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COMPUTING ISOGENIES BETWEEN ELLIPTIC CURVES OVER Fpn USING
COUVEIGNES’S ALGORITHM

REYNALD LERCIER AND FRANÇOIS MORAIN

Abstract. The heart of the improvements of Elkies to Schoof’s algorithm for computing the cardinality
of elliptic curves over a finite field is the ability to compute isogenies between curves. Elkies’ approach
is well suited for the case where the characteristic of the field is large. Couveignes showed how to
compute isogenies in small characteristic. The aim of this paper is to describe the first successful
implementation of Couveignes’s algorithm. In particular, we describe the use of fast algorithms for
performing incremental operations on series. We also insist on the particular case of the characteris-
tic 2.

1. Introduction

Elliptic curves have been used successfully to factor integers [27, 39], and prove the primality of large
integers [5, 20, 3]. Moreover they turned out to be an interesting alternative to the use of Z/NZ or finite
fields in cryptographical schemes (see [38, 25], [36] and the survey in [30]).

One of the main algorithmic problems to be solved is the efficient computation of the cardinality of
elliptic curves over finite fields. It was not until recently that Schoof’s polynomial time algorithm for
solving this problem could be efficiently used, due to the work of Atkin [1, 2] and Elkies [16, 17] (see
also [44, 40] and the results of the implementations given in [40, 30, 26, 42]). The main ingredient is the
use of explicit isogenies between elliptic curves. The methods developed there gave satisfactory results
in the large characteristic case, but could not be used when the characteristic is small, which explains
why the implementation of [37] did not give satisfactory results. The first solution to this problem was
given in Couveignes’s thesis [9].

The aim of this paper is to explain how Couveignes’s algorithm can be implemented in an efficient way.
The structure is as follows. Section 2 recalls basic facts on elliptic curves. In section 3, the particular case
of isogenies of degree p will be treated, which will yield properties of the multiplication by p on elliptic
curves; we will also deduce from these an algorithm for computing a factor of the pe-division polynomial.
Properties of the formal group will be presented in section 4. Section 5 will explain the decisive ideas
of Couveignes for the computation of isogenies in small characteristic. Section 6 is concerned with fast
algorithms for incremental computations on series. Section 7 details the algorithms we need to implement
Couveignes’s ideas. The complexity of Couveignes’s approach is then derived. Section 8 will be devoted
to the implementation in the special case of the characteristic 2.

To simplify the exposition, we will consider non-supersingular elliptic curves only. (Note that this is
enough for the application to point counting, the cardinality of supersingular curves being studied in
[35, 41].)

2. Preliminaries and notations

Throughout the paper, we let K = Fq = Fpn be a finite field of characteristic p and denote by K its
Galois closure. The norm of an element x of K is written NK/Fp

(x) and the trace is noted TrK/Fp
(x).

We will encounter many p-th roots in characteristic p and it will be convenient to write them as
ã = p

√
a (note that every element a in K has exactly one p-th root given by apn−1). Moreover, if A(X)

is a series (or a polynomial) in K[X]: A(X) =
∑
i aiX

i, we will write Ã(X) =
∑
i ãiX

i.
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As far as time complexity is concerned, our unit of cost will be the time needed to perform a multipli-
cation in K, a unit being thus O(n2(log p)2) bit complexity if ordinary multiplication is used. The space
unit will be that of storing an element of K, that is O(n log p) bits.

We recall well known properties of elliptic curves. All these can be found in [45]. Let E be an elliptic
curve defined over K with defining equation E(X,Y ) = 0 where

E(X,Y ) = Y 2 + a1XY + a3Y − (X3 + a2X
2 + a4X + a6).

The curve E will be abbreviated as [a1, a3, a2, a4, a6]. Remember that by Hasse’s theorem, one has
#E(K) = q + 1− c for some integer c, |c| ≤ 2√q.

For an integer m, there exists polynomials φm, ψm and ωm in Z[a1, a2, a3, a4, a6, X, Y ] such that

[m](X,Y ) =
(
φm(X,Y )
ψ2
m(X,Y ) ,

ωm(X,Y )
ψ3
m(X,Y )

)
.

A particular role is played by the polynomial ψm. We let ψ′m(X) denote ψm(X,Y ) mod E(X,Y ). When
m is even we let fm = ψ′m/(2Y + a1X + a3) and if m is odd, then fm = ψ′m. The m-torsion points of E,
noted E[m] = {P ∈ E(K),mP = OE} can be described using fm(X): if P is a point on E(K) such that
2P 6= OE , then P ∈ E[m] if and only if fm(X) = 0.

3. Isogenies of degree p

The aim of this section is to explain the properties of isogenies of degree p in characteristic p and to
deduce from these results about the multiplication by p on E. These results will be used in the following
section and will be a key to simplifying some parts of the subsequent algorithms. We are indebted to
J.-M. Couveignes for the following facts.

Let Φ`(X,Y ) denote the `-th modular polynomial, that is the polynomial for which the roots of
Φ`(X, j(E)) are the j-invariants of the elliptic curves E∗ related to E by an isogeny of degree `. A
theorem of Kronecker tells us (see for instance [4]) that

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) mod p.

This immediately shows that if E and E∗ are p-isogenous, then j(E∗) = j(E)p or j(E∗) = j(E)1/p.
If E = [a1, a3, a2, a4, a6], then define Ep = [ap1, a

p
3, a

p
2, a

p
4, a

p
6] and Ẽ = [ã1, ã3, ã2, ã4, ã6]. Let us look

at the following diagram:

Ẽ -
ι

E

Ẽ

?

ς

@
@

@
@@R

[p]

Multiplication by p on Ẽ factors as a product of isogenies [p] = ς ◦ ι where ι : (X,Y ) 7→ (Xp, Y p) is
inseparable and ς is separable. We can reformulate this as:

Proposition 3.1. Multiplication by p on E is given by
(1) [p](X,Y ) = (Fp(X)p, Gp(X,Y )p)
where Fp(X) and Gp(X,Y ) are two rational fractions.

As a useful corollary, we note

Corollary 3.1. There exists a polynomial fpe ∈ K[X] such that the division polynomial fpe can be written
as fpe(X) = (fpe(X))pe .

Proof: From (1), it follows that

[pe](X,Y ) = (Fpe(X)p
e

, Gpe(X,Y )p
e

)
for all e ≥ 1. In particular, this implies that ψpe and a fortiori fpe are pe-th powers. From this it follows
that the degree of fpe is in fact at most (p2e − pe)/2. �
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Remark. As shown in [31], there is an elementary approach to the fact that fp(X) is a p-th power in
characteristic p, using Fricke’s differential equation [18, vol II, pp. 191].

Corollary 3.2. For e > 1, fpe−1(X) | fpe(X) and the resulting quotient is a factor of fpe of degree
pe−1(p− 1)/2 if p is odd and 2e−2 if p = 2.

In practice, the computation of fp is done using [37] for p = 2 and [21] when p is odd. Then fpe is
computed using the isogenies given by Vélu’s formulae as in [15] and the methods of [13, 12].

4. Formal groups

The material below is taken from [45, Chap. IV]1. Let t = −X/Y and s = −1/Y . We transform the
equation of E to get:
(2) s = A(t, s) = t3 + a1ts+ a2t

2s+ a3s
2 + a4ts

2 + a6s
3.

Substituting this equation into itself, we get s as a power series in t, that we will note S(t). Since
equation (2) is again cubic, we can add two points (t1, s(t1)) and (t2, s(t2)) to get (t3, s(t3)) in the usual
way, using the tangent-and-chord law. As a result, we find t3 as a power series Fa(t1, t2) in K[[t1, t2]]
whose first terms are:
(3) Fa(t1, t2) = t1 + t2 − a1t1t2 − a2(t21t2 + t1t

2
2)− (2a3t

3
1t2 − (a1a2 − 3a3)t21t22 + 2a3t1t

3
2) + · · ·

This series Fa defines what is known as the formal group E associated to E.

4.1. Computing S(t). From the equation S = A(t,S), it is easy to compute the first L coefficients of
S as a formal series in t, by an iterative process in O(L2) operations. We can do better using standard
techniques from combinatorics [8, 43]. In particular, S satisfies a second order linear differential equation
with polynomial coefficients in t, from which we can easily deduce recurrence relations between the
coefficients of S. Hence, these coefficients can be computed in O(L) operations modulo precomputations.
See section 8.1 for the computations in characteristic 2.

The first coefficients of S are:

(4) S(t) =
∞∑
i=3

sit
i = t3 + a1 t

4 + (a2
1 + a2)t5 +O(t6).

Given any t(τ) in E , we can compute S(t(τ)) by the same algorithms.
We deduce from this that

Y = −1
s

= −t−3 + a1t
−2 + a2t

−1 + a3 + (a1a3 + a4)t+O(t2),

and
X = t

s
= −tY = t−2 − a1t

−1 − a2 − a3t− (a1a3 + a4)t2 +O(t3),

Z = 1
X

= t2 + a1t
3 + (a2

1 + a2)t4 +O(t5).

4.2. Group law. In this section, we give the formulas that will be used for computing the group law
on E , that we will note ⊕, multiplication by k being noting as [k]. The neutral element is OE = (0, 0)
and the equation of E is F (t, s) := A(t, s)− s = 0. Proofs can be found in the reference.

We start from two points P1 = (t1, s1) and P2 = (t2, s2), different from OE , and we compute the sum
(t3, s3) = (t1, s1) ⊕ (t2, s2). This is done as usual: the line passing through P1 and P2 intersects E in a
third point Pi = (ti, si) and the line passing through Pi and (0, 0) intersects E at P3.

We let y = λt+ ν be the line passing through the two points P1 and P2. If (t1, s1) 6= (t2, s2) then

(5) λ = s2 − s1

t2 − t1
= t21 + t1t2 + t22 + · · ·

and if the two points are equal

(6) λ = −

∂F

∂t
∂F

∂s

= − a1 s1 + 3 t21 + 2 a2 t1s1 + a4 s
2
1

−1 + a1 t1 + 2 a3 s1 + a2 t21 + 2 a4 t1s1 + 3 a6 s2
1

= 3t21 + 4a1t
3
1 +O(t41).

1Be careful that there are some typos and missing equations in [23, Chap. 12].
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One computes also ν = s1 − λt1. For Pi, one finds

(7) ti = −t1 − t2 −
a1 λ+ 2 a4 ν λ+ a2 ν + 3 a6 ν λ

2 + a3 λ
2

a4 λ2 + a2 λ+ 1 + a6 λ3

and from this, we deduce si = λti + ν.
If ti = 0, then P2 is the opposite of P1 and we are done, P3 = OE . Otherwise, we have to compute

the addition of (ti, si) and the origin point (0, 0) to get (t3, s3). Finally we obtain

(8) t3 = ti
−1 + a1 ti + a3 si

, s3 = si
ti
t3.

from which we recover t3 = Fa(t1, t2).
It is now easy to compute the opposite of P , simply noting that this opposite is the third point of

intersection of the line joining P and OE with E . Precisely, if −P = (t′, s′), one has

(9) t′ = t

−1 + a1t+ a3s
.

When t1 = t2, we get

(10) Fd(t1) = [2]t1 = 2 t1 − a1 t
2
1 − 2 a2 t

3
1 + (a1 a2 − 7 a3) t41 +O(t51).

4.3. The Hasse invariant. Using Proposition 1, we see that

(11) [p](t) = −
(

Fp(t/S(t))
Gp(t/S(t),−1/S(t))

)p
,S([p](t)) = −

(
1

Gp(t/S(t),−1/S(t))

)p
.

Let us introduce the rational fraction

(12) Rp,E(t, s) = (−1)p Fp(t/s)
Gp(t/s,−1/s)

and put Ψp,E(t) = Rp,E(t,S(t)). Then [p](t) = Ψp,E(t)p. We will see the interest of such a definition in
section 7.2.2.
Example. If p = 2 and E = [1, 0, 0, 0, a6], one has

(13) R2,E(t, s) =
(
t2 + ã6s

2) t
t3 + (1 + ã6s) t2 + (ã6s2 + s) t+ ã6s2 + s

.

Theorem 4.1. Assume E is not supersingular. Then

[p](t) = cp(E)tp +O(tp
2
)

where the coefficient cp(E) of tp is called the (relative) Hasse invariant of E.

One of the important property of the Hasse invariant is the following [45, Chap. V, §4]:

Theorem 4.2. Let #E(K) = q + 1− c. The Hasse invariant satisfies: NK/Fp
(cp(E)) ≡ c mod p.

Remembering that two isogenous curves have the same number of points (see [14, 46]), the preceding
theorem tells us the following:

Corollary 4.1. Two isogenous curves E and E∗ have Hasse invariants related by

cp(E∗) ≡ εp−1cp(E) mod p

for some ε in K∗.

In characteristic 2, one has cp(E) = a1; in characteristic 3, for the curve [0, 0, a2, 0, a6], it is a2. When
p > 3, one can compute the Hasse invariant using the work of Deuring [14] or Atkin’s method using
hypergeometric polynomials (see [2, 24]).
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5. Couveignes’s algorithm: the theory

5.1. An overview. Let E and E∗ be two elliptic curves defined over K by
E : Y 2 + a1XY + a3Y = X3 + a2X

2 + a4X + a6,
E∗ : Y 2 + a∗1XY + a∗3Y = X3 + a∗2X

2 + a∗4X + a∗6,

such that there exists an isogeny I of degree ` between them. In view of corollary 4.1, we can assume
without loss of generality that cp(E∗) = cp(E) = γ.

We assume that the isogeny I between E and E∗ is given by
I : E −→ E∗

(X,Y ) 7−→
(
g(X)
h2(X) ,

r(X) + Y t(X)
h3(X)

)
,

where g(X), h(X), r(X) and t(X) are polynomials of degree `, (`− 1)/2, 3(`+ 1)/2 and 3(`− 1)/2. The
aim of Couveignes’s algorithm [9] is the computation of g(X) and h(X) given the equations of E and
E∗.

Let I(X) = g(X)/h2(X). It is equivalent to search for g and h such that

I : X 7→ X∗ = I(X) = g(X)
h(X)2

or for Î which sends Z = 1/X to Z∗ = 1/X∗, that is

Î : Z 7→ Z∗ = Î(Z) = Z
ĥ2(Z)
ĝ(Z)

with ĝ(Z) = Z`g(1/Z) and ĥ(Z) = Z(`−1)/2h(Z). We note that ĝ has degree `. It is well known that
the coefficients of the expansion of a rational fraction F (Z) with denominator of degree ` around Z = 0
satisfy a recurrence relation of depth ` (see section 7.3.2 for more details). Reciprocally, given the 2` first
coefficients, one can recover F (Z) exactly. Couveignes’s idea is just this: finding a series that looks like
an isogeny and then check whether it comes from a fraction whose denominator has degree `. In fact,
we compute 2`+ 2 terms of the series, thus obtaining in general a fraction with denominator of degree a
priori `+ 1. If this denominator turns out to have degree `, then we are almost sure to have the correct
value for Î. See section 7.3 for more details.

Enumerating the putative isogenies is possible using the formal groups associated to E and E∗ as
described below.

5.2. Morphisms of formal groups. As shown in section 2, associated to E and E∗, there are two
formal groups E and E∗,

E : t3 + a1ts+ a2t
2s+ a3s

2 + a4ts
2 + a6s

3 − s = 0,
E∗ : t3 + a∗1ts+ a∗2t

2s+ a∗3s
2 + a∗4ts

2 + a∗6s
3 − s = 0.

A morphism of formal groups is given byM such that for all formal points (t1(τ), s1(τ)) and (t2(τ), s2(τ))
of E :

M((t1(τ), s1(τ))⊕ (t2(τ), s2(τ))) =M((t1(τ), s1(τ)))⊕M((t2(τ), s2(τ))).
Associated to a morphismM between E and E∗, there is a series

U(t) =
∑
i≥1

uit
i,

such that a point (t(τ), s(τ)) of E is sent to the pointM(t(τ), s(τ)) = (U(t(τ)), S∗(U(t(τ)))) of E∗ (S∗
is defined by (4)). A fortiori, the series U(t) satisfies
(14) U(t1 ⊕ t2(τ)) = U(t1(τ))⊕ U(t2(τ))
from which U ◦ [n] = [n] ◦ U for any integer n.

Coming back to our problem, Î gives rise to a morphism I between E and E∗, and to a series W.
The problem is now the following: among all morphisms between E and E∗, determine which is the one
coming from I, or equivalently, among all series satisfying (14), determine which is the one coming from
Î. Since the set of morphisms from E to E∗ is a Zp-module of rank 1 (see [19]), we run through all the
powers of a generator of this module and test for each morphism whether we can recover Î. Our first
task is then to find a generator of this module.
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Since 2`+2 terms of Î(Z) are needed, and since Z = 1/X = s/t = t2 +O(t3), this means that we need
L = 4`+ 2 terms of the series W associated to I. In other words, we need to consider a finite number of
series in order to find the good one. We will compute the precise number of such series in the following
section.

5.3. Finding conditions satisfied by morphisms. Let us now look at the properties satisfied by
morphisms between E and E∗, or more precisely by the associated series. We will compute the first L
coefficients of

U(t) =
∞∑
i=1

uit
i

by induction. Let us assume that u1, . . . , ui−1 are known. An ingenious exploitation of equation (14)
will allow us to calculate ui.

Let us specialize t1(τ) = τ and t2(τ) = Aτ where A is in K. Considering the left hand side of
U(τ ⊕ Aτ) = U(τ) ⊕ U(Aτ), we find that ui appears alone in the coefficient of τ i as (1 + A)iui among
terms depending only on u1, u2, . . ., ui−1. On the other hand,

U(τ)⊕ U(Aτ) = U(τ) + U(Aτ) + P (U(τ),U(Aτ))

where P (U(τ),U(Aτ)) contains monomials of total degree greater than 1 in U(τ) and U(Aτ). This means
that ui appears in the coefficient of τ i as (1 + Ai)ui among terms depending only on u1, u2, . . ., ui−1.
From this, we deduce that

(15) ui
(
(1 +A)i − 1−Ai

)
+ ei(A, u1 . . . , ui−1) = 0,

with ei a multivariate polynomial. If (1 + A)i 6= 1 + Ai, this relation gives us ui. We see that this
condition on A cannot be met when i is a power of p, but for other values of i, we can find A such that
it is realized, at least if i < q.

Suppose now that i = pe. Exploiting the equation U([p]τ) = [p](U(τ)), we find that ui satisfies:

(16)
(
ui
η

)
−
(
ui
η

)p
= fi(u1, . . . , ui−1)

where
η = γ(pe−1)/(p−1)

and fi is a multivariate polynomial. We will see in section 7.1.2 how to solve this equation. Obviously,
it has at most p solutions.

Let us look at the case i = 1 = p0. The corresponding equation is simply up−1
1 = 1. Therefore, u1 is

in the prime field and w.l.o.g. we can take u1 = 1.

5.4. Enumerating all morphisms. We can summarize the results of the preceding section as follows.
Once upe is fixed, all coefficients uj for pe < j < pe+1 are uniquely determined. In this way, we can count
the number of different truncated morphisms up to order L. Let pr < L < pr+1. Then there are at most
pr+1 distinct series. For each e, 1 ≤ e ≤ r, there are at most p values for upe ; if e = 0 this number is at
most p− 1 since u1 = 0 is not valid. Therefore, there are pr(p− 1) morphisms U . We need to enumerate
them in order to find the one that comes from an isogeny.

5.4.1. First approach. It consists in testing all possible values of upe for each e, using a backtracking
procedure, that is straightforward from the explanations given above.

5.4.2. Second approach. Let U be any generator of the set of morphisms between E and E∗, found as in
the preceding section. There exists a p-adic integer N such that W = [N ] ◦ U . Write

N =
∞∑
i=0

nip
i.

Remembering that pr < L < pr+1, we write

[N ] ◦ U =
r⊕
i=0

(
[ni] ◦ ([pi] ◦ U)

)
⊕
⊕
i>r

(
[ni] ◦ ([pi] ◦ U)

)
.
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But the valuation of the series [pi](t) is pi, which implies that, when i > r, the terms coming from [pi]◦U
do not provide any contribution to the first L coefficients of [N ] ◦ U . So, it is enough to check whether
one of the series [N ] ◦ U comes from an isogeny for N < pr+1. Moreover, n0 cannot be 0.

We can reduce the number of tentative morphisms, using the following result.

Proposition 5.1. Let N be an integer satisfying 0 ≤ N < pr+1. Then one has

(17) ([pr+1 −N ] ◦ U)(t) = ([−N ] ◦ U)(t) +O(tp
r+1

).

Proof: The result follows easily from (4.1). �
This relation expresses the fact that the morphism −W associated with the isogeny −Î, has the same

abscissa as Î. So, at least one morphismM = [N ] ◦ U for N < pr+1/2 and N prime to p is equal to W
or −W and is associated to the abscissa of Î. That is to say, we have to compute at most pr(p − 1)/2
morphismsM.

6. Incremental series computations

The implementation of Couveignes’s algorithm requires the use of fast algorithms for series com-
putations. As will be described in section 7, the algorithms we need are concerned with incremental
computations. Starting from series whose coefficients are known up to order i, we will find the terms of
order i+ 1 of these series.

In these sections, we note for any series A(τ) =
∑∞
i≥v aiτ

i of valuation v in K[[τ ]], A(τ)k the finite
sum

∑k
i=v aiτ

i. The i-th coefficient of a series A will always denote ai. We make the general assumption
that multiplying two series with m terms uses O(mµ) units; of course, we assume 1 < µ ≤ 2.

Incremental algorithms for the four basic operations +,−,×, / are easy to derive and we will not give
them.

6.1. Computations in the formal group. Let (V(t), S(V(t))) be a formal point of E . We note

V(t) =
∞∑
i=1

vit
i and S(V(t)) =

∞∑
i=3

$it
i.

The following propositions summarize our approach:

Proposition 6.1. We can obtain $L from ($3, . . . , $L−1) and (v1, . . . , vL−2) with O(L) multiplications
in K.

Proof: As (V(t),S(V(t))) is an element of the formal group defined by E ,

(18) V3 + a1VS(V) + a2V2S(V) + a3S(V)2 + a4VS(W)2 + a6S(V)3 = S(V).

By inspection of the valuations and indices of V and S, the result follows. �
The same work can be done for the addition in E :

Proposition 6.2. Let A(t) =
∑
i ait

i and A′(t) =
∑
i a
′
it
i be two formal series and put S(t) = S(A(t)) =∑∞

i=3 $it
i (resp. S ′(t) = S(A′(t)) =

∑∞
i=3 $

′
it
i). We can obtain the L-th coefficient of (A(t) ⊕A′(t))L

from the truncated formal points (A(t)L,SL+1(t)) and (A′(t)L,S ′L+1(t)) with O(L) operations.

Finally,

Proposition 6.3. We can obtain the L-th term of the series R(t,S(t)) ◦ V(t) from the truncated formal
point (V(t)L, S(V(t))L+1) using O(L) operations.

6.2. An incremental algorithm for composition of series. Let f(t) =
∑∞
i=1 ait

i and g(t) =∑∞
i=0 bit

i be two formal series in K[[t]]. We want to compute the series

h(t) = (g ◦ f)(t) =
∞∑
i=0

cit
i

incrementally. More precisely, we assume f is known up to order L and that we need to compute the
coefficients h0, h1, . . ., hL one at a time, or equivalently, given all series at order i, find hi. We do this
by an incremental version of the algorithm of Brent and Kung [7].
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Let B be an integer ≤ L that we will determine later on. Let i be an integer less than L and assume
we know all coefficients of g (resp. h) of index < i. We are looking for ci. To compute gi ◦ f , we write

gi(t) =
i∑

k=0
bkt

k =
∑

0≤j≤i/B

Gj(t)tBj

where Gj(t) is a polynomial of degree at most B − 1 in t. Then

gi ◦ f =
∑

0≤j≤i/B

Gj(f)fBj .

We precompute fj = f j for 0 ≤ j ≤ B and Fj = f jB for 0 ≤ j ≤ L/B, up to order L. Now, put
i = JB + I with 0 ≤ I < B. One gets

gi ◦ f =
∑

0≤j<J
Gj(f1)Fj +

(
I−1∑
k=0

bJB+kfk

)
FJ + bifIFJ = Σ1,i + Σ2,iFJ + bifIFJ .

(We use the convention that if I = 0, Σ2,i = 0.) It is easy to see that all terms of Σ1,i and Σ2,i up to
order L (not i) depend only on the first coefficients b1, . . ., bi−1. Now, it is easy to get the i-th term of
Σ2,iFJ in O(i) steps, as well as that of fIFJ , which enables us to find the desired coefficient ci.

Once this is done, we have to update the series. Note that we do not need the terms of indices ≤ i.
We see that if I < B − 1, then Σ1,i+1 = Σ1,i and

Σ2,i+1 = Σ2,i + bifI .

In this case, updating the series costs O(L− i). If I = B − 1, then
Σ1,i+1 = Σ1,i + (Σ2,i + cifI)FJ

and Σ2,i+1 = 0. Since we only need the terms of degree > i, this costs O((L− i)µ).
Precomputing the fj ’s costs

∑B
j=2(L−j)µ, that of the Fj ’s is

∑L/B
j=2 (L−jB)µ and leads to a storage of

O(B+L/B) series with L terms. The cost of the computations of all Σ1,i and Σ2,i is also
∑L/B
j=2 (L−jB)µ.

So we need to minimize:
B∑
j=2

(L− j)µ + 2
L/B∑
j=2

(L− jB)µ.

After some computations, we find

Proposition 6.4. The cost of the incremental version of Brent and Kung is minimal for B =
√

2
µ+1L

1/2,
giving a running time of approximately 2BL1/2 with a storage of O(L1/2).

7. Efficient implementation of Couveignes’s algorithm

In this section, we give the algorithms needed to implement Couveignes’s ideas, and deduce from this
the complexity of the method. We will note Ψ(t) for Ψp,E(t) and R(t, s) for Rp,E(t, s); Ψ∗(t) for Ψp,E∗(t)
and R∗(t, s) for Rp,E∗(t, s).

7.1. Precomputations for p alone.

7.1.1. Multiplication by p. The first thing we need is to compute the multiplication by p and the fraction
R(t, s), as indicated in section 4.3. These computations do not depend on `. The cost is O(p2 log p)
elementary operations.

7.1.2. Solving X −Xp = α. We use the following result due to Hilbert (see for example [34]):

Proposition 7.1. The equation
(19) β − βp = α

has a solution in K if and only if TrK/Fp
(α) = 0. Moreover, if θ has trace 1, then a solution of this

equation is:

(20) β = αθp + (α+ αp)θp
2

+ · · ·+ (α+ αp + · · ·+ αp
n−2

)θp
n−1

.
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Remark that if (19) has a solution β, then β + k is a solution for all k in the prime field Fp. It is also
easy to see that the map α 7→ β is linear. Having computed the matrix of this application, all equations
(16) can be solved by applying this matrix to the coefficients of this equation.

Note also the very important fact that the computation of this matrix depends only on p and n and
not on `. This means that it can be performed only once before any isogeny computation. The cost of
setting up this matrix can thus be neglected. Note that we need to store O(n2) elements in Fp and that
the time needed to apply the matrix is O(log p) (multiplications in K).

7.2. Finding one morphism. We distinguish two steps: a precomputation step and then the actual
computation.

7.2.1. Precomputation phase. Series which are independent of U are completely computed while only a
few terms of the other series can be initialized. We also perform some precomputations for use in the
composition of series as in section 6.2. We assume we want L terms of U .

Precisely, we precompute:
(1) S(τ)L+1 from (τ)L with proposition 6.1;
(2) A such that (1 +A)i 6= 1 +Ai for all i ≤ L (this implies in particular that q > L).
(3) S(Aτ)L+1 from S(τ)L+1.
(4) The series

((τ ⊕Aτ(τ))L,S∗(τ ⊕Aτ(τ))L+1) = ((τ)L,S(τ)L+1)⊕ ((Aτ)L,S(Aτ)L+1)

from the addition law of section 4.2, as well as the powers needed in the composition of series.
(5) The truncated series Ψ(τ)pr = R(τ,S(τ))pr+1 and its powers up to the order needed for the fast

substitution algorithm. (See section 6.2.)
(6) All the intermediate series to computeR∗(U(τ), S∗(U(τ))) as far as possible as in proposition 6.3.

For instance, in characteristic 2,

R∗(t, s) = t3 + ã∗6s
2t

t2 + ã∗6s
2 + ã∗6t

2s+ s+ ts+ t3 + ã∗6ts
2

and we initialize all the monomials of this fraction once substituted (U(τ), S∗(U(τ))) for (t, s);
U(τ)1 = τ , S∗(U(τ))3 = τ3, U(τ)S∗(U(τ))4 = τ4, U2(τ)2 = τ2, S∗(U(τ))2

6 = τ6, . . .
(7) As in step 6, all the intermediate series to compute U(τ)⊕U(Aτ) as in the proof of proposition 6.2;
U(Aτ)1 = Aτ , S∗(U(τ))3 = A3τ3, λ(τ)2 = (A2 +A+ 1)τ2, ν(τ)3 = (A2 +A)τ3, . . .

Complexity considerations: We summarize the time and space complexity in the following table.

step 1 2 3 4 5 6 7
time O(L2) O(L) O(L) O(Lµ) O(pLµ) O(p) O(p)
space O(L) O(L) O(L3/2) O(L3/2) O(p) O(p)

We conclude that the time complexity of this phase is at most O(max(pLµ,L2)) with a storage at most
O(L3/2).

7.2.2. Finding the morphism. At the beginning of the ith iteration, U(τ)i−1 is known and as far as the
intermediate series are concerned, S(U(τ))i+1, U(Aτ)i−1, S(U(τ))i+1, λ(τ)i, ν(τ)i+1 . . . are known by
proposition 6.1. Then, formal computations enable us to compute ui whose knowledge allows us to
update the intermediate series in order to be ready for the (i+ 1)th iteration. We study the cases i 6= pe

and i = pe separately.
The case i 6= pe: We find ui using U(τ ⊕Aτ) = U(τ)⊕ U(Aτ).

Step 1-a: We need to compute the ith coefficient of U(τ ⊕ Aτ). We do this using the algorithm
described in section 6.2. We get an equation of the type (1 +A)iui + d.

Step 1-b: We have to calculate the ith coefficient of U(τ) ⊕ U(Aτ) as a function of ui. Since each
intermediate series needed for computing this coefficient is known up to i, one can obtain as a function of
ui, the (i+2)th coefficient of S(U(τ)), the ith coefficient of U(Aτ), the (i+2)th coefficient of S(U(τ)), the
(i+ 1)th coefficient of λ(τ) and so on. Finally the coefficient we are looking for is equal to (1 +Ai)ui+ b.

The complexity of this phase is O(i).
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The case i = pe: We find ui with equation [p] ◦ U = U ◦ [p] that we rewrite as

Ũ(Ψ(τ)) = R∗(U(τ),S∗(U(τ))).

This enables us to use the same techniques as the one described just above, namely applying Ũ to a
known series using precomputations and computing a rational fraction in two series.

Step 2-a: we compute as a function of ui the ith coefficient of Ũ(τ) ◦ Ψ(τ). This is done as in step
1-a. This coefficient is equal to aũi + d.

Step 2-b: we compute formally the ith coefficient of R∗(U(τ),S∗(U(τ))). To perform that, we proceed
as in step 1-b. We have to compute as a function of ui the (i+ 2)th coefficient of S∗(U(τ)), the (i+ 2)th
coefficient of S∗(U(τ)), . . . . This coefficient is equal to ui + b.

Finally upi − apui + bp − dp = 0 and we choose one of the roots for ui.
We update the intermediate series, that is to say we obtain from U(τ)i the intermediate truncated

series S(U(τ))i+2, U(Aτ)i, S(U(τ))i+2, λ(τ)i+1, ν(τ)i+2, etc.
Complexity: We see that the computation of one morphism is dominated by the composition of series.

Hence, the overall cost of this is O(Lµ+1/2) = O(`µ+1/2). All intermediate series will need up to O(pL)
terms.

7.3. Isogeny testing. Suppose we are given a morphismM(t) between E and E∗. Put

Z∗(t) = S
∗(M(t))
M(t)

and we want to find a series M̂ such that Z∗(t) = M̂(Z(t)). Once we have done this, we need to compute
a fraction whose expansion coincides with that of M̂ .

7.3.1. From M to M̂ . We know the expansions of Z(t) = t2 + a1t
3 + (a2

1 + a2)t4 + O(t5) and Z∗(t) =
m2t

2 + · · ·+m4`+1t
4`+1 +O(t4`+2). We are looking for the coefficients of M̂(u) = m̂1u+ m̂3u

3 + · · ·+
m̂2`+1u

2`+1 +O(u2`+2). We will find these coefficients one at a time. Since we will have to perform many
isogeny tests, it is worth precomputing all odd powers of Z(t), namely Zi(t) = Z(t)i for 1 ≤ i ≤ 4`+ 1,
i odd. This takes O(`2) elements. This precomputation phase requires O(`µ+1) operations and is done
only once for all ` (which really means we do that for the maximal value of ` to be used). The procedure
is the following:
procedure RecoverSeriesInZ

(1) m̂1 := m2; W := W − m̂1Z1;
(2) for i = 1 to ` do

{at this point, W = wt2i+1 +O(t2i+2)}
(a) m̂2i+1 := w;
(b) W := W − m̂2i+1Z2i+1;

The computation phase takes O(`2) operations.

7.3.2. Recovering the fraction. Assume F (z) = f0 + f1z+ · · ·+ fmz
m and G(z) = g0 + g1z+ · · ·+ gmz

m

are two polynomials of K[z]. Then
F (z)
G(z) = A(z) =

∞∑
k=0

akz
k

where the ak’s satisfy recurrence relations deduced from the coefficients of G.
Conversely, given a series A(z), known up to order 2m, we can compute its (m,m) Padé approximant

defined as a rational fraction U(z)/V (z) with deg(U) ≤ m, deg(V ) ≤ m and

A(z)V (z)− U(z) = O(z2m+1).

The (m,m) approximant can be computed using Berlekamp’s algorithm [33] in O(m2) operations or
using algorithm EMGCD of [6] in O(m(logm)2) operations. Note that from a practical point of view,
Berlekamp’s algorithm is faster.
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7.3.3. The final algorithm and its complexity. The isogeny test can be summarized as follows:
procedure IsogenyTest(`,M(t), S∗(M(t)))

(1) compute Z∗(t) = S∗(M(t))/M(t);
(2) compute M̂(Z) = m̂1Z + m̂3Z

3 + · · · + m̂2`+1Z
2`+1 + O(Z2`+2) using algorithm Recover-

SeriesInZ;
(3) recover the fraction F (Z)/G(Z) which is a (` + 1, ` + 1) Padé approximant of M̂(Z); at this

point, F and G have degree ≤ `+ 1 a priori;
(4) if deg(F ) = deg(G) = ` and F is Z times the square of a polynomial, then M̂ comes from the

isogeny we are looking for.
The first step takes O(`µ) operations, the second O(`2) which dominates the third step. Therefore,

we see that the cost of the isogeny test is O(`2).
Note also that in the “multiplication” strategy, one already has S∗(M(t)) at one’s disposal.

7.4. Enumerating all the morphisms.

7.4.1. Backtracking. It is easy to see that the cost of this approach is O(L) times the cost of finding one
morphism plus that of an isogeny test. The total cost is thus O(`max(µ+3/2,3)).

7.4.2. Multiplication by a p-adic integer. In fact, we do not really multiply by a p-adic integer, but merely
perform additions in the formal group, until we find the isogeny. The algorithm is as follows:
procedure ComputeIsogeny(`, E , E∗)

(1) compute a generator U of the set of morphisms between E and E∗ using the algorithms of section
7.2;

(2) for N = 1 to pr+1/2 and N prime to p do
(a) compute (M(t),S∗(M(t))) = [N ] ◦ (U(t),S(U(t)));
(b) use IsogenyTest to test whetherM comes from an isogeny; if yes, stop.

Note that we compute (M(t),S∗(M(t))) using a formal addition between the preceding computed
value and (U(t),S(U(t))) or [2](U(t),S(U(t))).

The cost of the second approach is the cost of finding one morphism, O(Lµ+1/2) multiplications, plus
O(L) times the cost of an addition in the formal group – O(Lµ) multiplications – plus O(L) times the
cost of the isogeny test of cost O(L2). So, the complexity of this second approach is O(`max(µ+1,3)).

7.4.3. Complexity and choice of the method. Asymptotically, if µ ≤ 3/2, both methods have the same
complexity O(`3). If µ > 3/2, the second one is better and the complexity is O(`3). However, from
a practical point of view, the second approach is always better, since, apart from the isogeny test, we
replace a substitution of series whose complexity is O(Lµ+1/2) by a formal addition whose complexity is
only O(Lµ) (remember that 1 ≤ µ ≤ 2).

7.5. Overall complexity. We summarize the preceding results.

Proposition 7.2. After preprocessing, the cost of Couveignes’s algorithm is O(`3). The storage is O(`2).

8. Implementation in characteristic 2

We give an example of our implementation of Couveignes’s idea for q = 2n. Let E : Y 2+XY = X3+a6
be an elliptic curve.

8.1. Simplifying formulas. After the classical change of variables t = −x/y, s = −1/y to set OE =
(0, 0), the equation of E becomes
(21) s = t3 + ts+ a6s

3.

In the special case t(τ) = τ , the coefficients of the series S(τ) =
∑∞
i=3 Siτ i are as follows:

i 3 4 5 6 7 8 9 10 11
Si 1 1 1 1 1 1 1 + a6 1 1

and for i ≥ 6:

S2i = S2i−1 + a6

S2i−6 +
i−2∑
j=4
S2
j S2i−2j

 ,S2i+1 = S2i + a6

S2i−5 + S2
i−1 +

i−2∑
j=4
S2
j S2i−2j+1

 .
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Using standard tools [43], we also find that S(t) satisfies the differential equation:(
−54 a6 t

5 − 4 t3 + 14 t2 − 18 t+ 8
)
y +

(
54 t6a6 + 6 t4 − 28 t3 + 54 t2 − 48 t+ 16

)
y′

+
(
−27 t8a6 + 54 t7a6 − 4 t5 + 20 t4 − 36 t3 + 28 t2 − 8 t

)
y′′ = 0

over Z[a6], from which we find that the si’s satisfy the recurrence relation
27a6n (−n+ 1) s(n) + 54 a6 n (2 + n) s(n+ 1)−2

(
2n2 + 7n+ 5

)
s(n+ 3) + 2

(
10n2 + 56n+ 71

)
s(n+ 4)

−18
(
2n2 + 15n+ 26

)
s(n+ 5) + 4

(
7n2 + 65n+ 140

)
s(n+ 6)− 8

(
n2 + 11n+ 28

)
s(n+ 7) = 0

together with the initial values: s0 = s1 = s2 = 0, s3 = s4 = s5 = s6 = 1. Using these formulas, we can
compute the sn over Z[a6] and then reduce them modulo 2.

We can rewrite the formulae of section 4.2 in order to decrease their computational cost. In particular,
if t1 6= t2, t1 ⊕ t2 is computed as:

t1 ⊕ t2(τ) = t1(τ) + t2(τ) + λ(τ) + a6λ
2(τ)(s1(τ) + s2(τ) + ν(τ))

1 + t1(τ) + t2(τ) + λ(τ) + a6λ2(τ) (s1(τ) + s2(τ) + ν(τ) + λ(τ)) .

Arranging computations so as to reuse series already computed, adding two distinct formal points requires
4 multiplications of series and 2 divisions. For computing ([2]t(τ),S([2]t(τ))) = [2](t(τ), s(τ)), we use
(11). This computation costs 4 multiplications of series and 2 divisions.

8.2. Example. Let K = F28 = F2[T ]/(T 8 + T 4 + T 3 + T + 1). Every element of K can be written as a
polynomial in T . In order to reduce the space needed to write the different results, we will write such a
polynomial a(T ) =

∑n−1
i=0 aiT

i as a(2). For instance, the polynomial T 2 + T will be abbreviated as 6.
Let us compute an isogeny of degree ` = 5 between E = [7] and E∗ = [8]. We first find that A = 2 is

valid. The equation for u2, coming from equating [2] ◦ U = U ◦ [2] is
√
u2

2 +
√
u2 = 0

and we select u2 = 0. Next, we find that u3 is a root of
6u2 + 6u3 = 0

which gives u3 = 0. For u4, we have:
√
u4

2 +
√
u4 +

√
15 = 0

and we choose u4 = 56. Once all computations are done, we find
U(t) = t+ 56t4 + 56t5 + 15t7 + 16t8 + 31t9 + 219t10 + 124t11 + 5t12 + 44t13 + 91t14

+47t15 + 210t16 + 201t17 + 231t18 + 198t19 + 188t20 + 118t21 +O(t22).
We first have that

Z(t) = S(t)
t

= t2 + t3 + t4 + t5 + t6 + t7 + 6t8 + t9 + t10 + t11 + 6t12 + t13 + 20t14

+20t15 + 6t16 + t17 + t18 + t19 + 6t20 + t21 + 20t22 +O(t23).
Now we have to look for N , 1 ≤ N ≤ 16, N odd, such that [N ] ◦ U is the series associated with I. After
a first test, it turns out that U is not the morphism we are looking for. On the other hand, we have

[3](U(t)) = t+ t2 + t3 + 56t4 + 56t5 + 56t6 + 55t7 + 39t8 + 39t9 + 244t10 + 84t11 + 154t12

+28t13 + 79t14 + 52t15 + 247t16 + 51t17 + 44t18 + 66t19 + 102t20 + 84t21 +O(t22)
from which

Z∗(t) = S
∗(U(t))
U(t) = t2 + t3 + t4 + t5 + 56t6 + 56t7 + 6t8 + t9 + 39t10 + 39t11+

182t12 + 30t13 + 143t14 + 32t15 + 91t16 + t17 + 241t18+
241t19 + 67t20 + 200t21 + 138t22 +O(t23),

which can be rewritten as
Z(t) + 57Z3(t) + 31Z5(t) + 13Z7(t) + 214Z9(t) + 120Z11(t) +O(t23).

Now we use the Berlekamp Massey algorithm to recover the fraction, which in this particular case gives
140Z5(t) + 15Z3(t) + Z(t)

239Z4(t) + 54Z2(t) + 1
,
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n f(T ) c
155 T 7 + T 5 + T 4 + 1 80860670297104421704641
196 T 3 + 1 168959031790830995673970347393
300 T 5 + 1 −10571281829901220624668774504748712108091263
400 T 5 + T 3 + T 2 + 1 83131171959337393875969292317817192062621127877417\

9820465793
500 T 8 + T 6 + T 5 + T 2 + T + 1 −1022525379417220053537215648371674704330886180912\

84615423424533825936526975
601 T 7 + T 4 + T 3 + T 2 + T + 1 37775742763172180654637698179922762979897172920800\

67701458146624068364548898667013349009665
701 T 9 + T 8 + T 7 + T 4 + T 2 + 1 −6359955034208948319000311216309478917321579803329\

46517959827018542105004396465148187664452889226358\
9295359

1009 T 11 + T 4 + T 2 + 1 55007905849934614144624409501712379419197634620524\
53456763226048365537759705821387697628232022965034\
0954505941334049799934180550652777226376997856386305

Table 1. Values of c such that #EX = q + 1− c.

F2155 F2196 F2300 F2701 F21009

`max 59 73 109 337 577
Isogenies 24 580 22974 4842770 13457961
Total 217 1381 30221 7897343 21018853
Table 2. Records for the second implementation

and via Z(t) = 1/X(t), we obtain

I(X(t)) = X5(t) + 15X3(t) + 140X(t)
(X2(t) + 57X(t) + 74)2 .

8.3. Implementation and results.

8.3.1. Benchmarks. In [30], we benchmarked our implementation using curves defined over small finite
fields, as was done in [22]. We also explained in the same paper how we can tune our program using
parameters describing several strategies. In the case of the field K = F2300 , we have made precise statistics
on every part of the algorithm. The results are given in the tables given at the end of the article. In
Table 3, one finds for each Elkies prime power `d the time Prec needed for the precomputations, ⊕
designates the time of a formal addition, BM the time for the Berlekamp-Massey algorithm and N is the
2-adic integer such that [N ] ◦ U comes from an isogeny (we take all coefficients u2i = Pi(T ) of U such
that Pi(0) = 0).

8.3.2. Records. In [37, 36], the authors gave timings for larger fields F2155 and F2195 . For these fields and
for larger fields (the last one being the current record, F21009 , as of January 1996), our implementation
gave the following timings, for the curve:

EX : y2 + xy = x3 + T 16 + T 14 + T 13 + T 9 + T 8 + T 7 + T 6 + T 5 + T 4 + T 3

(the coefficient was chosen as the binary expression of 91128 – our zip code – converted to a polynomial if
F2n). Table 1 gives for some values of n a polynomial f(T ) such that Tn + f(T ) is a defining polynomial
of F2n = F2[T ]/(Tn + f(T )) and the value of c such that #EX(F2n) = 2n + 1− c.

The interested reader can find the timings for our first implementation in [30], as well as a comparison
with the case of prime fields of large characteristic. Table 2 refers to the implementation that uses all
features described in the present article. All these records have been done using a network of DecAlpha
workstations, using an obvious distributed implementation of the algorithm.
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9. Conclusion

There are basically two approaches for computing isogenies between elliptic curves over a finite field.
The Atkin-Elkies method works well when the characteristic is large and Couveignes’s method for the
small characteristic. In the particular case of the characteristic 2, a new method has being developed by
the first author [28]. This method does not use formal groups and is much faster than Couveignes’s in
practice.

In the general case of p small, Couveignes [10] (and [11] for a more detailed version) has very recently
proposed a new algorithm that uses properties of the p-torsion to compute the isogenies. The implemen-
tation and comparison of these new methods are currently being done by the first author (see [32] for a
comparison of the algorithms and [29] for more details).
Acknowledgments. First of all, the authors want to express their gratitude to J.-M. Couveignes,
without whom this work could not have been possible. Many thanks to J.-M. Steyaert for his careful
reading and for pointing out to us the use of GFUN and the theory lying behind it.
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` d Prec U Z(t)i ⊕ Z∗ = M̂(Z) BM N Isogenies % Tot
3 1 0 0.2 0 0 0 0 3 0.4 67 0.6
5 1 0 0.5 0 0.1 0 0 7 1.3 62 2.1
7 1 0.1 0.8 0 0.1 0 0 7 2.1 64 3.3
11 1 0.4 1.9 0.1 0.4 0 0 7 6 50 12.1

2 0.5 2.1 0.1 0.4 0 0 7 10.4 5 220.1
19 1 5.2 5.6 0.6 1.2 0 0.1 47 56 77 72.8
31 1 2.8 13.1 2.3 2.3 0.1 0.2 63 131.4 74 177.1
37 1 7.3 21 3.7 4.5 0.2 0.3 127 446.3 86 516.3
41 1 8 25.2 5 5.2 0.2 0.4 81 343.6 78 439.6
47 1 8.9 32.3 7.5 5.8 0.3 0.5 111 525.2 84 627
59 1 11.1 49.6 13.6 7.3 0.6 0.7 103 639.2 80 798.4
61 1 11.3 55 14.7 7.8 0.6 0.8 3 112.3 40 278.4
67 1 47.6 68.9 18.5 11.4 0.7 0.8 93 927.6 80 1157.2
79 1 28.2 94.4 29.8 15.8 1.1 1.2 133 1692.9 86 1970
97 1 33.6 136.3 52.6 20.2 1.7 1.7 79 1408.4 78 1802.3

101 1 34.6 142.5 58.6 20.5 1.8 1.8 161 2695.9 83 3259.2
103 1 35.1 147.4 62 20.7 1.8 1.9 37 853.4 70 1212.6
107 1 144.4 159.1 68.3 21.6 2 2 251 4433.4 90 4907.6
Tot 379.1 955.9 68.3 - - - - 14285.8 82 17456.7

Table 3. Data for F2300 .


