
In L.C. Guillou and J.-J. Quisquater, editors, Advances in Cryptology - EUROCRYPT ’95:
International Conference on the Theory and Application of Cryptographic Techniques,
Saint-Malo, France, May 1995. Proceedings, volume 1995 of Lecture Notes in Computer
Science, pages 79–94. Springer Berlin / Heidelberg, May 1995.

Counting the Number of Points

on Elliptic Curves over Finite Fields:

Strategies and Performances

Reynald Lercier and François Morain

LIX École Polytechnique, F-91128 Palaiseau CEDEX, FRANCE

Abstract. Cryptographic schemes using elliptic curves over finite fields require the computation of
the cardinality of the curves. Dramatic progress have been achieved recently in that field. The aim
of this article is to highlight part of these improvements and to describe an efficient implementation
of them in the particular case of the field GF (2n), for n ≤ 500.

1 Introduction

Elliptic curves have been used successfully to factor integers [23, 33], and prove the primality of large
integers [5, 12, 3]. Moreover they turned out to be an interesting alternative to the use of Z/NZ in
cryptographical schemes [30, 18]. Elliptic curve cryptosystems over finite fields have been built, see
[4, 27]; some have been proposed in Z/NZ, N composite [20, 11, 38]. More applications were studied in
[16, 19]. The interested reader should also consult [28].

In order to perform key exchange algorithms using an elliptic curve E over a finite field K, the
cardinality of E must be known. The first suggestions in that direction were to use supersingular curves
for which the cardinality is easy to compute [30, 18, 15, 4, 27]. But these curves turned out to be
disastrous, since the discrete logarithm problem can be reduced to the discrete logarithm problem over
an extension field of K of small degree [26]. For non supersingular curves, no reduction algorithm is
known in general and the only known attack on such schemes is to use a variant of Pollard’s algorithm
[13] and this algorithm has exponential running time. Hence, it appears promising to use these curves
since we can achieve the same level of confidence one has with Z/NZ with much shorter keys.

Two types of finite fields GF (q) have been suggested. The first one considers curves over GF (p) where
p is a large prime, the second one curves defined over GF (2n) where n is some integer. It is possible to
use the properties of complex multiplication as stated in [3] to build an elliptic curve with cardinality
satisfying some properties [35, 19, 31, 32, 21, 7]. On the other hand, one can use random curves and try
to compute its cardinality. It was not until recently that Schoof’s polynomial time algorithm for solving
this problem could be efficiently implemented and give satisfactory results. The aim of this paper is to
give some hints on how this was made possible and to give some precise timings on randomly selected
curves.

Since there are industrial applications for elliptic curves over GF (2n) [13, 28], we will focus on this
case. We will briefly compare the running time of our implementation with that of the case q = p, p
large.

The stucture of this paper is as follows. Section 2 recalls basic facts on elliptic curves. Section 3
describes Schoof’s algorithm in a synthetic way using the contributions of Atkin, Elkies, and Couveignes–
Morain. We will present some strategies combining these ideas. Some details of the implementation are
given in Section 4; precise timings on random curves for various fields are also given.

2 Elliptic curves over finite fields

We recall well known properties of elliptic curves. All these can be found in [41] (see also [28]).
Let K = GF (q) = GF (pn) be a finite field of characteristic p. The general equation of an elliptic

curve is given as:

F(X,Y,Z) := Y 2Z + a1XY Z + a3Y Z2 − (X3 + a2X
2Z + a4XZ2 + a6Z

3) = 0

1

2

where the ai’s are in K and the discriminant ∆ defined by

d2 = a2
1 + 4a2, d4 = 2a4 + a1a3, d6 = a2

3 + 4a6, d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = d2
2 − 24d4,∆ = −d2

2d8 − 8d3
4 − 27d2

6 + 9d2d4d6

is invertible in K. The j-invariant of the curve is j(E) = c3
4/∆.

It is possible to define on the set of points E(K) of E

E(K) = {(x, y) ∈ K2,F(x, y, 1) = 0} ∪ {OE}

an abelian law using the so-called tangent-and-chord method, OE being the neutral element (0, 1, 0). We
refer to the references given above for the precise equations of the law.

Let m denote the cardinality of the set E(K) of points on E. Then, it is well known that m = q+1−t
where t is an integer satisfying |t| ≤ 2

√
q.

3 Counting the number of points

3.1 Torsion points

Let E be an elliptic curve and let N be an integer. Define E[N] as the set of points of E(K) of order
N . When N is prime to p, then E[N] is isomorphic to (Z/NZ) × (Z/NZ) and when N = pe, it is either
{OE} or (Z/peZ).

It can be shown that there exists a polynomial fN (X) in Q[a6][X] of degree

dN =







(N2 − 1)/2 if (N, p) = 1, N odd
(N2 − 4)/2 if (N, p) = 1, N even
(p2e − pe)/2 if N = pe

such that P = (X,Y, 1) is in E[N] if and only if fN (X) = 0 in K. The polynomial fN is called division

polynomial.

3.2 Schoof’s algorithm

Schoof’s algorithm [39] uses the properties of the Frobenius πE which maps E onto itself and which sends
a point (X,Y, 1) in E(K) to (Xq, Y q, 1). It is known that this endomorphism has characteristic equation

π2 − tπ + q = 0 (1)

where t is related to the cardinality m of E(K) via m = q + 1 − t.
Let ℓ be a prime number. Equation (1) is still valid when πE is restricted to the group E[ℓ], and

equivalently

π2 − tπ + q ≡ 0 mod ℓ. (2)

We can find tℓ ≡ t mod ℓ by finding which value of τ , 0 ≤ τ < ℓ, satisfies

(Xq2

, Y q2

) + q(X,Y) = τ(Xq, Y q)

in GF (q)[X,Y]/(F(X,Y, 1), fℓ(X)). If we know t mod ℓ for enough ℓ such that

∏

ℓ > 4
√

q

then we can determine t using the Chinese remaindering theorem.

3

3.3 An overview of the improvements of Atkin and Elkies

Though Schoof’s algorithm has polynomial running time, its implementation was rather inefficient, due
to the size of the polynomials involved. However, Atkin first and then Elkies devised theoretical and
practical improvements. We suppose from now on that we want to compute tℓ ≡ t mod ℓ, ℓ a prime
number prime to p.

Firstly, Atkin [1] explained how to use the properties of the modular polynomial Φℓ(X,Y) modulo p
to get a list of possible values of tℓ. The polynomial Φℓ(X,Y) is symmetric in X and Y and has degree
ℓ + 1. The polynomial Φ(X) = Φℓ(X, j(E)) describes the cyclic subgroups of E. It can have basically
two splitting in K: (11r . . . r) with ℓ − 1 = rs or (r . . . r) with ℓ + 1 = rs (there are two particular cases
described in the paper which are rare and we omit the relevant details for the sake of simplicity). In the
first case, ℓ is said to be an Elkies prime and an Atkin prime in the second. In each case r is the order
of α/β where α and β are the roots of

π2 − tπ + q ≡ 0 mod ℓ

and lie in GF (ℓ) if ℓ is an Elkies prime (and thus t2 − 4q must be a square modulo ℓ) and in GF (ℓ2)
otherwise (implying that t2 − 4q is not a square modulo ℓ). Once r is known, there are ϕ(r) possible
values of τℓ and in many cases, this value is much less than ℓ; we denote by c(ℓ) the number of possible
values of t mod ℓ. It remains to combine these values in a clever way, using a match & sort technique
described in [1]. This paper contains also many ideas concerning the alternative use of other modular
equations, that turn out to be essential in practice, but that we do not want to describe here (for this
see also [36]).

Elkies remarked that when t2 − 4q is a square modulo ℓ, then fℓ(X) has a factor gℓ(X) of degree
(ℓ − 1)/2. Moreover, πE has an eigenspace associated with gℓ, which means that we now look for some
k, 1 ≤ k < ℓ such that

(Xq, Y q) = k(X,Y)

in GF (q)[X,Y]/(F(X,Y, 1), gℓ(X)). This change was crucial, because it was then possible to use polyno-
mials of degree (ℓ− 1)/2 rather than of degree (ℓ2 − 1)/2. Elkies gave an algorithm to compute gℓ using
further properties of modular equations. Another approach was given in [8].

Atkin [2] gave his own solution to the problem of computing gℓ(X) using more modular equations
and modular forms. Though rather tricky to implement, his approach is very fast in practice.

Recently, Couveignes and Morain showed how to use powers of small Elkies primes [10].
All these ideas are also decribed in [40] and were implemented [2, 22, 36, 37]. The results are striking,

the record being that of the computation of the cardinality of a curve modulo a prime p of 425 digits
(annoucement of V. Müller during the Dagstuhl seminar in october, 1994).

The only remaining problem was that these ideas could not work when ℓ > p, which is the case when
p = 2. As a matter of fact, the theory of Atkin and Elkies remains valid, but the algorithm used to
compute gℓ(X) cannot work, since it requires using Newton’s formulas to recover the coefficients of the
polynomial and these formulas involve inverting small numbers in K. Couveignes solved this problem in
his thesis [9], using formal groups as a powerful tool. The first successful implementation of these ideas
is due to Lercier and Morain [24].

3.4 Couveignes’s algorithm

Couveignes’s algorithm [9] works in any characteristic p > 0. We simplify the exposition in the case
p = 2.

When ℓ is an Elkies prime, we known that the initial curve

E : y2 + xy = x3 + a6, (3)

is isogenous to a curve

E∗ : y2 + xy = x3 + a∗
6 (4)

4

that can be easily computed. The difficulty lies in the computation of the isogeny I from E to E∗ defined
by

I(x, y) = (U(x), V (x, y)) =

(

g(x)

h2(x)
,

k(x)

yh3(x)

)

. (5)

Then h(x) is the factor of the division polynomial we are looking for.
Setting t = −x/y and s = −1/y, the formal groups defined by (3) is the set of pairs (t, s) satisfying

t3 + ts + a6s
3 = s

where t and s are formal series in K((τ)). A morphism M from E to E∗ satisfies the equality

M((t1(τ), s1(τ)) + (t2(τ), s2(τ))) = M(t1(τ), s1(τ)) + M(t2(τ), s2(τ)) (6)

in K((τ)). This equation is not sufficient to get I since there are much more morphisms than isogenies.
Since I can be written as (5), letting z(τ) = s(τ)/t(τ), U is a formal series such that

U(τ) = U(z(τ)) = z(τ)
ĥ2(z(τ))

ĝ(z(τ))
(7)

with ĥ, a polynomial of degree (ℓ−1)/2 and ĝ, a polynomial of degree ℓ. We write U(τ) = τ +
∑∞

i=2 uiτ
i

and we find the ui’s coefficient by coefficient. If i is not a power of 2, we look for ui such that the equality

U((τ, s(τ)) + (Aτ, s(Aτ))) = (U(τ), s∗(U(τ))) + (U(Aτ), s∗(U(Aτ))), (8)

holds up to τ i+1, A being a constant in the field chosen as described in [9]; when i is a power of 2, we
do the same thing using

U((τ, s(τ)) + (τ, s(τ))) = (U(τ), s∗(U(τ))) + (U(τ), s∗(U(τ))), (9)

We have to compute 4ℓ+1 terms of U(τ) in order to get 4ℓ+2 terms once substituted in z∗(τ) = s∗(t)/t
and finally have 2ℓ + 1 terms as a series in z(τ) = s(τ)/τ , to be able to recognize

U(z) =
zg(z)2

h(z)

with the Massey–Berlekamp algorithm [25].

3.5 A synthetic description of the algorithm

The general algorithm runs as follows: we use two variables Mu and Ml which contain respectively the
product of primes ℓ for which τℓ is known and for which τℓ is in some subset of possible values. Typically,
Mu contains Elkies primes and Ml Atkin primes. The variable M will contain the current number of
combinations to be tried. The general procedure is:
procedure SEA(K, E)

1. ℓ := 1; Mu := 1; Ml := 1; M := 1;
2. while (Mu × Ml < 4

√
q) or (M > M) do

(a) ℓ := nextprime(ℓ);
(b) compute Φ(X) = Φℓ(X, j(E)) and find the number ν of roots of Φ in K;
(c) if ν = 2 (ℓ is an Elkies prime) then ElkiesCase(ℓ);
(d) if ν = 0 (ℓ is an Atkin prime) then AtkinCase(ℓ);

3. use the match and sort technique to finish the computations.

The constant M is a bound on the number of combinations we will have to do in the last step. More
details on its choice will be given later.

The core of the computations consists in the two procedures ElkiesCase and AtkinCase:
procedure ElkiesCase(ℓ)

5

1. compute a factor gℓ(X) of fℓ(X) of degree (ℓ−1)/2 using Atkin’s algorithm if p > ℓ and Couveignes’s
if p < ℓ;

2. find an eigenvalue of πE related to gℓ, i.e., 1 ≤ k < ℓ such that (Xp, Y p) = k(X,Y) in GF (q)[X,Y](F(X,Y, 1), gℓ(X)) ;
deduce from this that t ≡ (k2 + p)/k mod ℓ.

3. Mu := Mu × ℓ;

procedure AtkinCase(ℓ)

1. find the least r such that Xqr ≡ X mod Φ and set c(ℓ) = ϕ(r); M := M × c(ℓ).
2. Ml := Ml × ℓ;

3.6 A more elaborate strategie

Let us give a variant of the algorithm we described above using four more constants A, E , S and C that
will reflect the choice of possible strategies:
(c) if ν = 2 and ℓ ≤ E then

1. ElkiesCase(ℓ);
2. for n := 2 while ℓn−1d ≤ C do compute t mod ℓn; Mu := Mu × ℓ;

else if (ℓ2 − 1)/2 ≤ S then for n := 1 while (ℓ2n − ℓ2n−2)/2 ≤ S do

compute t mod ℓn using Schoof’s original algorithm;
else if ℓ ≤ A then AtkinCase(ℓ);

In the above description, d is the order of the eigenvalue k modulo ℓ and the quantity ℓn−1d represents
the degree of a factor of fℓn(X), see [10]; (ℓ2n − ℓ2n−2)/2 is the degree of a factor of fℓn(X).

This presentation captures many possible strategies. First of all, setting E = A = 0 yields Schoof’s
original algorithm. Setting E = 0 gives Atkin’s first algorithm [1]. Introducing C makes it possible to use
the ideas of [10]. We will detail the constants of our implementation in the next section.

4 Implementation and results

4.1 General remarks

We note that almost all the ideas (and tricks) of Atkin are still valid when the characteristic is 2. The first
implementation of part of the above ideas is described in [29], which contains many interesting details.

4.2 Basic arithmetic

Our implementation is based on the library GFM written by F. Chabaud [6] (on top of BigNum – cf. [14]),
and improved by the authors. It represents GF (2n) as the residue class ring GF (2)[T]/(Tn +f(T)) where
f(T) is a polynomial of degree smaller than n such that Tn + f(T) is irreducible over GF (2). In practice
– in the range 1 ≤ n ≤ 500 – we were always able to find a suitable f of degree less than 15.

The algorithm spends most of the time doing multiplications of elements in the field. To speed up
this operation, we first perform the multiplication of two polynomials with coefficients in GF (2) using
a table storing all the products PQ of polynomials P and Q of degree at most 7 (at the expense of a
storage of 128 kilo-bytes). Then we reduce this polynomial of degree at most 2n − 2 modulo Tn + f(T)
using a second table storing the coefficients of q(T)f(T) for all q(T) of degree smaller than 15 (at the
expense of a storage of 256 kilo-bytes too). We give below a table containing precise timings (in seconds)
for performing 106 operations. All benchmarks have been done on a DecAlpha 3000/500.

n Squaring Multiplication Inversion

65 5.2 27.4 567
89 5.3 30.8 834
105 5.8 33.6 994
155 7.3 63.8 1963
196 8.5 101.6 2835

6

4.3 Polynomial arithmetic

One of the main costs of the algorithm is the computation of X2n

mod f(X) where f(X) ∈ GF (2n)[X].
As squaring of polynomials of degree d can be performed in O(d) squarings in GF (2n), we have to
improve the reduction of a polynomial g(X) (of degree at most 2d) modulo a polynomial f(X) (of degree
d). This usually costs O(d2) multiplications in K [17], but can be improved using Newton’s method and
Karatsuba’s algorithm as described for instance in [34]. Precise benchmarks will be given in the final
version.

Karatsuba-Newton
Plain

A(X)2 mod P (X) in GF (2105)

Degree of P (X)

T
im

e
(s

)

300250200150100500

4

3.5

3

2.5

2

1.5

1

0.5

0

4.4 Timings

In [13], the authors give running times for curves defined over GF (265), GF (289) and GF (2105). We used
these fields as benchmarks for our implementation. We took the 50 curves defined as y2 + xy = x3 + a6

where a6 ∈ GF (2)[T] and 2 ≤ a6(2) ≤ 51 (none of such coefficient a6 belongs to a smaller extension of
GF (265), GF (289) and GF (2105)).

We give: ℓmax, the maximal prime used; the number of U (resp. L) primes; #M , the number of
combinations; the cumulated time for Xq, Xqr

, Schoof’s algorithm; computing gℓ and k when ℓ is Elkies;
the time for the match and sort program; the total time. For each category, we give the minimal, maximal
and average values.

Consider first K = GF (265). In this case, M = ∞.

E = ∞, C = 64,S = 84,A = 0
min max avg

ℓmax 19 53 35
#U 6 9 7
#L 0 10 4
#M 1 1 1

Xq 1.5 18.9 7.2
Xqr

0.0 0.0 0.0
Schoof 0.0 71.5 17.4
g 17.4 337.0 106.0
k 5.1 27.3 14.7
M − S 0.0 0.1 0.1
Total 26.9 410.0 146.0

E = 0, C = 0,S = 0,A = ∞
min max avg

ℓmax 31 31 31
#U 1 3 2
#L 8 10 9
#M 1.02 103 1.47 106 2.79 105

Xq 4.7 4.9 4.8
Xqr

1.1 3.9 3.0
Schoof 0.0 0.0 0.0
g 0.0 0.0 0.0
k 0.0 0.0 0.0
M − S 0.1 2.1 1.3
Total 7.2 10.5 9.1

7

These tables show immediately that throwing away Atkin primes is really a bad idea. Playing with
the different parameters finally yields the following best results for our three fields. In each case, one has
A = ∞:

GF (265)
E = 2, C = 2,S = 0

min max avg

ℓmax 29 29 29
#U 1 4 2
#L 6 9 7
#M 103 3.7 105 5.8 104

Xq 3.8 4.0 3.9

Xq
r

1.3 3.2 2.2
Schoof 0.0 0.0 0.0
g 0.0 1.1 0.4
k 0.1 0.2 0.1
M − S 0.1 1.7 1.1

Total 6.1 8.8 7.7

GF (289)
E = 3, C = 4,S = 0

min max avg

37 41 39
1 6 3
6 12 9

7.7 102 2.8 107 2.4 106

10.2 14.9 12.5
3.8 12.0 8.1
0.0 0.0 0.0
0.0 2.5 1.0
0.3 0.6 0.5
0.2 5.9 2.5

17.9 32.2 24.6

GF (2105)
E = 3, C = 4,S = 24

min max avg

43 43 43
4 6 5
8 10 9

1.5 105 7.1 108 6.6 107

22.4 24.8 23.3
11.5 18.3 14.7
0.0 30.0 12.9
0.0 2.4 1.0
0.3 0.8 0.6
0.5 18.8 5.7

43.0 73.9 58.1

A dynamic strategy When ℓ is an Elkies prime, the cost of procedure ElkiesCase turns out to be
greater than that of AtkinCase. In order to have a program as fast as possible, it is sometimes better to
treat an Elkies prime as an Atkin prime. This motivates our dynamic strategy. Let L denote the least
prime such that

∏

ℓ≤L ℓ > 4
√

q and denote by c̃(ℓ) an upper bound on c(ℓ). An upper bound for the
number of combinations is then

∏

ℓ≤L c̃(ℓ). The program runs as above and as soon as for the current
prime ℓ, one has

(

∏

l<ℓ

c(l)

)





∏

ℓ≤l≤L

c̃(l)



 < M

one decides to treat the remaining primes as Atkin primes.
We can compute an upper bound c̃(ℓ) for c(ℓ) as c̃(ℓ) = max{ϕ(r)} where r | ℓ − ε and (q/ℓ) =

(−1)(ℓ−ε)/r for all choices of ε in {±1}. (Note that ε = +1 if ℓ is an Elkies prime and −1 otherwise.)
The results of this strategy are as follows, with A = ∞ and E = ∞ in all cases:

GF (265)
C = 16,S = 4,M = 106

min max avg

ℓmax 29 29 29
#U 2 4 2
#L 6 8 80
#M 103 3.7 105 5.3 104

Xq 3.3 3.5 3.4

Xq
r

1.1 2.7 1.9
Schoof 0.0 3.3 1.8
g 0.0 0.2 0.1
k 0.1 0.2 0.2
M − S 0.1 1.5 1.0

Total 6.0 10.8 8.3

GF (289)
C = 16,S = 4,M = 108

min max avg

37 41 37
2 5 3
7 10 9

3 103 2.7 107 2.9 106

9.0 12.3 9.4
3.2 8.6 5.3
0.0 3.4 1.7
0.0 0.9 0.2
0.3 0.9 0.6
0.2 5.7 2.5

15.4 25.0 19.6

GF (2105)
C = 32,S = 12,M = 1010

min max avg

41 43 42
2 5 3
9 12 10

7.4 104 9.4 108 8.3 107

15.6 22.2 20.2
8.7 15.9 12.3
0.0 11.0 2.5
0.0 2.1 0.7
0.4 2.2 0.9
0.6 27.3 6.7

32.0 65.2 43.3

This shows that this strategy is useful in the last case only. The final version of this paper will describe
a new strategy, called the wait-and-see strategy: first compute and store all Xq mod Φ until enough
information can be gathered; then decide which procedure to use so as to minimize the total time
needed.

4.5 Comparison with the case GF (p)

For the sake of comparisons, we give some timings when using the field GF (p) where p is the least prime
greater than 265 (resp. 289, etc.). We considered the 50 random curves of equation y2 = x3 + x + b for

8

1 ≤ b ≤ 50 for each of these primes. In all cases, A = ∞.

p = 265 + 131
E = 7, C = 0,S = 0

min max avg

ℓmax 29 31 30

#U 2 6 3

#L 5 9 7

#M 1.7 103 6.5 105 1.0 105

Xq 5.0 7.0 6.8

Xq
r

1.4 2.8 2.3

Schoof 0.0 0.0 0.0

g 0.0 0.0 0.0

k 0.0 0.1 0.0

M − S 0.3 1.3 0.6

Total 7.4 11.3 10.3

p = 289 + 29
E = ∞, C = 0,S = 3
min max avg

41 47 41

5 13 7

1 8 5

8 1.9 106 7.2 104

19.1 30.1 20.7

0.3 8.2 3.3

0.0 0.2 0.1

0.1 0.9 0.4

0.7 12.9 4.4

0.4 2.5 0.6

26.0 46.0 30.1

p = 2105 + 39
E = ∞, C = 0,S = 3

min max avg

43 53 47

4 12 8

3 10 6

3.2 101 2.6 107 1.0 106

31.7 48.4 39.3

0.4 15.7 6.6

0.0 0.2 0.1

0.1 1.6 0.6

1.2 19.8 9.1

0.5 10.1 1.3

44.0 76.9 58.7

4.6 Records

In [29, 28], the authors gave timings for larger fields GF (2155) and GF (2195). For these fields and for
larger fields (the last one being the current record, as of November 1994), our implementation gave the
following timings, for the curve:

EX : y2 + xy = x3 + T 16 + T 14 + T 13 + T 9 + T 8 + T 7 + T 6 + T 5 + T 4 + T 3.

GF (2155) GF (2196) GF (2300) GF (2400) GF (2500) GF (2601)
ℓmax 59 73 109 173 179 241
#U 6 11 18 26 27 29
#L 11 10 11 13 11 23
#M 2 107 108 3 108 2.5 109 1.3 107 2.1 1010

Xq 121 440 3221 92643 29137 109708
Xqr

42 127 356 94965 6106 52885
Schoof 0 69 0 186607 65799 240091
g 24 580 22974 1119077 518697 3139250
k 19 141 3613 774895 492213 1392113
M − S 10 23 56 27088 3609 1728
Total 217 1381 30221.1 2511000 1112093 4935776

5 Conclusion

It should be apparent from the preceding tables that the implementation of Schoof’s algorithm in char-
acteristic 2 is somewhat slower than in large characteristic. There is still room for many improvements
in that direction. We think that the situation might evolve very rapidly soon.

References

[1] Atkin, A. O. L. The number of points on an elliptic curve modulo a prime. Preprint, 1988.
[2] Atkin, A. O. L. The number of points on an elliptic curve modulo a prime (ii). Preprint, 1992.
[3] Atkin, A. O. L., and Morain, F. Elliptic curves and primality proving. Math. Comp. 61, 203 (July 1993),

29–68.
[4] Bender, A., and Castagnoli, G. On the implementation of elliptic curve cryptosystems. In Advances

in Cryptology (1989), G. Brassard, Ed., Springer-Verlag, pp. 186–192. Proc. Crypto ’89, Santa Barbara,
August 20–24.

9

[5] Bosma, W. Primality testing using elliptic curves. Tech. Rep. 85-12, Math. Instituut, Universiteit van
Amsterdam, 1985.

[6] Chabaud, F. Sécurité des crypto-systèmes de McEliece. Mémoire de DEA, Ecole Polytechnique, 1993.
[7] Chao, J., Tanada, K., and Tsujii, S. Design of elliptic curves with controllable lower boundary of

extension degree for reduction attacks. In Advances in Cryptology – CRYPTO ’94 (1994), Y. Desmedt, Ed.,
vol. 839 of Lect. Notes in Computer Science, Springer-Verlag, pp. 50–55. Proc. 14th Annual International
Cryptology Conference, Santa Barbara, Ca, USA, August 21–25.

[8] Charlap, L. S., Coley, R., and Robbins, D. P. Enumeration of rational points on elliptic curves over
finite fields. Draft, 1991.

[9] Couveignes, J.-M. Quelques calculs en théorie des nombres. PhD thesis, Université de Bordeaux I, July
1994.

[10] Couveignes, J.-M., and Morain, F. Schoof’s algorithm and isogeny cycles. To appear in the Proc. of
ANTS’94, Jan. 1994.

[11] Demytko, N. A new elliptic curve based analogue of RSA. In Advances in Cryptology – EUROCRYPT
’93 , to appear.

[12] Goldwasser, S., and Kilian, J. Almost all primes can be quickly certified. In Proc. 18th STOC (1986),
ACM, pp. 316–329. May 28–30, Berkeley.

[13] Harper, G., Menezes, A., and Vanstone, S. Public-key cryptosystems with very small key length.
In Advances in Cryptoloy – EUROCRYPT ’92 (1993), R. A. Rueppel, Ed., vol. 658 of Lect. Notes in
Computer Science, Springer-Verlag, pp. 163–173. Workshop on the Theory and Application of Cryptographic
Techniques, Balatonfüred, Hungary, May 24–28, 1992, Proceedings.

[14] Hervé, J.-C., Serpette, B., and Vuillemin, J. BigNum: A portable and efficient package for arbitrary-
precision arithmetic. Tech. Rep. 2, Digital Paris Research Laboratory, May 1989.

[15] Kaliski, Jr., B. S. A pseudo-random bit generator based on elliptic logarithms. In Proc. Crypto 86 (1986),
vol. 263 of Lect. Notes in Computer Science. Proceedings Crypto ’86, Santa Barbara (USA), August 11–15,
1986.

[16] Kaliski, Jr., B. S. One-way permutations on elliptic curves. Journal of Cryptology 3, 3 (1990), 187–199.
[17] Knuth, D. E. The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley, 1981.
[18] Koblitz, N. Elliptic curve cryptosystems. Math. Comp. 48, 177 (Jan. 1987), 203–209.
[19] Koblitz, N. Elliptic curve implementation of zero-knowledge blobs. Journal of Cryptology 4, 3 (1991),

207–213.
[20] Koyama, K., Maurer, U. M., Okamoto, T., and Vanstone, S. A. New public-key schemes based on

elliptic curves over the ring Zn. In Advances in Cryptology (1991), vol. 576 of Lect. Notes in Computer
Science, Springer-Verlag, pp. 252–266. Proc. Crypto ’91, Santa Barbara, August 12–15.

[21] Lay, G.-J., and Zimmer, H. G. Constructing elliptic curves with given group order over large finite fields.
Proc. of ANTS ’94, to appear, 1994.

[22] Lehmann, F., Maurer, M., Mueller, V., and Shoup, V. Counting the number of points on elliptic
curves over finite fields of characteristic greater than three. In Proc. ANTS ’94 (1994), L. Adleman and
M. D. Huang, Eds.

[23] Lenstra, Jr., H. W. Factoring integers with elliptic curves. Annals of Math. 126 (1987), 649–673.
[24] Lercier, R., and Morain, F. Counting the number of points on elliptic curves over finite fields of char-

acteristic 2. In preparation, Oct. 1994.
[25] Massey, J. L. Shift-register and BCH decoding. IEEE Trans. on Information Theory IT-15, 1 (Jan. 1969),

122–127.
[26] Menezes, A., Okamoto, T., and Vanstone, S. A. Reducing elliptic curves logarithms to logarithms in

a finite field. In Proceedings 23rd Annual ACM Symposium on Theory of Computing (STOC) (1991), ACM
Press, pp. 80–89. May 6–8, New Orleans, Louisiana.

[27] Menezes, A., and Vanstone, S. A. The implementation of elliptic curve cryptosystems. In Advances in
Cryptology (1990), J. Seberry and J. Pieprzyk, Eds., no. 453 in Lect. Notes in Computer Science, Springer–
Verlag, pp. 2–13. Proceedings Auscrypt ’90, Sysdney (Australia), January 1990.

[28] Menezes, A. J. Elliptic curve public key cryptosystems. Kluwer Academic Publishers, 1993.
[29] Menezes, A. J., Vanstone, S. A., and Zuccherato, R. J. Counting points on elliptic curves over F2m .

Math. Comp. 60, 201 (Jan. 1993), 407–420.
[30] Miller, V. Use of elliptic curves in cryptography. In Advances in Cryptology (1987), A. M. Odlyzko, Ed.,

vol. 263 of Lect. Notes in Computer Science, Springer-Verlag, pp. 417–426. Proceedings Crypto ’86, Santa
Barbara (USA), August11–15, 1986.

[31] Miyaji, A. On ordinary elliptic curve cryptosystems. In Advances in Cryptology – ASIACRYPT ’91 (1991),
vol. 739 of Lect. Notes in Computer Science, Springer-Verlag, pp. 50–55.

10

[32] Miyaji, A. Elliptic curves over Fp suitable for cryptosystems. Proc. Auscrypt ’92, Gold Coast, Australia,
December 13–16, 1992, 1992.

[33] Montgomery, P. L. Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48,
177 (Jan. 1987), 243–264.

[34] Montgomery, P. L. An FFT extension of the Elliptic Curve Method of factorization. PhD thesis, University
of California – Los Angeles, 1992.

[35] Morain, F. Building cyclic elliptic curves modulo large primes. In Advances in Cryptology – EUROCRYPT
’91 (1991), D. Davies, Ed., vol. 547 of Lect. Notes in Computer Science, Springer–Verlag, pp. 328–336.
Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Brighton, United
Kingdom, April 8–11, 1991.

[36] Morain, F. Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques.
Submitted for publication of the Actes des Journées Arithmétiques 1993, Mar. 1994.

[37] Morain, F. Implantation de l’algorithme de Schoof-Elkies-Atkin. Preprint, January, 1994.
[38] Okamoto, T., Fujikoda, A., and Fujisaki, E. An efficient digital signature scheme based on an elliptic

curve over the ring Zn. In Advances in Cryptology – CRYPTO ’92 (1992), vol. 740 of Lect. Notes in Computer
Science, Springer-Verlag, pp. 54–65.

[39] Schoof, R. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44
(1985), 483–494.

[40] Schoof, R. Counting points on elliptic curves over finite fields. Preprint, Feb. 1994.
[41] Silverman, J. H. The arithmetic of elliptic curves, vol. 106 of Graduate Texts in Mathematics. Springer,

1986.

