© 3k, 2k (16)

in K. Finding the solution of this equation can be done in O(p*logp) operations, which is very
costly when p is large.

4.5 The case / =p

The case £ = p can be treated easily. First of all, using Theorem 3.3, one knows ¢ mod p. Then,
from Corollary 3.2, we know that f, has a factor g,e of degree p°~!(p — 1)/2. Moreover, as long
as p® < ¢, then equation (14) is simply

#% — cop = 0 mod p°
which shows that ¢ has two distinct eigenvalues (since E is not supersingular), one of which is ¢

and is associated to gpe.

5 Couveignes’s algorithm: the theory
5.1 An overview
Let E and E* be two elliptic curves defined over K by

E: Y+ XY +asY = X3—|—a2X2—|—a4X—|—a6,
E*: YQ—}—anY—I—a:*))Y = X3+a§X2+aﬁX+ag,

such that there exists an isogeny I of degree ¢ between them given by

I: EF — FE*
§(X) r(X) +Yi(X)
oo = (5 e)

where ¢(X), h(X), r(X) and t(X) are polynomials of degree ¢, (¢ —1)/2,3(¢(+1)/2 and 3(£—1)/2.
The aim of Couveignes’s algorithm [10] is the computation of ¢(X) and h(X).

12

We look at the abscissa of I only. It is equivalent to search for g and A such that

A 9(X)
I X—X"=IX)=
or for I which sends Z = 1/X to Z* = 1/X*, that is
(7)

1:Z=72=1(2)=7

with §(Z) = Z*g(1/Z) and h(Z) = ZU=D/2h(Z). We note that § has degree £. Tt is well known that
the coefficients of the expansion of a rational fraction F(Z) with denominator of degree ¢ around
Z = 0 satisfy a recurrence relation of depth ¢ (see section 7.3.2 for more details). Reciprocally, given
the 2/ first coefficients, one can recover F'(Z) exactly. Couveignes’s idea is just this: finding a series
that looks like an isogeny and then check whether it comes from a fraction whose denominator has
degree £. In fact, we compute 2¢+ 2 terms of the isogeny, thus obtaining in general a fraction with
denominator of degree a priori £ + 1. If this denominator turns out to have degree £, then we are
almost sure to have the right isogeny. See section 7.3 for more details.

Enumerating the putative isogenies is possible using the formal groups associated to F and E*
as described below.

5.2 Morphisms of formal groups
As shown in section 2.3, associated to F and E*, there are two formal groups £ and &*,

E: 4 aits+ ast®s+ azs® +agts® +ags® —s = 0,
E . B4 ajts + a§t25 + a§52 + af@s2 + aés3 -s = 0.

A morphism of formal groups is given by M such that for all formal points (¢;(7),s:(7)) and
(t2(7),s2(T)) of &:

M((ta(7), 51(7)) @ (12(7), 52(7))) = M((ta(7), 51(7))) ® M((L2(7), 52(7))).-

Associated to a morphism M between £ and £*, there is a series

Uty =>y u
i>1
such that a point (¢(7), s(7)) of & is sent to the point M(¢(7),s(r)) = (U(L(T)), S*(U(L(T)))) of &
(S* is defined by (1)). A fortiori, the series U(t) satisfies

Uty D ta(r)) = U(t1(7) S U(L2(7)) (17)

from which U o [n] = [n] oU for any integer n. We know also that the set of morphisms from & to
&* is a Zymodule of rank 1 (see [17]).

Coming back to our problem, I gives rise to a morphism Z between £ and £*, and to a series
W. The problem is now the following: among all morphims between £ and £*, determine which
is the one coming from Z, or equivalently, among all series satisfying (17), determine which is the
one coming from 1.

Since 2 4 2 terms of I(Z) are needed, and since Z = 1/X = s/t = t> + O(t>), this means that
we need £ = 4£ + 2 terms of the series W associated to Z. In other words, we need to consider a
finite number of series in order to find the good one. We will compute the precise number of such
series in the following section.

13

5.3 Finding conditions satisfied by morphisms

Let us now look at the properties satisfied by morphisms between £ and £*, or more precisely by
the associated series. We will compute the first £ coefficients of

Ur) = i u; Tt
=1

by induction. Let us assume that wy, ..., w;_; are known. An ingenious exploitation of equation
(17) will allow us to calculate w;.
Let us specialize ¢1(7) = 7 and t3(7) = AT where A is in K. Equation (17) becomes

U(T D AT) =U(T) DU(AT). (18)
Let us extract the coefficient of 7¢ in (18). We know from (6) that

THAT = (14+ A)T+0(?)
so that -

Ut & Ar) = u((1+ A)7 +0(7%)"
k=1
and u; appears alone in the coefficient of 7* as (14 A)iui among terms depending only on wy, s,
««u ;—1. On the other hand,
U(T)BU(AT) =U(T) +U(AT) + P(U(T),U(AT))

where P(U(T),U(AT)) contains monomials of total degree greater than 1 in ¢(7) and ¢ (A7). This
means that u; appears in the coefficient of 7* as (14 A')u; among terms depending only on uy, uz,
..., U;_1. From this, we deduce that

ui((l—i—A)i—l—Ai) +ei(Aur...,ui—1) =0, (19)

with e; a multivariate polynomial. If (1 4 A)i # 1+ A°, then this relation gives us u;. We see that
this condition on A cannot be met when 7 is a power of p, but for other values of 7, we can find A
such that it is realized, at least if 7 < g¢.

Suppose now that ¢ = p®. We will write ®(¢) (resp. ®*(t)) for ®, g(t) (resp. ®, g=(t)); in the
same vein, we put ¢ = ¢,(#) and ¢* = ¢,(£*). We take advantage of the fact that

U([plr) = [plU(7)),
obtained from equation (17). Let us write U(t) = 3272, @xt*. Using (11) we deduce that
U(r) o ®(r) = (1) o U(T). (20)

Here, the equality of the coefficients of X* on the left and right hand side leads to a non trivial
equation of degree p in ;:
e—1 _ ~ ~
Cp U; — SC*ui = fi(u17"'7ui—1)7 (21)
with f; a multivariate polynomial. We put
c(re=1)/(p-1)

€

’]’]:

14

and we rewrite (21) as

()- (-

We will see in section 7.1.2 how to solve this equation. Obviously, it has at most p solutions.
Let us look at the case ¢ = 1 = p°. The corresponding equation is simply

cul = uyc”.
Using (15), one gets
1 _
ul =

We remark that taking € = 1 simplifies the problem, since then u; is in the prime field and not in

the whole field.

5.4 Enumerating all morphisms

We can summarize the results of the preceding section as follows. Once u,e is fixed, all coefficients
u; for p® < j < p“*! are uniquely determined. In this way, we can count the number of different
truncated morphisms up to order £. Let p” < £ < p"*tl. Then there are at most p" ™! distinct
series. For each e, 1 < e < r, there are at most p values for wupe; if e = 0 this number is at most
p— 1 since uy = 0 is not valid. Therefore, there are p”(p — 1) morphisms Y. We need to enumerate
them in order to find the one that comes from an isogeny.

5.4.1 First approach
It consists in testing all possible values of u,. for each e, using a backtracking procedure, that is
straightforward from the explanations given above.

5.4.2 Second approach

We can take advantage of the fact that the set of morphisms between £ and £* is a Z,-module of
dimension 1. So, let ¢ be any non-trivial morphism found as in the preceding section. There exists
a p-adic integer N such that W = [N]oU. Write

N = anpl
=0
Remembering that p” < £ < p"T!, we write
[NJot = D ([ni o (] o)) & ED ([ni] o (W] o)) -
1=0 i>r

But the valuation of the series [p'](¢) is p’, which implies that, when i > r, the terms coming from
[p'] oU do not provide any contribution to the first £ coefficients of [N]of. So, it is enough to
check whether one of the series [N] o U comes from an isogeny for N < p"*1. Moreover, ny cannot

be 0.

We can reduce the number of tentative morphisms, using the following result.

Proposition 5.1 Let k be an integer > 1 and N an integer satisfying 0 < N < p®. Then one has

" — N]g(t) = ~[N]g(t) +O(""). (23)

15

Proof: The result follows easily from (2.2) since
[P = Ns(t) & [Ns(t) = [1Is(0) = e (E)" 1" + 0(") O
We deduce from this result that
[+ = N]otd = [-N]oU + O(t* ™).

Furthermore, the morphisms W and —W yield the same isogeny I. So, at least one morphism
[N]JoU for N < p"*1/2 and N prime to p is equal to W or —W and is associated to I. That is to
say, we have to compute at most p”(p — 1)/2 morphisms M. This amounts to considering in the
first alternative only one half of the potential u;, in fact w3 =1, ..., (p—1)/2if pis odd and only
w1 = 1 when p = 2.

As a final point in this section, we note the important result:

Proposition 5.2 When p = 2,
t

woou () <o

and when p is odd, U is odd.

Proof: this follows from the fact that the opposite of ¢ is given by equation (7). O

6 Series computations

The implementation of Couveignes’s algorithm requires the use of fast algorithms for series compu-
tations. As will be described in section 7, the algorithms we need are concerned with incremental
computations: we will find the coefficients of a particular series, one at a time, using other series,
some of which are also known coefficient by coefficient.

After describing the incremental algorithms for the four basic operations, we will apply these
ideas to some additional algorithms needed in the formal group. Then, we will give an incremental
version of the Brent and Kung algorithm for composition of series.

In these sections, we note for any series A(1) = Y53 a;7* of valuation v in K[[r]], A(7)) the

finite sum Ef:'u a;7". The i-th coeflicient of a series A will always denote «;.

After that, we describe the computations performed on series. In the remaining of the paper,
our unit of cost will be the time needed to perform a multiplication in K, a unit being thus
O(n%(log p)?) bit complexity. We make the general assumption that multiplying two series with m
terms uses O(m*) units; of course, we assume 1 < p < 2.

6.1 Some basic facts about series

First, we give some easy results about addition, multiplication and division of two series (A(t), B(¢))
in K[[t]]*>. Let C(¢t) € K[[t]] be the result of these operations. We note

A(t) = iaiti, B(t) = ibiti and C(t) = iciti.
=0 =0 =0

The proofs of Propositions 6.1, 6.2 and 6.3 can be found for instance in [22, chap. 4.7].

16

Proposition 6.1 Let C(t) = A(t) £ B(t). Then, we obtain, for any positive integer L, ¢y, from ay,
and by, by
cr, = ay, by,

with one addition/subtraction in K.

Proposition 6.2 Let C(t) = A(t)B(t), we obtain, for any positive integer L, ci, from (ag, ..., ar,)
and (bg, ..., br,) by
L
cr, = Z a;br_;.
=0

with L + 1 multiplications in K.

Proposition 6.3 LetC(t) = A(t)/B(t) when by # 0, we obtain, for any positive integer L, c1, from
ar, (bo, ..., br) and (co, ..., c—1) by

L-1
cr, = (aL — Z CibL_Z'> /bo.
1=0
with L multiplications and one division in K.

6.2 Computations in the formal group

Let (V(t), S(V(t))) be a formal point of £. We note

V(t) = Zviti and S(V(1)) = Zwiti.
As noticed in section 2.3.2, computing the coefficients sy, ..., s;, of §(¢) from ¢ can be done in

O(L?) multiplications. Proposition 6.4 gives more details about this.

Proposition 6.4 We can obtain wy, from (ws, ..., wr—1) and (v1, ..., vr—2) with O(L) multi-
plications in K.

Proof: As (V(t),S(V(t))) is an element of the formal group defined by &,

V3 + a1 VS(V) + a2V (V) + asS(V)? + aaVS(W)* + asS(V)? = S(V). (24)
As shown in proposition 6.1, 6.2 and since the valuation of V(¢) is 1 and the valuation of S(V(t)) is
3, the L*! coefficient of V depends on (vy, ..., vr_2), the Lt coefficient of VS(V) depends on (v,
.o.yvp_3) and (w3, ..., @wr_1), the L coefficient of V2S(V) depends on (vy, ..., vp_4) and (w3,
eev, WL_2), the LN coefficient of S?(V) depends on (w3, ..., @r_3), the L'® coefficient of VS%(V)
depends on (vy, ..., vi_g) and (w3, ..., wr_4) and the LN coefficient of S(V)? depends on (w3,
ey WL_G).

Therefore, from equation (24), we deduce that wy, is a multivariate polynomial in (vy, ...,
vr,—2) and (w3, ..., Wr_1).

Furthermore, since we saw that getting the L*" coefficient of a product of series can be done
with O(L) multiplications, the L" coefficient of S(V) can be computed with O(L) multiplications
too. O

17

Proposition 6.5 Let A(t) = 3. a;t' and A'(t) = 3. a't' be two formal series and put S(t) =
S(A(1) = 2, mitt (resp. S'(t) = S(A'(1)) = S22, @ltt). We can obtain (A(t) & A'(t))r, from

the truncated formal points (A(L)r, Sp41(t)) and (A'(t)r, St (1)) with O(L?) multiplications in K.

Proof: Let us apply now the formulae of section 2.3.3 to compute (A(t) &.A'(t))r. We deduce again
from the valuation of the series that the L*h coefficient of the series
() _ S(t) — Sl(t)
A - A

depends on (ay, ..., ar—1) and (w3, ..., wr4+1) (resp. a; and @) with the same indices). Further-
more, the valuation of A(t) is two. Then, the L' coefficient of the series

depends on (ai, ..., ar—2) and (ws, ..., wr). The valuation of v(t) is three. It follows that the
L*® coefficient of the series

ar A1) +2agv(t) A1) + aav(t) + 3agv(t) M(1)* + az A(t)?

ti(t) = —A(t) — A'(t) - L+ ag A1)* + az Mt) + ag A(t)

depends on (ay, ..., ar) and (w3, ..., wr41) (ditto with a; and @!). The valuation of ¢;(¢) is two.
Then, the Lt coefficient of the series

si(t) = AL () +v(t),

depends on ay, ..., ar—3 and ws, ..., wy, (same for the a} and @!). The valuation of s;(t) is three.
Therefore, from

=14+ ay t;(t) + az s;(t)
we deduce that the L*® coefficient of the series depends on (ay, ..., ar) and (w3, ..., @r41) (same

on the a! and @!).

Furthermore, since we saw that getting the first L coefficients of a product or division of series
can be done with O(L?) multiplications, L coefficients of this series can be computed with O(L?)
multiplications too. O

This last result can be proved in the same way from the formulae of section 3.3.1.

Proposition 6.6 We can obtain the first L terms of the series R(t,S(t))oV(t) from the truncated
formal point (V(t)r, S(V(t))r+1) with O(L*) multiplications in K.

6.3 An incremental algorithm for composition of series

Let f =32 a;t* and g = > 2 b;t* be two formal series in K[[t]]. We want to compute the series

h:gof:iciti
=0

incrementally. More precisely, we assume f is known up to order L and that we need to compute
the coeflicients hg, hy, ..., by one at a time, or equivalently, given all series at order ¢, find h;. We
do this by an incremental version of the algorithm of Brent and Kung [6].

18

Let B be an integer < L that we will determine later on. Let ¢ be an integer less than L and
assume we know all coefficients of g (resp. h) of index < i. We are looking for ¢;. To compute
g; o f, we write

git) = bet* = > G0
k=0 0<j<i/B
where G(t) is a polynomial of degree at most B — 1 in ¢{. Then
giof= Y, GiNHS¥.

0<j<i/B

We precompute f; = f? for 0 < j < B and F; = f]g for 0 < j < L/B, up to order L. Now, put
1=JB+ I with 0 < I < B. One gets

-1
giof= Z Gi(f1)F; + (Z bJB+kfk) Fy+bifiFy=%1,;+ X, F5+ b, f1F;.
0<j<J k=0

(We use the convention that if I =0, ¥3; = 0.) It is easy to see that all terms of ¥ ; and X3 ; up
to order L (not 7) depend only on the first coefficients by, ..., b;—;. Now, it is easy to get the ¢-th
term of ¥y ;Fy in O(¢) steps, as well as that of f7F}, which enables us to find the desired coefficient
C.

Once this is done, we have to update the series. Note that we do not need the terms of indices
<1. We see that if I < B — 1, then ;4 = ¥ ; and

o1 = Mo+ bi f1.
In this case, updating the series costs O(L —4). If I = B — 1, then
Y1 =21+ e+ fr)Fy

and X ;41 = 0. Since we only need the terms of degree > i, this costs O((L — ¢)").
Precomputing the f;’s costs

B
Z(L - j)#v
71=2
that of the F}’s is
L/B
> (L -jB)*
71=2

and leads to a storage of O(B + L/B) series with L terms. The cost of the computations of all ¥4 ;
and ¥, ; is also

L/B
> (L -jB)*.
7=2
So we need minimize:
B L/B
ST +2) (L - 5B~
71=2 71=2

We approximate this quantity with the corresponding integrals and so we have to minimize:
C(B) = (L —2)**' — (L - B)**' +-2(L — 2B)**'/B.

We differentiate this w.r.t. B and replace B by L3. We develop the derivative as a function of 3
and find:

C'(B) = L' (=24 ((p + DL +4p* + 4p)5° + O(5%)) .

This leads to the choice of .
pt1
= —L

B:,/iLl/Q.
p+1

Hence the overall cost of this phase is approximately 2BL#*1/2 with a storage in O(Ll/Q).

Remark. The role of the constant /— is not very important, since it is always in the interval

ptl
[0.816, 1].

or

7 Efficient implementation of Couveignes’s algorithm

In this section, we give the algorithms needed to implement Couveignes’s ideas, and deduce from this
the complexity of the method. First we describe the precomputations that depend on p alone: we
compute the multiplication by p and show how to compute the solution of the equation X — X? = «
in K. Then we recall some basic facts on the algorithms that can be used to recover a fraction
from its series expansion. We end this section with the two strategies for finding the morphisms
and analyze the complexities.

7.1 Precomputations for p alone
7.1.1 Multiplication by p

The first thing we need is to compute the multiplication by p and the fraction R (¢, s), as indicated
in section 3.3.4. These computations do not depend on £. The cost is O(p?logp) elementary
operations.

7.1.2 Solving X — XP =«

We use the following result from [29]:

Proposition 7.1 The equation

B-5"=a (25)
has a solution in K if and only if TrK/GF(Q)(a) = 0. Moreover, if 8 has trace 1, then a solution of
this equation is:

B=ab 4+ (a+a”)0” + -+ (a+a+- -+)" (26)

20

Remark that if (25) has a solution g, then 8+ k is a solution for all £ in the prime field GF(p). It
is also easy to see that the map a +— f is linear. Having computed the matrix of this application,
all equations (22) can be solved by applying this matrix to the coefficients of this equation.

Note also the very important fact that the computation of this matrix depends only on p and n
and not on £. This means that it can be performed only once before any isogeny computation. The
cost of setting up this matrix can thus be neglected. Note that we need to store O(n?) elements in
GF(p) and that the time needed to apply the matrix is O(1) (multiplications in K).

Remark. In the process of SEA, we find the isogenous curve by its j-invariant, which is a root of a
polynomial. It can happen that there are several roots to this polynomial, only one of which being
the invariant we are looking for. The preceding process can very frequently detect false curves,
because one of the equations (21) does not have any solution.

7.2 Finding one morphism

The heart of the algorithm is the computation of morphisms M (or more precisely the associated
series U) with equation (18) and equation (20).
Now, we distinguish two steps: a precomputation step and then the actual computation.

7.2.1 Precomputation phase

Series which are independent of U are completely computed while only a few terms of the other
series can be initialized. We also perform some precomputations for use in the composition of series
as described in the next sections. We assume we want £ terms of U.

Precisely, we precompute:

1. 8(7)z41 from (1) with proposition 6.4;
2. A such that (14 A)* # 1+ A for all « < £ (this implies in particular that ¢ > £).
3. S(AT) 41 from S(7) 1.
4. The series
((r @ AT(7)) 2, S7(7 © AT(7)) £41) = (), S(T) 1) © (A7), S(AT) £41)
from the addition law of section 2.3.3.

5. The truncated series ®(7),» = R(7,S(7))pr+1 and its powers up to the order needed for the
fast substitution algorithm. (The choice of these will be explained later).

6. All the intermediate series to compute R*(U(7), S*(U(7))) as far as possible as in proposi-
tion 6.6. For instance, in characteristic 2,

3 Sk o2
R* (t s) 17 + ags“t
2+ aks? +ait?s+ s+ ts+ 3+ ajts?
and we initialize all the monomials of this fraction once substituted (U(7), S*(U(7))) for (¢, s);

U(r)r =7, S U())s = 7% UES UM)a = 7, UM = 72, S*UT)E =75, ..

7. As in step 6, all the intermediate series to compute U(7) & U(AT) as in the proof of propo—
sition 6.5; U(AT)1 = Ar, S (U(T))3 = A>3, A1) = (A2 + A+ 1)72, v(1)3 = (A% + A)7?

21

Complexity. Step 1 costs O(£?) multiplications in K; step 2 costs at least O(L£) multiplications;
step 3 needs O(L) multiplications; step 4, O(L*) multiplications in K; step 5, O(pL*) multiplica-
tions to get ®(7) = R(7),r, and step 6, step 7 can be performed in O(1) multiplications.

So, the complexity of this phase is at most O(L*) with a storage in O(pL) (since the fraction
R has O(p) terms).

7.2.2 Finding the morphism

At the beginning of the ;th iteration, U(7);—1 is known and as far as the intermediate series are
concerned, S(U(7))it1, U(AT)i—1, SU(T))ix1, A(T)i, v(T)it1 ... are known by proposition 6.4.
Then, formal computations enable us to compute u; whose knowledge allows us to update the

th

intermediate series in order to be ready for the (¢ + 1)"" iteration. We study both cases ¢ # p° and

1 = p° separately.

The case ¢ # p°. We find u; using
U(T B AT) =U(T) B U(AT).

The left hand side will give us an equation of the form (1 4 A)iui + d and the right hand side of
the form (1+ A%)u; +b. We will then solve u; = (d — b)/(1+ A* — (1+ A)?) and get u;.

Step 1-a: we need to compute the ith coefficient of U(T & AT). We do this using the algorithm
described in section 6.3. We get an equation of the type (1 + A)‘u; + d.

Step 1-b: we have to calculate the i coefficient of U(T) & U(AT) as a function of u;. To
perform that, we follow step by step the computations done in the proof of proposition 6.5. Since
each intermediate series needed in this proof is known up to 7, one can obtain as a function of u;,
the (z'—|—2)th coefficient of S(U(7)), the ith coefficient of U(AT), the (i—|—2)th coefficient of S(U(7)),
the (7 4+ 1)th coefficient of A(7) and so on. Finally the coefficient we are looking for is equal to
(1+ AYu; +b.

The complexity of this phase is O().

€

The case ¢ = p°. We find u; with equation (20) that we rewrite as

U(D(1)) = R*(U(r), S™(U(7)))-

This enables us to use the same techniques as the one described just above, namely applying U to
a known series using precomputations and computing a rational fraction in two series.

Step 2-a: we compute as a function of u; the ith coefficient of U(r) o ®(7). This is done as in
step 1-a. This coefficient is equal to au; + d.

Step 2-b: we compute formally the ith coefficient of R* (U(T),S8*(U(7))). To perform that, we
proceed as in step 1-b. We have to compute as a function of u; the (i—|—2)th coefficient of $*(U(7)),
the (¢ + Q)th coefficient of S*(U(7)), This coefficient is equal to u; + b.

Finally uf — aPu; + b — dP = 0 and we choose one of the roots for u;.

We update the intermediate series, that is to say we obtain from #(7); the intermediate trun-
cated series S(U(T))it2, U(AT);, SU(T))ix2, A(T)ix1, ¥(T)i42. .. as shown in the proofs of proposi-
tion 6.5 or 6.6.

22

Complexity. We see that the computation of one morphism is dominated by the composition of
series. Hence, the overall cost of this is O(L+F1/2) = O(e#+1/2).

7.3 Isogeny testing
Suppose we are given a morphism M (t) between £ and £*. Put

_ ST M)

Z*(t) M)

and we want to find a series M such that

Once we have done this, we need to compute a fraction whose expansion coindices with that of M.

7.3.1 From M to M

We know the expansion of Z(t) = t? + a1t® + (a} + a2)t* + O(t°) and we suppose that Z*(t) =
mgt? + - 4 mggp 4 + O(t““). We are looking for the coefficients of M(u) = myu + msu® +
st ’m23+1u2€+1 + O(u%‘”). We will find these coefficients one at a time. Since we will have to
perform many isogeny tests, it is worth precomputing all odd powers of Z(t), namely Z;(t) = Z(t)'
for 1 <i< 40+ 1, ¢ odd.

The procedure is the following;:

procedure RECOVERSERIESINZ
1. My i=mg; W =W —my 7q;
2. fori=1to f do
{at this point, W = wt**+! 4 O(1?*2)}
(a) Mgip1 == w;
(b) W:i=W - ‘ﬁ”b2i+1Z2i+1;

The precomputation phase requires O(¢#*1) operations and is done only once. The computation

phase takes O(f?).

7.3.2 Recovering the fraction

Assume F(z) = fo+ fiz+ -+ fmz™ and G(2) = go+ g12 + - - -+ g 2™ are two polynomials in z.
Then

F(z) - k
% = A(Z) = Z arz
k=0
where the ap’s satisfy the recurrence relations:
k
Zgiak—i = [0< k< m,
=0

23

and for & > m:
Zgiak—i =0.
=0

Conversely, given a series A(z), known up to order 2m, we can compute its (m,m) Padé ap-
proximant defined as a rational fraction U(z)/V (z) with deg(U) < m, deg(V) < m and

A(2)V(z) = U(z) = O(z*™H1h).

The (m,m) approximant can be computed using Berlekamp’s algorithm [28] in O(m?) operations
or using algorithm EMGCD of [5] in O(m(logm)?) operations. Note that from a practical point of
view, Berlekamp’s algorithm is faster.
7.3.3 The final algorithm and its complexity
The isogeny test can be summarized as follows:
procedure [SOGENYTEST (¢, M(t), S*(M(1)))

1. compute Z*(t) = S*(M(t))/ M(1);

2. compute M(Z) =1 Z + maZ% 4 4 g 2P 4 O(Z%"'Q) using algorithm RECOVER-
SERIESINZ;

3. recover the fraction F(Z)/G(Z) which is a (€ +1,£4 1) Padé approximant of M(Z); at this
point, ' and G have degree < £+ 1 a priori;

4. if deg(F) = deg(G) and F'is Z times the square of a polynomial, then M might be the isogeny
we are looking for; in this case, we compute the factor ¢g;(X) of the ¢-th division polynomial

and check whether ¢(X,Y) = Op on the curve GF(q)[X,Y]/(F(X,Y), g¢(X)).

The first step takes O(£*) operations, the second O(¢£?) which dominates the third step. There-
fore, we see that the cost of the isogeny test (minus the final check) is O(¢?).

Note also that in the “multiplication” strategy, one already has §*(M(t)) at one’s disposal.
7.4 Enumerating all the morphisms
7.4.1 Backtracking
It is easy to see that the cost of this approach is O(L) times the cost of finding one morphism plus
that of an isogeny test. The total cost is thus O (¢max{k+3/2:3))
7.4.2 Multiplication by a p-adic integer

In fact, we do not really multiply by a p-adic integer, but merely perform additions in the formal
group, until we find the isogeny. The algorithm is as follows:

procedure COMPUTEISOGENY(/, &, £%)

1. compute a generator U of the set of morphisms between £ and £* using the algorithms of
section 7.2;

2. for N =1 to p"*t'/2 and N prime to p do

24

(a) compute (M(1),5*(M(1))) = [N]o (U(1), SU(1)));
(b) use ISOGENYTEST to test whether M comes from isogeny; if yes, stop.

Note that we compute (M (t),S*(M(t))) using a formal addition between the preceding com-
puted value and (U(t), S(U(t))) or [2)(U(t), S(U(L))).

The cost of the second approach is the cost of finding one morphism, O(E“‘H/Q) multiplications,
plus O(L) times the cost of an addition in the formal group — O(£*) multiplications — plus O(L)
times the cost of the isogeny test of cost O(L?). So, the complexity of this second approach is
O(Emax(,u—l—l,B)).

Asymptotically, if 4 < 3/2, both methods have the same complexity O(¢3). If u > 3/2, the
second one is better and the complexity is O(¢3).

However, from a practical point of view, the second approach is always better, since, apart from
the isogeny test, we replace a substitution of series whose complexity is O(E“‘H/Q) by a formal
addition whose complexity is only O(L*) (remember that 1 < u < 2).

We illustrate this conclusion by the giving the numerical comparison of the two methods in
Figure 1, for the case K = GF(2!°), for 50 curves.

7.5 Overall complexity
Proposition 7.2 After preprocesing, the cost of Couveignes’s algorithm is O(max(p?log p, £%)).

Proof: The first term comes from the computation of the isogenous curve by equation (16). The
second from the computations described above. O

Remark. It should be remarked here that the dependance on p is not really relevant, for if
p > £, then the Elkies-Atkin approach works and thus Couveignes’s algorithm is not used. So the
complexity is really O(¢3).

8 Examples

According to the parametrization of elliptic curves of section 3.2, there are three cases: p = 2,
p =3 and p > 3, a representant of which will be p = 5. The aim of this section is to give three
examples of use of SEA for these three cases, starting from the more generic one, p = 5, to the less
p=3and p=2.

8.1 Examples in characteristic 5

Let K = GF(5%) = GF(5)[T)/(T?+ T+ 1) and E:Y? = X34+ X +T. Since 2 x 3 x 52 = 150 >
4,/q =~ 44.72, we will have to look for ¢ mod £ at least for £ € {2,3,5}.

We begin with £ = 2 and find that X3+ X + T has no roots and therefore g+ 1—cis odd, or
c=1mod 2.

For ¢ = 3, we take

O3(F,J) = F* +36F° +270F? — (J — 756) F 4 729
and ®3(F, j(F)) factors as

(FHAT?> 44T + 1) (F+ AT +3)(F* + (T + 2T + 2)F + 3T* + T + 1)

25

in K. We choose I/ =T + 2, which yields j* = 372 + 7. We now look for the equation of E*. We
will look for A such that the equation of £* is [(T2 +7+2) A2, (4T2 + 4T + 3) A3]. Computing the
developments of [5] and [5]*, we find that

[5] = 2t + O(t")
[5]* = (272 + 2T + 4)A*° + O(1").
Equating the coefficients of ¢°, we find that
A =3T+2.

We take A = 272 + 2T and thus E* = (1, 372 + 3T].
In this case, we have 5 < 4 x 3 < 5% and we must compute U/ up to order 12. We first select
A =T and we set Uy = t. We find ug by equating U (F, (¢, At)) and F(U(t),U(At)), which yields

(372 +3T)uz =0
or uz = 0. Then, it is the turn of us for which we have to equate U o [5] and [5]* o U or
T4 1+ 2us + 3ui 4+ 4T* = 0.

The solutions of this equation are 72,72 + 1,72 +2,1? +3,T?+4. We choose us = 1% and go on.
We keep on like this and finally find

U=1+T* 4+ (3T? + 2T)17 + 3T*° + (3T? + 4T + 4)t" + (T? + Tt + O(t").

Now, we have to look for N, 1 < N < |p"t1/2| = 12, N # 0 mod p, such that [N]o ¥ is the
series associated with I. We first find that

t
7 = —Si) _ g2 + 1%+ T3 + 21 + O™,

We begin with N = 1:
Uo[l] =t 4T + (3T% + 21)t" + 3TH° 4+ (3T + 4T +)" + (T? + T)t"* + O (')
and
Z*(Uo[1]) = 2 + 2T* + D)t + (4T + 218 4 (T? + 4T + 2)t'° + (4T? + 2Tt 4+ O (¢*)
which can be written as
Z42T* 73 + (AT* + T)Z* + AT Z° 4 (3T* 44T + 1) Z° + O(Z").

Now, we use the Berlekamp-Massey algorithm to recover the fraction, which in this particular case
gives:
(2T? 4+ 5T +5) 23+ (8T* + 6T +2) 2> + (5T*+ 5T+ 1) Z
(BT2 43T+ 2)24+ BT+ 7T+ 1) Z3 4+ 5T+ 312+ T+ 2)Z+5T+ 6
This fraction has not the degree we are expecting, so it does not correspond to the isogeny we are
looking for. We test the other values of N, and we finally find that, when N = 12, we obtain

Z*Uo[12]) = 4 + 2+ 3TH + (4T* + T)t® + T* + Tt + (T* + T + D)t + O(t'Y)

26

=47+ 3T* +3)Z° + (UT* 4+ 21 Z* + (3T* + T + 3)Z° + 3T Z° + O(Z")
which comes from the fraction:

BT?*+ 1) 22+ (2T* +41)2* + Z
AT? +T+3) 22+ (T*+40) 22+ 212+ 4T)Z + 1

the numerator of which is

Z(3T* 4+ 1)(Z 4 AT + 2)?

so the factor we are looking for is the reciprocal of Z 4+ 471 + 2, that is ¢g3(X) = X + T2 42T, It is
now easy to check that it is really a factor, by computing [3](X,Y) on K[X,Y]/(F(X,Y,1),93(X)).
We are now able to find that the eigenvalue is 2, and thus ¢ = 0 mod 3.

Let us turn our attention to the case £ = 5. First, using Theorem 3.3, one has
¢ = Nijar(s)(2) =2 x 2° x 2% =3 mod 5.

We deduce from this that the eigenvalue associated to gs is 3.
We already computed g5 and gz5 in Section 3.1. We use

925(X) = oo/ f5s = 2X 04 4XOT + 3T+ T43) X3+ (T? 4+ T+ 1) X4+ (272 + T +3) X4 (274 3) X°

+T* +3) X+ (I + 3T+) X3+ BT* +4T)X* + (AT +)X + T + 3.

We easily compute that the eigenvalue is 3, and therefore ¢ = 3 mod 52.
Finally, one finds that ¢ = 3 mod 150, which yields ¢ = 3 and #F =q¢+ 1 — ¢ = 123.

8.2 Example in characteristic 3

Let us consider K = GF(3*) = GF3)[T]/(T*+2T +2) and £ :Y? = X? 4+ X? 4+ T. and £ = 5.
We find that the isogenous curve is E* = [1,272 4 2T]. We compute along the same ways that:

U(t) = AT AT H2TH 4+ T3 4T T4+ 2T 42T) 1M 4+ (2T3 4 T2 42T +-2) 43 4 (T 42T 4-2)t 15
HT? 42T+ 2T+ 2+ T3+ T* +2T)1° + 2T + T* + T + 1)t* + O(1%).
We find that for N = 2, one gets a fraction of suitable degree, the numerator of which is
(TP +T+2) (22 + 2T +T*+T+2) Z+2T+1)°

which yields g5(X) = X2+ (T +2)X + 273 + 27 + 1.

9 Implementation in characteristic 2

We give an example of our implementation of Couveignes’s idea for ¢ = p® = 2”. Let £ : Y24+ XY =
X3+ ag be an elliptic curve.

27

9.1 Simplifying formulas
After the classical change of variables t = —z/y, s = —1/y to set Og = (0,0), the equation of &

becomes

s =134 ts+ ags’. (27)
We obtain, in the special case ¢(7) = 7, the series S(7) = 3.2, Si7* of the formal point (7, S(r))
as

1 ifi=1,23,5
SQH_l = 1 + 1753 L, lf 1= 4, (28)
S2i + ag (SQi—S +82 .+ 23;4 8]2822'_2]‘_}_1) otherwise;
and
< 1 ifi=1,2,3,4,5,
i = i . 29
2 S2i—1+ ag (Szi_e; + E]-:i 8]2322-_2]-) otherwise. (29)

Using standard tools [39], we also find that S(¢) satisfies the diffential equation:
(—54t° — 4> +141* — 181+ 8) y + (—48t + 541> — 281> + 6¢* + 541° + 16) ¢/
+ (2765 +28¢% =361 + 20" —41° + 541" - 81) y" =0

over Zlag], from which we find that the s;’s satisfy the recurrence relation
(=27n* 4+ 27n) s, + (108 n 4+ 54n?) s,q1 + (=10 — 14n — 4n?) s,43 + (142 + 1120+ 20 07) Sp44

+ (—468 — 270 n — 36 n?) 5,45 + (560 4 260 n + 28 n?) 5,46 + (—88n — 224 — 8n?) 5,47 =0
together with the initial values:

Sog =51 =58, =0,83 =54 =55 =55 = 1.

Using these formulas, we can compute the s, over Z[ag] and then reduce them modulo 2.
We can rewrite the formulae of section 2.3.3 in order to decrease their computational cost. If

b # tg, (L B ta(7), St B ta(7))) = (t1(7), 51(7)) B (L2(7), 52(7)) is computed as:

s1(7) + s2(7)

tl(T) + tQ(T)) V(T) = 81(7—) + A(T)t1(7)7

Ar) =

_ 1 (7) 4 2(7) + A7) + aA*(7) (s1(7) + 2(7) + v(7))
L+ 11(7) 4+ 12(7) + A7) + a6 A(7) (51(7) + 52(7) +#(7) + A7)

tl @ t2 (T)

S(ti(7) @ t2(7)) = v(7) + (A(7) + v(7)) (L1 B 12(7))-
For computing ([2]¢(7), S([2]t(7))) = [2](¢(7), s(T)), we use (13):

)+ (1+ aes(7)) 17 (1) + (aes® (1) + s(7)) t(1) + aes*(7) + s(7),
T) 4+ 56652(7')) t(r)

8(7) ' (30)

This computation costs 5 multiplications of series and 2 divisions.

28

9.2 Example

Let K = GF(28) = GF(2)[T]/(T®+T*+ T3+ T + 1). Every element of K can be written
as a polynomial in 7. In order to pack the different results, we will write such a polynomial

a(T) = E?:_Ol a;T* as a(2). For instance, the polynomial T2 + T will be abbreviated as 6.

Let us compute an isogeny of degree { = 5 between E = [7] and E* = [8]. We first find that

A =2 is valid. Then equation (18) becomes
0 = (6%2—}—6%3) t3+<1U22—|—ZU2) t4+0(t5)

and equation (20) becomes

0 = (Vi +vm) t* + (V&' + is) £+ (Vi + i + VI5) 14+ O ().
Consequently,

Vit +uz =0 = uy €{0,1}, we choose uz =0,
6uz +6u3 =0 = wuge {0}, we have uz = 0,

\/‘U42 +ug+V15=0 = u4 € {56,57}, we choose uq = 56,
and once all computations are done, we find

Ult) = t+56t"+561° + 1517 + 16¢° + 31¢° + 219¢1°+
1241 4 5¢12 44413 + 914 + 47415 4 210¢15+
201417 + 231418 4+ T98¢19 + T8812° + T18t2 + O(122).

Let us use first the backtrack method, the morphism M obtained from M by setting w1 =

is
U (t) = ¢+ 5661 +56t° + 157 + 16¢5 + 31¢° + 210¢10 + 124¢11+
512 4 A4t 4 9Tt + AT 4 211416 4 200617 + 23T¢18 4
198¢19 4 132420 + 78¢21 + O(¢2%).

Then the morphism My obtained from M; by setting ug = 17 is

Uz (t) = ¢+ 56t 4+ 5615 + 1517 + 17¢8 + 3007 + 219410 + 124411 +
6112 4+ 20612 4 83¢14 4- 3215 4+ 202416 + 214417 4 52118+
186119 + 18120 4 82121 + O(¢2%).

Afterwards the morphism M3 obtained from M, by setting u;g = 203 is

Us(t) = ¢+ 561"+ 56t° + 1517 + 17¢8 + 3067 + 219110 + 124411+
61612 + 20013 + 83114 4+ 32¢1° 4 203¢16 + 215417 4 52118+
186119 4 42120 410662 + O(¢2%).

Continuing in the same vein, we try

Us(t) = t+5Tt4 + 5715 + 1517 + 4065 + 3907 + 211410 + 115 +
29112 + 59¢13 + 136614 + 91415 + 132616 4 21417 + 196¢ 18+
261 + 188120 +109¢*! + O(t*%),

Us(t) = t+57t4 +57t° + 1517 + 4065 + 39t + 211410 + 115 +
29¢12 4+ 59¢13 + 136414 + 91¢15 4 133616 4 20017 + 196118+
261 + 133120 + 84?1 + O(t%?),

29

11

and finally we find that

Uo(t) = L4 BTt 4570 4 TBI7 4 AT 4 3500 4 2T1710 + 1151114
36¢12 4+ 2413 4 12841 + Q415 + 164416 + 50¢17 4+ 31418+
11361 4 2620 + 9412 + O(t*?)

is the isogeny.
In the multiplication method, additions in the formal group give

[2](U(t)) = 2+ 63t% + 6310 + 29¢14 + 184416 + 165¢18 + 227120 + O (122)

BlU(t)) = t+12 43 +56t* +56t° + 56t° + 557 + 395 + 391°+
944410 + a1 + 154112 + 98413 + 7014 + 5915 + Wtw—l—
5117 + I418 4+ 66119 4 102420 4 84121 + O(tm)

We obtain finally with the Berlekamp-Massey algorithm from [3](Z{(¢)) or from Us(t),

X5(t) + 15X3(t) 4+ 140X (1)

TXO) = =y 5x) 1702

Let us notice here that Ug(t) is the opposite of [3](¢(t)), that is to say that [3](U(t)) = Us(t/(1+
t)).

9.3 Implementation and results
9.3.1 General remarks

We note that almost all the ideas (and tricks) of Atkin are valid for all characteristics. The first
implementation of part of the above ideas is described in [32], which contains many interesting
details. Moreover, recent algorithmic improvements developped in the case of p large are still
valid, notably the work of Couveignes and Morain [12, 11], which is very powerful in the small
characteristic case, since computing a factor of fym requires computing an isogeny of degree £ and
not £"; the work of Miiller [38] with the improvement of Dewaghe [14].

9.3.2 Basic arithmetic

Our implementation is based on the library GFQ written by F. Chabaud [7] (on top of BigNum — cf.
[20]), and improved by the authors. It represents GF'(2") as the residue class ring GF(2)[T]/(1T" +
f(T)) where f(T) is a polynomial of degree smaller than n such that 7" + f(7') is irreducible over
GF(2). In practice — in the range 1 < n < 700 — we were always able to find a suitable f of
degree less than 15. More details can be found in [27], including a description of the polynomial
arithmetic used. In particular, Karatsuba’s algorithm is used for polynomial multiplication, as well
as for series multiplications.

9.3.3 Benchmarks

In [19], the authors give running times for curves defined over GF(2%), GF(2%) and GF(2'%%).
We used these fields as benchmarks for our implementation. We took the 50 curves defined as
y* + 2y = 23 + ag where ag € GF(2)[T] and 2 < M < 51 (none of such coefficient ag belongs to
a smaller extension of GF(2%°), GF(2%) and GF(21%%)).

We give: {,,4,, the maximal prime used; the number of U primes (a U prime £ is one for which

we have one value for ¢ mod ¢), the number of L primes (the other primes); M, the number of

30

combinations; the cumulated time for X9, X7, Schoof’s algorithm; computing ¢; and k when /£ is
Elkies; the time for the match and sort program; the total time. For each category, we give the
minimal, maximal and average values.

As explained in [27], we can tune our program using parameters describing several strategies.
There are four bounds S, &, A, and C which describe the use of Schoof’s original algorithm,
computing isogenies for Elkies primes, finding the splitting of Atkin primes, and using powers of
small primes. We refer to the article cited for more details. Playing with the different parameters
finally yields the best results for our three fields in Table 1. In each case, one has A = cc.

GF(2°) GF(2%) GF(21%)

£E=2=2,8§=0 E=3=4,8=0 E=30=48=24

| min | max | avg min | max | avg min | max | avg
Lnax 29 29 29 37 41 39 43 43 43
#U 1 4 2 1 6 3 4 6 5
#L 6 9 7 6 12 9 8 10 9
M 103 | 3.710° | 5.810% || 7.710% | 2.8107 | 2.410° || 1.510% | 7.110% | 6.6 107
X1 3.8 4.0 3.9 10.2 14.9 12.5 22.4 24.8 23.3
X7 1.3 3.2 2.2 3.8 12.0 8.1 11.5 18.3 14.7
Schoof | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 12.9
g 0.0 1.1 0.4 0.0 2.5 1.0 0.0 2.4 1.0
k 0.1 0.2 0.1 0.3 0.6 0.5 0.3 0.8 0.6
M-S | 0.1 1.7 1.1 0.2 5.9 2.5 0.5 18.8 5.7
Total 6.1 8.8 7.7 17.9 32.2 24.6 43.0 73.9 58.1

Table 1: Best parameters for GF(2")

For the case K = GF(2%%), we have made precise statistics on every part of the algorithm.
The results are given in the tables and graphs given at the end of the article. In Table 2, one finds
for each Elkies prime power £¢ the number of values of J* to try, Num refers to the computation
of the numerator of the isogeny for ¢, Prec to the precomputations, @ designates the time of a
formal addition, BM the time for the Berlekamp-Massey algorithm and N is the 2-adic integer such
that [N]oU comes from an isogeny (we take all coefficients u,i = P;(T') of U such that P;(0) = 0).

9.3.4 Records

In [32, 31], the authors gave timings for larger fields GF(2'°°) and GF(2'%°). For these fields and
for larger fields (the last one being the current record, as of June 1995), our implementation gave
the following timings, for the curve:

EX:y2-|—.’lfy:.’133+T16+T14+T13+T9+T8+T7+T6+T5+T4+T3

(the coefficient was chosen as the binary expression of 91128 — our zip code — converted to a
polynomial if GF(2")). Table 2 gives for some values of n a polynomial f(7") such that 7" + f(T)
is a defining polynomial of GF(2") and the value of ¢ such that #&x (GF(2"))=2"+1—-c.

Table 3 corresponds to the first version of our implementation, which used the backtrack ap-
proach. The cases n = 300 and n = 400 were done with a poor implementation of the treatment
of Atkin primes; moreover no power of small primes were used. For the cases n = 500 and 601,
fast splitting techniques a la Atkin were used, as well as powers of small primes and Karatsuba’s
algorithm for series (and polynomial) multiplication. But for all of these, we did not use equations
(30), but rather the corresponding series.

31

n J(T) c

155 TP+ TP+ T4+ 1 80860670297104421704641

196 T3+ 1 168959031790830995673970347393

300 541 —10571281829901220624668774504748712108091263

400 TP+T?°4+ 1741 83131171959337393875969292317817192062621127877417\
9820465793

500 | T8+ TC+T5+T?+T+1 | —1022525379417220053537215648371674704330886180912\
84615423424533825936526975

601 | TT4+ T4+ T3+ T?+ T +1 |37775742763172180654637698179922762979897172920800\
67701458146624068364548898667013349009665

701 | TP+ T8+ T7+ T4+ T?+ 1| —6359955034208948319000311216309478917321579803329\
46517959827018542105004396465148187664452889226358\
9295359

1009 T+ T4+ T*+1 55007905849934614144624409501712379419197634620524\
53456763226048365537759705821387697628232022965034\
0954505941334049799934180550652777226376997856386305

Table 2: Values of ¢ such that #FEx =g+ 1 — c.

Table 4 refers to the implementation that uses all features described in the present article. The
comparison for the case GF(23%) is striking.

All these records have been done using a network of DecAlpha workstations, using an obvious
distributed implementation of the algorithm.

A comparison with the prime field case is given in [27]. It seems that the program for GF(2")
is slower than the program for large prime characteristic around n = 150.

10 Conclusion

There are basically two approaches for computing isogenies between elliptic curves over a finite field.
The Atkin-Elkies method works well when the characteristic is large and Couveignes’s method for
the small characteristic. It remains to find the break-even point between the two methods. This
and many more will be done elsewhere.

In the particular case of the characteristic 2, a new method is being developped by the first
author [26], that could be faster than Couveignes’s.

Acknowledgments. First of all, the authors want to express their gratitude to J.-M. Couveignes,
without whom this work could not have been possible. Many thanks to J.-M. Steyaert for his
careful reading and for pointing out to us the use of GFUN and the theory lying behind.

References

[1] ATKIN, A. O. L. The number of points on an elliptic curve modulo a prime. Draft, 1988.

[2] ATKIN, A. O. L. The number of points on an elliptic curve modulo a prime (ii). Draft, 1992.

32

GF(2300) GF(2400) GF(QSOO) GF(2601)
lrnas 109 173 179 241
#U 20 26 27 29
#L 9 13 11 23
M 1.2101° 2.510° 1.3107 | 2.110'°
X1 15886 92643 29137 109708
X7 47562 94965 6106 52885
Schoof 12194 186607 65799 | 240091
g 672994 | 1119077 | 518697 | 3139250
k 40655 | 774895 | 492213 | 1392113
M-S 7183 27088 3609 1728
Total 796474 | 2511000 | 1112093 | 4935776

Table 3: Records for the first implementation

GF(2155) GF(2196) GF(QSOO) GF(2701) GF(21009)
Unax 59 73 109 337 577
#U 6 11 18 40 57
#I 11 10 11 28 46
M 2107 108 3108 1.2101° 3.910°
X1 121 440 3221 505004 | 2613536
X 42 127 356 | 282637 498462
Schoof 0 69 0| 1172674 413936
g 24 580 22974 | 4842770 | 13457961
k 19 141 3613 | 1094254 | 4000569
M-S 10 23 56 2098 3688
Total 217 1381 30221 | 7897343 | 21018853

Table 4: Records for the second implementation

33

[3] ATkIN, A. O. L., AND Morain, F. Elliptic curves and primality proving. Math. Comp. 61,
203 (July 1993), 29-68.

[4] Bosma, W. Primality testing using elliptic curves. Tech. Rep. 85-12, Math. Instituut, Uni-
versiteit van Amsterdam, 1985.

[5] BRENT, R. P., GusTavson, F. G., AND YuN, D. Y. Y. Fast solution of Toeplitz systems of
equations and computation of Padé approximants. Journal of Algorithms 1 (1980), 259-295.

[6] BRENT, R. P., anD Kuna, H. T. Fast algorithms for manipulating formal power series.
J. ACM 25 (1978), 581-595.

[7] CHAaBAUD, F. Sécurité des crypto-systemes de McEliece. Mémoire de DEA, Ecole polytech-
nique, 1993.

[8] CHARrLAP, L. S., CoLEY, R., AND ROBBINS, D. P. Enumeration of rational points on elliptic
curves over finite fields. Draft, 1991.

[9] ComTET, L. Calcul pratique des coefficients de Taylor d’une fonction algébrique. Enseigne-
ment Math. 10 (1964), 267-270.

[10] COUVEIGNES, J.-M. Quelques calculs en théorie des nombres. These, Université de Bordeaux
I, July 1994.

[11] COUVEIGNES, J.-M., DEWAGHE, L., AND MoORAIN, F. Isogeny cycles and Schoof’s algorithm.
Draft, Mar. 1995.

[12] CoUuVEIGNES, J.-M., AND MoORAIN, F. Schoof’s algorithm and isogeny cycles. In ANTS-
I (1994), L. Adleman and M.-D. Huang, Eds., vol. 877 of Lecture Notes in Comput. Sci.,
Springer-Verlag, pp. 43-58. 1st Algorithmic Number Theory Symposium - Cornell University,
May 6-9, 1994.

[13] DEURING, M. Die Typen der Multiplikatorenringe elliptischer Funktionenkdrper. Abh. Math.
Sem. Hamburg 14 (1941), 197-272.

DeEwAGHE, L. Remarques sur ’algorithme SEA. In preparation, Dec. 1994.
Erkies, N. D. Explicit isogenies. Draft, 1991.

]
]
6] FrICKE, R. Die elliptischen Funktionen und ihre Anwendungen. Teubner, Leipzig, 1992.
] FROHLICH, A. Formal groups, vol. 74 of Lecture Notes in Math. Springer-Verlag, 1968.
]

GOLDWASSER, S., AND KILIAN, J. Almost all primes can be quickly certified. In Proc. 18th
STOC (1986), ACM, pp. 316-329. May 28-30, Berkeley.

[19] HARPER, G., MENEZES, A., AND VANSTONE, S. Public-key cryptosystems with very small
key length. In Advances in Cryptoloy - EUROCRYPT 92 (1993), R. A. Rueppel, Ed., vol. 658
of Lecture Notes in Compul. Sci., Springer-Verlag, pp. 163-173. Workshop on the Theory and
Application of Cryptographic Techniques, Balatonfiired, Hungary, May 24-28, 1992, Proceed-
ings.

[20] HERVE, J.-C., SERPETTE, B., AND VUILLEMIN, J. BigNum: A portable and efficient package
for arbitrary-precision arithmetic. Tech. Rep. 2, Digital Paris Research Laboratory, May 1989.

34

[21] HUSEMOLLER, D. FElliptic curves, vol. 111 of Graduate Texts in Mathematics. Springer, 1987.

[22] KnuTH, D. E. The Art of Computer Programming: Seminumerical Algorithms, 2nd ed.
Addison-Wesley, 1981.

[23] KoBLiTZ, N. Elliptic curve cryptosystems. Math. Comp. 48, 177 (Jan. 1987), 203-2009.

[24] LEHMANN, F., MAURER, M., MULLER, V., AND SHOUP, V. Counting the number of points
on elliptic curves over finite fields of characteristic greater than three. In ANTS-I (1994),
L. Adleman and M.-D. Huang, Eds., vol. 877 of Lecture Notes in Compul. Sci., Springer-

Verlag, pp. 60-70. 1st Algorithmic Number Theory Symposium - Cornell University, May 6-9,
1994.

[25] LENSTRA, JRrR., H. W. Factoring integers with elliptic curves. Annals of Math. 126 (1987),
649-673.

[26] LERCIER, R. Computing isogenies in characteristic 2. Draft, Apr. 1995.

[27] LERCIER, R., AND MoRraAIN, F. Counting the number of points on elliptic curves over finite
fields: strategies and performances. In Advances in Cryptology - EUROCRYPT 95 (1995),
L. C. Guillou and J.-J. Quisquater, Eds., no. 921 in Lecture Notes in Comput. Sci., pp. 79—
94. International Conference on the Theory and Application of Cryptographic Techniques,
Saint-Malo, France, May 1995, Proceedings.

[28] MassEY, J. L. Shift-register and BCH decoding. IEEFE Trans. on Information Theory IT-15,
1 (Jan. 1969), 122-127.

[29] McELIECE, R. Finite fields for computer scientists and engineers. Kluwer international series
in engineering and computer science. Kluwer Academic Publishers, 1988.

[30] McKEE, J. Computing division polynomials. Math. Comp. 63, 208 (Oct. 1994), 767-771.
[31] MENEZES, A. J. Elliptic curve public key cryptosystems. Kluwer Academic Publishers, 1993.

[32] MENEZES, A. J., VANSTONE, S. A., AND ZUCCHERATO, R. J. Counting points on elliptic
curves over Fym. Math. Comp. 60, 201 (Jan. 1993), 407-420.

[33] MILLER, V. Use of elliptic curves in cryptography. In Advances in Cryptology (1987), A. M.
Odlyzko, Ed., vol. 263 of Lecture Notes in Comput. Sci., Springer-Verlag, pp. 417-426. Pro-
ceedings Crypto '86, Santa Barbara (USA), August11-15, 1986.

[34] MoNTGOMERY, P. L. Speeding the Pollard and elliptic curve methods of factorization. Math.
Comp. 48, 177 (Jan. 1987), 243-264.

[35] MorAIN, F. Implantation de I'algorithme de Schoof-Elkies-Atkin. Preprint, January, 1994.

[36] MoraIN, F. Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects
algorithmiques. To appear in the Actes des Journées Arithmétiques 1993, Feb. 1995.

[37] MoraIN, F. On Hasse invariants and supersingular polynomials. Draft, June 1995.

[38] MULLER, V. Looking for the eigenvalue in Schoof’s algorithm. In preparation, Oct. 1994.

35

[39] SaLvy, B., AND ZIMMERMANN, P. Gfun: a maple package for the manipulation of generating
and holonomic functions in one variable. ACM Transactions on Mathemalical Software 20, 2

(1994), 163-177.

[40] ScHooF, R. Elliptic curves over finite fields and the computation of square roots mod p.
Math. Comp. 44 (1985), 483-494.

[41] ScHooOF, R. Counting points on elliptic curves over finite fields. To appear in Proc. Journées
Arithmétiques 93, Jan. 1995.

[42] SiLvERMAN, J. H. The arithmetic of elliptic curves, vol. 106 of Graduate Texts in Mathematics.
Springer, 1986.

[43] WATERHOUSE, E. Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Sup. 2 (1969),
521-560.

36

| (]d]|T] X7]Atkin| Elkies | Tot
2|1]E - - - 0.0
2| E - - - 0.0

3| E - - 0.4 0.4

1] E - - 1.3 1.3

5| E - - 5.1 5.1

6| E - - 18.4 18.4

7] E - - 72.6 72.6

8| E - - 1704] 1704
3[1]1 0.1 - 0.5 0.6
2| - - - - 0.0
50101 0.3 - 1.8 2.1
2| - - - - 0.0
711 0.2 - 3.1 3.3
2| - - - - 0.0
11[1[E 3.8 - 8.3 12.1
2| E - - 2201 2201
13[1]A 34 0.0 - 3.4
1I7[1]A 82| 0.9 - 9.1
19 1[E 9.6 - 63.2 72.8
23 |1[A] 142] 21 - 16.3
29[1|A| 263[43 - 30.6
311 E] 269 - 1502 1771
371 E] 365 -| 4798] 5163
AJ1[E] 515 - 3881] 4396
4311[A] 507] 16.1 - 66.8
711 E] 607 -| 5663 | 627.0
53 1|A] 576[123 - 69.9
591 BE] 612 - 737.2] 7984
611 E] 659 -| 2125] 2784
67 1] 1 74 - | 1069.8 | 1157.2
TL[1]A] 926 311 - 1237
3[1]A] 1050 0.0 - | 105.0
91 B 1202 - | 1849.8 | 1970.0
83 1A 1287] 378 - | 166.5
89 [1A]| 1388[485 - | 1873
97 [1 | E| 159.7 - | 1642.6 | 18023
10l [1[E]| 159.1 - | 3100.1 | 3259.2
103 [1| E[167.0 - | 1045.6 | 12126
107 [1[E] 1742 - | 4733.4] 4907.6
109 [T[A] 1747] 625 - 2372
| Tot | |]1984.5 [215.6 | 16540.6 | 18740.7

Table 5: Data for GF(23%).

37

[¢]d] Y] kM] k][o]
213 04 00] 1] -
4 1.3 00] 1| -
5 50 0.0 1] -
6| 184 o00] 1] -
7] 726 00| 1] -
8| 149.7| 207129 | -
31 01| o00] 2] 1
51 05| 00] 1] 1
7)1 09 00| 6] 1
111 23] 00| 3] 5
11 2] 1369 724 80| -
19 |1 70 02 16| 9
311 176] 11| 4| 5
37 1] 251 7.7] 24|18
41 (1] 304 135] 1720
47 1] 399 1.2 44|23
50 [1] 63.4] 342 3929
61 1] 725] 27.2] 46|15
67 1] 80.7] 60.0]| 2711
79 1] 118.0] 383 13|39
97 [1] 176.7] 56.9 | 13|48
101 | 1] 184.5[218.9 | 42|50
103 1] 1188] 71.8| 81|17
107 | 1] 123.9[174.1 | 48 |53

| Tot | | 14466 | 7982 -| -|

Table 6: Data for GF(23%°) (cont’d).

38

120

100

80

60

Time (s)

40

20

= First approach — -
Second approach — —
10 20 30 40 50 60
Primes

Figure 1: Average practical timings for both approaches (50 curves).

39

| ¢]d] J|#7 [Num [Prec| U|Z@t)'| @|Z*=MZ) |BM]| N |
213 - - - - - - - - -1 -
4 _ _ _ _ _ _ _ _ _ -
5 _ _ _ _ _ _ _ _ _ -
6 _ _ _ _ _ _ _ _ _ -
7 _ _ _ _ _ _ _ _ _ -
8 _ _ _ _ _ _ _ _ _ -
3117] 0.0 1 - 00 02 0.0 00 00 0.0 3
5017 0.0 1 - 00 05] 0.0] 0.1 00] 0.0 7
7117 0.0 1 - 01 08] 0.0] 0.1 00] 0.0 7
11[1] 08 2 - 04 1.9 01] 04 00] 0.0 7
2] 08 20 02| 05| 21| 01| 04 00] 0.0 7
19[1] 04 3 - 521 56 06 1.2 0.0] 0.1] 47
311 0.0 1 - 28] 131 23] 23 0.1] 0.2 63
37|1] 07 3 - 73] 210 37| 45 02] 03127
41111 0.0 1 - 80 25.2] 5.0 5.2 021 0.4 81
471171 0.0 1 -89 323 75| 58 03] 0.5 [111
59 1] 0.0 1 - 111] 496 136 7.3 0.6 | 0.7 103
611 0.3 1 - 1131 55.0 | 147 7.8 06 0.8 3
671 1.2 3 -] 476 68.9] 185 11.4 0.7] 0.8] 93
7911 07 3 - 2821 944 29.8 158 1.1 12133
97 [1] 1.8 1 -] 33.6 [136.3 | 52.6 | 20.2 1.7 1.7 79
1001 02 1 - | 34.6 [1425 | 58.6 | 20.5 1.8 | 1.8 161
1031 08 1 - 3511474 62.0]20.7 1.8 1.9 37
1071 2.3 5 - [144.4 1 159.1 | 68.3 | 21.6 2.0 [2.0 [251
| Tot | 100 -] 02]379.1[955.9] 683] -| -1 -] -]
Figure 2: Data for GF(2%%°) (cont’d).
35 I I I I
Precomputations
30 - -
25 - -
“ 20+ J
<)
10 + -
5+ J
0

40

140
120 -
100 -

80 -
60 -

(s) ouny,

40 -
20 -
25

20 -
15 [

(s) ouny,

10

5
0

41

Time (s)

Time (s)

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Berlekamp Massey

42

