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Abstract. In this paper, we revisit the problem of computing the kernel of a separable isogeny of
degree ` between two elliptic curves defined over a finite field Fq of characteristic p. We describe an
algorithm the asymptotic time complexity of which is equal to eO(`2(1 + `/p) log q) bit operations.
This algorithm is particularly useful when ` > p and as a consequence, we obtain an improvement of
the complexity of the SEA point counting algorithm for small values of p. More precisely, we obtain a
heuristic time complexity eO(log4 q) and a space complexity O(log2 q), in the previously unfavorable
case where p ' log q. Compared to the best previous algorithms, the memory requirements of our
SEA variation are smaller by a log2 q factor.
Keywords: finite fields, elliptic curves, separable isogenies, point counting.

1 Introduction

Counting points on an elliptic curve over a finite field Fq, q = pn is a fascinating problem, which has
attracted considerable interest in the recent years. In 1997, Elkies already mentioned this keen interest
at the beginning of [12]. The whole story started in 1985, with the publication by Schoof [30] of a
deterministic polynomial time algorithm to compute the number of points of an elliptic curve with
polynomial time complexity. This offered a strong alternative to the exponential methods. Later on, the
algorithm was improved by Atkin [1, 2] and by Elkies [11, 12]. More recently, a new family of algorithms,
extremely efficient in small characteristic, appeared with the work of Satoh [27] and Mestre [25].

The main idea of the algorithm given in [30] is to consider the characteristic equation φ2−[c]◦φ+[q] = 0
of the Frobenius φ while viewing φ as a linear action on the F`-vector space E[`] of `-torsion points (for
prime integers `). This allows to determine the trace c of φ modulo `. When sufficiently many c mod `
are known, it remains to apply the Chinese Remainder Theorem to compute c and find the cardinality of
the curve. The complexity of the algorithm essentially depends on the degree of the extension field that
one must uses to handle the `-torsion. Since the algorithm of Schoof uses the polynomials of `-th division
f`(X), this degree is around `2/2. Using asymptotically fast arithmetic, one finds a time complexity
Õ(log5 q) and a space complexity O(log3 q).

The improvements by Atkin and Elkies stem from the following fact: for odd primes ` different from
the characteristic p such that the principal ideal (`) splits in the imaginary quadratic field Q(

√
c2 − 4q),

there exists two degree ` separable isogenies associated with two factors h`(X) of degree (` − 1)/2 of
f`(X). Such an integer ` is called an Elkies prime. Computing these isogenies from the polynomials h`(X)
is feasible by formulas due to Vélu [34] but that necessitates the factorization of f`(X). Atkin and Elkies
showed that one can go in the other direction and find the rational isogenies of degree ` defined from
E in order to deduce, without factorization, the polynomial h`(X). In fields of large characteristic, the
time and space complexity respectively decrease then to Õ(log4 q) and O(log2 q).

In this paper, we focus on the medium case, where more precisely, p ' log q and n ' log q/ log log q,
when log q tends to infinity. This choice is right on the boundary where obstructions prevent the Atkin-
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Elkies’ method from working. The classical workaround would be to consider the algorithm of Cou-
veignes [10] which, for fixed p, yields the same SEA complexity as in the large prime case. Unfortunately,
this algorithm also behaves badly in the medium case. Instead, we propose here a new isogeny finding
algorithm which yields a SEA algorithm which still heuristically runs in Õ(log4 q) bit operations and
O(log2 q) memory.

At the present time, four families of algorithms are known to explicitly calculate kernels of separable
isogenies of degree ` on elliptic curves.

_ Charlap-Coley-Robbins [26] or Atkin-Elkies [2]: they are valid for p � `, they require Õ(`2 log q) bit
operations and O(` log q) memory.

_ First Couveignes’ algorithm [8]: it is the first efficient algorithm known for small characteristic p, it
consists in calculations in the formal groups defined by the elliptic curves. It requires, for fixed p,
Õ(`3 log q) bit operations and O(`2 log q) memory.

_ Lercier [22]: it is specific to the p = 2 case, one gets rid of formal groups and obtains an algorithm
with heuristic time complexity Õ(`3 log q) and O(`2 log q) bit operations.

_ Second Couveignes’ algorithm [9]: it consists of the interpolation of the isogeny on the pk-torsion
points. In conjunction with other ideas of Couveignes [10], the asymptotic time complexity of this
algorithm is for fixed p equal to Õ(` log2 q) bit operations.

In our novel approach, we explain how to apply to finite fields of any characteristic an algorithm due to
Charlap, Coley and Robbins, well understood over the complex field (cf. section 2) and successfully used,
until now, in finite fields of large characteristic. The main ingredient is to lift the involved elliptic curves
to the p-adic field, so that the inversions by p which occurs in the algorithm are no longer a problem (cf.
section 3). This algorithm needs Õ((1+`/p)`2 log q) bit operations and a O((1+`/p)` log q) memory. As a
result, we get an easy to implement variation of the SEA algorithm with time heuristic complexity equal
to Õ(log4 q) and space complexity equal to O(log2 q) for the forementioned case p ' log q (cf. section 4).

Notations. We denote Õ(N) complexities of the type O(N(log N)k (log log N)k′
. . .) for integers k, k′,

. . . .

2 Complex field viewpoint

We recall here some well known results that can be found, for instance, in [32].

Complex tori and doubly periodic functions. Let Λ be a lattice of C, that is a non null discrete
subgroup of C which is non-isomorphic to Z. It can be defined by Zω1 + Zω2 with ω1, ω2 ∈ C. A
fundamental parallelogram for Λ is a set of the form D = {a + t1ω1 + t2ω2, 0 6 t1, t2 < 1} where a ∈ C.
There exists a bĳective map between D and the quotient of (C,+) by Λ.

A meromorphic function f on C is an elliptic function of period Λ if for all ω ∈ Λ, f(z +ω) = f(z). In
particular, an elliptic function may be seen as a meromorphic function of the torus and the set of these
functions forms clearly a field. Let us observe that an elliptic function without poles or without zeroes
is constant (Liouville’s theorem). Also, the sum of the residues of an elliptic function on a fundamental
parallelogram (not meeting its poles) is null (residues theorem).

It is natural to introduce the function
∑

ω∈Λ 1/(z − ω)3 because this series converges uniformly in
every compact subset of C \ Λ. It defines an odd elliptic function with a pole of order three at each
point of Λ. Its integration, with a corrective term that guarantees uniform convergence in every compact
subset of C \ Λ, yields an elliptic function with poles of order two at each point of Λ called the function
℘ of Weierstraß,

℘(z) =
1
z2

+
∑

ω∈Λ−{0}

1
(z − ω)2

− 1
ω2

.

Focusing on the zeroes and the poles zi of an even elliptic function f(z), it is always possible to exhibit
a product of functions ℘(z) − ℘(zi) the quotient with f of which is elliptic and without pole, therefore
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constant. The field of even elliptic functions is just C(℘) and, more widely, one can show that the elliptic
functions field is C(℘, ℘′).

As ℘′2(z) is an even function, it is therefore natural to write it according to ℘(z). One finds thus,
once denoted Gk =

∑
ω∈Λ−{0} ω−2k, that

℘′2 = 4℘3 − 60G2℘− 140G3.

The map ϕ : z → (℘(z), ℘′(z)) is therefore a bĳective map between the torus C/Λ and the set of the
points of the plane projective curve with equation Y 2Z = 4X3− 60G2XZ2− 140G3Z

3 whose associated
affine curve E is y2 = 4x3 − 60G2x − 140G3. These curves are called elliptic curves and the existence
of ϕ (Riemann surfaces isomorphisms) shows that they are non singular. The field C(℘, ℘′) is therefore
isomorphic to the fraction field of the ring C[x, y]/(y2−4x3 +60G2x+140G3) which contains the regular
functions of E.

Addition law. At this stage, one can express the addition law on the torus C/Λ in geometric terms
on the curve E. For that, let us quickly define a divisor D of C/Λ as a finite formal combination of
points of C/Λ with coefficients in Z. It is denoted

∑
P∈C/Λ eP [P ]. The degree of a divisor D is the sum

of its coefficients. The set of degree 0 divisors, denoted Div0(C/Λ), is a subgroup of the set of divisors
Div(C/Λ). To each meromorphic function f of C/Λ, one associates the divisor Div f of which the points
are the zeroes and the poles of f and the coefficients, the corresponding valuations. Such a divisor is
called a principal divisor. One can then write the following exact sequence:

1 −→ C∗ −→ C(℘, ℘′)∗ −→ Div0(C/Λ) −→ C/Λ −→ 0.

The exactness at C(℘, ℘′) results from Liouville’s theorem. The exactness in Div0(C/Λ) comes back to
to say that degree 0 divisors of sum 0 are divisors of elliptic functions. It follows that the Picard group
Pic0(C/Λ) of C/Λ, defined as the quotient of Div0(C/Λ) by the group of principal divisors, is isomorphic
to C/Λ. With O, the point at infinity of the projective curve, the associated isomorphism is simply
P −→ [P ] − [O]. Explaining from this isomorphism the addition on the torus yields the well known
so-called “chord and tangent” method.

Morphisms between complex tori. Let E1 and E2 be two projective elliptic curves associated with
two tori C/Λ1 and C/Λ2. A holomorphic map of C/Λ1 towards C/Λ2 that sends O towards O is a group
morphism which, when non constant, is subjective and called an isogeny. One can then show that the
set of the isogenies of E1 towards E2 is a commutative group isomorphic to the subset of the complex
values α such that αΛ1 ⊂ Λ2. For the direct direction, it is not difficult to see that when α verifies this
last condition, the application [α] : z −→ αz is an isogeny. On the other hand, it is necessary to lift on
C the considered isogeny to see that its derivative is holomorphic and elliptic, therefore constant.

Thus, the kernel of a non-null isogeny Φ is the finite subgroup α−1Λ2/Λ1. The degree of Φ denoted
deg Φ is the number of elements in the kernel of Φ. We have deg(Φ) = [Λ2 : αΛ1] = [α−1Λ2 : Λ1].

This yields an injective map of the function field C(Λ2) in C(Λ1),

Φ∗ : C(Λ2) −→ C(Λ1),
f −→ f ◦ Φ .

This injective map defines a Galois extension of degree deg Φ. On the other hand, any injective map of
C(Λ2) in C(Λ1) defines an holomorphic morphism of C/Λ1 in C/Λ2. Besides, Φ induces a morphism of
Div E1 in Div E2 that preserves the degree,

∑
P∈C/Λ eP [P ] −→

∑
P∈C/Λ eP [Φ(P )]. Using the norm of

the extension C(E1)/C(E2), we see that the image of a principal divisor is a principal divisor. Thus, the
isogeny Φ induces a morphism of Pic0(E1) in Pic0(E2), or equivalently a morphism of E1 in E2.

Let d be the degree of Φ, then Λ1 ⊂ α−1Λ2 ⊂ d−1Λ1 and therefore Λ2 ⊂ d−1αΛ1. Therefore, there
exists an isogeny:

Φ̂ : C/Λ2 −→ C/Λ1,
z −→ dα−1z .

Then, Φ̂ ◦ Φ is equal to the multiplication by d on C/Λ1, denoted [d]1. Similarly Φ ◦ Φ̂ = [d]2.
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Algorithmic viewpoint. In the SEA point counting algorithm, we need, given two isogeneous curves
of degree `, to compute the kernel C` of the corresponding isogeny. More precisely, let E be defined by
the Weierstraß equation y2 = x3 + a4x + a6 and the isogeneous elliptic curve of degree `, Ẽ = E/C`

defined by y2 = x3 + ã4x + ã6, we would like to compute the polynomial

h`(X) =
∏

+−P∈C`\{O}

(X − x(P )).

Over C, we can associate to E the reduced Weierstraß ℘-function given by

℘(z) =
1
z2

+
∞∑

k=1

ckz2k

where the coefficients are

c1 = −a4

5
, c2 = −a6

7
, ck =

3
(k − 2)(2k + 3)

k−2∑
j=1

cjck−1−j , for k ≥ 3.

The function ℘̃ for Ẽ is defined similarly using the coefficients ã4 and ã6. Seen in terms of lattices,
the isogeny is quite simple,

C/(ω1Z + ω2Z) → C/(ω1
` Z + ω2Z),

z 7→ z.

The following observation gives a first relation between ℘(z) and ℘̃(z).

Lemma 1. Let ℘(z) and ℘̃(z) be two Weierstraß functions respectively defined over the lattices ω1Z+ω2Z
et ω1

` Z + ω2Z. Then

∀z ∈ C, ℘̃(z) =
l−1∑
i=0

℘(z + i
ω1

`
)−

l−1∑
i=0

℘(i
ω1

`
).

We are now ready to give a short summary of the method of Charlap, Coley and Robbins. For more
details, the reader can refer to the presentation given by Morain in [26]. We proceed in two steps. First,
we calculate the sums

pk =
(`−1)/2∑

i=1

℘k
(
i
ω1

`

)
, k ∈ N,

and in a second step obtain h`(X) using Newton’s formulas [6, p. 161]. To this effect, we compute the

derivative of the differential equation satisfied by ℘,
(

d℘
dz

)2

= 4℘3 + 4a4℘ + 4a6, and obtain d2℘
dz2 =

6℘2 + 2a4. Computing the second derivative yields d4℘
dz4 = 120℘3 + 72a4℘ + 48a6. Similarly, further

derivatives yield equations

∀k ∈ N∗,∀z ∈ C,
d2k℘

dz2k
(z) = (2k + 2)!℘k+1(z) + · · ·

Evaluating these derivates at ω1
` , . . . , (`−1)ω1

` and summing up, we find

∀k ∈ N∗,

l−1∑
i=1

d2k℘

dz2k

(
i
ω1

`

)
= 2 ((2k + 2)!pk+1 + · · ·) .

Using Lemma 1, we get
l−1∑
i=1

d2k℘

dz2k

(
i
ω1

`

)
= (2k)!(b̃k − ck)

and therefore
(2k)!(c̃k − ck) = 2(2k + 2)!℘k+1(z) + · · ·
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In particular,

a4 − ã4 = 5(6p2 + 2a4p0),
a6 − b̃6 = 7(10p3 + 6a4p1 + 4a6p0).

As a consequence, the computation of the pk becomes a simple inversion of a triangular linear system of
equations.

3 Back to finite fields

For elliptic curves defined over finite fields, the situation is slightly more difficult. In order to compute
h`(X), we first need a model for the isogeneous curve of degree `. This was solved by Elkies with the
help of the `-th modular polynomials. In the same manner, Elkies describes how we can obtain the sum
p1 of the x-coordinates of the nonzero points in E[`]. We refer to [11, 31] for details. The remaining of
the computation is then a direct application of the formulas given above.

Let us note that these algebraic relations are reductions of relations over C; for these relations to hold
over a finite field, the characteristic p must be large enough since the coefficients ck and c̃k need inversions
of integers of the form (k − 2)(2k + 3), which can be equal to zero modulo p when ` ≥ (p− 3)/2. When
p is large enough, everything proceeds correctly and it is not difficult to see that the time complexity is
equal to Õ(`2 log q).

A p-adic version. In the same spirit as the results published in the last few years for counting points
on algebraic curves of small genus, we make the previous algorithm work in finite finite fields of small
characteristic by lifting the isogeneous elliptic curves in an unramified extension denoted Qq of the p-adic,
corresponding to the extension Fq of Fp. This yields algorithm 3.1.

Algorithm 3.1 CCRLifted
Algorithm to compute separable kernels of isogenies of degree `
Input: An non-supersingular elliptic curve given over Fq by E : y2 + a1xy + a3y = x3 + a2x

2 + ax + a6

and an Elkies prime `.
Output: Two polynomials in Fq[X] of degree b`/2c the roots of which are x-coordinates of points of E[`].

Step 1. Let w be a p-adic precision given by

8<:
b15 + 3`/2c if p = 2,
5 + ` if p = 3,
b1 + 2`/pc otherwise.

Step 2. Lift E in Qq in a arbitrary way.
Step 3. Compute an isomorphic Weierstraß model E : y2 = x3 + A4x + A6

isomorphic by λ to E/Qq.
Step 4. Use Atkin-Elkies’ algorithm to get at precision w in Qq

two isogeneous curves Ẽ and Ẽ ′.
Step 5. Use Atkin-Elkies’ algorithm to get at precision w in Qq

the sums p1 and p′1.
Step 6. Use Charlap-Coley-Robbins algorithm to get from (Ẽ , p1) and (Ẽ ′, p′1)

two polynomials H`(X) and H′
`(X).

Step 7. return {λ−1(H`(X)) mod p, λ−1(H′
`(X)) mod p}.

Some comments on this algorithm follow.

_ It may happen that Atkin-Elkies’ algorithms fail with inputs supersingular curves or ` = p (cf. [31]).
We thus do not authorize such inputs in this algorithm. But Charlap-Coley-Robbins’ method, at the
opposite of Couveignes’ algorithms, do not need any non-trivial p-torsion point.

_ When the characteristic p of the field is greater than 2`, algorithm 3.1 is the same algorithm as the
classical Charlap-Coley-Robbins algorithm since working with precision one in Qq is obviously the
same things as working in Fq.
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_ The precision needed depends on the number of non invertible elements that the algorithm will
encounter in the Charlap-Coley-Robbins computations, mainly in the ck’s computations, and it is
not hard to see that this precision must be mainly proportional to 2`/p in general, to ` in fields of
characteristic 3 and to 3`/2 in fields of characteristic 2. The additional terms of 15 in characteristic 2
and 5 in characteristic 3 was determined experimentally. It mostly comes from the change of variable
needed to get an isomorphic Weierstraß model of the form E : y2 = x3 + A4x + A6 and from the few
inversions by two or three needed in Atkin-Elkies formulas.

_ The complexity in time of the algorithm is still Õ(`2) multiplications. When p is large these are
multiplications in Fq, otherwise, these are multiplications in Qq at precision Õ(`/p). We therefore have
a total complexity in time equal to Õ((1+`/p)`2 log q). The complexity in space is O((1+`/p)` log q).

We have implemented this algorithm using the Magma computer algebra system, version 2.12 [3]. We
give below examples in characteristics 23 and 2.

A characteristic 23 example. Let E/F23 be the elliptic curve y2 = x3 + 6 x + 17. We are looking for
isogenies of degree 13. We simply take as Weierstraß model isomorphic to E in Q23 at precision 2 the
curve E : y2 = x3 + (6 + O(232))x + (17 + O(232)). Atkin-Elkies’ algorithms then enable us to find that
E is 13-isogeneous to a curve approximated by Ẽ : y2 = x3 + (99 + O(232))x. Similarly, we find that
p1 = −19 + O(232). Charlap-Coley-Robbins algorithm applied to these inputs yields

H23(X) = X6 + (19 + O(232)) X5 − (50 + O(232)) X4 + (208 + O(232)) X3

− (119 + O(232)) X2 − (252 + O(232)) X − 231 + O(232).

Reducing the result modulo 23, we finally find that

h23(X) = X6 + 19 X5 + 19 X4 + X3 + 19 X2 + X + 22.

A characteristic 2 example. Let F210 ' F2[t]/(t10 + t6 + t5 + t3 + t2 + t + 1) and E be the elliptic
curve y2 + xy = x3 + t457. We are looking for isogenies of degree 7.

A Weierstraß model isomorphic to E in Q210 is given at precision 25 by

E : y2 = x3 − (27 + O(225))x + (2 (23328 t9 + 23328 t5 + 23328 t2 + 23355) + O(226))

with λ : (x, y) 7→ ((9.22 + O(227))x + (3 + O(225)), (27.23 + O(228))y + (27.22 + O(227))x + O(227)).
Atkin-Elkies’ algorithms then enable us to find that E is 7-isogeneous to a curve approximated by

Ẽ : y2 = x3 + (48432 t9 + 3072 t8 − 56864 t7 + 38944 t6 + 108896 t5 − 93264 t4

+ 9264 t3 − 38080 t2 + 608 t− 114731 + O(218)) x + ((27064 t9 − 5248 t8 − 18512 t7

− 25712 t6 + 13520 t5 − 7016 t4 + 2328 t3 − 13056 t2 − 12816 t− 8461) 2 + O(217)).

Similarly, we find that p1 = −8660 t9 + 9992 t8 + 9528 t7 − 31720 t6 + 14456 t5 + 20204 t4 − 21212 t3 +
26264 t2 − 3472 t + 29477 + O(216).

Charlap-Coley-Robbins algorithm applied to these inputs yields

H7(X) = X3 + (8660 t9 − 9992 t8 − 9528 t7 + 31720 t6 − 14456 t5 − 20204 t4

+ 21212 t3 − 26264 t2 + 3472 t− 29477 + O(216)) X2 + (−10232 t9 − 3440 t8

+ 9936 t7 + 576 t6 + 6896 t5 + 2216 t4 − 4456 t3 + 7360 t2 + 15872 t

+ 11907 + O(215)) X + 6324 t9 + 11608 t8 + 200 t7 − 15592 t6

+ 4840 t5 + 4692 t4 + 15292 t3 − 104 t2 − 13584 t + 6121 + O(215).

Applying then λ−1 and reducing the result modulo two, we finally find

h7(X) = X3 + t889X2 + t256X + t591.
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4 Point counting on elliptic curves

Plugging CCRLifted in SEA yields an algorithm of asymptotic time complexity Õ((1 + log q/p) log4 q)
and space complexity O((1 + log q/p) log2 q). It is especially interesting when p ' log q because in this
case we have an algorithm of time complexity Õ(log4 q) and space complexity O(log2 q), which compares
well with classical SEA complexities analysis (where either p or n is fixed).

We further compare this SEA algorithm to other efficient point counting algorithms which work for
smaller p, that is SEA with second Couveignes finding isogeny algorithm, Satoh-Mestre and Kedlaya’s
approaches.

Couveignes’ approach. The heart of second Couveignes’ algorithm consists in computing an isomor-
phism between two towers of Artin-Schreier extensions. The complexity of this algorithm, for varying p,
is at least the cost of computing an isomorphism between two Artin-Schreier extensions defined over Fq.
The classical way to solve this problem is to factor in one extension the defining polynomial of the other
one, that is a polynomial of the form Xp −X = γ with γ ∈ Fq. Since Xp −X is Fp-linear, this may be
done by precomputing the inverse of a pn × pn matrix defined over Fp (this already yields a Õ((pn)ω)
time complexity with the Winograd constant ω greater than 2.3). Then, each isogeny kernel computation
involves a matrix-vector multiplication by such a matrix, that is Õ((pn)2) bit operations.

In the case p ' log q, the corresponding SEA algorithm runs thus in Õ(log5 q) bit operations, which
is larger than the complexity of our variation.

Satoh’s and Mestre’s approaches. Satoh [27] noticed first that the results of Lubin, Serre and
Tate [24] lead to an algorithm which efficiently calculate the canonical lift of an elliptic curve defined
in a finite field of small characteristic. It obtains an algorithm with time complexity Õ(p2n3) and space
complexity O(p2n2 log q). One year later, Vercauteren, Preneel and Vandewalle [36] reduce in the general
case the space complexity down to O(p2n log q).

During the same period, Mestre proposed an algorithm of an astonishing simplicity and nevertheless
with the same complexity to calculate the cardinality of an elliptic curve in finite fields of characteristic
two, the so-called AGM method [25]. A generalization have been performed by Carls [5] (another at-
tempt is explored in [21]). This also yields algorithms of time complexity Õ(p2n3) and space complexity
O(p2n log q).

Further algorithmic improvements are due to Satoh-Skjernaa-Taguchi [29, 28], Lercier-Lubicz [23] and
Harley [19]. As described in the most complete text on the subject [35, Chapter 3], the best algorithms
among those run in Õ(p2n2) bit operations and requires a O(p2n2) memory (one bottleneck is that we
can not avoid the calculation of the p-torsion part of the curve and this involves the computation in the
p-adics of the p-th division polynomial).

Thus, all algorithms in this family have the same time complexity and larger memory complexity
than our SEA variation, in the case p ' log q.

Kedlaya’s approach. Kedlaya’s algorithm [20] to count points on hyperelliptic curve as a function of
both p and n has been studied in [16]. For elliptic curves, the complexity, both in time and space, is
reported to be Õ(pn3).

When p ' log q, time complexity is the same as in our case but, again, space complexity is much
larger.

Comparison summary. As a conclusion, all these algorithms have got at best the same time complexity
as our SEA variation in the case p ' log q that we are considering. However, their memory requirements
are much larger. Moreover, when time and memory requirements are comparable, as is the case here,
memory is the bottleneck and the practical impact of our improvement is noteworthy.
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5 Other applications

Besides point counting, some applications may take advantage of an “easy to implement” algorithm for
isogeny computation. We give two examples below.

Improvements to the Weil descent. The Weil descent is a method that allows bringing back the
discrete logarithm on elliptic curves defined over an extension Fpn of a small finite field Fpm to the
discrete logarithm on a curve of larger genus defined over Fpm . It was initially proposed by Frey [13],
deepened by Galbraith and Smart [15], then made effective by Gaudry, Hess and Smart [17].

Now, the hardness of performing the Weil descent varies between isogeneous curves. To improve the
attack, being given a curve E, one may try to transport the discrete logarithm defined by E to an easier
one on an isogeneous curve. This strategy was studied by Galbraith, Hess and Smart in [14].

Cryptographic protections against side-channel attacks. Side-channel attacks are a recent de-
velopment of cryptanalysis, where one studies the precise physical behavior of cryptographic protocols
and algorithms (execution times, electric consumption, . . . ) to recover keys or other secrets. Since their
discovery in the 90’s, they are considered as a serious threat.

Of course, the elliptic curve based cryptography, especially its point by scalar multiplication, does not
escape these attacks. Some of very popular countermeasures were proposed by Coron [7]. Unfortunately,
some of them were defeated by Goubin [18] that using the specific representation of some points on
the considered curve, typically the points with zero x-coordinates. Nevertheless, it is possible to counter
the corresponding attacks, as proposed by Smart [33], by replacing the known curve by an isogeneous
random curve.

6 Conclusion

Lifting elliptic curves in the p-adics, we give a generalization of the easy to implement algorithm of
Charlap, Coley and Robbins for finding isogenies. Our approach, can also be successfully applied to
similar algorithms, for instance the isogeny finding algorithm given in [31] or more recently in [4]. An
important consequence of these isogeny finding algorithms is to extend the scope of the SEA algorithm
toward fields of smaller characteristic. In particular, in medium characteristic, this SEA variation turns
out to be the most efficient point counting algorithm available at the present time.
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